The Absolute Cesaro Summability of the Successively Derived
Allied Set_’ies of a Fourier Series

-By R. MorANTY
(Received 12th March 1948. Read 7th May 1948.)
§ 1. Introduction.

We suppose that f(¢) is integrable in the Lebesgue sense «u -7, 7),
and is periodic with period 27. We denote its Fourier series by

3o, + I (a,cos nt + b, sin nt) = X A,(t). (1.1)
n=1 n=0
Then the allied series is
E (b, cos nt — a, sin nt) = OZOI B,(t). (1.2)
n=1 n=1 ’

We write
$(t) = Hflx + 1) + f(= — 1)}, Y(t) = Hf(z + 1) — flz =)}, (1.3)
so that . o
Tty ~24, cos nt, (1.4)‘

where A, = An(}v),
and 4 Y(t) ~ZB, sin nt, (1.5)
where B, = B,(z).

The series obtained by differentiating the allied series r times at.
t=2xis
= 3(— 1)¥n'B, (r even)

d r
=(-2) B, (1.6)
. (dw> (x){ = S(— 1) +Dwrd,  (r odd).

In a recent paper! Bosanquet has proved the following theorem.

THEOREM A. If f(t)eL in (— =, 7), a necessary and sufficient con-
dition for the series (1.6) to be summable (C, a + r) to sum 8, where
a =0 and r is a positive inleger, i3 that constants a, should exist such

1 Referred to as D» FS in the list of references.
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that (i) the odd function g(t) is integrable (CL) in (0, =) and its allied
series summable (C, a) at t = 0, (ii) g(¢)/t i8 integrable (CL, in (0, 7) and?

2(*g@® , .
—j —Z—dt-—-s,. (1")

T30

where, for 0 <t <,

=:_r!{¢(t)—§ %2y =1 tZV—l}‘ (r even)

ve=1 (21/—1)!
9) r! Wob ay, o, (1.8)

Analogous results concerning the (C) summability of the r-th
derived Fourier series and the | C' | summability of the first derived
Fourier series have also been given by Bosanquet in D,FS and

| DFS | respectively. The object of the present paper is to obtain
the | C | analogue of Theorem A.

In Theorem 1 we give a general result concerning the summability

| C, a+r|of the r-th derived allied series, where a > 1. In

Theorem 2 f(¢) is restricted to be a function of bounded variation,
and a result is obtained for o > 0.

§ 2. Notation.

We write

8:= % A%_ u, s;;:,sg/A:‘, (a>—1) (2.1)
=0 '

% —
u

for the n-th Cesaro partial sum and mean of order o of a series Zu,,
h a_ n-+a
where | Ay ( n )

The series Zu,, is said to be summable (C, a) to s if s:~>5, and
to be summable | C, a | to s if, in addition, £ | As? | < .

We write k°(n, 1) + k°(n, t) for the n-th Cesiro mean of order o
of the series } + e, and require the inequalities 2

‘(i)kko t‘féAn“l ‘ -
| ot (n’ ) lé A,nk—crt—a—l_*_An—lt—k—Z . - ( ) )

! The integral in (1.7) is convergent, and taken in the (CL) sense at the origin.
2 Cf. D, Fs, 64, | FS, |, 519, Obrechkoff and Zygmund.
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: 2 \k_ < Apk+1,
and )<'37> k(n, t)’{éAnk_,t_,_l_*_At_k_l. (2_3).

We write

1
7olt) = J' (1 - w)° 1 sin tudu (o> 0), (2.4)
] 0
and require the inequalities !

< Atk
| A%, 9(t) | |

l_-<_— An-otk—o J Ap—Fk—2-1f—2-1 (2.5)

Here and elsewhere Au, = u, — U, +1, and A denotes a positive
number, independent of the variables but not necessarily the same at
each occurrence. '

The Cesiro-Lebesgue integral. Suppose that g(t)eL in (e, a) for
every 0 < e<a (a fixed). If

1- a
Jim j g(t)dt (2.6)

exists, g(t) is said to be integrable CyL in (0, a), with the limit
(2.6) as the value of the integral. If A is a positive integer and

(i) 6(t) = J’ " g(u)du is integrable C, _,L in (0, a),
¢

. « A € R ’

ii) lim % VIS

(.)Eeo_elj0 (e — w)* G (w)du (2.7)
exists, then g(t) is said to be integrable C,L in (0, a), with the limit
(2:7) as the value of the integral.

We write
0= [ gwa o>
A = Ty J o~ W TYglwdn (o> 0)
. (2.8)

and similar notation is employed with ¢, x, ..., E;, X;, ... in place
of g, G.

The absolute Cesaro-Lebesgue integral. A function ¢(¢) is said to
be integrable | C,L | in (0, ¢), where A is & non-negative integer, if (i)

1 Cf. D,FS, 64, and DFS, 273.
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it is integrable C,L in (0, a), (ii) {=*G@; . 1(¢) is of bounded variation in
the interval 0 <t <a. The common value of the C;L and'| C,\L |
integrals is then lim A! ¢~4@Q, , ,(¢).

te> +0
If . t-4 -pG;.(t) F—(/\(—?-;_——tq}i) (2.9)

as t—> + 0 we write g(t) ~st?(C, A). If, in addition,.t“,-sz(t) is of
bounded variation in an interval 0 <t < a we write g(t)~st? | C, A | .

Properties of the (CL) and | CL | mtegra,ls will be found in DFS,
D,FS, CL,and | DFS | .

§ 8. Preliminary lemmas.

In Lemmas 1 and 2 we shall suppose that g(t)eL in every interval
(3, A), for 0 < 8 < A < w, and write, for 1 > 0,

ey =it [ Waw @50, (3.1)
the integral being assumed to be convergent It is known! that if
9(t)eC; . 1L in (0, a), then
(i) £(t)eCiL in (0, a),

(ii) fora = 0,¢> 0,

E.(t ©
_—zf ) =t f Gal®) 4o, (3.2)

t ua+a‘

Lemma 1. If g(t)e | Cs 1L | in (0, a), where A i a non-negative
integer, then £(t)e | C;L | in (0, a). )

We first prove that £(t)e | Ca 1L | in (0, a). "Since g(t)eUy o, L, it
follows, by (i), that &(t)eC,L, and hence £(t)eC; ;L. Thus in order to
prove that £(t)e | Cx 1L | we must prove that (~*—1F,  ,(t) is of
bounded variation in the interval 0 < ¢ < a.

We have, by (3.2),2

1 CL, Theorems 20 and 21.

2 Defining t— 2 - 1=y 1 o(t) and ¢t~ ~1G) 4 o(t) as zero at t =0. Since g(t) and
E(t) are integrable (3 4 1L these functions are then continuous at the origin.
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a - G
Flefez = [fofe ) Gt
SJ‘ l { J’au A~ 161)\:.2( )du}'_;_A
oo [=emrmreni]

+£ "%d(u—*-lGHz(u))}ﬁ 4
. t

éiJ:!al.(t-‘"‘GHz@f

1
o

{ Ju" < —l-lG)\+2(u)>H+A
IGA+2t)> +f ta-ldtJ. -‘ (u’* ‘Gx+2(u)>l

+ 4
9 (e S | ) : u
= O/d(t—l 1G1+2(t)) +'[017' d(u‘)\—-l(}l_'_z(u))“o 17 -1y
3

+ 4

’ d(l_.'1 - 1G1+2(t)>‘+£4

gJ9

< o,
since g(t)e | Cy ., L |.

We next prove that t£(t) = o(1) | C, A+1 | ast—> + 0. Integrating
by pa.rts A + 2 times, we have, as in the proof of Theorem 20 of CL,
’1+2 Mo +p—1G,() , T(ea+2+4+2) " Gis(u)
R N TR B (-l P
Since g(t)e|C14 1L | in (0, a), it follows ! that G (Y)=o(t* =) | C, A+2—p |,
forp=1, 2,..., A+ 2, and hence 2 that G’,,(t)/t"_l =0(1)|C, A +2—p|.
Also the mtegra.l in (3.3) is o(1) as ¢ = -+ 0, as in the proof of Theorem
20 of CL, and we have just proved that it is of bounded variation in
0 <t=<a. It follows that all the terms in (3.3) are o(1) | C,A+1 |,
i.e. that t£(t) = o(1)'| C,A 41} .

Finally we deduce that £(t)eC\L. Writing x(f) = t£(t), we have?

du.' (3.3)

1| DFS |, 18. . 2| DFS |, Lemma 1. -3 (L, 55.
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X+ 2(t) =1813(0) — A + D)E, 4 200). (3.4
Hence

Ny () = 71X () F (L F LA 1E, (). (3.5)

But we have just proved that the two expressions on the right of (3.5)
are of bounded variation in 0 <# =< a, and. hence so is {~*E, ,,(f).
We have also observed that £(t)eC,\L, and thus it follows that
£(t)e I C\L | .

Lemma 2. If g(t)e | CL | in (0, a), X is a non-negative integer and
o> 0, then a necessary and sufficient condition that g(t)/i’e | C\L | in

(0, a) and : .
[, (3.6)
o W
s that G,l(t)/t" +9 should be integrable L in (0, a), and
® G;'(u) _ F(O)
[y rsodu= Thto) ” (3.7)

Necessity. Suppose that g(t)/i% | C\L | and that (3.6) holds, i.e. that
Eg)ytr—1—=1| C, A ast=> + 0. It follows! that £(t)~Ut°~1] C, A |
as { — <4 0, i.e. that

Exlt) ~ T(o)
tr+o—1 I'(A+o0)
which, by (3.2), is (3.7).

Sufficiency. Since ¢(f)e | CL| in (0, a), by Lemma 1, the

sufficiency is established by reversing the argument.

1(C, 0), . (3.8)

LEMMA 3. If k is a non-negative integer, and Zu, ts summable
| C, k| to s, then
20 ("1 Lim Suy.(nu) du = s (3.9)
- T Jo Up—>1-0 .
for-o >k, where the integral in (3.9) is an absolutely convergent Lebesgue

.sntegral.
We have *

1| DFS|, Lemma 1.
.2 Cf. D,FS, Lemma 4. We write s%; = 0.
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S@)= lim Zu,y.(nt)p”
p=>1-0
=T8¢ Ak +1y (nt)
= Zsk AX Ak +15 (nt)
=—3ZAs_,Jm 1),
where Jn,t)y= Z A"VA" + 1y, (st). : (3.10)
. v=n
By the analogue for ordinary Cesaro suxﬂma.bility, (3.9) certainly

holds with the integral interpreted as a C,L integral in (0, a). It
will therefore be sufficient to prove that

j: 1) 80 | di< o (3.11)

‘We have

j"’t-l | S@) |t [ TE A T, ) de
0

=z | AS:—I | j: ‘—1 I J(’n, t) I dt-

Now
g Ank+ ltk +1
l J(n’ t) I {é An—]t—l + Ank—atk-a. (3'12)
For
JO,0) = T oA AR ) = Z Ayt =0,
and hence .

n—1
J(n, t) =J(n, t) — J(O, 1) = — go AF AR+ 1y (0t)

= I O(MO(H+1) = O(nr + 1tk +1),

v=1

On the other hand, we have

T OALA I () = AL Ay ) + B AF AN ()

y=n v=n-+1

= O(nF) {O(n=*—1-1) 4+ O(n~ otk - )}

X 01 {0t 1= 1) + O(—tt—7))
v 1

= B(J—lt—l) + O(n*~ <k = °)
foro> k.
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It follows from (3.12) that, for n = 0,
R —1 © °
[ t=1] J(n, t) | dt =J” O(nk +1#)dt +_[ _,\0(m-1t%)
< 0 0 n R .
+ O(n* — otk ~ 7 ~1)}dt
= 0(1) + 0(1)

for o-> k.

Thus J:t—_l | S(t) | dt_S_AE | A.s:_i\ < w,

LemMMA 4. If g(t)e | CiL | in (0, ©), where-k is a non-negative
integer, and if

an + iBp = Jﬂg(t)e‘”’dt, (3.13)
V]
then a, and B, areo(1) | C,o | as n—> o, for o>k 4 1.

Writing a7 , ¢°(n, t) for the n-th Cesiro means of order o of the
sequences a, and cos nt respectively, we have!

a’ == J" g(t)ee(n, t)dt
" 0
' k a\r "
=[ Z,(=17Gsa09 (&) emn]

k41

+(— 1)k+l,r;Gk+l(t)<£> ¢ (n, t)dt

k a\e
= X (— I)PG,,+1(7T){ <——> c’(n, t)}
p=0 3t t=n
) ™ T 0 k+1
+ (= 0x+7 [ a1 a0 ot %) et v,
0 t v
where t-%G; . ,(t) is defined as zero-for ¢ = 0. Hence it follows that

k o \°?
S|det | S 2 I|Gp+1(")|ZlA<a—> o, 0) | oo n
n p=0 ¢ ‘

+ J'o | 441G 41} | Z| L oA (a%y "o, 'v)dvl,, (3.14)

1 Cf. D,FS, Lemma 9.
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Now .
0\* = dn*t - e
A<§> c’(n, t)l;_s_AnP—"t“’“+An‘3t—-"“2, (3.15)
t P ki1
j v"A<—> c’(n, v)dvl < AnkF kv 2, (3.16)
0 ov
T a k+1
J‘ vF A <6—> c’(n, v)dv‘ S Anf—opi—o 1l 4 An—3% -2, - (3.17)
¢ v . :
and
T a k+1 \ -
J' oA <a—> c(n, v)dv| S Ant= 4 An=>. (3.18)
0 v

The case p = 0 of (3.15) is given in | DFS | , and the general case is
obtained similarly by use of (2.2).! We obtain (3.16) immediately
“from (3.15) i, while (3.17) follows from (3.15)ii after integration by
parts, and (3.18) follows from (3.15) after repeated integrations by
parts. )

" The first term on the right of (3.14) is

S X0(n-7) + O(n~9) <oo.

p=0

Also. [REGAROIRES

gince g(t)e | C L | . It will therefore be sufficient to prove that

T a k41
j v A <——> ¢’(n, v)dv
¢ v/
is bounded in 0 5t < 7.

Disposing of the case ¢t = 0 by (3.18), we write, for 0 <t < =,
Jt)= T + T =Z,4+ 2,

a<t! n>t!

Jt) =3

Thus, by (3.16) and (3.18),
Zy= Z {O(n*+Uk+2) 4+ O(nt-°) + O(n~ %)}

n ! .

= 0(1)
foro > k 4 1, and, by (3.17):

1eo(n, t) 2%;'{1‘;0 =1, t)- é}
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-E, = 3 {O(nk- aik —¢r+l) + O(n- 34— 2)}

n>t—1
= 0(1)
foro>k 4 1.

This completes the proof of the result for a,; that for B, is
similar, (2.3) taking the place of (2.2).

§ 4. The main theorem.

TaeoreM 1. If f(t) is integrable L in (—m, =) and periodic with
period 2m, a mnecessary and sufficient condition that the series (1.6)
should be summable | C,a + 7 | o the sum s, where a > 1 and risa
positive inleger, is that constants a, should exist such that (i) the odd
SJunction g(t) is integrable | CL | in (0, =) and its allied series summable

| C, a | att=0,(ii) g (t)/t is integrable | CL | in (0, =) and (1.7) holds?
where g(t) is defined by (1.8).

The proof depends on the following lemmas.

LEMMA 5. If f(t)eL and the series (1.6) is summable | C | to s,
then there exist constants a, such that (i) g(¢)/t € | CL | in (0, =), where
g(t) is given by (1.8), (ii) (1.7) is satisfied.

The proof is similar to that of Lemma 10 of D,FS, but with
Lemmas 2 and 3 of the present paper taking the place of Lemmas 5
and 8 respectively of D,FS.

Lemma 6. If g(t) is odd and g(t)ft ¢ | CL |in (0, =), then
g(t) € | CL | in (0, 7) and its allied series is summable | C | at t = 0.

The proof is similar to that of the sufficiency part of Lemma 11
of D,F8, but with Lemma 2 of | DFS | and Lemma 4 of the present
paper taking the place of Lemmas 2 and 9 respectively of D,FS, and
with Lemma 3 of D,FS replaced by its | C' | analogue.

LemMA 7. If constants a, ewist such that the odd function g(t),
defined by (1.8) in (0, =), is integrable | CL | in (0, n), then constants B,

1 The integral in (1.7) being convergent and existing as a | CL | integral at the
origin.

2 The proof of this is similar to that of Lemma 2 of | DFS | .
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exist such thal the odd function G(t) is integrdble | CL| @n (0, =), where,
foro<t<m,

ir .

[ (2 sin %t)' {"b(t) ’ 51 (2%"_—11)! sin® ~ 14 } (r even)

G(t) v g . (4.1)
l (2 sin ét)’ {¢( ) — . Eo (25;! sin® t} (r odd);

and if the allied series of either g(t) or G(t) is summable | C, a | at t =0,
where a > 0, then so is that of the other,

The proof is similar to that of Lemma 12 of D,FS, but with
Lemma 2 of | DFS | and the case k = 0 of Lemma 4 of the present
paper taking the place of Lemma 2 of D, FS and the Riemann-
Lebesgue theorem respectively.

Lemma 8. If (i) G(t)e | CL | in (0, =), (ii)’G(t)eL in (0, ©), where
r is a positive integer, and if

Bw) = g j "G(t) sin pt dt, (4.2)

then +f one of the series Xf(n) and TB(n — 3r) s summable [Coal,
where a > 1, so is the other.

The proof is similar to that of Lemma 13 of D,F8, but with
Lemma 2 of | DFS | and the case k = 0 of Lemma 4 of the present
paper taking the place of Lemma 2 of D,F'S and the Riemann-
Lebesgue theorem respectively.

Lemma 9. If G(t) is defined by (4.1) and B(u) by (4.2), then
n" A"B(n — 3r) = r!(d/dx)" (b, cos nz — a, sin nx) fornz=r.
This is Lemma 14 of D,FS.

Lemma 10. If Zu, is summable | C |, then a necessary and
sufficient condition for Tn' Amu, to be summable | C, a + r |, where
a > — 1 and r is a positive integer, is that Zu, be summable | C, a | .

The proof is similar to that of Lemma 14 of D,FS.!

Proof of Theorem 1. Necessity. Suppose that the series (1.6) is
summable | C, a 4+ 7 | to sum s, where a > 1. Then, by Lemma 5,
constants o, exist such that g(¢)/t ¢ | CL | in (0, =), where g(t) is given

! The case r = 1 was given in | DFS | (Lemma 8). See also Chow, and Bosanquet
and Chow.
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by (1.8), and (1.7) holds. It follows, by Lemma 6, that g(t)e | CL |
in (0, #) and its allied series is summable | C | at ¢ = 0.

Now, by Lemma 7, g(¢) defines a function G(t), given by (4.1),
which is integrable | CL | in (0, 7}, and its allied series is also summ-
able | C | at ¢ = 0, i.e. ZB(n) is summable | C | , where B(n) is defined
by (4-2). Tt follows, by Lemma 8, that X8(n — }r) is summable | C | .
Now, by Lemma 9, our hypothesis is that Zn” A78(n — }r) is summable

1 C,a+r | . Therefore, by the necessity part of Lemma 10, Zf(n—3r)
is summable | C, |, and, by Lemma 8, so also is If(n), i.e. the
allied series of G(f) is summable | C,a |at¢=0. It follows, by
Lemma 7, that the allied series of g(t) is summable | C, a | at ¢ = 0.

Thus the conditions are necessary.

Sufficiency. Suppose that constants a, existr such that the odd
function g(¢), given by (1.8), is integrable | CL | in (0, =), that its
allied series is summable | C, a | at ¢t = 0, where a. > 1, and that (1.7)
holds, the function g(t)/¢t being integrable | CL | in (0, #). . Then g(¢)
defines G(t), given by (4.1), which is also integrable | CL |, and its
allied series is summable | C,o | at t =0, i.e. Zf(n) is summable
| C, a|. Then by Lemma 8, Xf(n — }r) is summable | C, o | and,
by Lemma 9 and the sufficiency part of Lemma 10, the series (1.6) is
summable | C, a + r | . Finally, by (1.7) and the necessity part of
the theorem, the sum is s. .

This completes the proof of the theorem.

§ 6. Additional result.

THEOREM 2. If the function f(t) in Theorem 1 is of bounded varia-
tion in (— =, m), then the result of Theorem 1 holds for a > 0.

The proof of Theorem 2 is similar to that of Theorem 1 except
that at the points in the proof where we used the case k=0 of
Lemma 4 we now use the following lemma.

Lemma 11, If g(!) is of bounded variation in (0, #), and a,, B,
are given by (3.13),.then a, and B, are o(1) | C, o | as n—> o, for
o> 0. :

To prove the result for a, we suppose, as we may, that g(t) is
even and let

2 N
g(t) ~ ;Zan cos nit.
Since g(t) is of bounded. variation in (0, =) it follows from a theorem

- of Bosanquet?! that Xa, is summable |.C, o |, for o >0, and hence
an=0(1) | C,O'I .

3 | F8. | . Theorem 1.
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To prove the result for B, we write
Bo— B 1= J'”g(z) {sinnt — sin (n — 1)8)dt
0

=J.: g(t) sin t cos nt dt + rg(t) (1 — cos t)sin nt dt
‘ 0

= Yn + Op.
Then, by the same theorem of Bosanquet and a theorem of Bosanquet
and Hyslop,! Xy, and X3, are both summable | C, ¢ |, for 0 >0. Since
Bn = 0 (1), by the Riemann-Lebesgue theorem, the result follows.
Finally I should like to express my thanks to Dr L. S. Bosanquet
for his suggestions and criticisms.

1 Bosanquet and Hyslop, Theorem, 4.
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