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Abstract

A monodromy theorem for homomorphisms of local groups into groups is proved. It follows that under
suitable conditions the universal group of the local group depends only on the germ of the local group (up
to natural isomorphism).

1980 Mathematics subject classification (Amer. Math. Soc.): 22 E 05.

0. Introduction

The monodromy theorem of Schreier for topological groups is usually proved by
means of the theory of covering spaces (see, for instance, Chevalley (1946) or
Pontrjagin (1939)). Such a proof cannot apply to local groups, but it is plausible that
a similar result might be proved by elementary considerations of path-deformation.
In this note I construct such a proof, in some degree of generality: because of
potential applications to questions of analytic extension of the Campbell-Hausdorff
formula I have allowed the local groups to be asymmetric, and in view of results of
Ganea (1951) I have included the possibility that the local groups are not themselves
path-connected, but densely embedded in others that are. In the principal arguments
I have introduced certain rather involved hypotheses of'convexity' (see (2.8)), which
seem to be useful in improving the customary numerical estimates for Banach Lie
algebras, although I do not discuss that topic here.

In Section 1 I give preliminary definitions, and in Section 2 discuss technical
prerequisites for the main arguments, which follow in Section 3. (Throughout the
paper I have suppressed the proofs of the more mechanical and tedious auxiliary
results.) In Section 4 I draw conclusions, and comment specifically on the case of
local Banach Lie groups (4.6).
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258 C. J. Atkin [2]

1. Preliminaries

(1.1) A local topological group, or local group, is a sextuple

r = (V,e,Q,R,fi,v),
where

(I) Kis a topological space,
(II) ee V(e is the base-point of the based space V),

(III) Q is an open subset of Vx Fand n : Q -> Fis a continuous map called
'multiplication',

(IV) /? is an open neighbourhood of e in Fand v : R -> Kis a continuous map
called 'inversion',

and such that
(V) for all veV,{e,x)eQ and (x,e)eQ and

lAe, x) = /x(x, e) = x,

(VI) if (a, b) e Q, (b, c) e Q, {^a, b), c) e Q, (a, fj(b, c))eQ, then

(VII) for all xeR, (x,v(x))eQ and (v(x),x)eQ and

lAx,v{x)) = e = v(v(x),x),

(VIII) for all xeR, v(x)eR and vv(x) = x,
(IXR) for each x e V, there are open neighbourhoods Me of e and Mx of x such

that Me x {x} £ Q, and the map

maps Me homeomorphically onto Mx,
(IXL) for each xeV, there are open neighbourhoods Ne of e and Nx of x such

that {x} xAfe£g, and the map

y H-fx(x,y):Ne^V

maps Ne homeomorphically onto Nx.

(Me in (IXR) and 7V? in (IXL) may be called respectively right and left x-translation
domains for F.)

(1.2) This definition is slightly more general than usual—compare, for example,
Swierczkowski (1965): normally one postulates symmetry, that is, that R = F(the
axioms (IX) are in effect substitutes for this), and also a stronger version of the
associativity axiom (VI). (In fact (VI) could be weakened here to certain special cases
sufficient for Lemma (2.1).) The usual axioms easily imply mine, and it is also readily
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[3] Monodromy in local groups 259

proved that (IXR) and (IXJ are equivalent when Fis connected and (I)-(VIII) are
given.

The symbol F with any affix is always to denote a local group in which the same
affix is attached to every component of the sextuple. I shall regularly confuse local
groups F with their underlying spaces V, for the sake of notational convenience.

(1.3) I \ is a local subgroup of F if Vx is a subspace of V, ex = e, Ql £ Q, R^ S R,
/*i=HGi> V I = V | ^ I - ^ is a / "" local subgroup of F if in addition
Ql = (J/j x VJn [i~ i(Vi). It is inversively full in F if it is full and
/*! =RnV1nv~1(RnV1).

A portion of F is an inversively full open local subgroup. An open neighbourhood
U of e in F admits a unique local group structure making it a portion F| U of F. It
usually admits many weaker structures in which it is a local subgroup. Note that not
every based subset of F admits the structure of a local subgroup, but it must if it is
open or discrete in F.

The local subgroup F t is replete in F if Qx = (V1xVl)nQ.

(1.4) Let F and F be local groups. A homomorphismf: F -> F is a triple (/0, F, F),
where /0 : V-* V is a function (not necessarily continuous) such that fo(e) = e',
(/o x/o)Q £ Q'JoW S *', and /i'(/o x/o) =/o ^ V/o = / 0 v.

In particular F may be a group G, with the discrete topology and the group
multiplication and inversion.

(1.5) Given a set S, let S* = S x {— 1, +1}. Elements of S are written xe;xeS is an
'atomic term' and e is a 'formal exponent'. Define F0(S) = (J), Fn(S) = (S*)",
F{S) = (J"=ofn(S)- F(S), the set of unreduced associative words on S, admits
composition by juxtaposition and the involution

w Kw:(s£jl,s|2,...,sJ«) t->(sr\...,S2C2,SiCi).

c: F(S) -> F(S) is the operation of successively removing all 'cancelling pairs' (x£, x~£)
from the word w. The final result c(w) does not depend on the choices involved, and
c{F(S)) = G(S) is a group (the free group on S) whose multiplication is given by
juxtaposition followed by cancellation. See, for instance, Kurosh (1960).

(1.6) Let now M0(S) = (0,0), M^S) = S*x {1}, and thereafter inductively

Mn+ ,(S) = l(Mn{S) x \J'mm0 Mm(S)) u (Ur=o MJS) x Mn(S))T * {n +1}-

Ma(S) is the set of nonassociative words on S of 'order' n. The order is the last
component; its purpose in the formal definition is to ensure the sets Mn(S) are
disjoint as n varies, but it may evidently be ignored in notation, provided the
elements of S are unambiguously named by atomic terms. I shall always write, for
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260 C. J. Atkin [4]

instance, (s^sf,2)*3 in place of (((s\\ l),(s|2,1))",2). Set now

M(S)=[J?=0Mn(S).

There is a map n : M(S) -> F(S) ('removal of brackets'), which is defined formally
as follows : n{(J)) = (J>, 7r(s£) = sE; when n is a positive integer and (w1; w2) e Mn + ^S),

(The dots denote juxtaposition in F(S).)

(1.7) Define Mr(S) c M(S) as the set of nonassociative words of the form

\— \\\Xl >X2 ) >X3 ) >—>Xn-l) >Xn )

(a formal inductive definition is easily supplied). These may be called right direct
words. Similarly one has the set M\S) oileft direct words, of form (x ̂  \ (x2 \ (x^1,...,
(x^ij, x^ x ) + 1 ) + x)...)+ \ It is natural to omit the writing of formal exponents when
they are + 1 .

Notice that if/: Ŝ  -»S2, there are induced transformations of all the above
constructions, which are inclusions when / is. I shall write them in the obvious
fashion : G(f): GiSJ -> G(S2), and so on.

(1.8) Let now F be a local group. Define the set eM(F) of evaluable words in M(F),
and the evaluation map

E{ : F) : eM(F) -• F,

as follows:
(i) q>eeM{T) and E{(J) :T) = e.
(ii) If x e V, then x£e Mj(F) is evaluable in F if and only if either e = +1, when

£(xc : F) = x, or e = — 1 and xeR, when E(xc : F) = v(x).
(iii) If n > 0, then (wl,w2fe Mn + 1 (F) is evaluable in F if and only if both w j and

w2 are evaluable in F, and (£(w! : F),£(w2 : F))eQ, and either £ = + 1 , in which
case

1 : F ) , £ ( W 2 : F)),

or e = — 1 and /i(£(wi : D> E(w2: F)) e R; in this case

£((w,, w2f:F) = vW£(w, : F), £(w2: F))).

Thus a word is evaluable in F if it prescribes a sequence of operations that can in
fact be performed in F. The topology of Kis irrelevant to this. A homomorphism
/ : F t -> F2 induces a transformation M(f) which preserves evaluability and
commutes with evaluation, that is : for any weeM(Fi), M(f) weCM(F2) and

E(M(f)w : F 2 ) = / ( £ ( w : F^).
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[5] Monodromy in local groups 261

As both Q and R are open and \i, v are continuous, it follows that any word
w e eM(F) will remain evaluable if each atomic term suffers a sufficiently small
perturbation. How small the perturbation must be to ensure this depends, of course,
on w.

(1.9) A word weF(T) is associative (in T) if, whenever vltc2eM(r) and
TivJ — 7t(t;2) = w, then vu v2e

eM{F) and

E(Vl : D = E(v2 : T).

An element w of M(F) may be called associative if n(w) is associative. (Notice that
associativity is a very strong condition; axiom VI, for instance, asserts something
weaker.)

2. Technical prerequisites

(2.1) LEMMA. Let KUK2 be compact in T, with Kx x K2 £ Q; let A be a
neighbourhood of i^K^xK^ and U a neighbourhood of e. Then there is a
neighbourhood Wofe such that, for certain neighbourhoods Bt ofK^ and B2 ofK2, the
following conditions hold.

(i) WcRandv(W)= W.
(ii) Any word v in Fp(F) whose atomic terms all belong to W with the possible

exception of at most two, the exceptions having positive formal exponents and
belonging to Bt and/or B2 in that order (that is: if there is one exception it may belong
to either B^ or B2, but if there are two, that further to the left belongs to Bt and that
further to the right to B2), is associative, for any natural number p < 12, and its
evaluation belongs to A.

(iii) E(7i-\Fll(W)):r) = Z<=U.
(iv) ti(Z x K,) u (K, x Z)) £ BJor i = 1,2.
(v) Z is both a right and a left x-translation domain for any x e / ^B! x B2), and

ftWx {x}) £ M W x Z), n({x} xW)GAZx {x}).

The conditions given are intended to be sufficiently strong for all later
applications of results of this kind. A neighbourhood of e satisfying them will be
called a W(KUK2,A, U,F).

(2.2) LEMMA. Let T be a local subgroup of T; suppose K is compact in T, and
e e K £ 5. Then there is a neighbourhood D of e in T such that, for certain
neighbourhoods Wo, Wu W2 ofe and A ofK in f, the following conditions are satisfied.

(i) Wo £ R and v(W0) = Wo and A £ R.

https://doi.org/10.1017/S144678870002125X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002125X


262 C. J. Atkin [6]

(ii) Ifwl,w2,w3e Wo and xeK, then the words in F(T)

(w1,w2,x,x~1,w3) and {w1,x,x'1,w2,w3)

are associative.

(iii) Wi is a W({e},v(K),W0,t,T% and W2 is a W^e^K^W^t), and D is a

W{{e},K,A,W2,t).
(iv) W1nV^R. (Note that Vis a subspace ofV.)
(v) For any xeA, we W2, vfi(x, w)ep(Wi x v(x)) and vfi(w,x)e/2(v(x) x Wx).

A neighbourhood D of e in f satisfying the above conditions will be called a
D(K, F, F). Notice that F enters only in (iv) and that a D(K, F, F) is automatically a
D(K, f ,f) .

These two lemmas will be used constantly. Their proofs are easy but tedious
deductions from the axioms.

(2.3) LEMMA. Let Tbea dense replete local subgroup off, arid xeT. IfU is a left x-
translation domain for T, then U nV is a left x-translation domain for F and
H({x}x(UnV)) = fr({x}xU)nV.

PROOF. The result is immediate if it is known that

By repleteness, {x} x (U n V) £ Q, so that certainly

fj({x} x(Un V)) £ ft{x} xU)nV.

Suppose now that ueU and z = p{x,u)e V. I show ueV.
Let Tbe a W({x}, {«}, f, f, f) such that To Fis a W({x}, {u}, T, T, T). Then te T

will lie in V if and only if jj{z, t)e F(since T is a left z-translation domain for both F
and f, by (2.1)(v)); or, by (2.1)(ii),

(1) t e T if and only if p(x, p(u, t)) e V.

Suppose, if possible, that u£ V. Then /i(u x T) is a neighbourhood of u in Fand
must meet V. Let y e T be such that fi.(u, y)eV. If yeV, then, as T is replete in T,

u = Jj{il(u,y),v{y))eV.

This contradicts the hypothesis, and so y $ V. But £(u, y) e V, and consequently, by
repleteness, Ji(x,]x(u, y))e V; however, ye T, so there is a contradiction with (1). Thus
w e V, as required.

(2.4) LEMMA. Suppose F is a dense replete local subgroup of the connected local
group r . Then, for any neighbourhood U of e in F,

V= E(eM(T) n Mr(t7) : F) = £(eM(F) n M'(t/) : F).
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[7] Monodromy in local groups 263

PROOF. I shall prove the first equality. Suppose first that r = F, and let 0 be a
neighbourhood of e in V. Define

P = E(eM(F)nMr(U) : f).

Take any y e V, and let W be a W{{e], {y},T, U, F). By (2.1) (associativity and the fact
that v( \\) = W), one sees that z e jj(y x W) if and only if y e £(z x fV). Thus y e P if and
only if 2 e P. But jj{y x W) is a neighbourhood of y; hence P is open and closed in V,
and, as e e P, it follows that P = V.

Now suppose that F is merely dense and replete in f. Let y e V. Choose U to be an
open neighbourhood of e in T such that U nVis included in U, and let W be a
W({e}, {y}, r , L/, F) as before. Then, as already shown, y is the evaluation in F of a
right direct word w on V. Perturb each atomic term of w so as to lie in U, but by so
little that the perturbed word W remains in Mr(U)n eM(T) and

x = E(W : t)ep(yx W).

Thus there is q e W such that y = p(x, q), by (2.1X0, (»)• Since F is replete in f and W is
a word on Fevaluable in T, it is evaluable in F and xeV. But now by (2.3), q e Wn V,
and so

y = E((w',q) :F),

again by repleteness. As Wn V £ U, this completes the proof.

(2.5) LEMMA. Suppose eeK £ R and K is compact. Let Wbe a D(K, F, F). Then, for
each xeM(KXW)KJ(WX K)) andweW,

v(/i(w, x)) = /z(v(x), v(w)) and v(/i(x, w)) = Mv(w), v(x)).

PROOF. By construction, both sides of the equation make sense. From property
(2.2)(v) (with W1 as there introduced) v//(x) e/z(v(x) x WJ, so that
vfj{w,x) = /i(v(x),w1) for some unique Wj in Wt. Hence

so that

as required.

(2.6) LEMMA. Suppose Kisa connected compact subset ofR containing e, and F is a
dense replete local subgroup off. Let Wbe a D(K, F, f). Then v(Vn p{Wx K)) £ V.
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264 C. J. Atkin [8]

PROOF. Consider P = {xeK: v(Vnfi(Wxx)) V). If, for i = 1,2,
at = fi(wi, x)e Vn fi(Wx x) where wt e W, then a2 = /i(w, a j , where w = /2(w2, v^)) .
Taking U = }i(Wx W) in (2.3), it follows that weV. Now by (2.5)
v(a2) = /i(v(a1),v(w)), where, as we/?, i^w)eK By repleteness, v(a2)e V whenever
viaJeV. Hence, in fact, v(Kn p{Wx x)) n F # <?) only if v(Fn /i(Wx x)) £ K Thus P
is open and closed in K. Since, evidently, e e P, it follows that P = K as required.

(The argument also shows that v(R0 n V) £ V, if Ro is the component of e in R.)

(2.7) Establish once and for all the following notation : reading £ to mean 'is a
local subgroup of, I always assume

T £ r° £ f1 £ f2

Ul Ul Ul Ul

r £ r° £ r1 £ r2

where T is dense in f, T° in f°, and likewise T1 in f1, T2 in f2.
In much of what follows, definitions and theorems have both right- and left-

handed versions. In general, I shall state and prove only one version.

(2.8) DEFINITIONS, (i) T0 is (left) 0-convex in (f°, T1, f2) if, whenever q : I -> V° is a
path with <jf(O) = e, q(l) = y e V°, and (x, y)G Q°, there is a path p: I -*V° such that
p(0) = e, p(l) = y, x x p(/) £ Q1, and p and q are homo topic as paths from e to y in
V2.

(ii) r ° is (left) 1-convex in (P°, T1, V2) if, whenever p and q are paths in V° such
that p(0) = q(0) = e and

and r : / -> F1 is defined by : r(t) = p(2t) for 0 ^ t ^ i r{t) = jxl(p(\),q(2t-\)) for
i < t ^ 1, —then there is a path s : / -> F° with s(0) = e and s(l) = x = r(l), such
that s and r are homo topic as paths from e to x in V2.

(iii) F° is inversively convex in (F0, F2) if, whenever p is a path / -> K° such that
p(0) = e and p(l) = xeR°, there exist paths q : / -> R2 and r : I->V° such that,
firstly, q(0) = e, q(l) = x, and q,p are homotopic as paths from e to x in V2; and,
secondly, r(0) = e, r(l) = v°(x), and r,v2 °q are homotopic as paths between e and
v°(x) in V2.

(iv) r° is (left) convex in ( r° , f ' . f 2 ) if it is (left) 0-convex and 1-convex in
(f°, f1, f2) and inversively convex in (f°, T2).

These conditions set out precisely what is used in the sequel; but, despite their
complexity, they should not be substituted too lightly by the simplified conditions I
give next. There are circumstances, in local Lie groups for instance, where the
simplifications can lead to much weaker results.
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(2.9) The based subspace (X,e) of the based space {Y,e) may be called path-
connected in Y if every point in X may be connected to e by a path in Y. Likewise X is
simply-connected in Y if every loop at e in X contracts to a point in Y.

(2.10) LEMMA, (i) F° is (left) 0-convex in (f°, fl, f2) whenever F ° x K ° £ Q1.
(ii) r ° is (left) l-convex in (f°, f1, f2) whenever V° is path-connected in F° and F 1

is simply-connected in V2.
(iii) r ° is inversively convex in (T°,T2) if R° is path-connected in R1 and F 1 is

simply-connected in V2.
(iv) r ° is (left) convex in ( f ° , f \ f 2 ) if V° is path-connected in F°, R° is path-

connected in R1, F° x F° £ Q1, and V1 is simply-connected in V2.

(2.11) DEFINITION. Suppose p. I -> Vis a path with p(0) = x e Fand p(l) = ye V,
and let U be a neighbourhood of e in V. Then a D-approximation of p in Fis a finite
sequence ((th a,))0<I<m, for some natural number m, where, for each i, tt e / and af e V,
and 0 = t0 < tt < t2 < ... < tm = 1, a0 = x,am = y, and for 1 < i < m,

«,-£ ^ fU- , , rm] £((P(0 * &) H (5),

whilst

x = a0 e Vn n,6to,,,iA((p(0 x 0) n Q)

and

y = a B e F n f l . ^ - M i ^ W O x C/)n Q).

(Strictly speaking, this is a Ze/t (/-approximation of p in V. Note that a U-
approximation of p in Fis automatically a t/j-approximation if U £ D^.)

(2.12) Given p and 1/ as above, there always exists a [/-approximation of p in K
Let Uo be a W(p(/), {e}, V, U, f); then the class

{inV/i(p(s)xt/0):S£[0,l]}

is an open cover of p(I). Choose 0 = t0 < tx < ... < tm = 1 such that, for each i,
0 < i < m, there is some s, e [0,1] with

P[tf, t,-+ J £ intp./i(p(Si) x C/o).

Now let <x0 = x, am = >», and, for 1 ^ i < m, choose

a(e Vn JHp(Si-I) x Uo) n /iOKs,) x t/0).
This suffices.

For brevity I shall say that ((tf, a,))0 ̂ ,- <m is a fine U-approximation ofp in Vif it is in
fact a t/j-approximation for some set U\ which is a W(p(/), {e}, V, U, T). Then (2.1)(v)
and (2.3) lead to the conclusion that, if T is replete in F and ((t,, a())0 ̂  f <m is a fine t7-
approximation of p in F, there are, for each relevant i, unique points ft and $ in
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266 C. J. Atkin [10]

U n F(in fact in ^(t/j x Ux) n V) such that

The words

(((... (P0J1),P2),...)Jm-l) and (/t,-1,(ft,_2,(...(j9'1,/ro))...))

are respectively the right and left direct words (in M(U n V)) associated with the U-
approximation.

(2.13) PROPOSITION. Suppose p : / -> 7° is a par/i wit/i end-points e, a in V°. Let T
be full in f, which is open in f °; let F° be replete in F°, and /ef K= Vn V°. Suppose
g : F -* G is a homomorphism of F into a group G.

Let U be a neighbourhood of e in Vsuch that U xU £ £>, and suppose wltw2 are
right direct words associated with fine U-approximations ofp in V° and w3 is the left
direct word associated with some further fine U-approximation ofp in V°. Then wuw2

and vv3 lie in M(F) and

E(M(g)Wl :G) = E(M(g)w2 : G) = E(M(g)w3 : G).

PROOF. AS V= Vn V°, the assertion that wuw2,w3eM{r) follows from the
construction (2.12). I begin by proving the first equality.

(2.14) Suppose that Wj (where j = 1,2) is associated with the P^-approximation
((t{, af))0<u»y o f P i n F ° ' w h e r e ^Jis a WW\ {«}, V°, U, r°). I may clearly construct,
as in (2.12), a i f , n P^-approximation ((fpa.OX)^,,, such that the subdivision points
(t() include all the {tf}. Thus I may assume in the proof, without any loss of generality,
that Wx = W2 = Wo and that every t\ is a t\; in fact I may write t\ = ^(I), where
fe(0) = 0, k(i) < k(i + l) for each i, and / c ^ ) = m2.

Now, given i, 0 ^ i < mlt and k(i) < k < k(i+ 1), let l;k be the unique point of U
such that a£ = /i°(a/,4)- (Thus ^0 = £,mi = e.) When k = k(i + l), let &(i+1) be the
unique element of U with

a « i i = £ > / & < ( 1 ) )

By construction (compare (2.1), (2.12), (2.3)), the points (k, £'t(i+1} all lie in U n V°,
and so in V.

But, when k{i) ̂  k < k(i +1),
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[11] Monodromy in local groups 267

by virtue of the associativity guaranteed in (2.1). Hence

(i) 4+1 = £°(4, Pi) = ftt* Pi) = M&, Pi),
since, in the first place, 4 and Pi lie in U, so that their product is defined in F, and,
secondly, 4+1> £*> Pi a ^ belong to V, which means I can apply fullness of F in f to
write n instead of/i.

When k = k(i+1)-1, likewise

(2) 4(i + 1) = M4(i+ 1)- 1' Pk(i+ 1)- l) = fAPi' 4(i+ 1))-

Now define, for 0 < i < mu

and, for i = 0, let w1!01 = w(
2
0) be the empty word.

Suppose 0 < r < wt and E{M{g){w?,l;m): G) = E{M(g)w? : G). Then

E(M(<7)w<2'
+1>: G)=E((M(g) ((. .-K\&U•••),&%+!,-i)): G)

= E(M(g)w? : G).E((M(g)((...(Pk
2
(r),Pl^1),-\P«r+i)-i)) •

However, g : F -» G is a homomorphism; consequently by (1) above

and so on inductively. Eventually

$+1(: G) = ( ,

= E(M(g) w?>: G). g (# , 4( r+1}) by (2)

Hence by induction (the case r = 0 being evident)

£(M(g)(wr,4,r)): G) = £(Mfo)wJ>: G)

for all r, 0 < r < mt. When r = mt this shows
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(2.15) Now I prove the second equality of (2.13). From what has already been
shown in (2.14) (and the analogous result for associated right direct words, whose
demonstration is here omitted) it is apparent that it suffices to prove the existence of
one fine [/-approximation of p in V° such that, if w,, w3 are the associated right and
left direct words respectively,

Given a fine [/-approximation ((^,oc|))0<i<m of p in V°, that is, a Uo-
approximation, where Uo is a W(p(I), {e}, V°, U, T°), there is for each i, 0 < i < m, a
unique continuous path

Pi:I^ji0(U0xU0)

such that for all T e I

p(Ui+ j +(1 - T ) t,) = A*Xt,),PiW)-

Let Ui+l be defined inductively as a W(p,{I), {e}, V°, Ut, t°); choose a Um-
approximation((TJ-,aJ))0^<nofpinF°sothat,for0 ^ i < m,f, = rm (where;(O) = 0,
j(m) = n, and j is strictly increasing) and ((TJ(0, aJ(i)))0<Uin is simultaneously a fine U-
approximation of p in V°. This is clearly possible, as V° is dense in V°.

Let

be the right direct word associated with (((„ aJ(i))),

(((••• (yo.7i).72).-),V«-i)

be the right direct word associated with ((T,-, a,)),

be the left direct word associated with ((T;-, a,)). Write also, for 0 ^ k < n,

wf = ((-(yo^i\-l7k) (notice w\n~l) = w,),

w?' = (^,(...,(^1,50))...) (notice w r 1 * = w3).

Thus E(M{g)w™ : G) = E(M(g)wf): G), since <50 = y0 = a0.
Suppose now that 0 ^ q < m and j(q) ^ k <j(q+ 1), and define uniquely

° D /, for 0 < / ^j(q+ l)-j(q), by

Then the homeomorphisms assured by the construction (cf. (2.1)) show that ((T?, a?))
is a fine [/-approximation of pq, and that the associated right direct word is
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((••• (?/<,),yM+1)>•••),7j(,+ D - i)- This word is therefore evaluable in F (cf. (2.12)), and,
as all the terms and all the partial products lie in V, it is in fact evaluable in F.

Let pi = £(( ( . . . (y m ,y m + 1 ) , . . . ) ,y J ( q ) + , ) : F). If / = 0, then <xM)+1 = p.°(am, pq
0) by

the definitions. Suppose / <j(q + l)—j(q)—l and <xj(q)+l +1 = A*0(aj(«)»Pi)- Then

a = /* ( a i

by virtue of the associativities given by the construction. The products actually exist
in F, so we may write fi in place of ft0.

Next, by construction of Um, there must be a unique element of Uq, say yjiq)+i+1,
such that

(as above. For the existence, cf. (2.1)( v).) As T0 is replete in f ° , y^ , , + l + l eV° (see (2.3))
and so y^q)+i+1 e C7, n V, when we recall that V° nV= V.

In turn there is a unique yj(,)+i+16 &,-i such that

(Certainly i?,-i x t/, — § by construction; as F° is replete in T°,

fullness of F in f shows the product may be taken in F). By (2.3), y](q)+l+1e(/rlnK
This procedure may evidently be repeated, giving y'jiq)+i+1 e (7,_, n KforO < t ^ q,

such that My}(«)+;+i>/V«) = M^-t.vW+'+i)-
Now suppose that ^ (M^Jwf : G) = £(A%)w?>: G). Then

£ ( A % K + 1 ) : G) = E(M(g)((~Miq)-l\yml-),yk\yk+i))• G)

^ - 1 : G).g(E((...(yM),ym+1),...),yk)): r).g(yk+l)

(since 3 is a homomorphism; recall (1) above)

= E(M(g) wV<*>- »; G). <

1 J - 1 ) , yHq_!,),...), y M ) _ , ) ) : G)
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(by the same argument as before)

(yMq),...),yk)): G)

and so on, passing yk+! across the p"s one by one, until finally

) • E(M(g)«... (y0,7l),...), yM)_,)): G)

= g(y2+1).E(M(g)wf:G)

(by the inductive hypothesis)

Thus the inductive step, showing that

£(M(g)w?+1): G) = E(M(<7)w<*+1): G)

(and so completing the proof of Proposition (2.13)), will follow if I demonstrate that
7k+ I = 4+1- This proof in effect repeats the above argument, with evaluations in F
instead of G : using the associativities assured by construction,

Next,

and, by induction as before, passing yk+l over the p"s one by one,
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and ultimately

(It should be observed that each associativity has indeed been arranged in the
construction.) But therefore the definition of «5k+1 means that Sk+l = y£+1, as
required.

N ote that the assumption that p(0) = e is not used in (2.14), but is essential in (2.15)
to start the induction.

(2.16) PROPOSITION. Suppose T, f, r ° , f ° , G,g, U are as in (2.13). Let p0 and p , be
homotopic paths from etox in V°, where x e V°; let w0 and n^ be the right direct words
associated with fine U-approximations o/p0,Pi respectively. Then

PROOF. By (2.13) it suffices to exhibit any fine U-approximations of p0 and p t for
which the associated direct words give the stated equality. Let P : I x I -» V° be a
homotopy between p0 and pu so that P(t,0) = po(t),P(t,l) = p^t), P(0,t) = e,
P(l, t) = x for all t e /. Choose l)0 to be a W(P(I x /), {e}, V°, U, f°). Now choose
0 = s0 < Sj < s2 < ... < sm = 1,0 = t0 < ty < ... < tm = 1 so that, for each (i,j) with
0 < i,j < m, there is some (<T,J, T,J) e / x / with

^([tpti+i] x [s^,sj+1])c iatv0{JJf{P{alj,Tlj)x Uo)},

and select

with the agreement that for all;, a0 j = e and am>J- = x. Then ((tj; af 0))0 ̂ i<m is a fine L/-
approximation of p0 in F°, and ((ti,ajim))o^1<m of p, . Let the associated right direct
words be w&Wy.

Define ptJ and y(j (for the relevant i,j) by taking them to be the unique elements of
UnV° £ K such that

«i +1 j = fr°Kj, Pi,jl a,-,j +1 = AVi j . ytJ)-

Notice that yOj = ymj = e for all;.
Now by associativity compare (2.13))

KPij,7i+1j) = tiytj, AJ +1) for 0 ^ i,j < m.

Next, for 0 < j < m, 1 < i < m, set

»ij = ((••• (fioj>Plj\ •••)> Pi- 1 j)> Vij)' ^ i j+ l)> -)» ^m- 1J+ l)
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and

»-j = (.(-(PojJi,jlP2,j),-)Jm-i,j) for 0 < j < m,

vo,j =((-(yo,jJoj+i)Ji,j+il~)Jm-ij+i) for 0 <;•< m.

Then, if 0 ^ ; < m and 1 < i < m — 1,

E(M(g) vtj : G) = E(M(g)((...(p0JJuj),...)Ji_1J)): G).g(yu)

. g(piJ+1). E(M(g)((...(ft+ l J + „ . . . ) ,Pm_l J + , ) : G)
and

g(7ij) • g(Pi,J+1) = giriiij, PiJ+1)) = g(Pij) • g(yi+ ij,

so that
E(M(g) vtJ : G) = E(M(g) vi+ UJ: G) for 0 < i < m - 1 .

When i = m — l one has likewise (since ymJ = e)

E(M(g)vm-UJ: G) = £(A%)(i;^ym>J.): G) = E(M(g)vmJ : G).

Finally,

£(A%) P.J : G) = £(A%) » m J + 1 : G) for 0 < j < m, as y0j = e.

Thus £(M(^)ri7-: G) is independent of i and j ; as w0 = t;m0 and vvt = t;m0, this
proves the result.

(2.17) PROPOSITION. Suppose T, T, r ° , f ° , G, g, 1/ are as in (2.13). Let q : I ->«° be
a pat/i wit/i ^(0) = e and q(l) = ae R°. Let v, w be respectively the left and right direct
words associated with fine V -approximations of q and v°°q in V°. Then

E(M(g) v:G) = E(M(g) w-.G)'1.

PROOF. By (2.13) it is only necessary to prove this for a particular choice of fine U-
approximations. Let W be simultaneously a W(q(I), {e},V°,N, f°) and a
VF(v°og(/),{e},F0,JV,r°), where N £ U is a /%(/), T, T0) and a
W{q{I\ {e}, V°, 0, f°). Now choose 0 = t0 < t t <... < tm = 1 so that for each i there is
5,6/ with

x «)} n int^0{/i0(J

Let oc0 = e, ccm = a, and for 0 < i < m select

a,e F° n / i 0 ^ , - - , ) x WO n fi°(q(Si) xW)n jio(Wx q(Si_

Thus ((t;, a,))0<i<m is a fine [/-approximation of q in K°. Let the associated left direct
word be

V=(Pm-i,(Pm-2A-,(P2,(P1Jo))-)))•
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Now by construction compare the conditions (2.2X0, (iii) and (2.1Xii)) each a, 6 ft0.
From (2.6) (taking K = q(I)) it follows that vo(af) must lie in V° for each i. Also, by
(2.5), for all t e / ,

v° fi°(N x q(t)) = (t°(y° ° q(t) x N)

However,

P°{Nxq(t))
]

by construction (compare (2.11), (2.12)). Thus

v>i) eV°n f] fi°(v° o q(t) x N),
te[ii-i,ri+ij

so that ((t,, vo(a;))) is a fine {/-approximation of v° o q in V°.
Next, pteV (compare (2.12), (2.13)) and faeJPityx. W) £ N; hence by

(2.2)(iv), freR. Consequently by (2.5)

vo(ai+,) = vV0(A,<x() = AA«d,APi))

so that the right direct word associated with ((tf, v
o(af))) is

But now

E(M(g) w:G) =

as required.

3. The main argument

(3.1) PROPOSITION. Let an array of local groups as in (2.7) satisfy the further
conditions

(i) that T is full in f and F2 replete in f2,
(ii) that Vis open in V2 and V=Vn V2,

(iii) that Vis path-connected in V(compare (2.9)),
(iv) that r ° is convex in f°, f \ f2) (compare (2.8)).

Suppose that G is a group and g : F -» G a homomorphism; let U be a neighbourhood of
e in Vsuch that UxU £ (5.
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Then, given any w e M(F) n eM(T°),there is a path pw: 1 ->V° such that pw(0) = e,
pw(l) = £(w: F°), and, if v is any fine U-approximation of pw in V°,
E(M(g)v:G) = E(M(g)W:G).

PROOF. Notice first that axioms (1.1)(IX) ensure V°, V1 are open in V2, since Fis.
The construction of pw proceeds by induction on the order of w (cf. (1.6)). When the
order is 0, the constant path at e satisfies the requirements.

Next, suppose w = (a) e M^F) n eM(F°). By (iii), there is a path from e to a in V.
Let pw be such a path. A fine [/-approximation of pw in Fis automatically a fine U-
approximation in V° (cf. (2.11)), and the associated right direct word w' is evaluable
in F to a, by definition. As F is full in T by (i), w' is also evaluable in F to a. Since g is a
homomorphism,

as required.
Now suppose w = (w,, vv2), where wu w2 are of strictly lower order than w, so that

PHVPW2 are already defined. Recall that w€cM(F0); thus (pWl(l),pW2{l))eQ°. By (iv)
(see (2.8)) there is a path p' : I -»• V° such that

Pw.Wxrf^sS1. .
This means in turn that pWi and p'Wi satisfy the hypotheses of (2.8)(ii), and
consequently there is a path pw : / -» F° homotopic in K2 (with fixed end-points) to
the path rw, where

U O = P»,(2t) w h e n 0 < t < i ,

U O = A1(PwI(lXp'»2(2t-l))when i < t ^ 1.

Let Wbe simultaneously a V^rJJ),{e],V2, OS2) and a

Let ((£?, a J))o <1<m be a fine Pk-approximation of pWl in K°, with associated right direct
word

and let {(tf,<xf))0^^n be a fine (^-approximation of p'W2 in F2 , with associated right
direct word

v'2 =(((••• (PIP\)J2
2),...)J

2- !)•

Define t, = i t / for 0 ^ i < m; t, = i + i t2-m for m ̂ i ^m + n: a; = a/ for
O ^ i ^ m ; a, = ii2(ai ,a2_J for m < i ^ » i + n. (Note that (a^,,a?_Je§2 by
construction, since a^ = pWl(l) and pWl(l) x pW2(/) £ ^ 2 . See (2.1). As a^, af_m are in
V2, and F2 is replete in f2, it follows that <XjeF2.) By this construction I have
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ensured, via (2.1)(ii), (v), that the new sequence ((tj,a;))o<;i<m+n ' s a n n e t/~
approximation of rw in V2, with associated right direct word

where j8f = Pi for 0 ^ i ^ wi — 1 and pt = /??_m for m ^ i < m + n — 1. However, it is
clear from this that

E(M(g) v':G) = E(M(g) v, : G).E(M(g) v'2 : G).

Let v be the right direct word associated with a fine [/-approximation of pw in V°,
which will also be a fine (/-approximation of pw in V2 (cf. (2.11)). Thus, by (2.16),

E(M(g)v:G) = E(M(g)v':G).

Let i>2 be the right direct word associated with a fine [/-approximation of pWi in
V°; it will also be a fine [/-approximation in V2. By (2.16) again,

E(M(g)v2:G) = E(M(g)v'2:G).

Hence

E(M(g)v:G) = E(M(g)v, : G).E(M(g)v'2 : G)

= E(M{g)vi-G).E{M(g)v2:G)

= E(M(g)w1 : G).E(M(g)w2 : G) (by the inductive hypothesis)

= £(A%)w:G),

as required : so pw has been defined satisfactorily.
Finally, suppose w = (wo)~ \ where pwo has been defined (more formally, suppose

w = (wl5 w2)~x, where p(Wl,W2)± • has already been defined). Take p = pwo in (2.8)(iii);
certainly pW0{l)eR° as there required, since weeM(r°). Thus I obtain paths
q-.l^k2 and r : / -+ F°. Set pw = r. Then, by definition,

Pw(0) = e, Pw(l) = v°(£(w0 : Y)) = E(w : T).

Suppose «;„ is the right direct word associated with a fine [/-approximation of pWo

in V°, and let v be similarly associated with a fine [/-approximation of pw in V°.
(These are also approximations in V2.) Let vu v2 be respectively right and left direct
words associated with fine [/-approximations of q and of v2 <= q in V2. Then

£(A%) i;0 : G) = £(A%) t;, : G) by (2.16),

£(A%) v1:G)= E(M(g) v2 : G)~' by (2.17),

D : G) = £(A%) r2 : G) by (2.16).
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Hence

= E{M(g)w0 : G)"1 by hypothesis,

= E(M(g)w:G).

This completes the inductive construction of pw (cf. (1.6)).

(3.2) THEOREM. Suppose the hypotheses of (3.1) are satisfied, and also

(v) V° is simply-connected in V2 (as in (2.9)).

Let A be the portion of F° whose underlying subspace of V° is

Y = E(M(r)neM(T°) :r°).

Then there is a unique extension ofg to a homomorphism g : A —• G. In particular, ifV°
is connected and V° = V2 n V°, then g extends uniquely to a homomorphism

NOTE. V is open in V° by (3.1)(ii). Hence, applying (1.1)(IX) to F°,
£(M(F) n e M(r°) : F°) is open in V°, and, by (1.3), A is well-defined.

PROOF. Let w1; w2 eM(F) n eM(r°), and suppose

£(w, : r°) = x = E(w2 : T
0).

Take paths pWi, pW2 as in (3.1). They join e to x in V°, and so are homotopic, with fixed
end-points, in V2. Let vu v2 be right direct words associated with fine U-
approximations in V° of pwl,pW2 respectively; they are automatically fine U-
approximations of these paths in V2 as well. By (3.1),

E(M(g) Wl : G) = E(M(g) o, : G), E(M(g)w2:G) = E(M(g) v2 : G).

But, by (2.16),

E(M(g)vl:G) = E(M(g)v2:G).

Consequently I may define unambiguously: g(x) = E(M(g) w: G) for any
w e M(F) n eM(F0) such that E(w : T0) = x. Ifg is to be a homomorphism, this is the
only possible value for g(x). It only remains to show that g, so defined, is indeed a
homomorphism.

First, if x = E(w : r°)eR°, where w e M(F) n CM(F°), then
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and consequently

g(v°(x)) = E{M{g)(w,%-' : G) = E(M{g)w : G)"1 = (flx))"1.

Similarly, if (xj,x2) e Q°, and x, = E(wt : F°) for i = 1,2, then

/ ( x 1 , x 2 ) = £((w1,vv2).r0),

and so

= E(M(g)(wuw2): G) = £(Affo)wt : G). E(M(g)w2 : G)

as required. The final assertion of the theorem follows by noting that, if it is known
that V° = V2 n V° and that F2 is replete in f2, then r ° is replete in f °; hence
connectedness of V°, and the fact that Fis open in V°, show by (2.4) that A = F°.

4. Conclusions and comments

(4.1) DEFINITION. Let r be a local group. The universal group of F, written U(F), is
the group generated by the elements of V, with relations

x.v(x) = e foTxeR, x.y = fi(x,y) for (x,y)eQ.

That is, l/(F) = G(T)/N, where N is the smallest normal subgroup of G(F) containing
all the terms (x, v(x)) for xeR and ( y ' ^ x " 1 , ^ , y ) ) for (x,y)eQ.

There is an obvious canonical map Ur : F -» [/(F): x i-» (x) N, which the
definition of JV makes a homomorphism, and which is characterized up to natural
isomorphism by the following property : given any homomorphism g : F -> G, for
any group G, there is a unique homomorphism of groups g : U(T) -* G such that
g o ur = g. It follows that, for each homomorphism/: F -> A of local groups, there is
a naturally induced homomorphism of groups

[/( /) : V(T) - t/(A),

and that U is thus a functor from local groups to groups. The homomorphism U{f)
will be an isomorphism if and only if, given any group G and any homomorphism
g : F-> G, there is a unique homomorphism g:A->G such that g°f=g.

(4.2) THEOREM. Suppose F is a dense replete local subgroup of F, and
.4 £ Ao £ X! are path-connected open neighbourhoods ofeinV such that Ao £ R,
v(A0) £ Au Ao x ^40 £ Q, and fi(A0 x Ao) £ A^ and let At be simply-connected in V.
Then, for any group G and any homomorphism g : F | A n V-* G, there is a unique
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extension of g to a homomorphism g0: T\Aon V-*G. Equivalently, the inclusion
homomorphism of local groups, i: F | A n V-* F | Ao n V, induces an isomorphism of
universal groups, U(i) : l/(F 13 n F) -> U(T|Ao n V).

PROOF. Apply (3.2) to the array

T\A £ T\A0 £ T\l, £ T
Ul Ul Ul Ul

The hypotheses of (3.2) are satisfied (see (2.10)(iv), and note that repleteness of F in f
trivially entails fullness of F | A n Fin F | A). Thus the result follows from (3.2) and
(4.1).

(4.3) COROLLARY. Suppose H is a connected and simply-connected topological
group and H a dense subgroup. Let Vbe a path-connected open neighbourhood ofe in
H. Then, given any group G and homomorphism g :H\ Vn H -» G, there is a unique
homomorphism g :H ->G extending g, and, if i :H\ Vn H -» H is the inclusion
homomorphism, the induced homomorphism

T:

is an isomorphism of groups.

PROOF. Set Ao = Ax = H in (4.2), and note that U(H) is naturally identified with
H.

(4.4) COROLLARY. Let T be a simply-connected and locally path-connected local
group. Suppose AX,A2 are open connected neighbourhoods ofe in V such that, for
> = 1,2,

Ai £ R, A^A^ Q.

Then U(T | A t) and U(T | A2) are canonically isomorphic.

PROOF. Choose a connected open neighbourhood A of e included in both Ax and
A2. Then by (4.2) (taking F = f and A0 = Al = V) the homomorphisms
C/(F | A) -> U(T | At) induced by inclusion are both isomorphisms.

(4.5) The local groups in (4.2), (4.3), and (4.4) need not be symmetric; this is a gain
from the non-standard definition (1.1). Inversive fullness (see (1.3)) was not needed
because of (2.6).

Note that these corollaries are indeed very much weaker than the basic but
indigestible theorem (3.2). They are stated for portions : however, the 'natural' local
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group structure on, for instance, the subset {(x, y, z): 0 < (x — I)2 + y2 + z2 < 2} in
R3, is not that of a portion of R3, in which one could multiply across the deleted
point. The general convexity condition (3.1)(iv) also has its uses—see (4.6) below.

In the obvious cases, such as rational subgroups of unitary groups, (4.3) is a
weaker version (differing in certain formal respects) of a theorem of Ganea (1951). A
second result of Ganea (1953) should be compared.

(4.6) Let g be a real Banach Lie algebra : that is, a real Lie algebra furnished with a
norm which is submultiplicative with respect to the Lie bracket and makes it a
Banach space. Let B(r) denote the open ball of radius r about the origin in g. There
are universal constants k and / such that the Campbell-Hausdorff formula makes
B(k) a local group (including B(l)) in which the product of any two elements of B(l) is
defined. (4.4) now states that all connected portions of 8(fe) included in B(l) have
canonically isomorphic universal groups.

If g derives from a connected Banach Lie group ©(which need not be the case : see
Serre (1965), p. LG 5.41), then the universal group of any sufficiently small
connected portion of B(/c) is naturally identified with the universal cover of ©. In the
general case, I believe that the essence of my proof cannot be simplified, although
technical modifications are possible. For instance, (2.11)-{2.17) may be reformulated
in terms of the development in Kof paths in g (a 'differential' rather than 'difference'
argument); but such reasoning, using differential equations, requires completeness,
and so is less general than mine. Suppose, for example, that I) is a non-closed
subspace of g including the algebraic commutator subalgebra [g,g]. Dynkin's form
of the Campbell-Hausdorff formula defines a local group corresponding to h,
despite the lack of completeness.

If gcomes from a simply-connected group®, Lazard and Tits (1966) showed that
B(n) has a local group structure which embeds by the exponential in ©.
Swierczkowski (1971) pointed out that any Banach Lie algebra is the quotient (with
quotient norm) of one that enlarges to a Lie group. It may be deduced from these
facts that, in any Banach Lie algebra, B{n) may be given the structure of a local
group. Furthermore, if one employs the convexity hypotheses in (3.2), it follows that
any connected portion of B(n) has canonically isomorphic universal group. These
assertions are not trivial.

(4.7) The theorem of Lazard and Tits also says that the question whether g
corresponds to a Lie group is already determined in B(n). One may ask if there is a
general result of this kind for local groups, and it is easy to see that this amounts to
finding results such as (3.2) when G is only a local group. Now I have freely exploited
the hypothesis that G is a group in all my arguments : I have assumed that all
products in G are defined, and that they are all associative. It is fairly clear, however,
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that the restricted associativity of products given by (1.1)(VI) would suffice if we
restricted attention to continuous homomorphisms of local groups. On the other
hand, it seems difficult to ensure that all the products that are used in the proofs
actually exist in G. One might introduce a suitable notion of path-length, and
postulate that all homotopies used pass only through paths of appropriately
bounded length; but both statement and proof of such a theorem seem better left to
the imagination.
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