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Abstract
We show that the sets of d-dimensional Latin hypercubes over a non-empty set X, with d running over the positive
integers, determine an operad which is isomorphic to a sub-operad of the endomorphism operad of X. We generalise
this to categories with finite products, and then further to internal versions for certain Cartesian closed monoidal
categories with pullbacks.

1. Introduction

There are several variants of the definition of Latin hypercubes in the literature – see the discussions
and references in [1, §4] and [8, Section 1]. In order to define the version, we will be considering here,
we fix the following notation and conventions. Categories are assumed to be essentially small. Let X be
an object in a category C with finite products and let d be a positive integer. The product Xd of d copies
of X in C is equipped with d canonical projections π d

i :Xd → X, characterised by the universal property
that for any object Y and morphisms ηi:Y → X, with 1 ≤ i ≤ d, there is a unique morphism η:Y → Xd

satisfying ηi = π d
i ◦ η for 1 ≤ i ≤ d. In that case we write η = (ηi)1≤i≤d. Applied to Xd+1 instead of Y

and any subset of d of the d + 1 canonical projections π d+1
j yields for every s such that 1 ≤ s ≤ d + 1 a

unique morphism τ d+1
s :Xd+1 → Xd satisfying π d+1

i = π d
i ◦ τ d+1

s for 1 ≤ i ≤ s − 1, and π d+1
i = π d

i−1 ◦ τ d+1
s

for s + 1 ≤ i ≤ d + 1. With the notation above, this is equivalent to

τ d+1
s = (π d+1

1 , .., π d+1
s−1 , π d+1

s+1 , .., π d+1
d+1 ).

If X is a non-empty set, then Xd+1 is the Cartesian product of d + 1 copies of X, and we have

τ d+1
s (x1, x2, .., xd+1) = (x1, .., xs−1, xs+1, .., xd+1),

where xi ∈ X for 1 ≤ i ≤ d + 1. That is, τ d+1
s is the projection from Xd+1 to Xd which discards the

coordinate s in Xd+1.

Definition 1.1. Let C be a category with finite products, let X be an object in C, and let d be a
positive integer. A Latin hypercube of dimension d over X is a morphism λ:L → Xd+1 in C such that
τ d+1

s ◦ λ:L → Xd is an isomorphism in C, for 1 ≤ s ≤ d + 1.

The morphism λ in this Definition is necessarily a monomorphism. Two Latin hypercubes λ:L →
Xd+1 and λ′:L′ → Xd+1 are called isomorphic if there is an isomorphism α:L → L′ such that λ = λ′ ◦ α.
In that case α is unique since λ′ is a monomorphism.

A Latin hypercube of dimension d over a non-empty set X is uniquely isomorphic to a Latin
hypercube given by a subset L of Xd+1 with the property that for any choice of d of the d + 1 coor-
dinates of an element in Xd+1 there is a unique element in the remaining coordinate such that the
C© The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089525000047
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.230, on 26 Jul 2025 at 01:07:07, subject to the Cambridge Core terms of use,

https://doi.org/10.1017/S0017089525000047
mailto:markus.linckelmann.1@city.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/S0017089525000047&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089525000047
https://www.cambridge.org/core


2 Markus Linckelmann

resulting element belongs to L. In particular, we can identify a Latin hypercube of dimension d over
a non-empty set uniquely, up to unique isomorphism, as the graph of the map f :Xd → X satisfying
(x1, x2, .., xd, f (x1, x2, .., xd)) ∈ L for all (x1, x2, .., xd) ∈ Xd. In this way, Latin hypercubes of dimension d
can be identified with a subset, denoted L(Xd, X), of the set Map(Xd, X) of all maps from Xd to X. Any
map in L(Xd, X) is clearly surjective. The following result shows that the subsets L(Xd, X) of Map(Xd, X)
with d ∈N determine an operad. We refer to [6] or [7, Part II, §1.2] for basic terminology on operads.

Theorem 1.2. Let X be a non-empty set. There is a sub-operad L of the endomorphism operad E of X
such that L(d) = L(Xd, X), for all d ∈N.

This is not the most general version in which this result can be stated. Theorem 1.2 admits a gen-
eralisation to categories with finite products, which we will describe in Theorem 3.4, and a further
generalisation, in Theorem 4.5, to certain Cartesian closed monoidal categories in whichL can be identi-
fied with a sub-operad of an internal endomorphism operad. We have chosen to state and prove this result
first in the context of non-empty sets in order to not distract from the elementary nature of the proof.
Operads were first introduced for topological spaces, and Theorem 1.2 holds verbatim for non-empty
compactly generated topological spaces (this is a special case of Theorem 4.5; see Remark 4.8).

Remark 1.3. As pointed out in [8], if d = 1, then a Latin hypercube over a non-empty set X is a
subset of X2 of the form {(x, σ (x))}x∈X for some permutation σ of X, and hence Latin hypercubes of
dimension 1 over X correspond to the elements of the symmetric group SX of permutations of X, so
they form themselves a group. This group structure is encoded as the structural map − ◦1 − on L(1)
of the operad L.

Remark 1.4. Let X be an object in a category C with finite products and let d be a positive integer. The
group AutC(X) �Sd+1 acts on Xd+1, hence on the class of Latin hypercubes of dimension d over X, with the
base group of d + 1 copies of AutC(X) acting by composing λ with a (d + 1)-tuple of automorphisms of
Xd+1 and Sd+1 acting on Xd+1 by permuting the d + 1 canonical projections π d+1

i :Xd+1 → X. This action
induces an action of AutC(X) �Sd+1 on the isomorphism classes of Latin hypercubes of dimension d
over X, which for C the category of sets is the standard notion of paratopism.

Remark 1.5. Let X be an object in a category C with finite products and let d be a positive integer.
The canonical projections π d

i :Xd → X are split surjective, with section the diagonal morphism δ:X → Xd

defined as the unique morphism such that π d
i ◦ δ = IdX , for 1 ≤ i ≤ d. Let λ:L → Xd+1 be a Latin hyper-

cube. The d + 1 components λi = π d+1
i ◦ λ:L → X of λ are split epimorphisms. Indeed, if we choose

s 	= i, with 1 ≤ i, s ≤ d + 1, then π d+1
i factors through τ d+1

s ; more precisely, π d+1
i ◦ λ = π d

j ◦ τ d+1
s ◦ λ

where j = i if i < s, and j = i − 1 if i > s. Since τ d+1
s ◦ λ is an isomorphism and π d

j a split epimorphism,
it follows that their composition is a split epimorphism, and hence so is π d+1

i ◦ λ.

2. Proof of Theorem 1.2

The endomorphism operad E of a non-empty set X consists of the sets E(n) = Map(Xn, X) for any positive
integer n, together with strutural maps

− ◦i −: Map(Xn, X) × Map(Xm, X) → Map(Xn+m−1, X)

given by

(f ◦i g)(x1, x2, . . . , xn+m−1) = f (x1, .., xi−1, g(xi, .., xi+m−1), xi+m, .., xn+m−1)

for all positive integers n, m, i, such that 1 ≤ i ≤ n, all x1, x2, .., xn+m−1 ∈ X, and all maps f ∈ Map(Xn, X)
and g ∈ Map(Xm, X). The sets E(n) = Map(Xn, X) are equipped with the action of Sn on the n coordi-
nates of Xn, and the identity map IdX ∈ E(1) = Map(X, X) is the unit element of this operad. For the
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associativity properties of the maps − ◦i − and their compatibility with the symmetric group actions on
the sets Map(Xn, X), see for instance [6, Definition 1.2] or [7, Part II,§1.2]. The main step for the proof
of Theorem 1.2 is the following Lemma.

Lemma 2.1. Let X be a non-empty set, and let d, e, i be positive integers such that 1 ≤ i ≤ d. Let f ∈
L(Xd, X) and g ∈L(Xe, X). Then f ◦i g ∈ L(Xd+e−1, X).

Proof. In order to show that f ◦i g belongs to L(Xd+e−1, X) we need to show that for any c ∈ X and
an arbitrary choice of d + e − 2 of the d + e − 1 elements x1, x2, .., xd+e−1 ∈ X the remaining of these
elements is uniquely determined by the equation

f (x1, .., xi−1, g(xi, .., xi+e−1), xi+e, .., xd+e−1) = c. (1)

Let s be an integer such that 1 ≤ s ≤ d + e − 1. Fix elements x1, x2, .., xs−1, xs+1, .., xd+e−1, c ∈ X.
Consider first that case where s ≤ i − 1 or s ≥ i + e. Then, setting y = g(xi, .., xi+e−1), the Equation 1

becomes

f (x1, .., xi−1, y, xi+e, .., xd+e−1) = c. (2)

All entries but the entry xs in this equation are fixed. Since f ∈L(Xd, X) it follows that there is a unique
choice for xs ∈ X such that Equation 2 holds, and hence a unique choice for xs ∈ X such that Equation 1
holds.

Consider the remaining case where i ≤ s ≤ i + e − 1. Then in particular the elements
x1, .., xi−1, xi+e, .., xd+e−1 are fixed in X. Since f ∈L(Xd, X) it follows that there is a unique y ∈ X
such that Equation 2 holds. Thus for Equation 1 to hold, we must have

g(xi, .., xi+e−1) = y. (3)

In this equation all but xs have been chosen. Since g ∈L(Xe, X) it follows that there is a unique choice
xs ∈ X such that Equation 3 holds. In all cases, there is a unique choice of xs such that Equation 1 holds.
This shows that f ◦i g belongs to L(Xd+e−1, X) and completes the proof.

Proof of Theorem 1.2. Let d ∈N. A map f ∈ E(d) = Map(Xd, X) belongs to L(d) =L(Xd, X) if and
only if the set

L = {(x1, x2, .., xd, f (x1, x2, .., xd)) | x1, x2, .., xd ∈ X}
is a Latin hypercube in Xd+1. Equivalently, f belongs to L(d) if and only for every c ∈ X and an arbitrary
choice of d − 1 of the d entries x1, .., xd ∈ X the remaining entry is uniquely determined by the equa-
tion f (x1, x2, .., xd) = c. The action of Sd on Map(Xd, X) by permuting the d coordinates of Xd clearly
preserves the subset L(d), and IdX belongs to L(1). In order to prove Theorem 1.2, it remains to show
that the sets L(d) are closed under the operations − ◦i −. This is done in Lemma 2.1 above, and this
concludes the proof.

Remark 2.2. We could have very slightly simplified the proof of Lemma 2.1 by observing that thanks
to the symmetric group actions on the coordinates of Latin hypercubes (cf. Remark 1.4) it would have
been sufficient in the proof of Lemma 2.1 to consider the map f ◦d g and a single s in the distinction
into the two cases for s. That is, it would have been sufficient in the last part of the proof of Lemma 2.1
to consider the cases where either 1 = s ≤ d − 1 or s = d. We will make use of this observation in the
proof of the more general Theorem 3.4 below.

Remark 2.3. The proof of Theorem 1.2, as written, involves choices of elements in the set X. In
Section 3 below we will rewrite this proof in such a way that it extends to categories with finite products.
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4 Markus Linckelmann

3. On Latin hypercubes in Cartesian monoidal categories

In this section, we extend Theorem 1.2 to categories with finite products. Given an object X in a category
C with finite products, a positive integer n, and a morphism λ:L → Xn in C, we denote as at the beginning
by λi = π n

i ◦ λ the composition of λ with the i-th canonical projection π n
i :Xn → X, where 1 ≤ i ≤ n.

The morphism λ is uniquely determined by the λi, and we will write abusively λ = (λi)1≤i≤n whenever
convenient. If σ ∈Sn, then σ induces an automorphism σ̂ on Xn given by σ̂i = π n

σ−1(i); that is, σ̂ permutes
the coordinates of Xn. This yields a group homomorphism Sn → AutC(Xn). We write σλ = σ̂ ◦ λ. We
extend the earlier notation LC(Xd, X) in the obvious way.

Definition 3.1. Let C be a category with finite products. Let d be a positive integer. We denote by
LC(Xd, X) the subset of HomC(Xd, X) consisting of all morphisms f :Xd → X such that the morphism
(IdXd , f ):Xd → Xd × X = Xd+1 is a Latin hypercube.

We first identify canonical representatives in isomorphism classes of Latin hypercubes.

Proposition 3.2. Let C be a category with finite products, let X be an object in C, and let d, s be positive
integers such that 1 ≤ s ≤ d + 1. Let λ:L → Xd+1 be a Latin hypercube. Then there is a unique Latin
hypercube ι:Xd → Xd+1 such that τ d+1

s ◦ ι = IdXd and such that ι ◦ α = λ for some isomorphism α:L → Xd.
In that case we have α = τ d+1

s ◦ λ:L → Xd.

Proof. By the definition of Latin hypercubes, the morphism α = τ d+1
s ◦ λ:L → Xd is an isomor-

phism. Then setting ι = λ ◦ α−1 implies immediately that α determines an isomorphism between the
Latin hypercubes λ:L → Xd+1 and ι:Xd → Xd+1. We need to show that α and ι are unique subject to these
properties. Let ι′:Xd → Xd+1 a Latin hypercube and α′:L → Xd an isomorphism such that τ d+1

s ◦ ι′ = IdXd

and such that ι′ ◦ α′ = λ. Composing this equality with τ d+1
s yields

α′ = IdXd ◦ α′ = τ d+1
s ◦ ι′ ◦ α′ = τ d+1

s ◦ λ = α

This implies ι′ = λ ◦ α−1 = ι, whence the uniqueness of ι and α as stated. The result follows.

Applied with s = d + 1, Proposition 3.2 implies that – as earlier in the category of sets –- the
morphisms in LC(Xd, X) parametrise the isomorphism classes of d-dimensional Latin hypercubes
over X.

Corollary 3.3. Let C be a category with finite products, let X be an object in C, and let d be a positive
integer. Any Latin hypercube of dimension d over X is uniquely isomorphic to a Latin hypercube of the
form ι:Xd → Xd+1 such that ι is a section of the morphism τ d+1

d+1 discarding the coordinate d + 1. Any such
morphism ι is then uniquely determined by its last component f = ιd+1 = π d+1

d+1 ◦ ι:Xd → X. In particular,
the set LC(Xd, X) parametrises the isomorphism classes of d-dimensional Latin hypercubes over X.

We show now that the setsLC(Xd, X) form an operad, together with the structural maps − ◦i − defined
as follows. Let f ∈ LC(Xd, X) and g ∈ LC(Xe, X), where d, e are positive integers. For 1 ≤ i ≤ d, the
structural map

− ◦i −: HomC(Xd, X) × HomC(Xe, X) → HomC(Xd+e−1, X)

sends (f , g) to the morphism

f ◦ (IdXi−1 × g × IdXd−i )

where we identify Xi−1 × Xe × Xd−i = Xd+e−1 for the domain of this morphism and where we identify
Xi−1 × X × Xd−i = Xd for the codomain of IdXi−1 × g × IdXd−i . One checks that if X is a set, this coincides
with the earlier definition of f ◦i g.
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Theorem 3.4. Let X be an object in a category C with finite products. There is a sub-operad L of
the endomorphism set operad E of X such that L(d) = LC(Xd, X), for all d ∈N. In particular, for any
positive integers d, e, i such that 1 ≤ i ≤ d, and any morphisms f ∈ LC(Xd, X) and g ∈ LC(Xe, X) we have
f ◦i g ∈LC(Xd+e−1, X).

Proof. The proof amounts to rewriting the proof of Theorem 1.2, including the statement and proof
of Lemma 2.1, in such a way that all steps remain valid for the Cartesian products in C. In order to keep
this readable, we mention in each step what this corresponds to in the case where X is a non-empty set
(and by considering coordinates, one easily translates this to statements in C).

Let f ∈ LC(Xd, X) and g ∈ LC(Xe, X), where d, e are positive integers. That is, the morphisms

(IdXd , f ) : Xd → Xd+1,

(IdXe , g) : Xe → Xe+1

are Latin hypercubes. As in the proof of Theorem 1.2, the unitality and symmetric group actions are
obvious, and we only need to show, analogously to Lemma 2.1, that (IdXd+e−1 , f ◦i g) is a Latin hypercube.
That is, we need to show that for 1 ≤ s ≤ d + e − 1 and 1 ≤ i ≤ d, the composition τ d+e

s ◦ (IdXd+e−1 , f ◦i g)
is an automorphism of Xd+e−1. As pointed out in Remark 2.2, since we may permute coordinates, it
suffices to do this for i = d and in the two cases where either 1 = s ≤ d − 1 or s = d.

We consider first the case 1 = s ≤ d − 1, so d ≥ 2. We need to show that the morphism

τ d+e
1 ◦ (IdXd+e−1 , f ◦d g)

is an automorphism of Xd+e−1. If X is a set, then this automorphism is given by the assignment

(x1, x2, .., xd+e−1) �→ (x2, .., xd+e−1, f (x1, .., xd−1, g(xd, .., xd+e−1))).

First, the morphism τ d
1 ◦ (IdXd , f ) is an automorphism of Xd because (IdXd , f ) is a Latin hypercube. We

note that if X is a non-empty set, then the morphism τ d
1 ◦ (IdXd , f ) is given by the assignment

(x1, .., xd) �→ (x2, .., xd, f (x1, .., xd)).

Compose this with the automorphism σ̂ induced by the cyclic permutation σ = (1, 2, .., d) on coordi-
nates. The resulting automorphism

σ̂ ◦ τ d
1 ◦ (IdXd , f )

is, for X a set, given by the assignment

(x1, .., xd) �→ (f (x1, .., xd), x2, .., xd)

The Cartesian product of this automorphism with − × IdXe−1 yields an automorphism of Xd+e−1, which
for X a set corresponds to

(x1, .., xd+e−1) �→ (f (x1, .., xd), x2, .., xd+e−1))

Again permuting cyclically, the coordinates yields an automorphism of Xd+e−1 which we will denote by
α, which, if X is a set, corresponds to

(x1, .., xd+e−1) �→ (x2, .., xd+e−1, f (x1, .., xd)).

Using the fact that τ e
1 ◦ (IdXe , g) is an automorphism of Xe, combined with cyclically permuting

coordinates, we obtain an automorphism γ of Xe, which corresponds to the assignment

(xd, .., xd+e−1) �→ (g(xd, .., xd+e−1), xd+1, .., xd+e−1).

Then β = IdXd−1 × η is the automorphism of Xd+e−1 which corresponds to

(x1, .., xd+e−1) �→ (x1, .., xd−1, g(xd, .., xd+e−1), xd+1, .., xd+e−1).
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Similarly, γ = IdXd−1 × η × IdX is an automorphism of Xd+e−1. Now α ◦ β is an automorphism of Xd+e−1

corresponding to

(x1, .., xd+e−1) �→ (x2, .., xd−1, g(xd, .., xd+e−1), xd+1, .., xd+e−1, f (x1, .., xd−1, g(xd, .., xd+e−1))).

Thus the automorphism γ −1 ◦ α ◦ β of Xd+e−1 coincides with the morphism τ d+e
1 ◦ (IdXd+e−1 , f ◦d g). This

proves the result in the case 1 = s ≤ d − 1.
Consider next the case s = d. We need to show that the morphism τ d+e

d ◦ (IdXd+e−1 , f ◦d g) is an
automorphism of Xd+e−1. If X is a set, then this automorphism is given by the assignment

(x1, .., xd+e−1) �→ (x1, .., xd−1, xd+1, .., xd+e−1, f (x1, .., xd−1, g(xd, .., xd+e−1))).

As before, by using the automorphism τ e
1 ◦ (IdXe , g), cyclically permuting the coordinates and then

applying IdXd−1 × − we obtain anautomorphism δ of Xd+e−1, which for X a set corresponds to

(x1, .., xd+e−1) �→ (x1, .., xd−1, g(xd, .., xd+e−1), xd+1, .., xd+e−1).

Similarly, applying − × IdXe−1 to the automorphism τ d
d ◦ (IdXd , f ) yields an automorphism ε of Xd+e−1,

which for X a set corresponds to

(x1, .., xd+e−1) �→ (x1, .., xd−1, f (x1, .., xd), xd+1, .., xd+e−1).

Thus ε ◦ δ is the automorphism of Xd+e−1 which for X a set corresponds to

(x1, . . . , xd+e−1) �→ (x1, .., xd−1, xd+1, .., xd+e−1, (f ◦d g)(x1, .., xd+e−1)),

and this is indeed the automorphism τ d+e−1
d ◦ (IdXd+e−1 , f ◦d g). This proves the second case, and the result

follows.

4. On Latin hypercubes in closed Cartesian monoidal categories

A monoidal category C with unit object 1 is closed if C has an internal Hom, denoted Hom. That is,
Hom:Cop × C → C is a bifunctor such that for any object X in C the functor X × − on C is left adjoint to
the functor Hom(X, −). This adjunction yields in particular natural bijections HomC(1, Hom(X, Y)) ∼=
HomC(X, Y) and natural isomorphisms Hom(1, X) ∼= X; see Kelly [3] and [5] for more background
material. Following [4], endomorphism operads can be defined over objects in certain closed symmetric
monoidal categories. For the definition of Latin hypercubes we need in addition that C is Cartesian
monoidal; that is, the monoidal product is a product in the category C. In that case the unit object 1 is a
terminal object in C. In what follows we say that a morphism α̂ between Hom objects in C lifts a map α

if α is the image of α̂ under the functor HomC(1, −) modulo canonical identifications.
In order to show that the morphism sets LC(Xd, X) lift to internal objects whenever C has pullbacks,

we will need, from [5, Exercise 5, page 213], the fact that automorphism groups of objects lift to internal
objects. We have a pullback diagram

AutC(X) ��

δ

��

{Id1}

��
HomC(X, X) × HomC(X, X)

μ
�� HomC(X,X) × HomC(X, X)

where δ sends σ ∈ AutC(X) to (σ , σ−1), where μ(α, β) = (β ◦ α, α ◦ β) for any α, β ∈ HomC(X, X), and
where the right vertical map sends Id1 to (IdX , IdX). The lower horizontal map μ commutes with the
involution on HomC(X, X) × HomC(X, X) given by exchanging coordinates. The map μ and the right
vertical map lift to maps on internal Hom objects, and hence, if C has pullbacks, then the above diagram
lifts to a pullback diagram in C of the form
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4.1.

Aut(X) ��

(γ,γ′)
��

1 = 1× 1

ι

��
Hom(X,X) × Hom(X,X)

ν
�� Hom(X, X) × Hom(X, X)

Composing ι with the canonical involution on Hom(X, X) × Hom(X, X) commutes with ν, does not
change ι, while it changes (γ , γ ′) to (γ ′, γ ). The universal property of pullbacks implies that there is
a unique automorphism ε of the object Aut(X) of order 2 with the property that (γ ′, γ ) = (γ , γ ′) ◦ ε.
This automorphism lifts the bijection given by taking inverses in the group AutC(X). Since ι is trivially
a monomorphism, it follows that (γ , γ ′) is a monomorphism. If HomC(1, −) is faithful, hence reflects
monomorphism, then both γ and γ ′ are monomorphisms, since they lift inclusion maps. The following
result shows that there are internal objects lifting the morphism sets LC(Xd, X).

Theorem 4.2. Let C be a Cartesian closed monoidal category with pullbacks. Let X be an object in
C, and let d be a positive integer. There is an object L(Xd, X) in C, determined uniquely up to unique
isomorphism, such that we have a canonical isomorphism HomC(1, L(Xd, X)) ∼= LC(Xd, X), and such
that there is a canonical morphism L(Xd, X) → Hom(Xd, X) in C which lifts the inclusion LC(Xd, X) →
HomC(Xd, X). If in addition the functor HomC(1, −) faithful, then the canonical morphism L(Xd, X) →
Hom(Xd, X) is a monomorphism.

We will need the following characterisation of the morphism sets LC(Xd, X) in a category with finite
products.

Lemma 4.3. Let C be a category with finite products, let X be an object in C, and let d be a positive
integer. We have a pullback diagram of sets

LC(Xd, X)

��

�� ∏d
i=1 AutC(Xd)

ι

��
HomC(Xd, X)

γ
�� ∏d

i=1 HomC(Xd, Xd)

where γ = (γi:HomC(Xd, X) → HomC(Xd, Xd))1≤i≤d is defined by

γi(λ) = τ d+1
i ◦ (IdXd , λ)

for 1 ≤ i ≤ d and λ ∈ HomC(Xd, X), and where ι is the product of d copies of the inclusion AutC(Xd) →
HomC(Xd, Xd).

Proof. Let λ ∈ HomC(Xd, X). By definition, we have λ ∈LC(Xd, X) if and only if γi ∈ AutC(Xd) for
1 ≤ i ≤ d. This is clearly equivalent to the assertion that the diagram in the statement is a pullback
diagram.

Proof of Theorem 4.2. As described in the diagram 4.1, appplied with Xd instead of X, there is a
morphism Aut(Xd) → Hom(Xd, Xd) which lifts the inclusion AutC(Xd) → HomC(Xd, Xd). Both maps γ

and ι in the diagram from Lemma 4.3 lift to morphisms γ̂ and ι̂ between the relevant internal Hom
objects, and hence, by the assumptions on C, there is a pullback diagram in C of the form
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4.4.

L(Xd, X)

��

�� ∏d
i=1 Aut(Xd)

ι̂
��

Hom(Xd, X)
γ̂

�� ∏d
i=1 Hom(Xd, Xd)

The functor HomC(1, −) from C to the category of sets preserves pullbacks, hence sends this pullback
diagram to a diagram isomorphic to that in Lemma 4.3. It follows in particular that HomC(1, L(Xd, X)) ∼=
LC(Xd, X). The uniqueness statement follows from the fact that pullbacks are unique up to unique iso-
morphism. If the functor HomC(1, −) is faithful, then this functor reflects monomorphisms, whence the
last statement follows.

Theorem 4.5. Let C be a Cartesian closed monoidal category with pullbacks. Suppose that the func-
tor HomC(1, −) is faithful. Suppose in addition that for any two objects Y ,Z in C and any morphism
ζ :Z → Hom(Y , Y), if the map HomC(1, ζ ) factors through the inclusion AutC(Y) → HomC(Y , Y), then
the morphism ζ factors through the morphism Aut(Y) → Hom(Y , Y). Let X be an object in C. For any
positive integer d the morphism L(Xd, X) → Hom(Xd, X) is a monomorphism, and, with d running over
N, these monomorphisms form a sub-operad of the internal endomorphism operad of X in C.

Proof. Note that since we assume HomC(1, −) to be faithful (hence reflecting monomorphisms), it
follows that the morphism L(Xd, X) → Hom(Xd, X) from Theorem 4.2 is a monomorphism, for any
positive integer d. Furthermore, as in the proofs of Theorems 1.2, 3.4, showing the unitality and com-
patibility with symmetric group actions is straightforward. What remains to be proved is that the maps
− ◦i − of the endomorphism operad induce maps on the subobjects L(Xd, X) of the internal Hom objects
Hom(Xd, X). Let d, e, i be positive integers such that 1 ≤ i ≤ d. The map

− ◦i −:HomC(Xd, X) × HomC(Xe, X) → HomC(Xd+e−1, X)

sends (f , g) to f ◦ (IdXi−1 × g × IdXd−i ). Since this involves composition and products only, this map lifts
to a map of internal Hom objects

Hom(Xd, X) × Hom(Xe, X) → Hom(Xd+e−1, X).

At the level of morphism sets it follows from Theorem 3.4 that we have a commutative diagram

4.6.

HomC(Xd, X) × HomC(Xe, X)
−◦i− �� HomC(Xd+e−1, X)

LC(Xd, X) × LC(Xe, X)

��

�� LC(Xd+e−1, X)

��
,

where the vertical maps are inclusions. We need to show that this diagram lifts to the internal Hom
objects and relevant subobjects. We note that the vertical maps in the diagram 4.6 lift by Theorem 4.2,
and the top horizontal map lifts by the discussion preceding the diagram 4.6. What we need to show is
that the bottom horizontal map in diagram 4.6 lifts as well.

Since L(Xd+e−1, X) is defined via a pullback diagram 4.4 (with d + e − 1 instead of d), we need to
show that there is a commutative diagram of the form
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4.7.

Hom(Xd, X) × Hom(Xe, X)
−◦i− �� Hom(Xd+e−1, X) �� ∏d+e−1

i=1 Hom(Xd+e−1, Xd+e−1)

L(Xd, X) × L(Xe, X)

��

�� ∏d+e−1
i=1 Aut(Xd+e−1)

��

Combining Lemma 4.3 (with d + e − 1 instead of d) and diagram 4.6 yields a commutative diagram

HomC(Xd, X) × HomC(Xe, X)
−◦i− �� HomC(Xd+e−1, X) �� ∏d+e−1

i=1 HomC(Xd+e−1, Xd+e−1)

LC(Xd, X) × LC(Xe, X)

��

�� ∏d+e−1
i=1 AutC(Xd+e−1)

��

The top horizontal and two vertical maps in this diagram lift to maps as in the diagram 4.7. The
hypothesis on lifting maps through morphisms of the form Aut(Y) → Hom(Y , Y) applied to the d +
e − 1 components on the right side of the diagram 4.7 shows the existence of the lower horizontal map
making the diagram 4.7 commutative. The uniqueness of such a map follows from the fact that the right
vertical map is a monomorphism, where we use that the functor HomC(1, −) is faithful.

Remark 4.8. We do not know whether the hypothesis on lifting morphisms Z → Hom(Y , Y) through
Aut(Y) → Hom(Y , Y) is indeed needed for Theorem 4.5 to hold. This hypothesis holds in the category
of compactly generated topological spaces. It is easy to see that this hypothesis holds if Aut(Y) →
Hom(Y , Y) is a regular monomorphism (these are monomorphisms which are an equaliser of a pair of
parallel morphisms), assuming as before that HomC(1, −) is faithful.

5. Latin hypercubes in terms of pullback diagrams and further remarks

Definition 1.1 describes Latin hypercubes of dimension d over a non-empty set X as subsets of Xd+1

instead as the graph of a function Xd → X. We describe the composition maps − ◦i − in terms of these
subsets as pullbacks.

Proposition 5.1. Let X be a non-empty set, and let d, e, i be positive integers such that 1 ≤ i ≤ d. Let
L ⊂ Xd+1 and M ⊆ Xe+1 be Latin hypercubes over X of dimension d and e, respectively. Let f :Xd → X
and g:Xe → X be the maps whose graphs are L and M, respectively. Denote by L ◦i M ⊆ Xd+e the Latin
hypercube over X of dimension d + e − 1 which is the graph of the map f ◦i g:Xd+e−1 → X.

An element (x1, x2, .., xd+e) ∈ Xd+e belongs to L ◦i M if and only if there is an element z ∈ X such that
(x1, .., xi−1, z, xe+i, .., xd+e) ∈ L and such that (xi, .., xe+i−1, z) ∈ M. Then z is uniquely determined by the
elements x1, x2,..,xd+e. Equivalently, we have a pullback diagram of the form

L ◦i M
β ��

α

��

M

μe+1

��
L

λi

�� X

where λi is the restriction to L of the canonical projection π d+1
i :Xd+1 → X onto the coordinate i, where

μe+1 is the restriction to M of the canonical projection π e+1
e+1 :Xe+1 → X onto the coordinate e + 1, and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089525000047
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.230, on 26 Jul 2025 at 01:07:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089525000047
https://www.cambridge.org/core


10 Markus Linckelmann

where

α(x1, x2, .., xd+e) = (x1, .., xi−1, z, xe+i, .., xd+e),

β(x1, x2, .., xd+e) = (xi, .., xi+e−1, z).

Proof. Note that L ◦i M is indeed a Latin hypercube by Theorem 1.2. We have

(x1, x2, .., xd+e) ∈ L ◦i M

if and only if

xd+e = (f ◦i g)(x1, x2, .., xd+e−1) = f (x1, .., xi−1, g(xi, .., xi+e−1), xi+e, .., xd+e−1).

Since z = g(xi, .., xe+i−1) is the unique element in X such that (xi, .., xi+e−1, z) ∈ M and the unique element
such that (x1, .., xi−1, z, xi+e, .., xd+e) ∈ L, the first statement follows. The second statement follows from
the fact that z is uniquely determined by the coordinates xi, 1 ≤ i ≤ d + e

It is well known that for a Latin hypercube of dimension d ≥ 2 over a non-empty set X, fixing one
of the coordinates in Xd+1 yields a Latin hypercube of dimension d − 1 (this was implicitly used in the
proof of Theorem 1.2). This can be extended to Cartesian monoidal categories with pullbacks. We will
need the following Lemma to show this.

Lemma 5.2. Let C be a Cartesian monoidal category. Let X be an object in C and let d, s be positive
integers such that s ≤ d and d ≥ 2. Let c:1→ X be a morphism in C. Denote by IdXd × c:Xd → Xd+1 the
unique morphism satisfying τ d+1

d+1 ◦ (IdXd × c) = IdXd and π d+1
d+1 ◦ (IdXd × c) = t × c, where t is the unique

morphism Xd → 1, and where we identify Xd = Xd × 1 and X = 1× X. The diagram

Xd
τd

s ��

Id
Xd×c

��

Xd−1

Id
Xd−1×c

��
Xd+1

τd+1
s

�� Xd

is a pullback diagram.

Proof. By permuting the coordinates it suffices to show this for s = d. Let Z be an object in C, and
let u:Z → Xd+1 and v:Z → Xd−1 be morphisms such that

τ d+1
d ◦ u = (IdXd−1 ◦ c) ◦ v.

We need to show that there is a unique morphism w:Z → Xd satisfying u = (IdXd × c) ◦ w and v = τ d
d ◦ w.

By checking on coordinates one sees that w = (v, ud):Z → Xd−1 × X = Xd is the unique morphism with
this property, where as before ud = π d+1

d ◦ u.

Proposition 5.3. Let C be a Cartesian monoidal category with pullbacks. Let d be an integer such that
d ≥ 2. Let λ:L → Xd+1 be a morphism in C. Suppose that the morphism λ:L → Xd+1 is a Latin hypercube.
Then the morphism τ d+1

d+1 ◦ λ:L → Xd is an isomorphism, and for every morphism c:1→ X and every
pullback diagram of the form
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Lc
λc ��

��

Xd

(Id
Xd )×c

��
L

λ
�� Xd+1

the morphism λc:Lc → Xd is a Latin hypercube.

Proof. The morphism τ d+1
d+1 ◦ λ is an isomorphism as part of the definition of a Latin hypercube. Let

c:1→ X be a morphism, and let s be an integer such that 1 ≤ s ≤ d. Consider a pullback diagram as in
the statement. We need to show that τ d

s ◦ λc:Lc → Xd−1 is an isomorphism. Since s ≤ d and d ≥ 2 we can
complete the diagram in the statement to a commutative diagram

Lc
λc ��

��

Xd
τd

s ��

Id
Xd×c

��

Xd−1

Id
Xd−1×c

��
L

λ
�� Xd+1

τd+1
s

�� Xd

The right square is a pullback diagram by Lemma 5.2. Since the left square is a pullback diagram, the
pasting law for pullbacks implies that the outer rectangle is a pullback diagram as well. Since the lower
horizontal morphism in the outer rectangle is an isomorphism, so is the upper horizontal morphism (we
use here that pullbacks preserve isomorphisms).

We conclude this note with some further remarks.

Remark 5.4. The notion of transversals can be adapted to the situation of Definition 1.1 as follows.
Given an object X in a category with finite products and a positive integer d, a transversal in Xd+1 is
a morphism σ :X → Xd+1 such that σi = π d+1

i ◦ σ is an automorphism of X, for 1 ≤ i ≤ d + 1. The mor-
phism σ is obviously a monomorphism. We say that such a transversal is contained in a Latin hypercube
λ:L → Xd+1 if there is a morphism ι:X → L such that λ ◦ ι = σ . In that case, ι is necessarily a monomor-
phism as well. If X is a non-empty set, then a transversal σ can be identified with the subset σ (X) of
Xd+1. If X is finite and has an abelian group structure, and if T ⊆ Xd+1 is a transversal, then we have a
version of the �-Lemma [9, Lemma 2.1] as follows. Denote by α:Xd+1 → X the alternating sum map
α(x1, x2, .., xd+1) = ∑d+1

i=1 ( − 1)i−1xi and by t the sum of all involutions in X. Since the sum of all elements
in X is equal to the sum t of all involutions in X, an elementary calculation shows that

∑
x∈T

α(x) =
{

0 if d is odd
t if d is even.

If X =Z/nZ for some positive integer n, then t = 0 if n is odd, and t = n
2
+ nZ if n is even.

Remark 5.5. Adapting another well-known notion for Latin squares going back to Bose [2], the
graph of a Latin hypercube L ⊆ Xd+1 of dimension d ≥ 1 over a non-empty set X is the simple graph
�(L) with vertex set L, with an edge between two elements in L if the two elements have d − 1 coordi-
nates at which they coincide. Being a Latin hypercube implies that if one fixes d − 1 coordinates of an
element in L, then the remaining two coordinates determine each other. In particular, if two elements
of L coincide at d coordinates, then these two elements are equal. If |X| = n is finite, then �(L) has
nd vertices and valency

(
d+1

2

)
(n − 1); indeed, the neighbours of (x1, x2, .., xd+1) ∈ L are obtained by first

choosing a two-element subset {i1, i2} of {1, 2, .., d + 1} and then replacing xi1 by any of the n − 1 values
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different from xi1 and replacing xi2 by the unique element such that the resulting d + 1-tuple belongs
to L. Adjacent vertices have n − 2 + 2(d − 1) = n + 2d − 4 common neighbours; indeed, two distinct
elements of the form (x1, x2, x3, .., xd+1), (x′

1, x′
2, x3, .., xd+1) in L have the n − 2 common neighbours of the

form (y1, y2, x3, .., xd+1) with y1 	= x1, x′
1 (so necessarily y2 	= x2, x′

2), and in addition the 2(d − 1) common
neighbours of the form (x1, x′

2, x3, .., yj, .., xd+1), (x′
1, x2, x3, .., zj, .., xd+1) in L where 3 ≤ j ≤ d + 1 and yj,

zj are the uniquely determined elements by the remaining coordinates. If d ≥ 3, then the length of the
shortest path between non-adjacent vertices depends on the number of common coordinates.

Remark 5.6. Latin hypercubes of a fixed dimension d over objects in a category C with finite products
form themselves a category. Let X, Y be objects in C. Let λ:Xd → Xd+1 and μ:Yd → Yd+1 be Latin hyper-
cubes. A morphism from μ to λ is a morphism ι:Y → X such that λ ◦ ι×d = ι×(d+1) ◦ μ. Here ι×d:Yd → Xd

is the morphism obtained by taking d times the product of ι; similarly for d + 1. Note though that the
notion of isomorphism in this category is different from the notion of isomorphism considered in the
Introduction, where we regard Latin hypercubes of dimension d over X as objects in the under-category
of Xd+1. For a Latin hypercube λ:Xd → Xd+1 of the form λ = (IdXd , f ) for some morphism f :Xd → X,
one checks easily that an automorphism of this Latin hypercube in the category defined here is an
automorphism ι ∈ AutC(X) satisfying ι ◦ f = f ◦ ι×d.

Acknowledgements. The present paper was partially supported by EPSRC grant EP/X035328/1.

Competing interests. None.

References
[1] R. A. Bailey, P. J. Cameron, C. E. Praeger and C. Schneider, The geometry of diagonal groups, Trans. Amer. Math. Soc.

375(8) (2022), 5259–5311.
[2] R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math 13(2) (1963),

389–419.
[3] G. M. Kelly, Basic concepts of enriched category theory, Mathematical Society Lecture Notes Series 64, (Cambridge

University Press, 1982), 245.
[4] G. M. Kelly, On the operads of J. P. May, Repr. Theory Appl. Categ. 13 (2005), 1–13.
[5] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic (Springer-Verlag New York, 1992), xii+629.
[6] P. May, The geometry of iterated loop spaces, Lectures notes in mathematics, vol. 271 (Springer-Verlag, 1972),

viii+175.
[7] M. Markl, S. Shnider and J. Stasheff, Operads in Algebra, topology, physics, Math. Surveys and monographs, vol. 96

(Amer. Math. Soc, 2002), x+349.
[8] B. D. McKay and I. M. Wanless, A census of small Latin hypercubes, SIAM J. Discrete Math. 22(2) (2008), 719–736.
[9] I. M. Wanless, Transversals in Latin squares: a survey, in Surveys in combinatorics 2011, London Math. Soc. Lecture

Note Ser., vol. 392 (Cambridge University Proess, 2011).403–437,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089525000047
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.230, on 26 Jul 2025 at 01:07:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089525000047
https://www.cambridge.org/core

	Introduction
	Proof of Theorem 1.2

	On Latin hypercubes in Cartesian monoidal categories
	On Latin hypercubes in closed Cartesian monoidal categories
	Latin hypercubes in terms of pullback diagrams and further remarks

