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Abstract
This paper is concerned with a predator–prey system with hunting cooperation and prey-taxis under homogeneous
Neumann boundary conditions. We establish the existence of globally bounded solutions in two dimensions. In
three or higher dimensions, the global boundedness of solutions is obtained for the small prey-tactic coefficient. By
using hunting cooperation and prey species diffusion as bifurcation parameters, we conduct linear stability analysis
and find that both hunting cooperation and prey species diffusion can drive the instability to induce Hopf, Turing
and Turing–Hopf bifurcations in appropriate parameter regimes. It is also found that prey-taxis is a factor stabilizing
the positive constant steady state. We use numerical simulations to illustrate various spatiotemporal patterns arising
from the abovementioned bifurcations including spatially homogeneous and inhomogeneous time-periodic patterns,
stationary spatial patterns and chaotic fluctuations.

1. Introduction

Prey-taxis, the movement of predators toward regions of higher prey density, plays important roles
in biological control such as regulating prey (pest) population to avoid incipient outbreaks of prey or
forming large-scale aggregation for survival (cf. [13, 32, 44]). This mechanism was first applied to the
predator–prey systems by Kareiva and Odell [26] to interpret the heterogeneous aggregative patterns
observed in a field experiment for one predator and one prey involving area-restricted search strategies.
The Kareiva–Odell prey-taxis model generally reads as⎧⎪⎨⎪⎩

ut = d1�u − χ∇ · (u∇v)+ βG(v, u)u − θu, x ∈�, t> 0,

vt = d2�v + F(v)v − G(v, u)u, x ∈�, t> 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�,

(1.1)

where u(x, t) and v(x, t) denote predator and prey density at position x ∈� and time t, respectively,
and �⊂R

n(n ≥ 1) is a bounded domain with smooth boundary. The function G(v, u) is the functional
response that describes the predator’s consumption rate of prey, and F(v) represents the per capita prey
growth rate in the absence of predators. d1 and d2 are diffusion rates of the predator and the prey, respec-
tively. The parameters β and θ represent the conversion rate of captured prey into predator and the
predator mortality rate, respectively. All parameters are positive unless otherwise stated.

The functional response function G(u, v) is a crucial factor shaping various dynamical behaviors
in predator–prey systems [53]. Over the past century, different functional responses have been identi-
fied based on various biological applications, including Holling type [16–18], Hassell-Varley type [15],
Beddington–DeAngelis type [4, 10], ratio-dependent type [3] and Crowley–Martin type [9], among
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others [53]. The prey growth function F(v) typically takes the form of a logistic type

F(v) = σ (1 − v/K) (1.2)

with the prey intrinsic growth rate σ and the environmental carrying capacity K for the prey. Apart from
the logistic type, F(v) could be bistable (or Allee effect) type [55] or fear effect type [56], and so on. In
the sequel, we shall assume F(v) is of logistic type (1.2) unless otherwise stated.

This paper will be concerned with the functional response function employing the hunting coop-
eration strategy, which has attracted extensive attention recently. Cooperative hunting is a prominent
behaviour among large social carnivores, which enhances their ability to capture prey in their natu-
ral habitats [34, 58]. This behaviour enables predators to subdue large prey and improve their hunting
success. For instance, hyenas and wolves usually hunt alone when pursuing small-size prey such as
gazelles and sheep. In contrast, they prefer to hunt in packs when hunting large-size prey such as
zebras and deer [27, 33, 46]. This communal hunting phenomenon, leading to increased foraging effi-
ciency, has been observed in higher predator densities of terrestrial carnivores, including lions [45],
wolves [46] and African wild dogs [8]. To model this phenomenon of hunting cooperation, several func-
tional responses that increase with respect to the predator density, also known as hunting cooperation
functional responses, have been proposed, including

G(v, u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(λ+ αu)v, (Type I [51]),
ce(λ+ αu)v

1 + che(λ+ αu)v
, (Type II [5,7]),

ce(λ+ αu)v2

1 + che(λ+ αu)v2
, (Type III [53]),

(1.3)

where λ> 0 represents the predation rate on prey and α ≥ 0 characterizes the level of predator cooper-
ation during hunting, h represents the handling time per prey item, e0 is the encounter rate per predator
per prey unit time, and c is a fraction of a prey item killed per predator per encounter. When α = 0, the
Type I, II and III hunting cooperation response functions reduce to the well-known Holling I, II and III
functional response functions, respectively.

Among other things, this paper is focused on the Type I hunting cooperation:

G(v, u) = (λ+ αu)v (1.4)

which was first proposed in [52] and the corresponding temporal system (namely system (1.1) with (1.4)
and d1 = d2 = χ = 0) was numerically studied in [52]. It was found that hunting cooperation can benefit
predator populations by increasing attack rates, and large values of α can induce Hopf bifurcations.

The system (1.1) with χ = 0 is referred to as the diffusive predator–prey system. It was shown that
(1.1) with (1.4) will not have Turing instability without hunting cooperation (i.e. α= 0) (cf. [6, 60]),
while it will do with hunting cooperation (i.e. α > 0) only if the predator spreads slower than the prey
(i.e. d1 > d2) (cf. [6, 47, 60]). Later, the Hopf bifurcation was investigated in [29] by the centre manifold
and the normal form theory. If the Neumann boundary condition was replaced by the homogeneous
Dirichlet boundary condition u|∂� = v|∂� = 0 and n< 6, the stationary solution of the system (1.1) with
(1.4) was studied in [40] showing that sufficiently large α leads to the extinction of the predator species.
For more related works on the predator–prey models with hunting cooperation, we refer readers to [14,
20, 28, 50, 54] for Allee effects in prey, [35] for fear effects in prey, [12] for group defense in prey, [48]
for three-species food chain, [11, 31, 41, 51, 54] for hunting cooperation functional response functions
other than Type I, and references therein.

Though a considerable body of literature has studied the dynamics of predator–prey systems with
hunting cooperation in the absence of prey-taxis (i.e. χ = 0) as mentioned above, only a few results are
available to the predator–prey systems with prey-taxis and hunting cooperation (cf. [38, 42, 43, 62]).
When the hunting cooperation functional response function G(u, v) is Type II as given in (1.3), the exis-
tence of non-constant positive steady states of prey-taxis system (1.1) was obtained by the bifurcation
theory in one dimension in [37] where it was also shown that small prey-tactic sensitivity χ > 0 can

https://doi.org/10.1017/S0956792525000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000026


European Journal of Applied Mathematics 3

induce the Turing instability. Recently the work [62] established the existence of globally bounded clas-
sical solutions of (1.1) with Type II hunting cooperation in any dimension, and showed that negative
prey-tactic sensitivity χ < 0 (i.e. repulsive prey-taxis) can induce the Turing instability. When the hunt-
ing cooperation functional response function G(u, v) is uniformly bounded for all u, v ≥ 0, the global
boundedness of solutions was established [42, 43] where the global stability of constant positive steady
states and existence/nonexistence of non-constant positive solutions were further obtained if G(u, v)
is Type II. We remak the assumption in [42, 43] rules out the Type I hunting cooperation functional
response function (1.4) since it is obviously not uniformly bounded for u, v ≥ 0.

It is seen from the abovementioned existing results that the prey-taxis system (1.1) with Type I hunting
cooperation functional response function G(u, v) has not been studied, which is the most difficult case to
study from a mathematical point of view among three types given in (1.3) since G(u, v) is not uniformly
bounded for u, v ≥ 0 if it is of Type I. When G(u, v) is uniformly bounded for all u, v ≥ 0 like Type II
or Type III, the regularity of the Neumann heat semigroup (cf. [36]) can be directly applied to establish
global boundedness of solutions, while Type I forfeits this advantage. Apart from this, it is also unclear
whether the Type I hunting cooperation may induce the spatiotemporal patterns. This paper will address
these questions and we therefore consider the following prey-taxis system (1.1) with Type I hunting
cooperation ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = d1�u − χ∇ · (u∇v)+ u [β (λ+ αu) v − θ ] , x ∈�, t> 0,

vt = d2�v + σv
(
1 − v

K

)− (λ+ αu) uv, x ∈�, t> 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈�,

(1.5)

where the parameters d1, d2, β, λ, α, θ , σ , K > 0 and χ ≥ 0 have the same biological interpretations as
mentioned above. To reduce the number of parameters, we introduce the following rescalings

d̃1 = d1

θ
, d̃2 = d2

θ
, χ̃ = χ

βλ
, σ̃ = σ

θ
, K̃ = βλK

θ
, α̃= αθ

λ2
,

and

ũ = λu

θ
, ṽ = βλv

θ
, t̃ = θ t.

Substituting the above rescalings into (1.5) and dropping the tildes for brevity, we obtain the following
rescaled system ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = d1�u − χ∇ · (u∇v)+ (1 + αu) uv − u, x ∈�, t> 0,

vt = d2�v + σv
(
1 − v

K

)− (1 + αu) uv, x ∈�, t> 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈�,

(1.6)

where the parameters d1, d2, α, K, σ are positive and χ > 0. Throughout the paper, we shall often use
the following notations

f (u, v) := (1 + αu) uv − u and g(u, v) := σv
(

1 − v

K

)
− (1 + αu) uv (1.7)

for brevity.
The main analytical result of this paper is the following.

Theorem 1.1. Let �⊂R
n (n ≥ 2) be a bounded domain with smooth boundary, and let (u0, v0) ∈

[W1,q(�)]2 with some q> n and u0(x), v0(x) ≥ 0( �≡ 0). Then there exists χ∗ ∈ (0, +∞] such that for
all χ ∈ (0, χ∗), the system (1.6) admits a unique classical solution (u, v) ∈ [C0(�× [0, ∞)) ∩ C2,1(�×
(0, ∞))]2 satisfying u, v> 0 for all t> 0. Moreover, there exists a constant C> 0 independent of t such
that

‖u(·, t)‖L∞(�) + ‖v(·, t)‖L∞(�) ≤ C for all t> 0.
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In particular, χ∗ = +∞ if n = 2.

Before ending this section, we outline the main difficulties and proof strategies.

1.1 Sketch of proof strategies

Without prey-taxis (i.e. χ = 0), problem (1.6) can be regarded as a special one considered in [38]. Then
the global boundedness of solutions to (1.6) with χ = 0 in any dimension (n ≥ 1) is a consequence of
[38, Theorem 3.1] (see also [19]) based on the Lp-duality method. Without hunting cooperation (i.e.
α = 0), the global boundedness of solutions to (1.6) has been established in [23, 61]. Now with α > 0,
the source term contains a cubic polynomial αu2v and many arguments and estimates in [23, 61] for
the quadratic polynomial are no longer applicable. Hence, new technical ingredients are needed to deal
with the higher-order nonlinearity. Below we briefly describe our strategies used to obtain the global
boundedness of solutions for n = 2 and n ≥ 3.

(i) n = 2. In this case, by fully exploiting the model structural feature, we use cancellation ideas to
handle the troubling prey-taxis term while simultaneously controlling the cubic nonlinear source
term αu2v (see the proof of Lemma 3.1), and finally obtain the crucial uniform-in-time bound of
‖u‖L2(�) with sophisticated coupling estimates by establishing a Grownwall type inequality for the
linear combination of following four terms (see (3.19) and (3.27))

d

dt

∫
�

u2,
d

dt

∫
�

|∇v|2

v
,

d

dt

∫
�

u ln u,
d

dt

∫
�

uv.

Then we further perform Lp estimates to obtain the uniform-in-time bound of ‖u‖Lp(�) for p> 2,
which yields the global boundedness of solutions by the boundedness criterion in Lemma 2.6 and
the extension criterion in Lemma 2.1. We stress that here we obtain the L2-estimates directly with
the sophisticated coupling estimates by fully exploiting the advantage of cubic decay term −αu2v.
This is different from the estimates in the existing literature for the prey-taxis model without hunting
cooperation such as [23, 61] where the L2-estimate of u is established based on the estimate of
‖u ln u‖L1 and ‖∇v‖L2 which are first obtained separately.

(ii) n ≥ 3. In this case, we first establish a uniform-in-time bound of the weighted Lp-norm
∫
�

upϕ(v)
(p> 1) by constructing an appropriate weight function ϕ(v) (see Lemma 4.1 and Lemma 4.2), and
then obtain a bound of ‖u‖Lp(�) under a smallness condition on χ > 0.

The rest of the paper is organized as follows. In Sect. 2, we establish the local existence of solutions
to the system (1.6) and derive some preliminary results. We prove Theorem 1.1 for n = 2 in Sect. 3 and
for n ≥ 3 in Sect. 4. Finally, in Sect. 5, we conduct linear stability analysis to show that both Turing
bifurcations and Turing–Hopf bifurcations may arise from the system (1.6), and use numerical simula-
tions to demonstrate that (1.6) may generate various complex spatiotemporal patterns such as spatially
homogeneous time-periodic patterns, stationary patterns, spatiotemporal periodic patterns and chaos.

2. Local existence and preliminaries

In this section, we establish the local existence of solutions to the system (1.6) and provide some pre-
liminary results. Hereafter, we use C and Ci (i = 1, 2, 3, · · · ) to denote generic positive constants that
may vary from line to line in the context. We begin with the local existence of solutions.

Lemma 2.1. Suppose that the assumptions in Theorem 1.1 hold. Then there exists Tmax ∈ (0, +∞] such
that the system (1.6) has a unique classical solution

(u, v) ∈ [
C0(�× (0, Tmax)) ∩ C2,1(�× (0, Tmax))

]2
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satisfying

u> 0 and 0< v ≤ M0 := max
{‖v0‖L∞(�), K

}
for all (x, t) ∈�× (0, Tmax). (2.1)

Moreover,

either Tmax = +∞ or lim sup
t↗Tmax

(‖u(·, t)‖L∞(�) + ‖v(·, t)‖L∞(�)

)= +∞. (2.2)

Proof. Denote ω= (u, v). Then the system (1.6) can be written as⎧⎪⎨⎪⎩
ωt = ∇ · (A(ω)∇ω) +�(ω), x ∈�, t> 0,
∂ω

∂ν
= 0, x ∈ ∂�,

ω(x, 0) = (u0(x), v0(x)) , x ∈�,

where A(ω) =
[

d1 −χu
0 d2

]
and �(ω) =

(
f (u, v)
g(u, v)

)
with f (u, v) and g(u, v) given by (1.7). The upper

triangular matrix A(ω) is positively definite. Hence, the system (1.6) is normally parabolic. Then the
local existence and uniqueness of classical solutions follow from Amann’s theorem [1, Theorem 7.3
and Corollary 9.3] and the blow-up criteria (2.2) follows from [2, Theorem 15.5]. Moreover, u, v> 0 for
(x, t) ∈�× (0, Tmax) can be established by the strong maximum principle along with u0, v0 ≥ 0( �≡ 0).
These arguments are standard and we refer readers to [57, Lemma 2.6] and [24, Lemma 2.1] for details.
Finally, an application of [23, Lemma 2.2] proves v ≤ M0 for (x, t) ∈�× (0, Tmax).

The following result can be easily obtained.

Lemma 2.2. Suppose that the assumptions in Theorem 1.1 hold and (u, v) is the solution of the system
(1.6). Then

‖u(·, t)‖L1(�) ≤ M1 := max

{
‖u0 + v0‖L1(�),

K(1 + σ )2

4σ
|�|

}
for all t ∈ (0, Tmax). (2.3)

Proof. Adding the first two equations of (1.6), integrating the resulting equation by parts and using
Young’s inequality (1 + σ )v ≤ σ

K
v2 + K(1+σ )2

4σ
, we have

d

dt

∫
�

(u + v) = σ

∫
�

v
(

1 − v

K

)
−

∫
�

u ≤ −
∫
�

(u + v) + K(1 + σ )2

4σ
|�| for all t ∈ (0, Tmax),

which alongside u, v ≥ 0 implies∫
�

(u + v) ≤ max

{
‖u0 + v0‖L1(�),

K(1 + σ )2

4σ
|�|

}
.

The proof is completed.

We shall recall some inequalities that will be used later.

Lemma 2.3 ([22, Lemma 2.3]). Let α, β, T > 0, τ ∈ (0, T), and suppose that φ:[0, T) → [0, ∞) is
absolutely continuous satisfying

φ ′(t) + φ1+σ (t) ≤ ϕ(t)φ(t) + h(t), t> 0,

where σ > 0 is a constant, ϕ(t), h(t) ≥ 0 with ϕ(t), h(t) ∈ L1
loc([0, T)) and

sup
t∈[τ ,T)

∫ t

t−τ
ϕ(s)ds ≤ α, sup

t∈[τ ,T)

∫ t

t−τ
h(s)ds ≤ β.

Then for any t> t0, we have

φ(t) ≤ φ (t0) e
∫ t

t0
ϕ(s)ds +

∫ t

t0

h(τ )e
∫ t
τ ϕ(s)dsdτ (2.4)
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and

sup
t∈(0,T)

φ(t) ≤ σ
(

2A

1 + σ

) 1+σ
σ

+ 2B, sup
t∈[τ ,T)

∫ t

t−τ
φ1+σ (s)ds ≤ (1 + α) sup

t∈(0,T)
{φ(t)} + β, (2.5)

where

A = τ− 1
1+σ (1 + α)

1
1+σ e2α, B = τ− 1

1+σ β
1

1+σ e2α + 2βe2α + φ(0)eα. (2.6)

Lemma 2.4 ([59, Lemma 3.3]). Suppose that H ∈ C1((0, ∞), R+) and �(s) := ∫ s

1
dσ

H(σ )
for s> 0. Then

for all ϕ ∈ C2(�) fulfilling ∂ϕ

∂v
= 0 on ∂�, it holds that∫

�

H′(ϕ)

H3(ϕ)
|∇ϕ|4 ≤ (2 + √

n)2

∫
�

H(ϕ)

H′(ϕ)

∣∣D2�(ϕ)
∣∣2

.

Lemma 2.5 ([30, Lemma 4.2]). Assume that � is a bounded domain, and let w ∈ C2(�) satisfy ∂w
∂ν

= 0
on ∂�. Then we have

∂|∇w|2

∂ν
≤ 2κ|∇w|2,

where κ = κ(�) is an upper bound of the curvatures of ∂�.

Now we establish a boundedness criterion.

Lemma 2.6. Suppose that the assumptions in Theorem 1.1 hold and (u, v) is the solution of the system
(1.6). If there exists p> 3n

2
(n ≥ 2) such that

sup
t∈(0,Tmax)

‖u(·, t)‖Lp(�) ≤ K1 (2.7)

for a positive constant K1, there exists a positive constant K2 independent of t such that

‖u(·, t)‖L∞(�) ≤ K2 for all t ∈ (0, Tmax).

Proof. Assume that (2.7) holds for some p> 3n
2

(n ≥ 2). Then there exists a constant C1 > 0 such that

sup
t∈(0,Tmax)

‖u2(·, t)‖
L

p
2 (�)

≤ C1.

Since p
2
> 3n

4
, one can use a standard argument based on the smooth property of the Neumann heat

semigroup (cf. [36]) to find two constants r1 > 3n and C2 > 0 such that

sup
t∈(0,Tmax)

‖∇v(·, t)‖Lr1 (�) ≤ C2. (2.8)

Given t ∈ (0, Tmax), we let t0 := (t − 1)+. By Duhamel’s principle, u can be represented as

u(·, t) = ed1(t−t0)�u(·, t0) − χ

∫ t

t0

ed1(t−s)�∇ · [u(·, s)∇v(·, s)] ds +
∫ t

t0

ed1(t−s)�f (u(·, s), v(·, s))ds

=: I1 + I2 + I3 for all t ∈ (0, Tmax). (2.9)

By (2.3), the maximum principle and the smooth property of the Neumann heat semigroup again, for
all t ∈ (0, Tmax), we can find two positive constants C3 and C4 such that

‖I1‖L∞(�) =
{

‖ed1 t�u(·, 0)‖L∞(�) ≤ ‖u0‖L∞(�), if t ≤ 1,

‖ed1�u(·, t − 1)‖L∞(�) ≤ C3‖u(·, t − 1)‖L1(�) ≤ C4, if t> 1.
(2.10)

Let r2 := pr1
p+r1

. Then r2 > n due to 1
r2

= 1
p
+ 1

r1
< 1

n
. By (2.8) and Hölder’s inequality, for all t ∈ (0, Tmax),

we have

sup
t∈(0,Tmax)

‖u(·, t)∇v(·, t)‖Lr2 (�) ≤ sup
t∈(0,Tmax)

‖u(·, t)‖Lp(�)‖∇v(·, t)‖Lr1 (�) ≤ K1C2,
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which alongside the smooth property of the Neumann heat semigroup gives two positive constants C5

and C6 such that

‖I2‖L∞(�) ≤ C5

∫ t

t0

(
1 + (t − s)− 1

2 − n
2r2

)
e−λ1d1(t−s)‖u(·, s)∇v(·, s)‖Lr2 (�)ds ≤ C6 (2.11)

for all t ∈ (0, Tmax), where we have used the fact 1
2
+ n

2r2
< 1, and λ1 > 0 denotes the first nonzero

eigenvalue of −� in � under the homogeneous Neumann boundary condition.
It follows from (1.7), (2.1), (2.7), Young’s inequality and Hölder’s inequality that there exist two

constants C7, C8 > 0 such that∫
�

|f (u(·, t), v(·, t))| 3n
4 ≤ C7

∫
�

(
u

3n
2 + 1

)
≤ C8 for all t ∈ (0, Tmax). (2.12)

Let f (t) := 1
|�|

∫
�

f (u(·, t), v(·, t)) for all t ∈ (0, Tmax). Notice that 3n
4
> 1 for n ≥ 2. Then (2.12) and

Hölder’s inequality imply

|f (t)| ≤ 1

|�|
∫
�

(|f (u(·, t), v(·, t))| 3n
4 + 1) ≤ C8

|�| + 1 for all t ∈ (0, Tmax). (2.13)

Using (2.12), (2.13), t − t0 ≤ 1, and the Lp-Lq estimates of the Neumann heat semigroup, we can find
two positive constants C9 and C10 satisfying

‖I3‖L∞(�) ≤
∫ t

t0

‖ed1(t−s)�f (·, s)‖L∞(�)ds

≤
∫ t

t0

‖ed1(t−s)�(f (·, s) − f (s))‖L∞(�)ds +
∫ t

t0

‖ed1(t−s)�f (s)‖L∞(�)ds

≤ C9

∫ t

t0

(1 + (t − s)− 2
3 )e−λ1d1(t−s)‖f (·, s) − f (s)‖

L
3n
4 (�)

ds +
∫ t

t0

(
C8

|�| + 1

)
ds

≤ C10 for all t ∈ (0, Tmax). (2.14)

The combination of (2.9), (2.10), (2.11) and (2.14) yields that

sup
t∈(0,Tmax)

‖u(·, t)‖L∞(�) ≤ C11 for all t ∈ (0, Tmax)

with a constant C11 > 0. The proof is completed.

3. Proof of Theorem 1.1 for n = 2

This section is devoted to proving Theorem 1.1 for n = 2. To this end, we construct an appropriate
functional in the form of a linear combination of the four terms

d

dt

∫
�

|∇v|2

v
,

d

dt

∫
�

u ln u,
d

dt

∫
�

u2,
d

dt

∫
�

uv

to derive some a priori estimates including the time-independent boundedness of ‖u‖L2(�). This idea
was first used in [59] for a chemotaxis-fluid model, and then developed for predator–prey models with
prey-taxis [23, 25].

3.1 L2-estimate via sophisticated coupling estimates

Lemma 3.1 Suppose that the assumptions in Theorem 1.1 hold with n = 2 and (u, v) is the solution of
the system (1.6). Then for τ ∈ (0, Tmax), we have∫

�

|∇v|2

v
+

∫
�

u2 ≤ C for all t ∈ (0, Tmax) (3.1)
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and ∫ t+τ

t

∫
�

(∣∣D2v
∣∣2

v
+ |∇v|4

v3
+ |∇u|2

u
+ |∇u|2 + u2|∇v|2

)
(·, s)ds ≤ C(τ + 1) (3.2)

for all t ∈ (0, Tmax − τ ), where D2v denotes the Hessian matrix of v.

Proof. We split the proof into several steps.
Step 1. An inequality for d

dt

∫
�

|∇v|2
v

. For all t ∈ (0, Tmax), it holds that

1

2

d

dt

∫
�

|∇v|2

v
= − 1

2

∫
�

|∇v|2

v2
vt +

∫
�

∇v · ∇vt

v

= 1

2

∫
�

|∇v|2

v2
vt −

∫
�

�v

v
vt

= d2

(
1

2

∫
�

|∇v|2

v2
�v −

∫
�

|�v|2

v

)
︸ ︷︷ ︸

=: I4

+1

2

∫
�

|∇v|2

v2
g(u, v) −

∫
�

�v

v
g(u, v). (3.3)

We have from (1.7) and (2.1) that
1

2

∫
�

|∇v|2

v2
g(u, v) ≤ 1

2

∫
�

|∇v|2

v2

(
σv − αu2v

)≤ σ

2

∫
�

|∇v|2

v
− α

2M0

∫
�

u2|∇v|2 (3.4)

for all t ∈ (0, Tmax). For the term I4, we claim that there exists a positive constant C1 such that

I4 ≤ − 3A1

4

∫
�

( |D2v|2

v
+ |∇v|4

v3

)
+ C1

∫
�

|∇v|2

v
for all t ∈ (0, Tmax), (3.5)

where A1 = d2

3(2+√
2)2+2

. Then the combination of (3.3)-(3.5) indicates that

1

2

d

dt

∫
�

|∇v|2

v
+ 1

2

∫
�

|∇v|2

v
+ 3A1

4

∫
�

( |D2v|2

v
+ |∇v|4

v3

)
≤ − α

2M0

∫
�

u2|∇v|2 +
(

1 + σ

2
+ C1

) ∫
�

|∇v|2

v
−

∫
�

�v

v
g(u, v) for all t ∈ (0, Tmax). (3.6)

Using (2.1) and Young’s inequality, we obtain(
1 + σ

2
+ C1

) ∫
�

|∇v|2

v
≤ A1

4

∫
�

|∇v|4

v3
+

(
1+σ

2
+ C1

)2

A1

∫
�

v ≤ A1

4

∫
�

|∇v|4

v3
+ C2 (3.7)

for all t ∈ (0, Tmax), where C2 := M0|�|
A1

(
1+σ

2
+ C1

)2. By (1.7), we have

−
∫
�

�v

v
g(u, v) = −

∫
�

�v
(
σ
(

1 − v

K

)
− (1 + αu) u

)
= −σ

K

∫
�

|∇v|2 − I5 ≤ −I5, (3.8)

where I5 := ∫
�
(1 + 2αu)∇u · ∇v. Substituting (3.7) and (3.8) into (3.6), we have

1

2

d

dt

∫
�

|∇v|2

v
+ 1

2

∫
�

|∇v|2

v
+ A1

2

∫
�

( |D2v|2

v
+ |∇v|4

v3

)
≤ C2 − α

2M0

∫
�

u2|∇v|2 − I5 (3.9)

for all t ∈ (0, Tmax).
We next prove (3.5) by similar arguments to that of [23, 3.2 and Lemma 3.3] (see also the proof of

[25, 3.2 and Lemma 3.3]). For completeness, we sketch the proof here. Applying [23, Equs. (3.19) and
(3.27)] with F(v) = v therein, we have

I4 = d2

2

∫
∂�

1

v
· ∂|∇v|2

∂ν
− d2

∫
�

v|D2 ln v|2 for all t ∈ (0, Tmax) (3.10)
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and ∫
�

|D2v|2

v
≤ 2

(
(2 + √

2)2 + 1
) ∫

�

v|D2 ln v|2 for all t ∈ (0, Tmax). (3.11)

Using Lemma2.4 with H(v) = v yields∫
�

|∇v|4

v3
≤ (2 + √

2)2

∫
�

v|D2 ln v|2 for all t ∈ (0, Tmax). (3.12)

To proceed, we recall the trace inequality [39, Remark 52.9]: for any ε > 0, there exists a constant C(ε)>
0 such that

‖w‖L2(∂�) ≤ ε‖∇w‖L2(�) + C(ε)‖w‖L2(�) for w ∈ W1,2(�). (3.13)

Denote ϕ0(v) = |∇v|√
v
. Then for all t ∈ (0, Tmax), it follows from Young’s inequality that

|∇ϕ0(v)|2 =
(

D2v · ∇v√
v|∇v| − |∇v|∇v

2v
3
2

)2

≤ |D2v|2

v
+ |D2v| · |∇v|2

v2
+ |∇v|4

4v3
≤ 5

4

( |D2v|2

v
+ |∇v|4

v3

)
.

This alongside Lemma 2.5, (3.13) with ε=
√

A1
10κd2

, and the fact that (a + b)2 ≤ 2(a2 + b2) for a, b ∈R

gives

d2

2

∫
∂�

1

v
· ∂|∇v|2

∂ν
≤ d2

2

∫
∂�

2κ|∇v|2

v

= κd2‖ϕ0(v)‖2
L2(∂�)

≤ κd2

[
ε‖∇ϕ0(v)‖L2(�) + C(ε)‖ϕ0(v)‖L2(�)

]2

≤ κd2

[
2ε2‖∇ϕ0(v)‖2

L2(�) + 2C(ε)2‖ϕ0(v)‖2
L2(�)

]
≤ κd2

[
2ε2 5

4

∫
�

( |D2v|2

v
+ |∇v|4

v3

)
+ 2C(ε)2

∫
�

|∇v|2

v

]

≤ A1

4

∫
�

(∣∣D2v
∣∣2

v
+ |∇v|4

v3

)
+ C1

∫
�

|∇v|2

v
for all t ∈ (0, Tmax), (3.14)

where C1 > 0 is a constant. Now the combination of (3.10)-(3.12) and (3.14) indicates

I4 ≤
[

A1

4
− d2

3(2 + √
2)2 + 2

] ∫
�

( |D2v|2

v
+ |∇v|4

v3

)
+ C1

∫
�

|∇v|2

v
for all t ∈ (0, Tmax),

which gives (3.5) by recalling A1 = d2

3(2+√
2)2+2

. Therefore, the claim (3.5) is proved, and hence (3.9) is
obtained.

Step 2. Cancellation of the nonlinear term
∫
�

(1 + 2αu)∇u · ∇v. We now deal with the nonlinear term
I5 = ∫

�
(1 + 2αu)∇u · ∇v appearing in (3.9). For all t ∈ (0, Tmax), using (1.6) and integration by parts,

we have

d

dt

∫
�

u ln u = − d1

∫
�

|∇u|2

u
+ χ

∫
�

∇u · ∇v +
∫
�

(1 + ln u)f (u, v), (3.15)

1

2

d

dt

∫
�

u2 = − d1

∫
�

|∇u|2 + χ

∫
�

u∇u · ∇v +
∫
�

uf (u, v), (3.16)

d

dt

∫
�

uv = − (d1 + d2)

∫
�

∇u · ∇v + χ

∫
�

u|∇v|2 +
∫
�

vf (u, v) +
∫
�

ug(u, v). (3.17)
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Let A2 := 2(d1+d2)
χ

+ 1
2α

. Then χA2 + χu − 2(d1 + d2) = χ

2α
(1 + 2αu), which alongside (3.15)-(3.17)

gives

d

dt

∫
�

u
(

A2 ln u + u

2
+ 2v

)
+ d1A2

∫
�

|∇u|2

u
+ d1

∫
�

|∇u|2

= χ

2α
I5 + 2χ

∫
�

u|∇v|2 +
∫
�

u (f (u, v) + 2g(u, v))+ A2

∫
�

(1 + ln u)f (u, v) + 2
∫
�

vf (u, v)︸ ︷︷ ︸
=: I6

(3.18)

for all t ∈ (0, Tmax). If we multiply (3.18) by 2α
χ

and add the result to (3.9), then the nonlinear term I5 can
be canceled.

Step 3. A Grönwall-type inequality. Define the function

y(t) := 1

2

∫
�

|∇v|2

v
+ 2α

χ

∫
�

u
(

A2 ln u + u

2
+ 2v

)
for all t ∈ (0, Tmax). (3.19)

Then for all t ∈ (0, Tmax), the combination of (3.9) and (3.18) multiplied by 2α
χ

indicates that

y′(t) + y(t) + A1

2

∫
�

( |D2v|2

v
+ |∇v|4

v3

)
+ 2α

χ

(
d1A2

∫
�

|∇u|2

u
+ d1

∫
�

|∇u|2

)
≤ C2 + 4α

∫
�

u|∇v|2 − α

2M0

∫
�

u2|∇v|2︸ ︷︷ ︸
=: I7

+ 2α

χ

(∫
�

u
(

A2 ln u + u

2
+ 2v

)
+ I6

)
︸ ︷︷ ︸

=: I8

. (3.20)

We next estimate the term I7. Indeed, Young’s inequality and (2.1) yield

4α
∫
�

u|∇v|2 ≤
∫
�

(
α

4M0

u2 + 16M0α

)
|∇v|2

≤ α

4M0

∫
�

u2|∇v|2 + 16M0α

∫
�

(
A1

64M0α

|∇v|4

v3
+ 16M0α

A1

v3

)
≤ α

4M0

∫
�

u2|∇v|2 + A1

4

∫
�

|∇v|4

v3
+ 256M5

0α
2

A1

|�| for all t ∈ (0, Tmax),

which implies

I7 ≤ − α

4M0

∫
�

u2|∇v|2 + A1

4

∫
�

|∇v|4

v3
+ 256M5

0α
2

A1

|�| for all t ∈ (0, Tmax). (3.21)

It remains to estimate the term I8. Using (1.7), (2.1), (2.3), Young’s inequality and the fact that −s ln s ≤
1
e

and ln s< s for s> 0, we have∫
�

u(f (u, v) + 2g(u, v)) =
∫
�

u
[
−(1 + αu)uv − u + 2σv

(
1 − v

K

)]
≤ 2σM0M1 −

∫
�

(1 + αu)u2v for all t ∈ (0, Tmax).

For the term I6 included in I8, it holds that

I6 ≤ 2σM0M1 −
∫
�

(1 + αu)u2v

+ A2

∫
�

(1 + ln u) (1 + αu) uv − A2

∫
�

(1 + ln u)u + 2M0

∫
�

(1 + αu) uv

≤ 2σM0M1 −
∫
�

[u − A2(1 + ln u) − 2M0] (1 + αu)uv + A2

e
|�| for all t ∈ (0, Tmax). (3.22)
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Moreover, for all t ∈ (0, Tmax), using (2.1), (2.3) and the fact that s2 ≥ s ln s for s ≥ 0, we obtain∫
�

u
(

A2 ln u + u

2
+ 2v

)
≤

∫
�

u
(

A2u + u

2
+ 2M0

)
≤ (A2 + 1)

∫
�

u2 + 2M0M1. (3.23)

Using (2.3), the Gagliardo–Nirenberg inequality and Young’s inequality, for all t ∈ (0, Tmax), we can find
two positive constants C3 and C4 such that

2α

χ
(A2 + 1)

∫
�

u2 ≤ C3

(
‖∇u‖ 1

2
L2(�)‖u‖ 1

2
L1(�) + ‖u‖L1(�)

)2

≤ d1α

2χ

∫
�

|∇u|2 + C4. (3.24)

The combination of (3.22)-(3.24) shows that

I8 ≤ C5 + d1α

2χ

∫
�

|∇u|2 − 2α

χ

∫
�

[u − A2(1 + ln u) − 2M0] (1 + αu)uv for all t ∈ (0, Tmax), (3.25)

where C5 := C4 + 2α
χ

[
2(1 + σ )M0M1 + A2

e
|�|]. Define the function

ϕ(s) := −(s − A2(1 + ln s) − 2M0) for all s> 0.

Then ϕ ′(s) = A2
s

− 1 and hence

ϕ(s) ≤ ϕ(A2) = 2M0 + A2 ln A2 ≤ 2M0 + A2| ln A2| =:C6.

Therefore, by (2.1), (2.3), (3.25) and the same argument as in deriving (3.24), we know that there exists
a constant C7 > 0 such that

I8 ≤ C5 + d1α

2χ

∫
�

|∇u|2 + 2α

χ
C6

∫
�

(1 + αu)uv

≤ C5 + d1α

2χ

∫
�

|∇u|2 + 2α

χ
C6

(
M0M1 + αM0

∫
�

u2

)
≤ C7 + d1α

χ

∫
�

|∇u|2 for all t ∈ (0, Tmax). (3.26)

Substituting (3.21) and (3.26) into (3.20) yields

y′(t) + y(t) + A1

4

∫
�

( |D2v|2

v
+ |∇v|4

v3

)
+ 2d1A2α

χ

∫
�

|∇u|2

u
+ d1α

χ

∫
�

|∇u|2 + α

4M0

∫
�

u2|∇v|2

≤ C2 + 64M5
0α

2

A1

|�| + C7 for all t ∈ (0, Tmax). (3.27)

Finally, an application of Grönwall’s inequality along with the facts u, v ≥ 0 and u ln u ≥ − 1
e

yields (3.1).
Furthermore, the integration of (3.27) with respect to t over [t, t + τ ] gives (3.2).

3.2 The uniform-in-time estimate of ‖u(·, t)‖Lp(�) for p ≥ 2

Lemma 3.2. Suppose that the assumptions in Theorem 1.1 hold with n = 2, and (u, v) is the solution of
the system (1.6). Then for any p ≥ 2, there exists a constant C(p)> 0 independent of t such that

‖u(·, t)‖Lp(�) ≤ C(p) for all t ∈ (0, Tmax). (3.28)

Proof. Using the first equation of (1.6) and integration by parts, for all t ∈ (0, Tmax), we obtain

1

p

d

dt

∫
�

up =
∫
�

up−1 (d1�u − χ∇ · (u∇v)+ f (u, v))

= − d1(p − 1)
∫
�

up−2|∇u|2 + χ (p − 1)
∫
�

up−1∇u · ∇v +
∫
�

up−1f (u, v). (3.29)
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For all t ∈ (0, Tmax), it follows from Young’s inequality that

χ (p − 1)
∫
�

up−1∇u · ∇v ≤ d1(p − 1)

4

∫
�

up−2|∇u|2 + χ 2(p − 1)

d1

∫
�

up|∇v|2

= d1(p − 1)

p2
‖∇u

p
2 ‖2

L2(�) +
χ 2(p − 1)

d1

∫
�

up|∇v|2. (3.30)

For the last term in the right-hand side of the above inequality, we use Hölder’s inequality
‖up|∇v|2‖L1(�) ≤ ‖up‖L2(�)‖|∇v|2‖L2(�), the Gagliardo–Nirenberg inequality and Young’s inequality to
find a constant C1 > 0 such that

χ 2(p − 1)

d1

∫
�

up|∇v|2 ≤ χ 2(p − 1)

d1

‖u
p
2 ‖2

L4(�)‖∇v‖2
L4(�)

≤ χ 2(p − 1)

d1

C1

(
‖∇u

p
2 ‖L2(�)‖u

p
2 ‖L2(�) + ‖u

p
2 ‖2

L2(�)

)
‖∇v‖2

L4(�)

≤ d1(p − 1)

p2
‖∇u

p
2 ‖2

L2(�) +
p2

4d1(p − 1)

(
χ 2(p − 1)

d1

C1‖u
p
2 ‖L2(�)‖∇v‖2

L4(�)

)2

+ χ 2(p − 1)

d1

C1‖u‖p
Lp(�)‖∇v‖2

L4(�)

≤ d1(p − 1)

p2
‖∇u

p
2 ‖2

L2(�) +
p2(p − 1)χ 4

4d3
1

C2
1‖u‖p

Lp(�)‖∇v‖4
L4(�)

+ χ 2(p − 1)

d1

C1‖u‖p
Lp(�)

(‖∇v‖4
L4(�) + 1

)
= d1(p − 1)

p2
‖∇u

p
2 ‖2

L2(�) + C2‖u‖p
Lp(�)‖∇v‖4

L4(�) + C3

∫
�

(
up+1 + 1

)
(3.31)

for all t ∈ (0, Tmax), where

C2 := p2(p − 1)χ 4

4d3
1

C2
1 + χ 2(p − 1)

d1

C1 and C3 := χ 2(p − 1)

d1

C1.

For the last term in the right-hand side of (3.29), we have from (1.7), (3.1) and Young’s inequality that

∫
�

up−1f (u, v) ≤
∫
�

up−1 (1 + αu) uv ≤ M0

∫
�

(
up + αup+1

)≤ M0

(
|�| + (α+ 1)

∫
�

up+1

)

for all t ∈ (0, Tmax). Let φ(t) := 1
p
‖u(·, t)‖p

Lp(�) for all t ∈ (0, Tmax). Then Hölder’s inequality implies

φ(t)
p+1

p =
(

1

p

) p+1
p

‖u‖p+1
Lp(�) ≤

(
1

p

) p+1
p

|�| 1
p ‖u‖p+1

Lp+1(�) for all t ∈ (0, Tmax). (3.32)

For all t ∈ (0, Tmax), the combination of (3.29)-(3.32) implies that

φ ′(t) + φ(t)
p+1

p + 2d1(p − 1)

p2
‖∇u

p
2 ‖2

L2(�) ≤ C2‖u‖p
Lp(�)‖∇v‖4

L4(�) + C4‖u‖p+1
Lp+1(�) + C3 + M0|�|, (3.33)
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where C4 := C3 + (α+ 1)M0 +
(

1
p

) p+1
p |�| 1

p . Again applying the Gagliardo–Nirenberg inequality and
Young’s inequality, and using (3.1), one can find two positive constants C5 and C6 such that

C4‖u‖p+1
Lp+1(�) = C4‖u

p
2 ‖

2(p+1)
p

L
2(p+1)

p (�)
≤ C5

(
‖∇u

p
2 ‖

2(p+1)
p · p−1

p+1

L2(�) ‖u
p
2 ‖

2(p+1)
p · 2

p+1

L
4
p (�)

+ ‖u
p
2 ‖

2(p+1)
p

L
4
p (�)

)
≤ C6

(
‖∇u

p
2 ‖

2(p−1)
p

L2(�) + 1

)
≤ d1(p − 1)

p2
‖∇u

p
2 ‖2

L2(�) + C7 for all t ∈ (0, Tmax), (3.34)

where

C7 := 1

p

(
p

p − 1

d1(p − 1)

p2

)−(p−1)

Cp
6 + C6 = 1

p

(
p

d1

)p−1

Cp
6 + C6.

Substituting (3.34) into (3.33), for all t ∈ (0, Tmax), we arrive at

φ ′(t) + φ(t)
p+1

p + d1(p − 1)

p2
‖∇u

p
2 ‖2

L2(�) ≤ pC2φ(t)‖∇v‖4
L4(�) + C3 + M0|�| + C7. (3.35)

Let τ = min
{
1, Tmax

2

}≤ 1. Then it follows from (2.1) and (3.2) that there exists a constant C8 > 0 such
that

pC2

∫ t+τ

t

‖∇v‖4
L4(�) = pC2

∫ t+τ

t

∫
�

|∇v|4

v3
v3 ≤ pC2M3

0

∫ t+τ

t

∫
�

|∇v|4

v3
≤ C8(τ + 1) ≤ 2C8 (3.36)

for all t ∈ (0, Tmax − τ ).
We are now in a position to prove (3.28). We shall discuss two cases:Tmax < 2 and Tmax ≥ 2. If Tmax < 2,

then τ < 1, and (2.4) implies

φ(t) ≤ φ(0)e
∫ t

0 pC2‖∇v(·,s)‖4
L4(�)

ds + (C3 + M0|�| + C7)
∫ t

0

e
∫ t
τ pC2‖∇v(·,s)‖4

L4(�)
ds

dτ (3.37)

for all t ∈ (0, Tmax). By an argument similar to that used to derive (3.36), we have

e
∫ t
τ pC2‖∇v(·,s)‖4

L4(�)
ds ≤ e

∫ t
0 pC2‖∇v(·,s)‖4

L4(�)
ds ≤ e

∫ Tmax
0 pC2‖∇v(·,s)‖4

L4(�)
ds ≤ C9(Tmax + 1) ≤ 3C9.

This alongside (3.37) gives

φ(t) ≤ 3h(0)C9 + 3(C3 + M0|�| + C7)
∫ 2

0

C9dτ ≤ 3h(0)C9 + 6(C3 + M0|�| + C7)C9,

which proves (3.28) in the case of Tmax < 2. If Tmax ≥ 2, then τ = 1. By (2.5) and (2.6), we get

sup
t∈(0,Tmax)

φ(t) = sup
t∈(0,Tmax)

1

p
‖u(·, t)‖p

Lp(�) ≤ 1

p

(
2A

1 + 1
p

)p+1

+ 2B, (3.38)

where A = (1 + 2C8)
p

1+p e4C8 and

B = (C3 + M0|�| + C7)
p

1+p e4C8 + 2(C3 + M0|�| + C7)e4C8 + 1

p
‖u0( · )‖p

Lp(�)e
2C8

are independent of Tmax. Therefore, (3.38) yields (3.28) in the case of Tmax ≥ 2. The proof is
completed.

3.2.1 Proof of Theorem 1.1 for n = 2.
Lemma 3.2 gives ‖u‖L4(�) ≤ C. Then Theorem 1.1 with n = 2 follows from (2.2) and Lemma 2.6
immediately. �
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4. Proof of Theorem 1.1 for n ≥ 3

This section is devoted to proving Theorem 1.1 for n ≥ 3 by the weighted Lp-estimates (p> 1). For M0

given by (2.1) and p> 1, we define the following positive constants⎧⎪⎪⎨⎪⎪⎩
�1 := d2p(p − 1)

p(d2
1 + d2

2) + 2d1d2

, �2 := 1

2d2

√
p
(

p + 2d2
d1

)
,

�3 := 2d1d2(p − 1)

p(d2
1 + d2

2) + 2d1d2

, χp := π

2�2M0

.

(4.1)

We then construct the following function to be used later.

Lemma 4.1. Let p> 1, �1, �2, �3, χp be given by (4.1) and χ ∈ (0, χp). Then for all s ∈ [0, M0], the
function

ϕ(s) := e�1χs [cos (χ�2s)]−�3 (4.2)

satisfies

1 ≤ ϕ(s) ≤ ϕ(M0)<+∞, (4.3)

0<χ�1 ≤ ϕ ′(s)

ϕ(s)
= χ [�1 + �2�3 tan (χ�2s)] ≤ χ [�1 + �2�3 tan (χ�2M0)] =:kχ ,p <+∞, (4.4)

d2

p
ϕ ′ ′(s) − χϕ ′(s) −

[
(χ (p − 1)ϕ(s) − (d1 + d2)ϕ ′(s))

]2

2d1(p − 1)ϕ(s)
= 0. (4.5)

Proof. Clearly, (4.1) and χ ∈ (0, χp) imply

0<χ�2s ≤ χ�2M0 <
π

2
for all s ∈ [0, M0].

Hence (4.1) and (4.2) indicate that ϕ(s) increases in s ∈ [0, M0] and (4.3) holds. By a simple calculation,
we have

ϕ ′(s)

ϕ(s)
= χ [�1 + �2�3 tan (χ�2s)] for all s ∈ [0, M0],

and then (4.4) is obvious. We next prove (4.5). By tedious calculations, we arrive at

2d1(p − 1)ϕ(s)

(
d2

p
ϕ ′ ′(s) − χϕ ′(s)

)
− [
(χ (p − 1)ϕ(s) − (d1 + d2)ϕ ′(s))

]2

= − 1

p

(
ϕ(s)

cos (χ�2s)

)2 {
B1 cos2 (χ�2s) + �2�3χ sin (χ�2s) [2B2 cos (χ�2s) + B3�2χ sin (χ�2s)]

}
,

(4.6)

where⎧⎪⎨⎪⎩
B1 := �2

1χ
2
[
p(d2

1 + d2
2) + 2d1d2

]− 2d1d2�
2
2�3(p − 1)χ 2 + (p − 1)pχ

[
(p − 1)χ − 2d2�1χ

]
,

B2 := �1χ
[
p(d2

1 + d2
2) + 2d1d2

]− d2p(p − 1)χ ,

B3 := �3

[
p(d2

1 + d2
2) + 2d1d2

]− 2d1d2(p − 1).

Clearly, it follows from (4.1) that B2 = B3 = 0 and

B1 = (p − 1)χ 2
[
p(p − 1) − pd2�1 − 2d1d2�

2
2�3

]= d1(p − 1)2χ 2
[
d1

(
p2 − 4d2

2�
2
2

)+ 2d2p
]

p(d2
1 + d2

2) + 2d1d2

= 0.

This along with (4.3), (4.6) and p> 1 proves (4.5). The proof is completed.

https://doi.org/10.1017/S0956792525000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000026


European Journal of Applied Mathematics 15

Now we are in a position to use the above auxiliary function as a weight function to derive the uniform
bound of ‖u(·, t)‖Lp(�) for all t ∈ (0, Tmax).

Lemma 4.2. Suppose that the assumptions in Theorem 1.1 hold and (u, v) is the solution of the system
(1.6). Let p> 1, �1, �2, �3, χp be given by (4.1), χ ∈ (0, χp) and kχ ,p be given by (4.4). Then there exists
a constant C(p)> 0 independent of t such that

‖u(·, t)‖Lp(�) ≤ C(p) for all t ∈ (0, Tmax).

Proof. Let ϕ(s) be defined by (4.2) for s ∈ [0, M0]. Then (2.1) and (4.3) show that
1 ≤ ϕ(v(x, t)) ≤ ϕ(M0) for all (x, t) ∈�× (0, Tmax). (4.7)

With integration by parts, one has
1

p

d

dt

∫
�

upϕ(v) =
∫
�

up−1ϕ(v) (d1�u − χ∇ · (u∇v)+ f (u, v))+ 1

p

∫
�

upϕ ′(v) (d2�v + g(u, v))

= − d1(p − 1)
∫
�

up−2ϕ(v)|∇u|2 −
∫
�

(
d2

p
ϕ ′ ′(v) − χϕ ′(v)

)
up|∇v|2

+
∫
�

[
χ (p − 1)ϕ(v) − (d1 + d2)ϕ ′(v)

]
up−1∇u · ∇v︸ ︷︷ ︸

=: I9

+
∫
�

up−1ϕ(v)

(
f (u, v) + ϕ ′(v)

pϕ(v)
ug(u, v)

)
︸ ︷︷ ︸

=: I10

for all t ∈ (0, Tmax). (4.8)

Using Young’s inequality, for all t ∈ (0, Tmax), we obtain

I9 ≤ d1(p − 1)

2

∫
�

up−2ϕ(v)|∇u|2 +
∫
�

[
(χ (p − 1)ϕ(v) − (d1 + d2)ϕ ′(v))

]2

2d1(p − 1)ϕ(v)
up|∇v|2. (4.9)

For the term I10, it follows from (1.7) and (4.4) that

I10 =
∫
�

up−1ϕ(v)

{
(1 + αu) uv − u + ϕ ′(v)

pϕ(v)
u
[
σv

(
1 − v

K

)
− (1 + αu) uv

]}
≤

∫
�

up−1ϕ(v)

[
(1 + αu) uv + σkχ ,p

p
uv − χ�1

p
(1 + αu) u2v

]
=

∫
�

upϕ(v)v

[
− (1 + αu)

(
χ�1

p
u − 1

)
+ σkχ ,p

p

]
︸ ︷︷ ︸

=: I11

for all t ∈ (0, Tmax). (4.10)

For the term I11, (2.1) and (4.7) imply that∫
{

u< p
χ�1

} I11 ≤ |�|
(

p

χ�1

)p

ϕ(M0)M0

[(
1 + α

p

χ�1

)
+ σkχ ,p

p

]
=:C1

and ∫
{

u≥ p
χ�1

} I11 ≤ σkχ ,pM0

p

∫
{

u≥ p
χ�1

} upϕ(v) ≤ σkχ ,pM0

p

∫
�

upϕ(v),

which along with (4.10) indicates that

I10 ≤ C1 + σkχ ,pM0

p

∫
�

upϕ(v) for all t ∈ (0, Tmax). (4.11)

The combination of (4.5), (4.8), (4.9) and (4.11) yields
1

p

d

dt

∫
�

upϕ(v) + 1

p

∫
�

upϕ(v) + d1(p − 1)

2

∫
�

up−2|∇u|2ϕ(v) ≤ C1 + C2

∫
�

upϕ(v) (4.12)
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for all t ∈ (0, Tmax), where C2 := 1+σkχ ,pM0

p
. For the last term in the right-hand side of the above inequality,

it follows from (4.7) and the Gagliardo–Nirenberg inequality that there exists a constant CGN > 0 such
that

C2

∫
�

upϕ (v)≤ C2ϕ(M0)‖u
p
2 ‖2

L2(�) ≤ C2ϕ(M0)CGN

(
‖∇u

p
2 ‖2θ

L2(�)‖u
p
2 ‖2(1−θ)

L
2
p (�)

+ ‖u
p
2 ‖2

L
2
p (�)

)
, (4.13)

where

θ =
p
2
− 1

2
p
2
− 1

2
+ 1

n

∈ (0, 1).

Since 0< 2θ < 2, by Young’s inequality, (2.3) and (4.7), we obtain from (4.13) that

C2

∫
�

upϕ (v)≤ C2ϕ(M0)CGN (M1 + 1)p
(
‖∇u

p
2 ‖2θ

L2(�) + 1
)

≤ C2ϕ(M0)CGN (M1 + 1)p
(
ε1‖∇u

p
2 ‖2

L2(�) + ε
− θ

1−θ
1 + 1

)
≤ d1(p − 1)

p2

∫
�

|∇u
p
2 |2ϕ(v) + C3

= d1(p − 1)

4

∫
�

up−2|∇u|2ϕ(v) + C3, (4.14)

where

ε1 := d1(p − 1)

p2C2ϕ(M0)CGN (M1 + 1)p and C3 := C2ϕ(M0)CGN (M1 + 1)p
(
ε

− θ
1−θ

1 + 1
)

.

Substituting (4.14) into (4.12), one has
1

p

d

dt

∫
�

upϕ(v) + 1

p

∫
�

upϕ(v) + d1(p − 1)

4

∫
�

up−2|∇u|2ϕ(v) ≤ C1 + C3.

Solving the above inequality, using (4.7), u0(x) ∈ W1,q(�) (recall q> n) and the Sobolev embedding
W1,q(�) ↪→ Lp(�), we can find two positive constants C4 and C5 satisfying

‖u(·, t)‖p
Lp(�) ≤

∫
�

upϕ(v) ≤ max
{
ϕ(M0)‖u0‖p

Lp(�), p(C1 + C3)
}≤ C4

(
‖u0‖p

W1,q(�) + 1
)

≤ C5

for all t ∈ (0, Tmax). This completes the proof.

4.2.1 Proof of Theorem 1.1 for n ≥ 3.
By taking p = 2n in (2.7) with Lemma 4.2, the result of Theorem 1.1 for n ≥ 3 follows from Lemma 2.6
and (2.2). �

5. Linear stability analysis and spatiotemporal patterns

Spatiotemporal patterns are important to understand the population distribution of biological systems.
Predator–prey systems with prey-taxis can produce spatial patterns, as observed in experiments [26].
For the corresponding temporal predator–prey system of (1.1) with (1.2), hunting cooperation (1.4) can
induce the Hopf bifurcations [49, 52, 60]. By incorporating diffusions for both predator and prey species,
the system has Turing instability only if there is hunting cooperation and the prey species spreads faster
than the predator species (d2 > d1). Moreover, the prey-taxis system (1.5) has no Turing patterns without
hunting cooperation (i.e., α= 0) [23]. We expect that prey-taxis will stabilize the system (1.5), similar
to that observed in [37] and [62]. This section is devoted to investigating the effects of the interaction
of prey-taxis and hunting cooperation (1.4) on the spatiotemporal distribution of population dynamics
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described by (1.6). We conduct linear stability analysis and perform numerical simulations to illustrate
possible spatiotemporal patterns.

Without spatial structures, (1.6) becomes the following ordinary differential system{
ut = (1 + αu) uv − u,

vt = σv
(
1 − v

K

)− (1 + αu) uv,
(5.1)

which has a trivial equilibrium E0 = (0, 0), a prey-only equilibrium E1 = (0, K), and possible positive
equilibria E∗ = (u∗, v∗) solving

v∗ = 1

1 + αu∗
< 1 and (1 + αu∗)u∗ = σ

(
1 − v∗

K

)
, (5.2)

where u∗ is the positive root of the equation

α2u3 + 2Kαu2 + K(1 − ασ )u + σ (1 − K) = 0.

The number of positive equilibria and the linear stability of equilibria of the system (5.1) are well studied
in [49, 60]. We reorganize these results below. Define the positive constant

K∗ = 27ασ

2 + 9ασ + 2(1 + 3ασ )
√

1 + 3ασ
∈ (0, 1], (5.3)

and the sets ⎧⎪⎨⎪⎩
S0 = (0, 1] × (0, 1] ∪ (1, ∞) × (0, K∗),

S1 = (0, ∞) × (1, ∞) ∪ (1, ∞) × {1},
S2 = (1, ∞) × (K∗, 1).

Then the number of positive equilibria of the system (5.1), denoted by N0, is

N0 = i if (ασ , K) ∈ Si, i = 0, 1, 2.

To be precise, if (ασ , K) ∈ S2, then we denote the two positive equilibria by

(u1∗, v1∗) and (u2∗, v2∗) with 0< v1∗ < v2∗ < 1.

It is easy to show that E0 = (0, 0) is a saddle, E1 = (0, K) is linearly stable for 0<K < 1 and linearly
unstable for K > 1 (see also [49, Theorem 2.1]). The following results on the linear stability of positive
equilibria hold.

Lemma 5.1 ([49, Theorem 2.2]). Let K∗ be given by (5.3) and

K̃∗ = 1 − 3σ + √
σ 2 + 6σ + 1

2
< 1, α̃∗ = (K̃∗ + σ )(K̃∗ + 3σ )

σ K̃2
∗

,

α̃1(K) = (K + σ)
2

K2(K + σ − 1)
if K > 1 − σ .

(a) If (ασ , K) ∈ S1, then the unique positive equilibrium (u∗, v∗) is linearly stable for 0<α < α̃1(K) and
linearly unstable for α > α̃1(K), and the Hopf bifurcation arise from (u∗, v∗) at α = α̃1(K).

(b) If (ασ , K) ∈ S2, then (u2∗, v2∗) is linearly unstable, and for (u1∗, v1∗), we have the following results:
(i) when σ ≥ 3

2
, (v1∗, u1∗) is linearly stable for α < α̃1(K) and linearly unstable for α > α̃1(K), and

the Hopf bifurcation arise from (u∗, v∗) at α = α̃1(K);
(ii) when 0<σ < 3

2
and K̃∗ <K < 1, (v1∗, u1∗) is linearly stable for α < α̃1(K) and linearly unstable

for α > α̃1(K), and the Hopf bifurcation arise from (u∗, v∗) at α = α̃1(K);
(iii) when 0<σ < 3

2
and K∗ <K ≤ K̃∗ < 1, (v1∗, u1∗) is linearly unstable.
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5.1 Linear stability of (1.6)

Let �⊂R
n (n ≥ 1) be a bounded domain with smooth boundary. We now consider the stability of the

constant steady states E1 = (0, K) and E∗ = (u∗, v∗) in the presence of spatial structure. The linearized
system of (1.6) at a constant steady state Es = (us, vs) is⎧⎪⎨⎪⎩

�t =A��+J�, x ∈�, t> 0,

(ν · ∇)�= 0, x ∈ ∂�, t> 0,

�(x, 0) = (u0 − us, v0 − vs)T , x ∈�,

(5.4)

where T represents the transpose,

�=
(

u − us

v − vs

)
, A=

(
d1 −χus

0 d2

)
,

and J is the corresponding Jacobian matrix of (5.1)

J =
(

2αusvs + vs − 1 us(1 + αus)
−vs(1 + 2αus) σ

(
1 − 2vs

K

)− us(1 + αus)

)
=:

(
J1 J2

J3 J4

)
. (5.5)

By the method of separation of variables, the linear system (5.4) has solutions in the form of

�(x, t) =
∑
k≥0

(Uk, Vk)
T eρtψk(x),

where ψk(x) is the eigenfunction of the Neumann eigenvalue problems{
−�ψk(x) = k2ψk(x), x ∈�,
∂ψk(x)
∂ν

= 0, x ∈ ∂�,

with the wave number k, the coefficients Uk and Vk are given by (Uk, Vk)T = ∫
�
�(x, 0)ψk(x), and ρ is

the temporal eigenvalue satisfying

ρψk(x) = −k2Aψk(x) +Jψk(x).

Using the above equation and the fact that the sequence {ψk}k≥0 forms an orthonormal basis of L2(�),
we know that the two eigenvalues of the matrix Mk := −k2A+J are the roots of the equation

ρ2 + Pkρ + Qk = 0, (5.6)

where

Pk := (d1 + d2)k2 − β1, Qk := d1d2k
4 − β2k2 + β3, (5.7)

and

β1 := J1 + J4, β2 := d1J4 + d2J1 + χusJ3, β3 := J1J4 − J2J3. (5.8)

The two roots of (5.6), denoted by ρ±, are given by

ρ± = −Pk ±√
�ρk

2
, �ρk := P2

k − 4Qk. (5.9)

Lemma 5.2. Let Es = (us, vs) be a constant steady state of the system (1.6). Then the following stability
results hold for Es = (us, vs).

(i) Es is linearly stable if and only if min
k2≥0

{Pk, Qk}> 0, and Es is linearly unstable if and only if

min
k2≥0

{Pk, Qk}< 0.

(ii) Turing instability arises if and only if

β1 < 0, β2 > 0, β3 > 0 and min
k2>0

Qk < 0.
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Proof. The first conclusion is obvious. Moreover, Turing instability arises if Es = (us, vs) is linearly
stable in the ODE system (5.1), while it is unstable in the PDE system (1.6). Therefore, Turing instability
occurs if and only if

P0 = −β1 > 0, Q0 = β3 > 0 and min
k2>0

{Pk, Qk}< 0.

Given (5.7), d1, d2 > 0 and k2 ≥ 0, the second conclusion of Lemma 5.2 follows immediately and the
proof is completed.

At E1 = (0, K), J1 = K − 1, J2 = 0, J3 = −K < 0, J4 = −σ < 0, which imply
β1 = K − 1 − σ , β2 = −d1σ + d2(K − 1), β3 = −σ (K − 1).

This indicates β2 < 0 if β3 > 0. Therefore, Lemma 5.2(ii) implies that Turing instability can never arise
from E1 = (0, K). We next investigate whether Turing instability can arise from the positive constant
steady state E∗ = (u∗, v∗). Let Es = E∗. Then (5.5) implies

J =
(
αu∗v∗

u∗
v∗

v∗ − 2 − σv∗
K

)
=

(
1 − v∗ σ

(
1 − v∗

K

)
v∗ − 2 − σv∗

K

)
.

Clearly, (5.2) implies J3 = v∗ − 2<−1. Hence (5.8) implies
lim
χ→+∞

β2 = lim
χ→+∞

(d1J4 + d2J1 + χusJ3) = −∞.

This alongside Lemma 5.2(ii) indicates that Turing instability cannot arise from E∗ = (u∗, v∗) for
sufficiently large χ > 0.

5.2 Spatiotemporal patterns

In this subsection, we present a specific example to illustrate the above analysis. For definiteness, we let

σ = K = d1 = 1, d2 > 0, α > 0, χ ≥ 0. (5.10)
Then the system (1.6) with (5.10) admits a unique positive constant steady state E∗ = (u∗, v∗) =(√

α−1
α

, 1√
α

)
if and only if α > 1. Hence, we assume α > 1 below. We have

Pk = (d2 + 1)k2 − β1, Qk = d2k
4 − β2k2 + β3, (5.11)

where

β1 = 1 − 2√
α

, −β2 = 1 − (
√
α − 1)d2√
α

+ (2α − 3
√
α + 1)χ

α3/2
, β3 = 2

(√
α − 1

)2

α
> 0. (5.12)

Therefore, steady-state bifurcations occur if

β2 > 0, ϕQ

(
β2

2d2

)
< 0 and Qk < 0 for some wave number k. (5.13)

where
ϕQ(s) := d2s

2 − β2s + β3, s ≥ 0. (5.14)

Lemma 5.3. Let d2 > 0, α > 1, χ ≥ 0, (5.12) hold, and the function ϕQ(s) be given by (5.14). Then
β2 > 0 and ϕQ

(
β2
2d2

)
< 0 if and only if

d2 > d∗
+(α, χ ), (5.15)

where

d∗
+(α, χ ) := − D1

2D2

−
√

D2
1 − 4D2D0

2D2

> 0 (5.16)
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with ⎧⎪⎨⎪⎩
D2 = − (√

α − 1
)2
α2 < 0,

D1 = 2α
(√
α − 1

) [(
2α − 3

√
α + 1

)
χ + α

(
4
√
α− 3

)]
> 0,

D0 = − [
α+ (2α− 3

√
α + 1)χ

]2
< 0.

(5.17)

Moreover, it holds that
∂

∂α
d∗

+(α, χ )< 0,
∂

∂χ
d∗

+(α, χ )> 0, (5.18)

and for any χ ≥ 0, we have
lim
α→1

d∗
+(α, χ ) = +∞, lim

α→+∞
d∗

+(α, χ ) = 8. (5.19)

Proof. Let d2 > 0, α > 1 and χ ≥ 0. First, (5.12) implies that β2 > 0 is equivalent to

d2 >
α+ (2α − 3

√
α + 1)χ

α(
√
α − 1)

=:d∗
α,χ > 0. (5.20)

Moreover, we have from (5.12), (5.14) and (5.17) that

ϕQ

(
β2

2d2

)
= ϕ∗(d2)

4α3d2

, ϕ∗(d2) := D2d
2
2 + D1d2 + D0. (5.21)

It holds that D2
1 − 4D2D0 = 32

(√
α− 1

)3 (
2
√
α − 1

)
α3

(
(
√
α− 1)χ + α

)
> 0, which along with

D2, D0 < 0 and D1 > 0 implies that ϕ∗(d2) has two positive roots

d∗
−(α, χ ) := − D1

2D2

+
√

D2
1 − 4D2D0

2D2

, d∗
+(α, χ ) := − D1

2D2

−
√

D2
1 − 4D2D0

2D2

. (5.22)

Clearly, 0< d∗
−(α, χ )< d∗

+(α, χ ). We next show that
0< d∗

−(α, χ )< d∗
α,χ < d∗

+(α, χ ). (5.23)
Indeed, (5.17) and (5.22) imply

d∗
α,χ + D1

2D2

= α+ (2α − 3
√
α + 1)χ

α(
√
α − 1)

+ 2α
(√
α − 1

) [(
2α − 3

√
α + 1

)
χ + α

(
4
√
α− 3

)]
−2

(√
α − 1

)2
α2

= α+ (2α − 3
√
α + 1)χ − [(

2α − 3
√
α + 1

)
χ + α

(
4
√
α − 3

)]
α(

√
α − 1)

= −4,

hence

−2D2

(
d∗
α,χ + D1

2D2

)
= 8D2 < 0<

√
D2

1 − 4D2D0.

This along with (5.17) indicates d∗
α,χ < d∗

+(α, χ ). Moreover, it follows from (5.17) and (5.22) that(
D2

1 − 4D2D0

)−
[

2D2

(
d∗
α,χ + D1

2D2

)]2

= 32
(√
α− 1

)3 (
2
√
α − 1

)
α3

(
(
√
α− 1)χ + α

)− (8D2)2

= 32
(√
α− 1

)3
α3

[(
2α − 3

√
α + 1

)
χ + α

]
> 0,

which proves d∗
−(α, χ )< d∗

α,χ . Therefore, (5.23) holds. Then the combination of (5.20)-(5.23) proves
that β2 > 0 and ϕQ

(
β2
2d2

)
< 0 if and only if (5.15) holds. We next prove (5.18). Since D2 < 0, we have

d∗
+(α, χ ) = − D1

2D2
+ 1

2

√
D2

1−4D2D0

D2
2

. Elementary calculations (omitted for brevity) show that

∂

∂α

(
D1

D2

)
> 0,

∂

∂α

(
D2

1 − 4D2D0

D2
2

)
< 0 and

∂

∂χ

(
D1

D2

)
< 0,

∂

∂χ

(
D2

1 − 4D2D0

D2
2

)
> 0,
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Figure 1. (a) Plots of Re(ρ+) and Im(ρ+) in terms of k2 ≥ 0 at (α, d2) = (4, d∗
1), where

(d∗
1 , k∗

1) ≈ (11.2272, 0.2110) is given by (5.24) and (5.25). (b) Turing-Hopf bifurcation diagram in the
α-d2 plane, where the state-steady bifurcation curve d2 = d∗

+(α, 1) given by (5.16) and the Hopf bifur-
cation curve α= 4 divide the region {(α, d2): α > 1, d2 > 0} into four parts: I (stable), II (Hopf), III
(Turing–Hopf) and IV (Turing). Other parameters are given by (5.10) with χ = 1.

which along with D2
1 − 4D2D0 > 0 proves (5.18). Finally, we have

lim
α→+∞

D1

D2

= −8, lim
α→+∞

(
D2

1 − 4D2D0

D2
2

)
= 64,

and it is elementary to show that lim
α→1

d∗
+(α, χ ) = +∞. Therefore (5.19) is obtained and the proof is

completed.

Clearly, (5.11) implies that Hopf bifurcations may occur if α ≥ 4 and will never occur if α ∈
(1, 4). Lemma 5.3 alongside (5.13) indicates that steady-state bifurcations may occur if d2 > d∗

+(α, χ ).
Moreover, steady-state bifurcations never occur if 0< d2 < d∗

+(α, χ ). Indeed, the proof of Lemma 5.3
shows that β2 ≤ 0 if 0< d2 ≤ d∗

α,χ and ϕQ

(
β2
2d2

)
> 0 if d∗

α,χ < d2 < d∗
+(α, χ ), this alongside d2, β3 > 0 and

(5.11) indicates that Qk > 0 for all k if 0< d2 < d∗
+(α, χ ), which means that a steady-state bifurcation is

impossible. In particular, a Turing–Hopf bifurcation occurs (cf. [21, Definition 2.1 and Remark 2.2]) if
(α, d2) = (4, d∗

χ
), where

d∗
χ

:= d∗
+(4, χ ) = 5 + 3χ

4
+√

6(χ + 4) ≥ d∗
0 = 5 + 2

√
6. (5.24)

The stability of E∗ can be fully classified in the α-d2 plane, as the following.

Lemma 5.4. Let (5.10) hold with α > 1 and d∗
χ

be given by (5.24). Then the system (1.6) has a unique
positive constant steady state E∗ = (

√
α−1
α

, 1√
α
). Moreover, the following conclusions hold.

(i) The ODE system (5.1) undergoes a Hopf bifurcation at E∗ = ( 1
4
, 1

2
) when α = 4.

https://doi.org/10.1017/S0956792525000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000026


22 W. Tao and Z.-A. Wang

Figure 2. Numerical simulation of spatially homogeneous time-periodic patterns generated by the sys-
tem (1.6) in the interval �= (0, 20π ) with (5.10), χ = 1 and α= d2 = 5. The initial value (u0, v0) is set
as a small random perturbation of (u∗, v∗) = (0.0.2472, 0.4472).
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Figure 3. Plots of Re(ρ+) and Im(ρ+) for k = m
20

with m = 0, 1, 2, · · · under the parameter setting (5.10)
with χ = 1, d2 = 20 and different values of α: (a) α = 3; (b) α = 6; (c) α= 30.

(ii) The system (1.6) undergoes a Turing–Hopf bifurcation at E∗ = ( 1
4
, 1

2
) when (α, d2) = (4, d∗

χ
). At

(α, d2) = (4, d∗
χ
), Mk has the eigenvalues⎧⎪⎨⎪⎩

ρ± = ± i√
2
, if k2 = 0,

ρ− = − (8+3χ )
√

6(χ+4)+12χ
4(3χ+4)

< 0, ρ+ = 0, if k2 = k∗
χ

:= 2√
6(χ+4)+4

,

Re(ρ±)< 0, if k2 �= 0, k∗
χ
.

(5.25)

Proof. Let k2 = 0 in (5.6). Then ρ± = ±√
Q0 = ±√

β3 = ± i√
2
. The first conclusion is obtained. We next

prove (ii). When (α, d2) = (4, d∗
χ
), we have from the proof of Lemma 5.3 that Qk ≥ 0, where “=” holds

if and only if k2 = β2
2d2

= 2√
6(χ+4)+4

= k∗
χ
. If k2 = k∗

χ
, then Pk = (d2 + 1)k2 = (d∗

χ
+ 1)k∗

χ
> 0 and Qk = 0,

which implies ρ− = −Pk = − (8+3χ )
√

6(χ+4)+12χ
4(3χ+4)

< 0 and ρ+ = 0. If k2 �= 0, k∗
χ
, then Pk, Qk > 0, and hence

Re(ρ±)< 0.
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Figure 4. Numerical simulations generated by the system (1.6) in the interval�= (0, 20π ) with (5.10),
χ = 1, d2 = 20, and different values of α shown in the columns: (a) α = 3; (b) α= 6; (c) α= 30.
The initial data (u0, v0) are set as a small random perturbation of the positive constant steady state
(u∗, v∗) = (

√
α−1
α

, 1√
α
).

For clarity, we shall first discuss a special case χ = 1 and then turn to the general case χ ≥ 0.

Remark 5.1. Fig. 1 gives an illustration for Lemma 5.4 with χ = 1. Since (5.9) implies Re(ρ−) ≤
Re(ρ+), we only show the real and imaginary parts of ρ+ in Fig. 1(a). Moreover, in the α-d2 plane,
the Hopf bifurcation curve α = 4 and the steady state bifurcation curve d2 = d∗

+(α, 1) given by Lemma
5.3 divide the region {(α, d2): α > 1, d2 > 0} into four parts: I (stable), II (Hopf), III (Turing–Hopf) and
IV (Turing).

For numerical simulations, we let

�= (0, L) with L = 20π .
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Figure 5. Turing–Hopf bifurcation diagram within the region {(α, d2): α > 1, d2 > 0} in the α-d2 plane
for the system (1.6) with (5.10) and χ ∈ {0, 1, 5, 10}. When (α, d2) is above the steady state bifurcation
curve d2 = d∗

+(α, χ ), which given by (5.16) is higher as χ > 0 is larger, the Turing instability (resp.
Hopf–Turing instability) will occur if (α, d2) is left (resp. right) to the vertical Hopf bifurcation line
α = 4.

We begin with the subcritical case d2 < 8, for which the steady-state bifurcation will never occur
(see Figure 1(b) where the horizontal asymptote d2 = 8 is below the steady state bifurcation curve
d2 = d∗

+(α, 1)). Without loss of generality, we take d2 = 5. Then for α ∈ (0, 4), (α, 5) belongs to the sta-
ble region I. In this case, (u∗, v∗) is linearly stable and no patterns will arise. For the Hopf region II, we
take α = d2 = 5, and then the system (1.6) can generate spatially homogeneous time-periodic patterns,
as shown in Figure 2. We next consider the supercritical case d2 > 8. Without loss of generality, we take
d2 = 20 and α = 3, 6, 30. This gives

(α, d2) = (3, 20) ∈ IV, (α, d2) = (6, 20) ∈ III, (α, d2) = (30, 20) ∈ III.

For these three values of (α, d2), the eigenvalues ρ+ of Mk with k = mπ
L

= m
20

, m = 0, 1, 2, · · · , are
shown in Figure 3, and the corresponding numerical simulations are shown in Figure 4. Clearly, for
(α, d2) = (3, 20) in the Turing instability region IV, Figure 3(a) shows that the eigenvalues of Mk with
m = 0, 1, 2, 3 are a pair of complex conjugate numbers with negative real parts, and all other eigen-
values of Mk with m = 4, 5, 6, · · · are real, and ρ+ changes from negative to positive at m = 5. This
indicates that there is a steady-state bifurcation but no Hopf bifurcation. The numerical simulations
in Figure 4(a) show that non-constant stationary patterns arise, which is aligned with our analysis. For
(α, d2) in the Turing–Hopf instability region III, the system (1.6) is unstable under temporal perturbation
due to Hopf bifurcation and complex eigenvalues of M0 have positive real parts (see Figure 3(b) and
Figure 3(c) at m = 0), and the system (1.6) also undergoes Turing instability with real parts of an eigen-
value changing from negative to positive for some k �= 0 (see Figure 3(b) with m = 6 and Figure 3(c)
with m = 7 for instance). The interaction of Hopf and state-steady bifurcations will result in various
complex patterns in the Turing–Hopf instability region III. For (α, d2) = (6, 20) ∈ III, spatiotemporal
periodic patterns are observed, as shown in Figure 4(b). However, if we keep the diffusion rate d2 = 20
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and increase the strength of hunting cooperation to α = 30, then chaotic oscillatory patterns appear as
shown in Figure 4(c).

The above analysis is performed for χ = 1. We next consider χ ≥ 0 and explain how prey-taxis stabi-
lizes the positive constant steady state. Clearly, (5.18) and (5.19) indicate that d∗

+(α, χ ) strictly increases
with respect to χ ∈ [0, +∞), with two asymptotes: α = 1 and d2 = 8 in the α-d2 plane. Figure 5 gives an
illustration for χ = 0, 1, 5, 10, where the solid blue curve d2 = d∗

+(α, 1) and the red vertical line α = 4
have been shown in Figure 1(b). The vertical coordinate of the intersection of d2 = d∗

+(α, χ ) and α = 4
is d∗

χ
given by (5.24). The steady state bifurcation curve d∗

+(α, χ ) strictly increases in χ ∈ [0, +∞) for
α > 1 (see (5.18)), while the area of stable region increases with respect to χ ∈ [0, +∞), see Figure 5
for χ ∈ {0, 1, 5, 10} for instance. This indicates that prey-taxis plays a role in stabilizing the positive
constant steady states.

As demonstrated above, the system (1.6) with χ ≥ 0 and α > 0 may generate various spatiotemporal
patterns, including spatially homogeneous time-periodic patterns, non-constant stationary patterns, spa-
tially inhomogeneous time-periodic patterns and chaos. The former two types of patterns are also found
in [6, 47, 60], where the latter two types of patterns result from the interaction of Hopf and state-steady
bifurcations in the Turing–Hopf region. Moreover, we find that prey-taxis plays a stabilizing role in
terms of pattern formation, which is similar to the case that the hunting cooperation functional response
function adopts the Type II form [37, 62].
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