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Abstract. We study the class Erg⊥ of automorphisms which are disjoint with all ergodic
systems. We prove that the identities are the only multipliers of Erg⊥, that is, each
automorphism whose every joining with an element of Erg⊥ yields a system which is again
an element of Erg⊥, must be an identity. Despite this fact, we show that Erg⊥ is closed by
taking Cartesian products. Finally, we prove that there are non-identity elements in Erg⊥
whose self-joinings always yield elements in Erg⊥. This shows that there are non-trivial
characteristic classes included in Erg⊥.
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1. Introduction
The study of disjointness which expresses the extreme degree of non-isomorphism
(in particular, the absence of non-trivial common factors) of two measure-preserving
automorphisms originated in the seminal work of Furstenberg [7] in 1967. It is an important
direction of research until today and determining whether two automorphisms are disjoint
still remains a challenging problem. In particular, given a class A of automorphisms, a full
description of the class A⊥ of automorphisms disjoint with every element of A is often a
hard task. Let us recall some classical results:
(i) the class ID⊥ of automorphisms disjoint with all identities equals the class Erg of all

ergodic transformations (by ID we denote the class of all identities), see [7];
(ii) the class ZE⊥ of maps disjoint with the zero entropy automorphisms is equal to the

family of K-automorphisms ([7], together with [20, 24]).
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For some other classical classes, only weaker relations are known: the class Dist of distal
automorphisms is disjoint from the class WM of weakly mixing automorphisms [7] or
the class Rig of rigid automorphisms is disjoint from the class MM of mildly mixing
automorphisms [8]. Usually, the problem of deciding about the disjointness of two
automorphisms slightly simplifies when we consider them both ergodic as it is reduced
to study ergodic joinings. However, if two automorphisms are disjoint, then one of them
has to be ergodic (otherwise, they both have non-trivial identities as factors and these
are not disjoint). In connection with item (i), it is natural to ask whether Erg⊥ goes
beyond identities. It indeed does (this observation was a folklore), however, a satisfactory
characterization of elements of the class Erg⊥ was only given very recently in [13], see
Theorem 2 below. One of the recent reasons to study the non-ergodic case (the elements
of Erg⊥, other than the one-point system, are obviously non-ergodic) came recently from
Frantzikinakis and Host [6], who studied so-called (logarithmic) Furstenberg systems of
the classical Liouville function and discovered that the celebrated Sarnak conjecture may
fail because some (hypothetic) of its Furstenberg systems might be elements of Erg⊥. (See
also the still open Problem 3.1 of a workshop [1] where Frantzikinakis’ question whether
an automorphism considered in Example 1 below can be realized as a Furstenberg system
of the Liouville function.)

Another natural problem when studying classes of the form A⊥ is to describe the class
M(A⊥) ⊆ A⊥ of its multipliers, that is, of automorphisms S ∈ A⊥ such that every joining
of S with every element of A⊥ also belongs to A⊥. The study of this class is, in general,
very difficult and leads often to many surprising results. In 1989, Glasner and Weiss [12]
pioneered the study of the class WM⊥, and they proved that Dist � WM⊥. Continuing on
their result, in two papers [10, 19], it was proved that

Dist � M(WM⊥) � WM⊥.

Returning to the Erg class, we clearly have

ID ⊆ M(Erg⊥) ⊆ Erg⊥, (1)

where it is easy to see that M(Erg⊥) � Erg⊥. In fact, in §4 (see Example 1), we consider
a standard twist on the torus (x, y) �→ (x, x + y) as an example of an element in Erg⊥
and directly show that it is not an element of M(Erg⊥). The latter assertion follows also
from our main, somewhat surprising, result. (It was formulated as a conjecture by M.
Lemańczyk in 2018 (private communication).)

THEOREM 1. We have ID = M(Erg⊥).

While the class Erg⊥ is not closed under taking joinings, in §5, we prove that it is closed
under Cartesian products.

To show that an ergodic automorphism T is a multiplier of a class A⊥, it is enough
to show that the automorphisms determined by all self-joinings of T are disjoint from
the elements of A, see for example, [19, §5] (see also Proposition 33). We show in §6
however that this approach fails when we study the class Erg⊥ by exhibiting a non-identity
automorphism T whose all self-joinings yield elements of Erg⊥ and which cannot be
in M(Erg⊥) by Theorem 1. Moreover, the example constructed in §6 serves to create a
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non-trivial characteristic class (see §2.4), which does not contain a non-trivial ergodic
automorphism, yet it is not formed only of identities. This answers a question posed by
Adam Kanigowski and Mariusz Lemańczyk in a private correspondence.

2. Preliminaries
2.1. Measure-preserving automorphism and ergodic decomposition. We consider
invertible, bi-measurable and measure-preserving transformations T of standard Borel
probability spaces (X, B, μ). Recall that T is μ-preserving means that T∗μ = μ, where
T∗(·) denotes the push-forward of a measure by the transformation T. Then, the quadruple
(X, B, μ, T ) is called a dynamical system.

Without loss of generality, we can assume up to isomorphism that X is a compact metric
space and T is a homeomorphism. Each Borel probability measure μ of a compact metric
space X yields a standard Borel probability space. We denote by M (X) the space of such
measures (it is compact in the weak∗-topology). If T : X → X is a homeomorphism, then
we denote by M (X, T ) the subspace of M (X) consisting of T-invariant measures (it is a
non-empty closed subset of M (X)).

Two transformations T and S on a standard Borel probability space (X, B, μ) are
identified if T (x) = S(x) for μ-almost every (a.e.) x ∈ X, and we call an automorphism
of (X, B, μ) an equivalence class of transformations modulo this identification. The group
of automorphisms of (X, B, μ) is denoted by Aut(X, B, μ). It is a classical fact that
Aut(X, B, μ) with the so-called weak topology is a Polish group (see e.g. [17]).

Each automorphism T of (X, B, μ) defines a unitary operator UT on L2(X, B, μ),
called a Koopman operator, defined by UT f := f ◦ T . We recall that T is said to be
ergodic if the only UT -invariant functions are constant. If, additionally, UT has no other
eigenfunctions, then T is said to be weakly mixing.

We denote by Aut the class of all automorphisms on all standard Borel probability
spaces, considered up to isomorphism. By Erg ⊂ Aut, we denote the class of all ergodic
automorphisms and by WM ⊂ Erg, the class of all weakly mixing automorphisms. Recall
also that ID ⊂ Aut stands for the class of identities on all standard Borel probability
spaces. Since we allow the measures under consideration to have atoms, the class ID is
uncountable.

Of course, in general, T ∈ Aut(X, B, μ) need not be ergodic. Let us recall the classical
concept of ergodic decomposition (see [21]). Denote by Inv(T ) the σ -algebra of invariant
sets. Let also

μ =
∫
X/Inv(T )

μx dP (x) (2)

be the disintegration of μ over P := μ|Inv(T). Then, there exists a measurable partition of
X := X/Inv(T ):

X =
⋃
n≥1

Xn ∪X∞ (3)
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and a standard Borel probability space (Z, D, κ), with κ non-atomic, such that the space
(X, B, μ) can be identified with the disjoint union of the corresponding product spaces
(on Zn := Z/nZ, we consider the uniform measure)⋃

n≥1

(Xn × Zn) ∪ (X∞ × Z)

and the action of T in these new ‘coordinates’ is given by

T (x, i) = (x, Tx(i)) = (x, i + 1) for x ∈ Xn and
T (x, z) = (x, Tx(z)) for some ergodic Tx ∈ Aut(Z, D, κ), x ∈ X∞.

(4)

The map x �→ Tx is measurable in the relevant Borel structures. The space (X, P) is
called the space of ergodic components, and the representation of (X, B, μ, T ) given
in equation (4) is called the ergodic decomposition of T. The ergodic decomposition is
given up to a P-null subset. For example, if X = T2 (considered with Lebesgue measure
LebT2 ) and T : (x, y) �→ (x, y + x), then it is already the ergodic decomposition of T
since T × {0} is the space of ergodic components (with P = LebT) and for P-a.e. x ∈ T,
Tx(y) = x + y is an (ergodic) irrational rotation.

2.2. Joinings. Let (X, B, μ, T ) and (Y , C, ν, S) be two dynamical systems. We say that
a probability measure λ on (X × Y , B ⊗ C) is a joining of T and S if:
(1) λ is T × S- invariant;
(2) the marginals of λ on X- and Y-coordinates are μ and ν, respectively.
We note that (X × Y , B ⊗ C, λ, T × S) is a dynamical system (sometimes, we denote such
a system simply by T ∨ S). We denote the set of all joinings of T and S by J (T , S). Note
that μ⊗ ν is always an element of J (T , S). Following [7], we say that T and S are disjoint
if J (T , S) = {μ⊗ ν} and write T ⊥ S. Note that if T and S are ergodic and λ ∈ J (T , S),
then the ergodic components of λ are also elements of J (T , S). In particular, we have

T , S ∈ Erg and T ⊥ S ⇒ (T × S, μ⊗ ν) ∈ Erg. (5)

In the case where T = S, we set J2(T ) := J (T , T ) and refer to the elements of J2(T ) as
2-self-joinings. Unless T is the 1-point dynamical system, it is never disjoint with itself.
Indeed, the diagonal measure is a 2-self-joining: μId := (Id, Id)∗μ and μId = μ⊗ μ if
and only if T is a 1-point dynamical system. (Here and thereafter, we denote (f , g)(x) =
(f (x), g(x)).) More generally, if R ∈ C(T ) is an element of the centralizer of T (that
is, R ∈ Aut(X, B, μ) and R ◦ T = T ◦ R), then the graph measure μR := (Id, R)∗μ is
a member of J2(T ). In particular, the off-diagonal self-joinings μT n , n ∈ Z, belong to
J2(T ). In addition, note that C(T ) is a closed subgroup of Aut(X, B, μ).

It is a classical fact that in the weak-∗ topology, J2(T ) is a compact set, see [11].
Moreover, if T is additionally ergodic, then J2(T ) is a simplex and the set of extremal
points of J2(T ) consists of ergodic 2-self-joinings. In particular, the set of ergodic
self-joinings is non-empty and we denote it by J e2 (T ). Note that the graph joinings μR
are always ergodic as long as T is ergodic. In fact, the corresponding automorphisms are
isomorphic to T, where an isomorphism is given by the map x �→ (x, Rx).
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Given (Xi , Bi , μi , Ti), i ≥ 1, we also consider infinite joinings λ ∈ J (T1, T2, . . .)
(invariant measures on X1 ×X2 × · · · whose marginals are μi , i ≥ 1). If Ti are ergodic,
then J e(T1, T2, . . .) �= ∅. Note that if A ⊂ N, then we can speak about J (Ti1 , Ti2 , . . .),
where A = {i1, i2, . . .} (A can be finite here). Whenever T1 = T2 = · · · = T , we speak
about J∞(T ) the set of (infinite) self-joinings. Now, ifA ⊂ N andRik ∈ C(T ), k ≥ 2, then
we can consider the corresponding graph self-joining μRi2 ,Ri3 ,... := (Id, Ri2 , Ri3 , . . .)∗μ.
If Rik are powers of T, then we speak about off-diagonal self-joinings. If each λ ∈ J e∞(T )
is a product of off-diagonal self-joinings, then we say that the automorphism T has the
minimal self-joining property (or MSJ), see [22].

Following [15], we say that (X, B, μ, T ) has the PID property if for every
λ ∈ J∞(X, B, μ, T ), if λ projects on every pair of coordinates as μ⊗ μ, then λ is the
product measure. Note that each MSJ automorphism has the PID property.

Let (Xi , Bi , μi , Ti) for i = 1, 2 be a pair of dynamical systems. Let also Ai ⊂ Bi be
factors of those systems, that is, invariant sub-σ -algebras. Let μi = ∫

Xi/Ai
μi,x̄i dμi |Ai

be the disintegration of μi over the respective factor. Assume that λ ∈ J (T1|A1 , T2|A2).
Then, the formula

λ̂ :=
∫
X1/A1×X2/A2

μ1,x̄1 ⊗ μ2,x̄2 dλ(x̄1, x̄2)

defines an element in J (T1, T2) called the relatively independent extension of λ. We
proceed similarly for finite and countable families of automorphisms (cf. proof of
Lemma 8). If additionally T1|A1 and T2|A2 are both isomorphic to some (Y , C, ν, S), then
we may consider the relatively independent extension over C given by

μ1 ⊗C μ2 :=
∫
Y

μ1,y ⊗ μ2,y dν(y).

This corresponds to taking a diagonal joining as λ in the definition of the relatively
independent extension.

We are interested in properties of the class of dynamical systems disjoint with all
ergodic systems, that is, with

Erg⊥ := {T ∈ Aut : T ⊥ S for every S ∈ Erg}.
In the following subsection, we give some facts describing the structure of Erg⊥ as well as
some basic examples of elements from this class.

2.3. Elements of Erg⊥. Let us first recall some well-known examples of automorphisms
from Erg⊥. It is a classical fact that Id ∈ Erg⊥. Also, every system of the form (x, y) �→
(x, x + y) on T2 with invariant measure μ⊗ LebT is an element of Erg⊥, as long as μ is
a continuous measure on T (see e.g. Theorem 2). In fact, a recent result from [13] gives
the full characterization of elements of Erg⊥ in the form of the following result.

THEOREM 2. [13, Theorem 3.1] An automorphism T belongs to Erg⊥ if and only if
(see (2)) for P ⊗ P -almost every (x̄, ȳ) ∈ X2

, the automorphisms Tx̄ and Tȳ are disjoint.
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The only ergodic element of Erg⊥ is the 1-point system. Indeed, a system (T , μ)
is disjoint from itself if and only if the diagonal self-joining is the product measure
and this holds if and only if μ is a Dirac measure. Hence, the elements of the class
Erg⊥ in Aut(X, B, μ) form a meagre set (as the ergodic systems form a generic
subset of Aut(X, B, μ) [15]). Now, in view of Theorem 2 and the disjointness of time
automorphisms result in [3], the automorphism on T ×X given by (t , x) �→ (t , Tt (x)),
where (Tt )t∈R is a generic flow, is an element of Erg⊥.

The following fact is also useful when trying to describe the class Erg⊥.

PROPOSITION 3. Let T ∈ Erg⊥ and let R be an ergodic automorphism. Then, R is disjoint
from P-a.e. fibre automorphism Tx̄ .

Indeed, in view of Theorem 2, the measure P is continuous if T is non-trivial. Then,
Proposition 3 follows from the following result (note that the measure P |X∞ has no atoms,
since otherwise, P ⊗ P would have an atom in some point of the form (x̄, x̄), with Tx̄ not
being a one-point system, which contradicts Theorem 2).

PROPOSITION 4. [13, Lemma 2.10] Let R be an ergodic automorphism. Then, for every
set B ⊂ Aut(X, B, μ) of pairwise disjoint automorphisms, R is disjoint with all but at most
countably many elements of B.

In Lemma 12, we prove that α ∈ S1 is an eigenvalue of T if and only if α is an
eigenvalue for a positive P-measure set of fibre automorphisms Tx̄ . In particular, if there
exists α ∈ S1 \ {1} such that α is an eigenvalue for a set of positive P-measure fibre
automorphisms, then

T has the (ergodic) rotation by α as a factor
and T is not an element of Erg⊥ .

(6)

2.4. Characteristic classes. Recall that a class F ⊂ Aut of measure-preserving dynam-
ical systems is characteristic if it is closed under countable joinings and taking factors.
In [16], the authors give a list of many examples of such classes. In particular, they proved
that ID—the class consisting of all identities of standard probability Borel spaces—is a
characteristic class and is contained in every non-trivial characteristic class. A natural
question arises, whether ID is the only characteristic class that does not contain a
non-trivial ergodic automorphism. One of our goals is to answer positively to this question,
by constructing such a class inside Erg⊥.

First, we show that for every class A ⊂ Aut, the set of all multipliers M(A⊥) is a
characteristic class. We prove the following general result.

LEMMA 5. Let A ⊂ Aut. Then, (X, B, μ, T ) is a multiplier of A⊥ if and only if
(X×∞, B⊗∞, η, T ×∞) is a multiplier of A⊥ for every η ∈ J∞(T ).

Proof. ⇐�: It is enough to notice that T is isomorphic to the diagonal joining
(Id × Id × · · · )∗μ.

�⇒: Assume now that (X, B, μ, T ) ∈ A⊥ is a multiplier of A⊥. Notice first that for
every n ≥ 2 and every λ̃ ∈ Jn(T ), the automorphism (X×n, B⊗n, λ̃, T ×n) is an element
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of A⊥ and is a multiplier of this class. Indeed, since T is a multiplier of A⊥, then for
n = 1 and (Y , C, ν, S) ∈ A⊥, we have that T ∨ S ∈ A⊥. Again, using the fact that T is a
multiplier of A⊥, T ∨ (T ∨ S) ∈ A⊥, which settles the case n = 2. The argument follows
by induction.

Let now (Y , C, ν, S) ∈ A⊥ and let (Z, D, ρ, R) ∈ A. Consider also η ∈ J (T ×∞) and
ζ ∈ J (T ×∞ ∨ S, R). Let ζn := π

n,Y ,Z∗ ζ be the projection on the first n X-coordinates,
Y-coordinate and Z-coordinate of ζ . In particular, ζn ∈ J (T ×n ∨ S, R). By the finite case,
ζn = ζn|Xn×Y ⊗ ρ. Since finite cylinders generate the whole product σ -algebra, by passing
with n to infinity, we obtain that ζ = η ⊗ ρ.

COROLLARY 6. Let A ⊆ Aut. Then, M(A⊥) is a characteristic class.

Proof. In view of Lemma 5, the class M(A⊥) is closed under taking countable joinings.
It remains to see that it is closed under taking factors. Let (X, B, μ, T ) ∈ M(A⊥) and
let (Y , C, ν, S) be a factor of T. If S has a non-trivial joining with R ∈ A, then so does
T, via the relatively independent extension. Hence, M(A⊥) is also closed under taking
factors.

In view of the above corollary, a natural candidate for an example of a class that does
not contain a non-trivial ergodic element and is larger than ID would be the set M(Erg⊥).
However, in §4, we show that this class contains only identities. To show that nonetheless
such a class exists, we present the following construction.

Let T ∈ Aut(X, B, μ). Let F(T ) be the class of measure-preserving dynamical sys-
tems, which consists of all countable self-joinings of T, as well as all factors of those
joinings.

LEMMA 7. The class F(T ) is characteristic.

This result follows from the fact that a factor of a factor of a fixed automorphism R is
still a factor of R and from the following classical lemma, whose proof we provide below
for the sake of completeness.

LEMMA 8. Let {(Xi , Bi , μi , Ti)}∞i=1 be a family of measure-preserving automorphisms.
For every i ∈ N, let (Yi , Ci , νi , Si) be a factor of Ti and let Fi : Xi → Yi be the factorizing
map. Then, for any λ ∈ J (S1, S2, . . .), there exists a joining η ∈ J (T1, T2, . . .) such that
(S1 × S2 × · · · , λ) is a factor of (T1 × T2 × · · · , η).

Proof. For every i ∈ N, consider the disintegration of μi with respect to the factor Si :

μi =
∫
Yi

μi,yi dνi(yi).

Then, consider the measure

η :=
∫
Y1×Y2×···

(μ1,y1 ⊗ μ2,y2 ⊗ · · · ) dλ(y1, y2, . . .)

https://doi.org/10.1017/etds.2024.129 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.129


8 P. Berk et al

onX1 ×X2 × · · · . It is a non-trivial element of J (T1, T2, . . .). Then, (S1 × S2 × · · · , λ)
is a factor of (T1 × T2 × · · · , η) through the following factorizing map:

(x1, x2, . . .) �→ (F1(x1), F2(x2), . . .).

In §6, we provide an example of a non-identity automorphism T ∈ Erg⊥ such that F(T )
does not contain a non-trivial ergodic element, see Corollary 30.

2.5. Elements of spectral theory. Let us recall here some notions and facts concerning
the spectral theory of dynamical systems. Let (X, B, μ, T ) be a dynamical system. For any
f ∈ L2(X, B, μ), we define the spectral measure σf ,μ (a finite positive measure defined
on S1) which, via the Herglotz theorem, is given by its Fourier transform:

σ̂f ,μ(n) :=
∫
S1
zn dσf ,μ = 〈f ◦ T −n, f 〉L2(μ) :=

∫
X

f ◦ T −n · f dμ (7)

for n ∈ Z. Among spectral measures of functions in

L2
0(X, B, μ) =

{
g ∈ L2(X, B, μ) :

∫
g dμ = 0

}
,

there are dominating ones (in the absolute continuity sense). All such must be equivalent,
and their equivalence class is called the maximal spectral type of UT . If μ is understood,
we write σ̂f instead of σ̂f ,μ. Note that σf (S1) = ‖f ‖2

L2(μ)
. Moreover, f of norm 1 is

an eigenfunction of UT if and only if σf ,μ is the Dirac measure at the corresponding
eigenvalue.

We now show some measurability results concerning spectral measures.

LEMMA 9. Let X be a compact metric space and T : X → X be a homeomorphism. Let
f ∈ C(X) be a complex-valued continuous function such that |f | = 1. Then, the map
F : M (X, T ) �→ M (S1) defined as

F(η) := σf ,η

is continuous.

Proof. Recall that by the definition of weak∗-convergence in M (X), for every g ∈ C(X),
the map η �→ ∫

X
g dη is continuous. Thus, the function

M (X, T ) � η F1�−→ (σ̂f ,η(m))m∈N =
( ∫

X

f ◦ T −m · f dη
)
m∈Z

(8)

is continuous. It follows that the map F1 : M (X, T ) → DZ (recall that D = {z ∈ C :
|z| ≤ 1} and on DZ, we consider the usual product metric d) given by

F1(η) :=
( ∫

X

f ◦ T −m · f dη
)
m∈Z

is continuous. Since M (X, T ) is compact, the image ϒ := F1(M (X, T )) is also compact
in DZ.
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Now, we define a function F2 : ϒ → M (S1) in the following way:

F2((am)m∈Z) = σ , where σ̂ (m) = am.

It is well defined via the Herglotz theorem. Note that since the family {zm}m∈Z is
linearly dense in C(S1), the map F2 is also continuous. Indeed, let (anm)m∈Z, (bm)m∈Z ∈ ϒ
and σn := F2((a

n
m)m∈Z), σ := F2((bm)m∈Z) and assume that d((anm)m∈Z, (bm)m∈Z) → 0

as n → ∞ in ϒ . Then, for every m ∈ Z, we have
∫
T
zm dσn → ∫

T
zm dσ . Since the

functions zm are linearly dense, this yields the continuity of F2. Since F = F2 ◦ F1, this
finishes the proof.

LEMMA 10. Let X be a compact metric space. Let T : X → X be a homeomorphism and
let f ∈ C(X), |f | = 1. Then, for every α ∈ S1, the mapG : M (X, T ) �→ [0, 1] defined as

G(η) := σf ,η({α})
is measurable.

Proof. Fix α ∈ S1. In view of Lemma 9, the map F : M (X, T ) �→ M (S1) given by the
formula F(η) = σf ,η is continuous. In particular, the set � = F(M (X, T )) is compact in
the weak∗-topology. It is thus enough to show that the map G′ : M (S1) �→ [0, 1] defined
as G′(σ ) := σ({α}) is measurable.

Let (gn)n∈N ⊂ C(S1) be a sequence of (bounded by 1) real continuous functions
converging pointwise to the indicator function χ{α}. Define, for every n ∈ N, the map
G′
n : M (S1) → R as G′

n(σ ) = ∫
T
gn dσ which is continuous. Then, limn→∞ G′

n = G′
pointwise. As a point limit of continuous functions, G′ is measurable. Since G = G′ ◦ F ,
this finishes the proof.

Remark 11. Notice that if F and G are defined as F(η) := σf−∫
f dη,η and G(η) :=

σf−∫
f dη,η({α}), then, by repeating proofs of Lemmas 9 and 10, we get that F is

continuous and G is measurable.

We will also make use of the following fact based on spectral theory that provides a tool
to detect eigenvalues of non-ergodic dynamical systems.

LEMMA 12. Let X be a compact metric space. Let μ ∈ M (X, T ), where T is a homeo-
morphism of T. Let also

μ =
∫
X

μx̄ dP (x̄)

be the ergodic decomposition of T and let Tx̄ denote the fibre automorphism, corresponding
to x̄ ∈ X. Then, α ∈ S1 is an eigenvalue of (T , μx̄) for a P-positive measure set of x̄ if and
only if α is an eigenvalue of (T , μ).

Proof. Let α ∈ S1 be as in the assumption. Consider a sequence {fn}n∈N of functions
which are dense in the space of complex continuous functions on X. Note that σfn,μ =∫
X
σfn,μx̄ dP (x̄). Indeed, the mth coefficient of the Fourier transform of the right-hand

side measure equals
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∫
X

∫
S1
z−m dσfn,μx̄ dP (x̄)

=
∫
X

∫
X

fn ◦ T −m · f̄n(x) dμx̄(x) dP (x̄)

=
∫
X

fn ◦ T −m · f̄n(x) dμ(x) = σ̂fn,μ(m).

Then, the following conditions are equivalent:
• α is an eigenvalue of (T , μ);
• there exists n ∈ N such that σfn,μ({α}) > 0;
• there exists n ∈ N and a P-positive measure set of x̄ such that σfn,μx̄ ({α}) > 0;
• there exists a P-positive measure set of x̄ such that α is an eigenvalue.

COROLLARY 13. Let T ∈ Erg⊥. For any α ∈ S1 \ {1}, the set of ergodic components of T
which have α as an eigenvalue has 0 measure with respect to P. In particular, P(Xn) = 0
for every n ≥ 2.

The following fact is folklore, but for the sake of completeness of the presentation, we
recall its proof.

LEMMA 14. Let X be a compact metric space. Let μ ∈ M (X, T ), where T is a homeo-
morphism of T. Let also

μ =
∫
X

μx̄ dP (x̄)

be the ergodic decomposition of T and let Tx̄ denote the fibre automorphism, correspond-
ing to x̄ ∈ X. Then, the set

WM := {x̄ ∈ X; Tx̄ is weakly mixing}
is measurable.

Proof. Let {fn}n∈N be a dense family in C(X) and fix f = fn. Recall that an automor-
phism is weakly mixing if and only if it has no non-trivial eigenvalues or, in other words,
all spectral measures on L2

0 are continuous. Let us recall that for any measure σ ∈ M (S1),
by Wiener’s lemma, we have

lim
N→∞

1
N

N−1∑
i=0

|σ̂ (i)|2 =
∑

α is an atom of σ

σ 2({α}).

It is enough to show that the above equality holds for σ = σf−∫
f dμ,μ. Note that the

functionHN : M (S1) → R≥0 given byHN(σ) := (1/N)
∑N−1
i=0 |σ̂ (i)|2, by the definition

of weak*-convergence, is continuous. Thus, the function H : M (S1) → R≥0 given by
H(σ) := limN→∞ HN(σ), as a pointwise limit of continuous functions, is measurable.

By Remark 11, the map F : M (X, T ) �→ M (S1) is continuous. Moreover, by the
properties of disintegration of measures, the assignment E : X → M (X, T ) given by
E(x̄) = μx̄ is also measurable. Thus, the map H ◦ F ◦ E is measurable. It remains to
notice that, since f is arbitrary, WM = (H ◦ F ◦ E)−1({0}).
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We also recall that if T ∈ Aut(X, B, μ) and f , g ∈ L2
0(X, B, μ), then f ⊥ g whenever

σf ⊥ σg , that is, when the spectral measures are mutually singular. It follows that two
automorphisms are disjoint whenever the maximal spectral types on the relevant L2

0 spaces
are mutually singular [14].

3. Identities are multipliers of Erg⊥
The following fact is classical (and follows from the spectral disjointness of ergodic
automorphism with the identity maps), we recall the classical proof for completeness.

PROPOSITION 15. Any identity map is disjoint with all ergodic systems.

Proof. Assume that (Z, D, ρ, R) is ergodic and consider the identity on (Y , C, ν). Let
η ∈ J (R, Id). Take h ∈ L2(Z, ρ) of zero mean and let g ∈ L2(Y , ν). By the von Neumann
theorem (and ergodicity),

1
N

N−1∑
n=0

h ◦ Rn → 0 in L2(Z, ρ),

so the same convergence takes place also in L2(Z × Y , η). Since the strong convergence
implies the weak convergence,

1
N

N−1∑
n=0

∫
g ⊗ h ◦ Rn dη → 0.

However, for each N ≥ 1,
∫
(1/N)

∑N−1
n=0 (g ⊗ h ◦ (Id × R)n) dη = ∫

g ⊗ h dη, whence∫
g ⊗ h dη = 0.

Now, our main goal in this section is to show that any identity is actually also a multiplier
of Erg⊥.

PROPOSITION 16. Let (Z, D, ρ, R) ∈ Erg and let (X, B, μ, T ) be such that T ⊥ R.
Consider also an identity map (Y , C, ν, Id) and let λ ∈ J (T , Id). Then,

(X × Y , B ⊗ C, λ, T × Id) ⊥ R.

Proof. Let η ∈ J (T , Id, R) be such that η|X×Y = λ. Note that, by Proposition 15, it holds
that η|Y×Z = ν ⊗ ρ and (by assumption)

η|X×Z = μ⊗ ρ. (9)

Fix bounded, real functions f ∈ L2(X, μ), g ∈ L2(Y , ν) and h ∈ L2
0(Z, ρ). All we need

to show is that ∫
f ⊗ g ⊗ h dη = 0. (10)

Let f = f1 + f2, where f1 ◦ T = f1 and f2 ⊥ L2(Inv(T )). Then,∫
f ⊗ g ⊗ h dη =

∫
f1 ⊗ g ⊗ h dη +

∫
f2 ⊗ g ⊗ h dη. (11)
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Now, the spectral measure (all the spectral measures are computed in L2(X × Y × Z, η))
of the function f1 ⊗ g is equivalent to δ1, while the spectral measure of h has no atom at
1 since R is ergodic. Hence, these spectral measures are mutually singular and, therefore,
f1 ⊗ g and h are orthogonal in L2(X × Y × Z, η), so the first term on the right-hand side
of equation (11) disappears. In view of equation (9), we have

σf2⊗h = σf2 ∗ σh.

Suppose that this measure has an atom at 1. Then, both spectral measures σf2 and σh must
have an atom at c ∈ S1 and c̄ ∈ S1, respectively, where c �= 1 (as R is ergodic). However,
since h is real, c is also an atom of σh. Then, T M R, which is a contradiction. Hence,
the spectral measures of f2 ⊗ h and g are mutually singular, and thus these functions are
orthogonal in L2(X × Y × Z, η) and equation (10) holds.

COROLLARY 17. Let (X, B, μ, T ) ∈ Erg⊥ and let (Y , C, ν, Id) be an identity map.
Consider λ ∈ J (T , Id). Then,

(X × Y , B ⊗ C, λ, T × Id) ∈ Erg⊥.

In other words, any identity is a multiplier of Erg⊥.

Proof. The result follows directly from Proposition 16, by applying it to T and every
R ∈ Erg.

4. Identities are the only multipliers of Erg⊥
In this section, we prove that there is no non-identity element of Erg⊥ which is a multiplier
of this class. First, we show that the twist transformation on the torus is not a multiplier of
Erg⊥.

Example 1. Let T : X × T → X × T be given by T (x, y) = (x, y + β(x)), where
β : X → T is measurable. Assume that ρ ∈ M (X) is a measure on X such that for
every z ∈ T, we have ρ{x ∈ X, β(x) = z} = 0. In particular, ρ is continuous. Note that
since for every α ∈ T, there is only countably many non-disjoint rotations, the assumptions
of Theorem 2 are satisfied and, therefore, T ∈ Erg⊥. (Another, more elementary, proof
follows by the fact that almost every ergodic component of T is disjoint (even spectrally
disjoint) with a fixed ergodic automorphism R and, by the ergodicity of R, any joining
between R and T is a convex combination of joinings between R and ergodic components
of T.) We will show that the system (T , ρ ⊗ LebT) is not a multiplier of Erg⊥.

Let α ∈ R \ Q and consider the automorphism

R(x, z) = (x, z+ β(x)+ α)

on T2, which preserves the measure ρ ⊗ LebT. One can check that R also satisfies the
assumptions of Theorem 2, and hence R ∈ Erg⊥. Now, consider the transformation P on
X × T2 given by P(x, y, z) = (x, y + β(x), z+ β(x)+ α). It is easy to see that P is an
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automorphism of (X × T2, ρ ⊗ LebT ⊗ LebT). Moreover, we can treat ρ ⊗ LebT ⊗ LebT
as a measure on X2 × T2 (up to a permutation of coordinates):

ρ ⊗ LebT ⊗ LebT(A1 × A2 × A3 × A4) = ρ(A1 ∩ A3)LebT(A2)LebT(A4),

where Ai ∈ B(T) for i = 1, 2, 3, 4. In other words, we consider the relatively independent
extension over the common factor on the first coordinate, which is the identity map on X.
Notice that then, we have

ρ ⊗ LebT ⊗ LebT({(x, y, x, z) : x ∈ X, y, z ∈ T}) = 1

and the measure we consider is T × R-invariant, so it is easy to see that it is a joining
of automorphisms T and R. Now, notice that (T × R, ρ ⊗ LebT ⊗ LebT) has the rotation
by α as a factor. Indeed, consider the map � : (X × T2, ρ ⊗ LebT ⊗ LebT) → (T, LebT)
given by �(x, y, z) = z− y. Then, we have

�(P (x, y, z)) = �(x, y + β(x), z+ β(x)+ α) = z− y + α

and

Rα(�(x, y, z)) = Rα(z− y) = z− y + α,

where Rα denotes the ergodic rotation by α on T. In particular, in view of equation (6), the
automorphism (T × R, ρ ⊗ LebT ⊗ LebT) is not an element of Erg⊥.

As one of the crucial steps to prove the main result of this section, we show first an
important special case, when all ergodic components of the considered system are weakly
mixing.

For every Borel space (X, B, μ), we consider the flip map R = RX : X ×X → X ×X

given by

R(x, y) := (y, x).

Note that R preserves μ⊗ μ and for every T ∈ Aut(X, B, μ), we have

R ∈ C(T × T , μ⊗ μ). (12)

This map will serve as a tool to produce ergodic factors of appropriately constructed
self-joinings of considered systems. Hence, we first prove some auxiliary lemmas con-
cerning the flip map.

LEMMA 18. Let (X, B, μ, T ) be a weakly mixing system. Then, (X ×X, (T × T ) ◦ RX,
μ⊗ μ) is also weakly mixing.

Proof. Since (T , μ) is weakly mixing, then so is (T 2, μ) and hence (X ×X, T 2 × T 2,
μ⊗ μ) is also weakly mixing. The result now follows from the fact that, by equation (12),
we have

((T × T ) ◦ R)2 = T 2 × T 2.
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LEMMA 19. Let (X, B, μ, T ) and (Y , C, ν, S) be two weakly mixing systems such that

(T × T , μ⊗ μ) ⊥ (S × S, ν ⊗ ν).

Then,

((T × T ) ◦ RX, μ⊗ μ) ⊥ ((S × S) ◦ RY , ν ⊗ ν).

Proof. Let ρ ∈ J ((T ×T ) ◦ RX, (S×S) ◦ RY ). We will show that ρ = (μ⊗μ)⊗ (ν⊗ν).
Note that

1
2ρ + 1

2 (RX × RY )∗ρ ∈ J (T × T , S × S).

Thus, 1
2ρ + 1

2 (RX × RY )∗ρ = (μ⊗ μ)⊗ (ν ⊗ ν), since (T × T ) and (S × S) are
disjoint. However, by Lemma 18, we have that

(((T × T ) ◦ RX)× ((S × S) ◦ RY ), (μ⊗ μ)⊗ (ν ⊗ ν)) ∈ Erg.

Since an ergodic measure cannot be a non-trivial convex combination of other invariant
measures, we obtain ρ = (μ⊗ μ) ⊗ (ν ⊗ ν), which finishes the proof.

We may now proceed to the proof of the special case of the main result of this section.

LEMMA 20. Let T ∈ Erg⊥ be such that almost every ergodic component is weakly mixing
and not a one-point system. Then, T is not a multiplier of Erg⊥.

Proof. Let T ∈ Erg⊥ be such that almost every ergodic component is weakly mixing and
not a one-point system. Assume that T ∈ M(Erg⊥). Let

μ =
∫
X

μx̄ dP (x̄)

be the ergodic decomposition of (T , μ). Let μ̃ ∈ J2(T , μ) be given by

μ̃ =
∫
X

μx̄ ⊗ μx̄ dP (x̄). (13)

Since P-a.e ergodic component of T is weakly mixing, then equation (13) actually gives
the ergodic decomposition of μ̃.

Note that, since for P-a.e. x̄ ∈ X, the map (T , μx̄) is weakly mixing and not a one-point
system, it follows that μx̄ is non-atomic and we have that

μ̃{(x, x) : x ∈ X} = 0. (14)

Consider R = RX, the flip map on X ×X. Since R preserves μx̄ ⊗ μx̄ for all
x̄ ∈ X, we have that μ̃ is (T × T ) ◦ R-invariant. Moreover, by Lemma 18, the systems(
(T × T ) ◦ R, μx̄ ⊗ μx̄

)
, x̄ ∈ X, are ergodic and thus equation (13) also yields an ergodic

decomposition of μ̃ with respect to (T × T ) ◦ R.
As a consequence of Lemma 5, we get that

(T × T , μ̃) ∈ M(Erg⊥) ⊂ Erg⊥. (15)
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In particular, by Theorem 2, for P ⊗ P -a.e. (x̄, ȳ) ∈ X2
, we have

(T × T , μx̄ ⊗ μx̄) ⊥ (T × T , μȳ ⊗ μȳ).

Hence, by Lemma 19, we obtain that for P ⊗ P -a.e. (x̄, ȳ) ∈ X2
,

((T × T ) ◦ R, μx̄ ⊗ μx̄) ⊥ ((T × T ) ◦ R, μȳ ⊗ μȳ).

This, again by Theorem 2, gives that ((T × T ) ◦ R, μ̃) ∈ Erg⊥.
Denote by R the σ -algebra of R-invariant sets. Note that R is a factor σ -algebra for both

T × T and (T × T ) ◦ R. Hence, we may consider the associated relatively independent
extension μ̃⊗R μ̃ ∈ J (

(T × T , μ̃), ((T × T ) ◦ R, μ̃)
)
. Note that for μ̃⊗R μ̃-a.e.

(x1, x2, y1, y2), the following hold:
• (x1, x2) = (y1, y2) or (x1, x2) = (y2, y1) (because the restriction of μ̃⊗R μ̃ to

R ⊗ R is the diagonal joining);
• x1 �= x2 and y1 �= y2 by equation (14).

Therefore, we can consider the map ϕ : (X ×X)2 → Z2, defined μ̃⊗R μ̃-almost
everywhere, by

ϕ(x1, x2, y1, y2) =
{

0 if (x1, x2) = (y1, y2),

1 if (x1, x2) = (y2, y1).

Let A be the addition of 1 on Z2. Then, ϕ is a factor map between ((T ×T )× (T ×T ) ◦ R,
μ̃⊗R μ̃) and the ergodic rotation (Z2, 1

2 (δ0 + δ1), A). Indeed, for μ̃⊗R μ̃-a.e.
(x1, x2, y1, y2), it holds that

ϕ ◦ ((T × T )× (T × T ) ◦ R)(x1, x2, y1, y2)

= ϕ(T x1, T x2, Ty2, Ty1)

=
{

0 if (T x1, T x2) = (T y1, Ty2),

1 if (T x1, T x2) = (T y2, Ty1),

=
{

0 if (x1, x2) = (y1, y2),

1 if (x1, x2) = (y2, y1),

= A ◦ ϕ(x1, x2, y1, y2).

Hence, we found a joining of (T × T , μ̃) ∈ M(Erg⊥) (see equation (15)) and
((T × T ) ◦ R, μ̃) ∈ Erg⊥, which has an ergodic rotation as a factor. This contradiction
proves that T /∈ M(Erg⊥).

Before passing to prove the main result of this section, let us deal with the measurability
issues concerning the choice of a discrete factor. For this purpose, let us recall the classical
Kuratowski–Ryll-Nardzewski theorem.

THEOREM 21. (Kuratowski and Ryll-Nardzewski [18]) Let (X, B) be a Polish space with
the Borel σ -algebra and let (�, C) be a measurable space. Let f be a multifunction on �
which takes values in closed subsets of X. Assume moreover that f is weakly measurable,
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that is, for every open A ⊂ X, the set {ω ∈ �; f (ω) ∩ A �= ∅} is measurable. Then, there
exists a measurable selector F : � → X of f, that is, F(ω) ∈ f (ω) for every ω ∈ �.

We use the above result to show that we can measurably assign an eigenvalue to any
element of ergodic decomposition. Recall the notions of space of ergodic components X
and its subsets Xn and X∞ from equation (3).

LEMMA 22. Let T ∈ Aut(X, B, μ) and let

μ =
∫
X

μx̄ dP (x̄)

be the ergodic decomposition. Assume that P-a.e. fibre automorphism is non-weakly
mixing (that is, possesses a non-trivial eigenvalue). Then, there exists a measurable map
F : X∞ → L2(Z, D, κ), where (Z, D, κ) is defined in equation (4), such that F(x̄) is an
eigenfunction of modulus 1 of Tx̄ in L2

0(Z, κ) (identified with L2
0(X, μx̄)).

Proof. We will define F on the set X∞ by considering a multifunction H defined below
and taking F as a measurable selector given by Theorem 21. Therefore, the remainder of
the proof is devoted to picking a proper multifunction and checking that the assumptions
of Theorem 21 are satisfied.

LetW ⊂ L2
0(Z, D, κ) be the subset of function of integral 0 and modulus 1 (note that W

is a Polish space in L2-topology). Let H be a multifunction which assigns to each element
Tx̄ := (T , μx̄) the set H(Tx̄) ⊂ W of its eigenfunctions. Note that this is a closed set.
Indeed, assume that fn → f ∈ L2

0(Z, D, κ), where (fn)n∈N is a sequence of functions in
H(Tx̄). Then, f is also of modulus 1. Moreover, by using the compactness of the circle
and passing to a subsequence if necessary, we also have that the sequence (λn)n∈N of the
corresponding eigenvalues converges to some number λ ∈ S1. It is now easy to check that
f is an eigenfunction corresponding to the eigenvalue λ.

We now prove that H is weakly measurable so that we can apply Theorem 21. Let
A ⊂ W be open. Without loss of generality, we can assume that X∞ is a metric compact
space. Consider the map ϕA : X∞ × S1 × A → L2(Z, D, κ), given by

ϕA(x̄, λ, f ) = f ◦ Tx̄ − λf .

By equation (4), Tx̄ ∈ Aut(Z, D, κ). Hence, the right-hand side of the above formula is an
element of L2(Z, D, κ). Let

πX : X∞ × S1 × A → X, πX(x̄, λ, f ) = x̄

be the projection on the first coordinate. To prove the weak measurability of H, we need to
show that the set

{x̄ ∈ X∞ : H(Tx̄) ∩ A �= ∅} = πX(ϕ
−1
A (0))

is measurable. Since the map x̄ �→ Tx̄ is Borel measurable, then so is ϕA. Thus,
πX(ϕ

−1
A (0)) is analytic, and hence measurable with respect to C being the σ -algebra of

P-measurable sets. It remains to use Theorem 21 for � = X∞ and C.
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Remark 23. The following result follows immediately from the fact that the class of auto-
morphisms whose almost all ergodic components have discrete spectra is a characteristic
class as proved in [16]. Hence, for T, there exists the largest factor of T belonging to this
characteristic class, and this factor considered on each fibre Tx̄ is the Kronecker factor
of Tx̄ , see [16, §2.3.1]. However, we need a special form of this factor, and hence we give
the complete proof below.

LEMMA 24. Let T satisfy the assumptions of Lemma 22. Then, there exists a non-trivial
factor of T whose ergodic decomposition consists of ergodic rotations.

Proof. Let F be given by Lemma 22. Note that for every x̄ ∈ X∞, the corresponding
eigenvalue ϕ(x̄) is equal to F(x̄) ◦ Tx̄/F (x̄), and hence it depends measurably on x̄.
Thus, in view of the fact that the map S1 � α �→ Rα ∈ Aut(S1, LebS1) is continuous, the
automorphism S ∈ Aut(X × S1, P ⊗ LebS1),

S(x̄, r) := (x̄, ϕ(x̄)r) (16)

is the desired factor and factorizing map J : X × Z → X × S1 is given by

J (x̄, z) = (x̄, F(x̄)(z)).

Proof of Theorem 1. Let (X, B, μ, T ) ∈ M(Erg⊥) and let μ = ∫
X
μx̄ dP (x̄) be its

ergodic decomposition. In view of Corollary 13, we have P(X1 ∪X∞) = 1. We will show
that P(X1) = 1. Assume by contradiction that P(X∞) > 0.

Consider first the case when P(WM) > 0, where WM := {x̄ ∈ X∞ : Tx̄ is weakly
mixing} (it is measurable via Lemma 14). Then, T can be decomposed into a disjoint
action of two automorphisms T̃ and T̃ ∗. Here, T̃ stands for the restriction of T to the union
of fibres corresponding to WM, that is, it is measure μ̃-preserving, where the ergodic
decomposition of T̃ is of the form

μ̃ = 1
P(WM)

∫
WM

μx̄ dP (x̄)

and the automorphism T̃ ∗ is the restriction of T to the union of the fibres corresponding
to X \ WM. Then, (T̃ , μ̃) satisfies the assumption of Lemma 20 and thus, it is not a
multiplier of Erg⊥, that is, there exists S ∈ Erg⊥ and a joining η̃ ∈ J (T̃ , S) such that
(T̃ × S, η̃) /∈ Erg⊥. It is now enough to join T̃ ∗ and S independently to get a non-trivial
joining η ∈ J (T , S) such that (T × S, η) /∈ Erg⊥, which is a contradiction with the fact
that T ∈ Erg⊥.

Thus, we can assume that for P-a.e. x̄ ∈ X∞, the automorphism Tx̄ has a non-trivial
eigenvalue. Let μ∞ = (1/P (X∞))

∫
X∞ μx̄ dP (x). Then, by Lemma 24, there exists a

factor T̂ of (T , μ∞) such that all ergodic components T̂x̄ of T̂ are rotations on the circle.
Note that for a.e. pair of (x̄, ȳ) ∈ X∞ ×X∞, the associated rotations are disjoint in
view of Theorem 2. Then, T̂ has exactly the form of Example 1, which is not in M(Erg⊥).
Since, by Corollary 6, M(Erg⊥) is a characteristic class, we get that (T , μ∞) /∈ M(Erg⊥).
Thus, again by joining the restriction of T to the fibres in X1 independently, we get that
(T , μ) /∈ M(Erg⊥).
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Hence, P(X1) = 1, which means that T is an identity. This proves that M(Erg⊥) ⊂ ID.
The opposite inclusion follows directly from Corollary 17. This finishes the proof.

5. Erg⊥ is closed under taking products
As Theorem 1 shows, the class Erg⊥ is not closed under taking joinings due to an
interplay between fibre automorphisms over the ‘common’ part of ergodic components.
It turns out that this phenomenon can not happen if the spaces of ergodic components are
independent—in this section, we show the class Erg⊥ is actually closed under taking the
Cartesian products.

THEOREM 25. Assume that (X, B, μ, T ), (Y , C, ν, S) ∈ Erg⊥. Then,

(X × Y , B ⊗ C, μ⊗ ν, T × S) ∈ Erg⊥ .

Proof. Let (Z, D, ρ, R) be an arbitrary ergodic system. Recall first that all systems under
consideration may be viewed as measure-preserving homeomorphisms of compact metric
spaces. The above observation allows one to use Lemma 10 later in the proof.

On the space X × Y × Z, for every A ∈ {X, Y , Z, X × Y , X × Z, Y × Z}, denote by
πA : X × Y × Z → A the standard projection on the corresponding coordinates. Consider
any joining λ ∈ J ((T × S, μ⊗ ν), (R, ρ)). We aim at showing that λ = μ⊗ ν ⊗ ρ.

First, note that (πX×Z)∗λ = μ⊗ ρ and (πY×Z)∗λ = ν ⊗ ρ as T , S ∈ Erg⊥. Let

μ =
∫
X

μx̄ dP (x̄)

be the ergodic decomposition of μ (with P = μ|Inv(T)). Since Inv(T ) is also a factor of
(T × S × R, λ) and (πX)∗λ = μ,

λ =
∫
X

λx̄ dP (x̄) (17)

and (πX)∗λx̄ = μx̄P -almost everywhere, by the uniqueness of disintegrations. Moreover,
note that

μ⊗ ρ =
∫
X

μx̄ ⊗ ρ dP (x̄).

Since (πX×Z)∗λ = μ⊗ ρ, again by using the uniqueness of disintegration, we get

(πX×Z)∗λx̄ = μx̄ ⊗ ρ P -almost everywhere. (18)

Analogously, since (πX×Y )∗λ = μ⊗ ν, we also have

(πX×Y )∗λx̄ = μx̄ ⊗ ν P -almost everywhere. (19)

In particular, (πY )∗λx̄ = ν. Thus, by equation (18), we have

λx̄ ∈ J ((S, ν), (T × R, μx̄ ⊗ ρ)) P -almost everywhere.

What remains to show is that

P({x̄ : (T × R, μx̄ ⊗ ρ) is not ergodic}) = 0. (20)
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Indeed, if equation (20) holds, then since S ∈ Erg⊥, we obtain that

λx̄ = μx̄ ⊗ ν ⊗ ρ P -almost everywhere,

which together with equation (17) yields λ = μ⊗ ν ⊗ ρ.
To show equation (20), recall first that R can have at most countably many eigenvalues.

Moreover, the Cartesian product of two ergodic systems is not ergodic if and only if
they have a non-trivial common eigenvalue. It is thus enough to show that for any fixed
α ∈ T \ {0}, we have

P({x̄ : α is an eigenvalue of (T , μx̄)}) = 0. (21)

Assume that equation (21) does not hold, that is,

P({x̄ : α is an eigenvalue of (T , μx̄)}) > 0. (22)

Then, by Lemma 12, α is an eigenvalue of T. This is a contradiction with equation (6).
Hence, we proved equation (21) which in turn completes the proof of the theorem.

By induction, we obtain from the above result the following corollary.

COROLLARY 26. If (Xi , Bi , μi , Ti)i∈N is a sequence of elements of Erg⊥, then( ∞∏
i=0

Xi ,
∞⊗
i=0

Bi ,
∞⊗
i=0

μi ,
∞∏
i=0

Ti

)
∈ Erg⊥ .

6. An automorphism whose self-joinings are disjoint with ergodic automorphisms
We are going to construct an automorphism whose self-joinings are all elements of Erg⊥.
To do that, we will rely on the PID property. We need the following result.

THEOREM 27. (Ryzhikov [23]) Assume that (X, B, μ, T ) has the PID property and
(Yi , Bi , νi , Si), i = 1, 2, are measure-preserving automorphisms. If λ ∈ J (T , S1, S2)

projects as product measures on each pair of coordinates, then

λ = μ⊗ ν1 ⊗ ν2.

In the proof of Theorem 29, we will use several times the following corollary of the
above result.

COROLLARY 28. Let n ≥ 2 and let (Xi , Bi , μi , Ti), i = 1, . . . , n, be measure-preserving
automorphisms satisfying the PID property. Let (Y , C, ν, S) be a measure-preserving
automorphism. If λ ∈ J (S, T1, . . . , Tn) projects as product measures on each pair of
coordinates, then

λ = ν ⊗ μ1 ⊗ · · · ⊗ μn.

Proof. We use induction. For n = 2, the result follows directly from Theorem 27.
Assume that it is true for some n ≥ 2, we will prove that it holds for n+ 1. Let
λ ∈ J (S, T1, . . . , Tn+1) and let λ̃ be the projection of λ on Y ×X1 × · · · ×Xn and
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let λ̄ be the projection of λ on X1 × · · · ×Xn+1. By the induction assumption, we
get that

λ̃ = ν ⊗ μ1 ⊗ · · · ⊗ μn and λ̄ = μ1 ⊗ · · · ⊗ μn+1.

The result now follows from Theorem 27 by taking T := Tn+1, S1 := S and S2 :=
T1 × · · · × Tn.

We are now ready to present and prove the main result of this section.

THEOREM 29. Let T : X → X be a μ-preserving homeomorphism of a compact metric
space X. Let

μ =
∫
X

μx̄ dP (x̄)

be the ergodic decomposition and let Tx̄ denote the action of T on the fibre corresponding
to x̄ ∈ X. Assume that P is a continuous probability measure. Assume moreover that:
• for every x̄ ∈ X, there exists a set of ȳ ∈ X, whose complement is countable, such that

for every ȳ from this set, we have Tx̄ ⊥ Tȳ;
• for every x̄, ȳ ∈ X, if Tx̄ M Tȳ , then Tx̄ and Tȳ are isomorphic;
• for every x̄ ∈ X, the automorphism (Tx̄ , μx̄) has the MSJ property (in particular, it has

the PID property).
Then, (T ×∞, η) ∈ Erg⊥ for every η ∈ J∞(T , μ).

Proof. It is enough to prove that for every n ≥ 1 and every η ∈ Jn(T , μ), (T ×n, η) ∈
Erg⊥. Note that since P is continuous, for P ⊗ P -a.e. (x̄, ȳ) ∈ X ×X, we have Tx̄ ⊥ Tȳ .
Then, by Theorem 2, T ∈ Erg⊥.

Let 2 ≤ n < ∞, fix η ∈ Jn(T , μ) and let (R, ρ) ∈ Erg be arbitrary. Let ψ ∈
J ((T ×n, η), (R, ρ)). We want to show that ψ = η ⊗ ρ. To distinguish between the n
copies of X and X, we denote by Xk and Xk the domain and the space of ergodic
components of T on the kth coordinate for every k = 1, . . . n. We assign the coordinate
(n+ 1) to the automorphism R. Finally, we set X = X1 × · · · ×Xn and by πk1,...,km :
X → Xk1 × · · · ×Xkm , we denote the projection on k1, . . . , km coordinates.

Consider the ergodic decomposition of (T ×n, η):

η =
∫

X
ηx̄ dQ(x̄).

Thus, we also have the following disintegration of ψ :

ψ =
∫

X
ψx̄ dQ(x̄).

By uniqueness of ergodic decomposition, we have that (πX)∗ψx̄ = ηx̄ and by ergodicity
of R, we get (πn+1)∗ψx̄ = ρ. Thus, ψx̄ ∈ J ((T ×n, ηx̄), (R, ρ)) for Q-a.e. x̄. To show that
ψ = η ⊗ ρ, we just have to show that

ψx̄ = ηx̄ ⊗ ρ for Q-a.e. x̄ ∈ X. (23)
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Note that by uniqueness of ergodic decomposition, for Q-a.e. x̄ ∈ X and for every
k = 1, . . . , n, we have

(πk)∗ψx̄ = (πk)∗ηx̄ = μx̄k for some x̄k(x̄) = x̄k ∈ Xk .
Moreover, all marginals of Q are equal to P. Therefore, since P is continuous, we get that
for every x̄ ∈ X, we have

Q{x̄ ∈ X : μx̄k = μx̄ for some k = 1, . . . , n} = 0. (24)

In particular, since there are only up to countably many ergodic components of T
isomorphic to μx̄ , we get by equation (24) that for every x̄ ∈ X,

Q({x̄ ∈ X : (T , μx̄k ) is isomorphic to (T , μx̄) for some k = 1, . . . , n}) = 0. (25)

Now, to show equation (23), we consider cases which depend on the form of ηx̄.
More precisely, we consider the number of coordinates on which the projection yields
isomorphic maps (recall that by assumption, the ergodic components are either isomorphic
or disjoint).

Case 1: No isomorphic components. Let D0 ⊂ X be the set of elements satisfying the
following:

(T , μx̄1), . . . , (T , μx̄n) are pairwise disjoint. (26)

Then, by Corollary 28 and mutual disjointness assumption, for every x̄ ∈ D0, we get

ηx̄ = μx̄1 ⊗ · · · ⊗ μx̄n . (27)

Note also that for Q-a.e. x̄ ∈ D0, the automorphism (R, ρ) is disjoint with (T , μx̄k ) for
every k = 1, . . . , n. Indeed, otherwise for some 1 ≤ k0 ≤ n, we would have that

Q({x̄ ∈ X; (T , μx̄k0 ) and (R, ρ) are not disjoint })
= P({x̄ ∈ X; (T , μx̄) and (R, ρ) are not disjoint }) > 0.

(The measurability of sets considered follows from [13, Corollary 3.8].)
By Proposition 4 and the assumptions of the theorem, the set considered above can be

at most countable. This is a contradiction with the fact that P is continuous.
Thus, for Q-a.e. x̄ ∈ D0, the automorphism (R, ρ) is disjoint with (T , μx̄k ) for every

k = 1, . . . , n. In particular, by equation (27), for every such x̄, the measure ψx̄ projects on
each pair of coordinates as a product measure. By Corollary 28, we get that

ψx̄ = ηx̄ ⊗ ρ

for Q-a.e. x̄ ∈ D0. This finishes the proof of Case 1.
Case 2: There exist isomorphic components. Consider now the elements x̄ ∈ X such

that, up to a permutation of coordinates, there exist m < n and indices 0 = �0 < �1 <

· · · < �m−1 < �m = n such that (T , μx̄�k−1+1), . . . , (T , μx̄�k ) are isomorphic for every
k = 1, . . . , m and m is minimal in this representation. For every m = 1, . . . , n− 1,
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denote by Dm ⊂ X the set of elements for which there are exactly m groups of indices in
the above decomposition. We will show that this case reduces to Case 1.

Fixm = 1, . . . , n− 1 and let x̄ ∈ Dm. Let �0, . . . , �m be as above. Since ηx̄ is ergodic,
for every k = 1, . . . , m, the projection (π�k−1+1,...,�k )∗ηx̄ is an ergodic measure for the
map T ×�k−�k−1 (up to an isomorphism, it is a self-joining of (T , μx̄�k )). Moreover,
recalling that (T , μx̄) has the MSJ property for every x̄ ∈ X, we obtain that

(π�k−1+1,...,�k )∗ηx̄ is a product of rk ≤ �k − �k−1 off-diagonal self-joinings.

Thus, the measure ηx̄ is actually a joining of r1 + · · · + rm automorphisms such that any
two of them are either disjoint or isomorphic, and in the latter case, ηx̄ projects on the
corresponding coordinates as the product measure. Hence, by using Corollary 28, we get
that ηx̄ is a product joining of r1 + · · · + rm ergodic components of T. In other words,
we reduced the problem, where equation (27) is satisfied for a smaller number of indices.
The remainder of the proof of Case 2 is analogous to the proof of Case 1 by taking
n := r1 + · · · + rm.

Recalling the definition of a characteristic class and F(T ) from §2.4, we get the
following result.

COROLLARY 30. If T satisfies the assumptions of Theorem 29, then F(T ) is a character-
istic class of elements from Erg⊥.

Proof. By Lemma 7, Theorem 29 and the fact that any factor of an element of Erg⊥ is also
a member of this class.

We now construct an example to show that the set of automorphisms satisfying the
assumptions of Theorem 29 is non-empty. We build it by using the classical cutting and
stacking construction of systems of rank 1. We have the following fact, which is a special
case of the results by Gao and Hill [9] and Danilenko [2].

PROPOSITION 31. Let ā = {an}n∈N ∈ {0, 1}N be the binary expansion of a ∈ [0, 1]. Let
Ta : [0, 1] → [0, 1] be a rank 1 automorphism defined in the following way, via the cutting
and stacking procedure:
• on each step, the cutting parameter is equal to 3;
• on step n, we add a spacer over the first tower if an = 0 and over the second if an = 1.
Assume that |a − b| �= k/2l for any k, l ∈ N. Then, Ta and Tb are disjoint. Otherwise, they
are isomorphic.

By [4], the systems considered in the above proposition are ergodic and satisfy the MSJ
property. Note that the sequence heights of towers in the cutting and stacking construction
described in the above theorem is universal for all a ∈ [0, 1]. We leave the proof of the
following easy lemma to the reader.

LEMMA 32. The map [0, 1] � a �→ Ta ∈ Aut(X, ν) is well defined and continuous in
[0, 1] \ Q.

https://doi.org/10.1017/etds.2024.129 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.129


Joining properties of automorphisms disjoint with all ergodic systems 23

Let us consider S ∈ Aut([0, 1] ×X, Leb[0,1] ⊗ ν) defined in the following way:

S(a, x) := (a, Tax).

Then, in view of Proposition 31 and Lemma 32, by previous remarks, S satisfies the
assumptions of Theorem 29. In particular, we have S ∈ Erg⊥.

7. A remark on multipliers
We will now show some connections between the multipliers of a class A⊥ and the
characteristic classes included in A⊥. We recall that M(A⊥) is always a characteristic
class (see Corollary 6).

PROPOSITION 33. For any T and R, we have that T ∈ M({R}⊥) provided that for
each λ ∈ J2(T ), we have (T × T , λ) ⊥ R × R, where R × R is considered with product
measure.

The proof of the proposition follows by word for word repetition (ignoring the ergodicity
of T) of the proof of [19, Proposition 5.1]. Notice moreover that this proposition applies
(non- trivially) only if R ∈ WM (because we consider all self-joinings of T, and hence
also non-ergodic; however, R × R which is considered with product measure is not
ergodic whenever R is not weakly mixing; finally use that two non-trivial non-ergodic
automorphisms are not disjoint).

COROLLARY 34. Assume that A is a class closed under taking Cartesian squares. Then,
T ∈ M(A⊥) if and only if for each λ ∈ J2(T ), we have (T × T , λ) ⊥ R for each R ∈ A.

Note that the necessity in the corollary is obvious and the other direction follows
from Proposition 33. Similarly to Proposition 33, the above corollary only applies when
A ⊂ WM. Corollary 34 implies also the following result.

COROLLARY 35. Assume that A is a class closed under taking Cartesian squares. Then,
M(A⊥) is the largest characteristic class included in A⊥. In particular, the result holds
when A = WM.

Note that ID satisfies the assumptions of Corollary 35. It would be interesting to know
whether the assertion of Corollary 35 holds for any class A. Notice that for A = Erg,
the assumption on the Cartesian squares is not satisfied as the Cartesian square of any
(non-trivial) rotation is not ergodic. More than that, in Erg⊥, the class of multipliers is ID,
and it is the smallest characteristic class included in Erg⊥ (the existence of larger than ID
characteristic classes follows from Corollary 30), so the assertion of Corollary 35 fails for
Erg⊥.

A general question arises, whether given a characteristic class C ⊂ A⊥, there exists a
maximal characteristic class C′ ⊂ A⊥ such that C ⊂ C′. To see that this holds, we apply
the Kuratowski–Zorn lemma. Consider a chain (Ci )i∈I of characteristic classes such that
C ⊂ Ci ⊂ A⊥. Let C̃ be the smallest characteristic class containing

⋃
i∈I Ci . We need to

show that C̃ ⊂ A⊥. It is enough to check that if Tn ∈ ⋃
i∈I Ci , n = 1, 2, . . . , then for every

η ∈ J (T1, T2, . . .), we have (T1 × T2 × · · · , η) ∈ A⊥.
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Let Tk ∈ Cik , k = 1, . . . , n, then, since (Ci )i∈I is a chain, without loss of generality, we
can assume that T1, T2, . . . , Tn ∈ Cin . Since Cin ⊂ A⊥ is a characteristic class, we receive
that all joinings of T1, T2, . . . , Tn are in Cin ⊂ A⊥. To conclude, it remains to use the fact
that every infinite joining is an inverse limit of finite joinings.

COROLLARY 36. For every T satisfying the assumptions of Theorem 29, there exists
maximal characteristic class C � T such that M(Erg⊥) ⊂ C � Erg⊥.

We have not been able to describe the maximal characteristic classes in Erg⊥, it is even
not clear whether there is only one.
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