
Duplication of linear algebras

By I. M. H. ETHERINGTON.

{Received and read 3rd May, 1940.)

The process of duplication of a linear algebra was defined in an
earlier paper1, where its occurrence in the symbolism of genetics was
pointed out. The definition will now be repeated with an amplifica-
tion. Although for purpose of illustration it is applied to the algebra
of complex numbers, duplication will seem of no special significance
if attention is fixed on algebras with associative multiplication and
unique division; for duplication generally destroys these properties.
The results to be proved, however, show that it is significant in
connection with various other conceptions which appeared in the
discussion of genetic algebras; namely baric algebras and train
algebras (defined in G.A.), also nilpotent algebras, linear transforma-
tion and direct multiplication of algebras.

§1. Meaning of duplication.

Let I b e a linear algebra of order n over the field F, with basis
a1, a2, . . . . an, having the multiplication table

a»a"= i yfa", (M> v = 1, . . . . « ) , (y? < F). (1.1)

The commutative and associative laws of multiplication are not
assumed. We shall write

X = (a1, a2, a,"). (1.2)

Except for the positive integer n, italic letters will be used con-
sistently for hypercomplex numbers, or as they will be called elements;
and except in the enumerating indices (which always run from 1 to n)
greek letters (other than S) will be used consistently for elements of
F, which will be called numbers. Also 2 will always denote summation
with respect to repeated indices. Thus we may without ambiguity

1 Etherington, "Genetic algebras," Proc. Roy. Soc, Edin., 59 (1939), 242-258.
Reference will also be made to " O n non-associative combinations," ibid., 153-162.
These papers will be referred to as G. A. and N. C. Of. also ibid. (B), 61 (1941), 24-42.
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DUPLICATION OF LINEAR ALGEBRAS 223

define X by writing instead of (1.2) and (1.1)

X = (a-), (1.3)
where

a" a" = 2 y£" a". (1.4)
We have then

•. ae a* = 2 y£" a" . 2 yf aT = 2 -fj y\* a" ar. (1.5)
Writing

flfa'^a'"', (1.6)
this becomes

(l"(!^=I/'v'*fl", (1.7)

which may be regarded as the multiplication table of another linear

algebra over the same field F, denoted

= (a*p) (!•")

and called the duplicate of X.
It was assumed in G. A. that X was commutative; accordingly

no distinction was drawn between a*" and a"*, and X' was a com-
mutative algebra of order \n(n-\- 1). It was also pointed out that
when X is non-commutative, the non-commutative algebra X' is of
order n2.

In the case when X is commutative, however, it is still possible
in carrying out the process (1.5, 6, 7) to draw a formal distinction
between a^v and a"*1, and thus to obtain a non-commutative duplicate
algebra of order n2 instead of \n (n + 1). Its multiplication table will
still be (1.7), but these equations will now number n4 instead of

\ . \n (n + 1). {\n (n + 1) + 1} = in (n + 1) (n2 + n + 2). (1.9)

{Provided that the order of the subalgebra X2 is not less than 2;

multiplication will be non-commutative in the non-commutative
duplicate algebra.)

Consider, for example, the algebra of complex numbers, Z = (1, i)
where I2 = 1, \i = il = i, i2 = — 1. Its commutative duplicate is
Z' = (I2, li = il, i2), and its non-commutative duplicate is Z' = (I2,
li, il, i2), with multiplication tables respectively

a 6, 6o c
a b c

12 = «
i = i\ =b

b —a
c -b

il = 62

a

a

b2

b2

— a

h
c
c

bi
c
c

-h

— a

-h
-b2

a

(1.10) (1.11)
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These may be contrasted with the "direct square," or direct
product of two algebras isomorphic with Z, say

ZZ1 = {1, i) X (/, j) = (1 / , */, I j , ij),

having the commutative multiplication table

\I = a
11 = \J\ U, Is 1/2 Q ^2)

Ij = b2 '
ij = c

Like Z, this is commutative and associative, and possesses a 1-element
(having the properties of 1 and I in the factor algebras), namely a;
and it has the property of unique division. On the other hand both
duplicate algebras are non-associative; and it follows Theorem II (i),.
(ii), infra, that except in the trivial case n = 1 a duplicate algebra
cannot be a division algebra or possess a 1-element.

Returning to the general commutative algebra X, and supposing
its order > 2, we can if desired draw distinctions between a*" and a'*
in some cases but not all {e.g. regard a12 = a21, but other a'"=^a1''*),
and thus obtain intermediate part-commutative duplicate algebras, of
any order between n2 and \n {n + 1).

In the rest of this paper, except where otherwise indicated, it is
optional whether we assume that X is non-commutative, in which
case X' is unique; or that X is commutative and that one of its
duplicates is selected as the duplicate and denoted X'. The meaning
of the phrase quadratic form is fixed accordingly: a quadratic form
in X means a linear combination (coefficients in F) of those products
of base elements which are distinguished as corresponding to the base
elements of X'.

§ 2. General properties of a duplicate algebra.

To any element
„> K1 rtU.V / O 1 \

X = ZJ &„„ 0/ \£. 1 )

of X', there corresponds the quadratic form Y, a^ a» a" in X. The
element x' and the quadratic form will be called isomorphs of each
other. The correspondence is unique both ways, and under it the
operations of addition and multiplication both hypercomplex and
sealar are conserved.
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Also, in virtue of (1.6) and the multiplication table (1.4), to any
element (2.1) of X', there corresponds a unique element of X, called
the homomorph of x'. Again, under this correspondence addition and
both kinds of multiplication are conserved; but the correspondence
is not unique in the opposite direction. It is nevertheless sometimes
convenient (especially in the genetical symbolism) to use " = " for
both correspondences, and thus to write:

2 a^a1"1 = £ a^afa" (its isomorph) (2.2)

= S a p f ; a " (its homomorph). (2.3)

Not all elements of X are homomorphs: in order that x should
be a homomorph, it is necessary and sufficient that it should be a
linear combination of the elements "Ly^a", i.e. of a*a"; in other
words it must belong to the invariant subalgebra X~. Thus t h e
homomorphism is a mapping of X' on X2.

When forming a product in X', we may replace the elements to
be multiplied by their homomorphs in X, and then multiply, leaving
the product in quadratic form and taking its isomorph in X'. In.
symbols, if

x' = S v ^ y' = ^faae\
then

x' y' = Z a,, •& a* . 2 fa y* a' = S a.v fa TJ Y* «">

which is evidently the correct result. We deduce immediately1

THEOREM I. In forming any product, power or continued product in
X', we can perform all the operations on the homomorphs in X, only in the
final multiplication leaving the product in quadratic form: its isomorph
in X' will then be the result required. (The operations have to be
performed in a definite order since multiplication is non-associative.)

Elements of X' whose homomorphs are zero will be called
o-elements; they form a linear set which will be denoted O.

THEOREM II. (i) Assuming n > 1, X' necessarily contains o-elements
other than zero, so that 0^=0. (ii) In X', any product which contains
an o-element as one factor is zero, (iii) 0 is an invariant subalgebra of
X'. (iv) The difference algebra (X' — 0) is isomorphic with X2.

1 In the genetical symbolism, this theorem corresponds to the fact that in order to
obtain the distribution of zygotic types of an rib filial generation, provided that no
selection acts on the zygotes, it is sufficient to trace only the gametic distribution through
the r—1 intervening generations.
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For if n > 1, the elements 2 y£" a" (i.e. a*1 a") are more than n
in number, and therefore cannot be linearly independent; this is
equivalent to the statement (i). (ii) follows from Theorem I, and (iii)
is an immediate consequence. Or (iii) and (iv) together follow from
the general properties of homomorphisms1.

In the algebras Z' of § 1, write

b1—b2 = o': (2.4)

-these are o-elements. The multiplication tables (1.10, 11) become

a
b
0

a

a

b

b
o — a

0

0
0
0

a bx o'

(2.5)

a a b1 0 0
bx bx — o' o — a 0 0
o 0 0 0 0
o' 0 0 0 0

(2.6)

The zeros in the tables illustrate Theorem II (ii), (iii); while the
results of suppressing all the o's illustrate the isomorphism of (Z' — O)
with Zz, i.e. with Z.

By a polynomial in an element x, we shall mean a finite linear
combination of powers of x, with coefficients in F. Since X does not
in general contain a 1-element to serve as an interpretation of x° (and
even if X does, X' does not), we shall exclude from consideration
polynomials with a constant term. Thus when multiplication is (a)
associative, (6) commutative and non-associative, (c) non-commutative
and non-associative, a polynomial means a finite expression (for the
index notation see N.C., §2)

(a)
(6)

ax + fix2 + yx3 + Sx* + ex5

ax

(2.7)

If x is the homomorph of x', then a polynomial in x' has as homo-
morph the same polynomial in x (perhaps compressed, if multiplication
is associative or commutative in X and not in X'}.

1 van der Waerden, Moderne Algebra (Berlin, 1930), I, pp. 56-57, where, since the
postulate of associative multiplication in rings is not used, the results apply to non-
associative algebras. "Invariant subalgebra " is here called Ideal, and "difference
algebra " Restklassenring.
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Suppose that every element x = 2 aa a" of X satisfies the
identity

/(a, 0 = 0, (2-8)
where / (x, aa) is a polynomial in x whose coefficients are functions of
the coordinates aa of x. Then the function/(x', 2 a^v y£"), formed from
any element x' of X' and the coordinates of its homomorph in the
same way as f (x, aa) is formed from x and its coordinates, is an
element of X' whose homomorph is zero. Hence by Theorem II (ii),

* ' . / ( * ' , 2 a,, •£»)=<), f(x\ 2 C ^ Y D •*'=<>. (2.9)
Thus we have
THEOREM III . / / every element x = "Laaa" of X satisfies an identity
(2.8), then every element x' — S a ^ a ' ' of X' satisfies the identities (2.9).
/ / multiplication is associative or commutative in X and not in X', the
function f in (2.9) may be interpretable in various ways.

For example, every element z = al + fti of Z satisfies the rank
equation

z2 - 2az +- a2 + ft2 =-- 0.
Theorem III can be applied not to this identity but to

Using the notation (2.4), any element z' — aa + fib + yo of the com-
mutative duplicate algebra has the homomorph al + /3i, and therefore
satisfies

z'4 - 2az'3 + (a2 + 02) z'2 = 0,
which is in fact the rank equation of Z'. Similarly the element
z' = aa + /?6 + yo + So' of the non-commutative duplicate satisfies
left.and right rank equations

_ 2aZ' ! + 2 + (a2 + p2) z'2=0,

and also satisfies
z' 1+<2"
2Ml+2)

•-1)-2az'

+ 1 - 2az'

1 + 2 H

2 + 1 .

h(<*2 +
M*2 +

O2\ «'
P ) %

B2)z'

2 = o,
2 = 0.

§3. Related algebras duplicated.
THEOREM IV. / / part-commutative duplicate algebras are excludedT.
the duplicate of a linear transform of X is a linear transform of X'.

For if the equations of transformation of X are
6» = £A»a*, a" = 2A^6% (3.1>

the multiplication table (1.4) becomes
Af6'. (3.2>

https://doi.org/10.1017/S001309150002719X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002719X


228 I. M. H. ETHERINGTON

Duplicating (commutatively or non-commutatively), we obtain

= S (A;AJtt'Af)(A|AjY*Ap6*

j6*); (3.3)

and this is precisely the result which would be obtained by applying
to the duplicate multiplication table (1.7) (commutative or non-
commutative correspondingly) the transformation

&"" = 2 A*Af a*", a»* = SA^Aj b-f. (3.4)

If X' is (a) a commutative duplicate algebra, or (b) a non-
commutative duplicate algebra, it will be seen1 that the matrix of
the induced transformation (3.4) in either direction is (a) the Schlaflian
(or second induced matrix), or (b) the direct square (or second Burn-
side matrix), of the matrix of the original transformation (3.1).

Similarly it is easy to prove

THEOREM V. The commutative or non-commutative duplicate of the
direct product of two algebras coincides with the direct product of their
commutative or non-commutative duplicates. Conversely, the direct
product of any two duplicate algebras coincides with a duplicate of their
direct product.

§ 4. Algebras of special type duplicated.

(a) Nilpotent algebras2.
Suppose that X is nilpotent of degree3 2S; i.e. in X all products

of 2S factors vanish. It will be shown that X' is nilpotent of
degree 2 8 — 1 .

1 See, «.(/.', Aitken, Proc. London Math. Soc. (2), 38 (1935), 354-376.
2 In this section, as in N.C. §3, S, a denote positive integers.
3 Index is the usual word in this context: cf. Wedderburn, Proc. London Math.

Soc. (2), 6 (1908), 77-118; p. 111. But having drawn a distinction in N.C. between
index and degree, I find the latter word more appropriate here. I t is perhaps not
irrelevant to point out an error in Wedderburn's paper, concerning nilpotent non-
-associative algebras. I t is stated (loc. cit., p. I l l ) that the sum of all the r"> powers of
such an algebra is less than (i.e. is contained in but is not equal to) the sum of the
(r — l ) t h powers. This is not true of the commutative algebra X = (a, b, c) where re2 = 6,
ab = 62 = c, ac = 6c = c2 = 0 ; for which X2 = (6, c), X» = (c), X* = 0, J^-2 = (c),
Xs = X 2 2 + 1 = X3+- = 0. For X is nilpotent of degree 5, whereas X* + X-" = X3.
Cf. Etherington, "Special train algebras," Quart. Journ. Math, (in press).
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Consider first a product a' in X' containing 8 factors. I t is a
linear combination of products of S base elements. Each product of
^ base elements is isomorphic with a product of 28 base elements in
X, and is therefore an o-element. Now consider a product x' of 28— 1
factors in X': it is expressible as a' b', where either a' or b' contains
at least 8 factors; i.e. either a' or V is an o-element, and hence
(Theorem II) x' = 0; as was to be proved. The same argument
-applies a fortiori if X is nilpotent of degree 28 — 1.

Or suppose (cf. N.C., p. 156) that X is nilpotent of altitude a;
i.e. in X all products of altitude a vanish. A product a' in X' of
altitude a — 1 is a linear combination of products of base elements
having the same altitude, each isomorphic with a product of alti tude
a in the base elements of X; and is therefore an o-element. A
product x' of altitude a is expressible as a' b', where either a' or b'
is of altitude a — 1 and is thus an o-element; so that x' — 0.

We have thus proved:

THEOREM VI. / / X is nilpolent (i) of degree 28 — 1 or 28, or (ii) of
altitude a, then X' is nilpotenl (i) of degree 28 — 1, or (ii) of altitude a,
accordingly.

(b) Baric and train algebras.

If X is a baric algebra (G.A., §3), there exists for any element x
a number £ (z), the weight of x, such that

£'(* + y) = i(x) + £(y), H*y) = £(*)€(y). £(ax)=a£[x).

If x' is any element of X', with homomorph x, and we define $ (x') as
being equal to £ (x), then it follows that

£ (x' + y') = £ (x') + € (y'), £ (x'y') = £ (x') £ (y% £ (ax') = af (x');

so that | (x') is a weight function of X'. Moreover, if

£{<r) = ?,
then

Thus we have

THEOREM VII. If X is a baric algebra with weight vector $*, then X'
is a baric algebra with weight vector £* £", and the weight of any element
in X' is equal to the weight of its homomorph in X.

Combining this with Theorem III , we obtain
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THEOREM VIII. If X is a train algebra with (left or right) principal
train roots 1, A, /x, . . . . , then X' is a train algebra with (left or right)
principal train roots included in 1, 0, \, p, . . . . Instances of this
theorem were observed in G.A.

It may be stated that the duplicate of a special train algebra
(G.A., p. 246), although a train algebra, is not always a special train
algebra1. The question, which was left open in G.A., whether a train
algebra is necessarily a special train algebra, is thus to be answered
in the negative.

1 The statement (G.A., p. 247) that "all the fundamental genetic algebras are
special train algebras " refers to gametic algebras, not to the zygotic algebras which
are derived from them by duplication.
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