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ABSTRACT 

A preliminary version of a three-dimensional ice-sheet 
model for later use in climate models, but excluding ice 
shelves and basal sliding, is presented and applied to the 
Antarctic ice sheet. In the model, the three-dimensional 
fields of veloci ty and temperature are calculated in the 
coupled mode, and the temperature equation is integrated 
for 150 000 years; the shape of the Antarctic ice sheet 
remains fixed. The results from the model are consistent 
with a stationary state in the central parts of the Antarctic 
ice sheet, but not in marginal areas, where the flow in the 
model is too small. Including a parameterized form of 
basal sliding that is dependent on the water pressure is 
likely to improve the situation. 

I. INTRODUCTION 

Modeling climatic change on time-scales longer than 
lOO years must take into consideration the dynamics of ice 
sheets, which in turn alter the boundary conditions of the 
other components of the climatic system. During the last 20 
years, data on the long-term variations in global ice volume 
and in many other climate variables have been derived from 
deep-sea sediment records, which initiated the development 
of a hierarchy of ice-sheet models, including coupling with 
models of the atmosphere, the ocean, and the continents. 
The most sophisticated ice-sheet model has been developed 
by Jenssen (1977) and was applied to the Greenland ice 
sheet. 

For climate studies, the relevant ice-sheet variable, 
feeding back into the climate system, is ice thickness as a 
function of geographical position and time (Oeriemans and 
van der Veen 1984) and there is now growing interest 
among climate modelers in using three-dimensional ice-sheet 
models of the Jenssen type to describe the evolution of the 
(ice-age) ice sheets during the Pleistocene. Meaningful 
shorter interval integrations may be carried out for the 
Northern Hemisphere ice sheets, with reference to their 
initial build-up, starting about 120000 years ago, or by 
modeling ice-sheet decay, where the initial conditions are 
set by data from 18000 B.P. (CLlMAP Project Members 
1976). In both cases, the initial conditions and the mass 
balance can probably be specified. 

In this paper an attempt is therefore made to take up 
Jenssen's idea once more and to construct a high-resolution 
ice-sheet model for testing on the Antarctic ice sheet. The 
present version still does not include basal sliding and 
excludes the ice-shelf regions. It is planned to include ice 
shelves at a later stage by coupling this ice-sheet model to 
the ice-shelf model of MacAyeal and Thomas (1982). In 
section 2 the equations, approximations, and boundary 
conditions are described . Preliminary results showing the 
(stationary-state) velocity and temperature field for the 
Antarctic ice sheet are presented in section 3 and discussed 
in section 4. 

2. MODEL DESCRIPTION 

In the usual notation (see Paterson 1981, which is also 
used to assign reasonable values to the material constants of 
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ice), the general set of dynamic equations is given by the 
force balance 

" . C1 + pg o (I) 

and the flow law 

(2) 

In Equation (I), g is the vector of the Earth's acceleration 
(I g I = 9.8 m S-2), C1 is the stress tensor and p is the density 
of ice taken as constant. A value of p = 0.9 x 103 kg m-3 

(which is the density reached below a depth of about 100 m 
in ice sheets) has been chosen . Equation (2) relates the rate 
of change in the components of the deformation tensor E ik 
to the components of the stress deviator tensor <Tik defined 
by: <Tii = <Tii - (<Txx + <Tyy + <Tzz )/3 and <Tik = <Tik for the 
non-diagonal elements, where i, k denote the axes of a 
Cartesian coordinate system, with x, y as the horizontal axes 
and z directed vertically upwards. In Equation (2), a 
non-linearity enters through the second invariant <T raised to 
the power 11 - I, where 11 = 3 and the invariant <T is 
d f' db' 2 2 • 2 • 2 • 2 2( 2 2 2) e me y. <T = <Txx +<Tyy +<Tzz + <Txy +<Txz +<Tyz . 
The temperature-dependent coefficient A(T'), with T' 
measured above pressure-melting point T Mo is based on 
measurements supplied by Paterson (1981). 

Since the rate of change in deformation can be 
expressed in terms of velocity gradients Eik = (Bu/Bxk + 
BUk/ Bxi) / 2, the set of nine equations (Equations (I) and (2)) 
can be solved in principle for the nine unknowns, the three 
velocity components ux ' uy , uz ' and the six components of 
the symmetrical stress tensor C1. 

In the case of an ice sheet (following Mahaffy 1976), 
some approximations are introduced. In the force balance 
(Equation (I)), the shear stresses <Tik are small compared to 
the normal stresses <Tii; the latter are assumed to be 
isotropic (<Tx,x = <Ty'y = <Tzz ): that is, longitudinal deviatoric 
stresses are Ignoreo. Recent theoretical and modeling results 
(van der Veen 1987) show that, in the presence of basal 
sliding, the longitudinal deviatoric stresses are not negligible 
over a distance from a few kilometers to a hundred 
kilo meters up-stream of the grounding line. However, the 
horizontal resolution of this model is just 100 km and no 
attempt is made to model details below the grid size. If the 
grounding line is allowed to move (it is fixed in this 
version of the model), the effect of longitudinal deviatoric 
stresses will probably have to be included in some way. 

The small aspect ratio of an ice sheet (where the 
thickness is small compared to horizontal extension) implies 
that the horizontal derivative of any ice-sheet variable is 
small compared to its vertical derivative. This is essentially 
the "shallow ice approximation" described by Hutter (1983). 
It can be derived formally by expanding the set (Equations 
(I) and (2)) to zero order with respect to the aspect ratio 
as the expansion parameter. If we discount atmospheric 
pressure, the set (Equations (I) and (2) is then easily 
integrated, yielding the two horizontal velocity components 
as a function of the vertical coordinate z: 

Bhs 
u (B) + c- u 

x ax' y 

Bhs 
U (B) + c-

y ay 
(3) 
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with Uz (i ,j , k+~ ) 

C -2(pg)" [[ ::' r · [::' rr')/' 
r A {T' (z' )} {hs - z,} 11 dz' (4) 

hB 

In Equation (3), u)B) and u)B) are the horizontal 
components of the basal sliding velocity (which is zero in 
the present version of the model) and in Equation (4), hs 
and hB are the heights of the surface and the bottom of 
the ice sheet respectively. The vertical component Uz follows 
from the incompressibility condition ". u = 0: 

UZ(B) _ jZ [aux + au
y 1 d z ' 

ax ay 
hB 

(5) 

In Mahaffy's (I976) work, the coefficient A(T') was 
assumed to be constant. Thus Equation (4) can be integrated 
analytically. A further integration with respect to z yields 
the vertically integrated ice flux actually calculated in her 
model to describe the evolution of Barnes Ice Cap. A 
vertically integrated form was applied also by Oerlemans 
(1983) to build up the Antarctic ice sheet; it included a 
simple (quasi-stationary) description of ice shelves. Jenssen 
(1977) used a temperature-dependent empirical relation 
between the horizontal ice-velocity component and the 
calculated shear stresses (instead of the flow law in 
Equation (2). Furthermore, a "a-coordinate" scheme with a 
variable grid size in the vertical was chosen . Although this 
allows a finer vertical resolution at the ice-sheet edge, it 
was not used here, because at the ice-sheet edge the 
"shallow ice approximation" breaks down and additional 
numerical errors are expected, due to a coarse horizontal 
resol u tion. 

The rate of change of temperature T within the ice 
sheet is given by the energy- balance equation 

aT 
+ u·"T (6) 

at 

where k = 1.15 x 10-6 m2 S-1 is the thermal diffusivity and 
d is the contribution of deformational heat given by 

d = (I/pc) I Eik aik 
i,k 

(7) 

with c = 2009 J kg- I K- I, the specific heat capacity of ice. 
Equation (6) yields the temperature evolution, starting from 
an initial temperature distribution within the ice sheet 
(-10 °c throughout) and prescribed boundary conditions (see 
below). 

At the ice-bedrock interface, the geothermal heat flux 
G enters the ice. For temperatures below freezing point, this 
fixes the vertical temperature gradient at the ice bottom: 

G 
(8) 

where ).. = 2.1 W m-I K -I is the thermal conductivity of ice 
and G = 5 x 10-2 W m- 2• If the bottom temperature reaches 
the melting temperature T Mo T = T M replaces the boundary 
condition (Equation (8» and the geothermal heat flux is 
used for melting. The melting temperature is corrected for 
pressure: T M = - apgh, where h is the thickness of the ice 
sheet and a = 7.42 x 10-5 K (kPar1. 

At the ice-atmosphere interface, the surface 
temperature Ts is prescribed. For the preliminary 
calculations described in section 3, a temperature of 

~y( i ,j-t,k ) 

z,k 

L:Yi 
x,i 

-

I 

L (. 1 ' k) Ux ,1 + 2 ,), 

T(i,j,k) 

Fig. I. Definition of the staggered grid and volume 
element t.v = t.x t.y t.z used for numerical calculations (see 
also section 2). 

TSL = -7°C was chosen at sea-level hss' and an atmospheric 
lapse rate of Y = 13 K km- 1 was assumed. From these 
numbers, a surface temperature is defined for a given 
height hs of the ice surface: Ts = TSL - Y (h s - hss )' 
which yields an approximate fit to the observations. 

Equations (3), (4), and (5) for the ice flow, and 
Equation (6) for the temperature evolution are discretized 
using centered differences on a staggered grid (Fig . I). The 
temperature is defined on grid points (i,j,k), which mark 
the centers of volume elements t.v = t.x t.y t.z, for which 
the energy balance (Equation (6») has been formulated. 'To 
calculate the advective input and output heat fluxes, it is 
convenient to define the normal components of the ice flow 
at the centers (i ± 1/ 2, j ± 1/ 2, k ± 1/ 2) of the six 
planes, forming the volume element t.v. The resolution of 
the grid is /':.x = /1y = 101 km in the horizontal, and 
t.z = 285 m in the vertical, and the time step is Ill. = 10 
years. To suppress the evolution of numerical instabilities 
during the (explicit) time integration of the temperature 
equation (Equation (6)), numerical diffusion is added in the 
form of an up-stream scheme. This scheme introduces 
artificial diffusion, of the order of the horizontal advective 
heat transport. In a later version of this model the 
up-stream scheme will probably be replaced by implicit 
time-stepping. Calculations are run on a Cyber 205 (CDC) 
computer. Using the above resolution, computing time is 
15 min for 10000 model years of the Antarctic ice sheet. 

3. RESULTS 

All the calculations shown describe the model ice sheet 
in a stationary state. The assumed stationary shape of the 
Antarctic ice sheet has been derived by digitizing the maps 
in Drewry (1983). Ice-sheet heights and thicknesses have 
been smoothed by allowing the ice sheet to deform for 
1000 years according to the mass- balance equation, assuming 
zero accumulation. Calculations showed that small errors in 
the surface gradient produce large errors in the vertical 
velocity component uz , yielding unrealistic spatial 
fluctuations in the sign of uz . The resulting smoothed 
topography is still close to the unsmoothed topography. 
During the integration of the temperature equation (Equation 
(6») the (smoothed) shape was retained. 

In Figure 2, the velocity and temperature field is 
plotted for a vertical plane (indicated by the line A- B in 
Figs 3 and 4) after integrating the heat equation (Equation 
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Fig. 2. Vertical structure of velocity and temperature (C) for the profile A- 8 as indicated in Figures 
3 and 4. Heights a.s.l. and the horizontal extension are given in kilometers. (Flow vectors give 
correct directional information. For plotting reasons, however, the magnitude of th e flow is related to 
the length of the vector non-linearly .) 

(6» for 150000 years, using present-day boundary 
conditions of the Antarctic ice sheet (see section 2). The ice 
velocity is increasing monotonically from the bottom of the 
ice to the surface. Most of the increase with he ight occurs 
within the lower half, whereas the ice velocity is almost 
constant within the upper half. The temperature is 
increasing monotonically from the surface down to the 
bottom, reaching the pressure-melting point over large areas 
(see also Fig. 4). The temperature gradients at the surface 
are generally smaller in relation to bottom gradients. Where 
the velocity is small, the temperature gradient is almost 
constant, as is to be expected for a stationary state if heat 
conduction is the only mechanism which can distribute heat. 
Since the bottom of the ice is at or near the melting point, 
the isolines of temperature within the ice follow the bottom 
topography to some extent. 

An evaluation of the ice-flow model is obtained by 
calculating the divergence of the vertically integrated fl ow, 
which should be equal to the observed accumulation rate, 

Fig. 3. Hatched areas show negative model divergence 
(convergence) of the vertically integrated flow. 
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provided that the Antarctic ice sheet is in a stationary state. 
In Figure 3, the sign of the (stationary-state) divergence in 
the model is shown (it is negative in the hatched areas). In 
the central areas of the ice sheet, the magnitude of the 
divergence in the model (5 cm a-I) is near the observed 
accumulation. However, some areas have a negative mass 
balance. These areas can generally be identified as the 
convergence areas of the vertically integrated mass flux, and 
are probably due to ignoring basal sliding. The negative 
values of the mass balance at the very edge of the 
Antarctic ice sheet may be attributed in part to 
underestimating the surface gradient there (due to coarse 
horizontal resolution). 

The resulting bottom temperature is of special interest, 
because it may control the occurrence of basal sliding , 
which can contribute considerably to the ice flux . Just small 
changes in the bottom temperature determine whether there 
is melting at the bottom or whether the ice is frozen to the 
bedr0ck (the hatched area in Fig. 4). The bottom 

k-B 

180 0 

Fig. 4. Hatched areas show where the model ice is frozen 
to the bedrock , and dots give the locations of observed 
sub-ice lakes. 
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temperature of the model is Quite consistent with the 
location of sub-ice lakes (the dots in Fig. 4) as observed by 
Oswald and Robin (1973) . A comparison of the patterns in 
Figures 3 and 4 shows that areas of negative mass balance 
generally lie in regions where the pressure-melting point has 
been reached . This opens up the possibility of correcting 
the ice flow by adding some parameterized form of basal 
sliding, which also depends on the basal water flow . The 
production of melt water can be calculated directly from 
this ice-sheet model. 

4. CONCLUSION 

In this paper, a preliminary version of a three­
dimensional model of the Antarctic ice sheet is presented; it 
includes the fully coupled fields of velocity and 
temperature. The present version of the model does not 
include basal sliding and excludes the ice-shelf regions. The 
results shown are for an almost stationary state of the 
model, which is reached after 150 000 years. The 
calculations for the stationary state cannot yet be used to 
prove the usefulness of the model for describing the future 
evolution of the Antarctic ice sheet. However, a lower limit 
for the necessary degree of complexity of such a model can 
be given: 
(i) For time-dependent calculations, starting with some 
initial conditions, the surface topography has to be known 
fairly accurately. Otherwise the vertical velocity component 
will include a large degree of error, at least within the first 
1000 years of integration time. For longer time integrations , 
these initial disturbances will even out. 
(ii) The model has to include the temperature dependence 
of the flow. This is already clear from the flow law 
(Equation (2», where the temperature-dependent factor 
A(T') varies by two orders of magnitude within the 
temperature range -30

0 

to O°C. Only those calculations 
which take into account the vertical structure of the 
temperature field will yield the observed accumulation rate 
of about 5 cm a- I in the interior of the Antarctic ice sheet 
that is necessary for a stationary state. 
(iii) The three-dimensional temperature and velocity field is 
crucial also for estimating the temperature at the ice 
bottom, which decides whether basal sliding will occur. 
Since the bottom temperature also depends on th e 
geothermal heat flux (which is only poorly known), it may 
also be necessary to calculate the temperature distribution 
within the bedrock, especially in transient situations 
(MacAyeal and Thomas 1980). 
(iv) Some parameterized form of temperature-dependent 
basal sliding has to be added. The omission of sliding 
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probably accounts for the areas of negative mass balance in 
Figure 3. In these regions, the bottom temperature is also 
at the pressure-melting point. Thus the next modeling step 
will be the use of a parameterized form of basal sliding 
(Budd and others 1979), including a continuity equation for 
the basal water flow. 
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