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Abstract
Developing an artificial design agent that mimics human design behaviors through the
integration of heuristics is pivotal for various purposes, including advancing design
automation, fostering human-AI collaboration, and enhancing design education. How-
ever, this endeavor necessitates abundant behavioral data from human designers, posing a
challenge due to data scarcity for many design problems. One potential solution lies in
transferring learned design knowledge from one problem domain to another. This article
aims to gather empirical evidence and computationally evaluate the transferability of
design knowledge represented at a high level of abstraction across different design
problems. Initially, a design agent grounded in reinforcement learning (RL) is developed
to emulate human design behaviors. A data-driven reward mechanism, informed by the
Markov chain model, is introduced to reinforce prominent sequential design patterns.
Subsequently, the design agent transfers the acquired knowledge from a source task to a
target task using a problem-agnostic high-level representation. Through a case study
involving two solar system designs, one dataset trains the design agent to mimic human
behaviors, while another evaluates the transferability of these learned behaviors to a
distinct problem. Results demonstrate that the RL-based agent outperforms a baseline
model utilizing the first-order Markov chain model in both the source task without
knowledge transfer and the target task with knowledge transfer. However, the model’s
performance is comparatively lower in predicting the decisions of low-performing
designers, suggesting caution in its application, as it may yield unsatisfactory results
when mimicking such behaviors.

Keywords: Sequential design decisions, Reinforcement learning, Transfer learning, Design
behaviors, Design representation

1. Introduction
With the advent of powerful machine learning algorithms, a variety of intelligent
agents have been developed that can enhance automation and relieve human labor.
Studies in the design field report that artificial agents are capable of solving well-
defined design problems, whereas human heuristics are more efficient in certain
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tasks, such as abstract decision-making or finding intuitive explanations for design
decisions (Sexton & Ren 2017; Raina, Cagan &McComb 2019). Therefore, there is
a significant potential to complement human design thinking with state-of-the-art
computational algorithms in a human-AI collaboration framework, particularly
for novice designers who do not have much know-how. An AI that can mimic
human behaviors in such a framework could provide several benefits due to its
ability to predict human design decisions and intervene when necessary to rec-
ommend alternative design strategies.

Developing an intelligent design agent usually requires a large amount of
data or a simulation environment that can capture key aspects of the design
problem of interest. However, such data that can be used to train a capable AI
are usually scarce. This is because, typically, there are not a large number of
people working on the same design problem, let alone the time cost of collecting
design data from each designer. Therefore, it is valuable to transfer the design
knowledge acquired in one problem to another using intelligent agents. Here,
design knowledge refers to the set of knowledge, skills, and expertise that
designers possess, which guides their decision-making and actions throughout
the design process (Cross 2023). Although different designers have different
decision-making processes and associated design actions, there could be com-
mon patterns embedded in their actions. Design knowledge and design patterns
are closely related as design patterns are one way of representing and commu-
nicating design knowledge. Design knowledge can be seen as knowledge of the
patterns and relationships that exist between actions performed by different
designers. However, design knowledge is generally tacit and embedded in design
decisions and actions. Extracting and transferring such implicit and tacit know-
ledge and identifying beneficial design patterns is both scientifically and tech-
nically challenging.

Transfer learning, which has emerged as a research area in the machine
learning domain, is a method where the goal is to obtain pre-trained values
(knowledge) in a computational model and to use them for a new problem
(Lazaric 2012). Transfer learning saves training time and resources in new
problem-solving by reusing an already trained model from the source problem
instead of training a new model and choosing hyperparameters from scratch. The
assumption is that the knowledge required to solve the source and target problems
is similar and transferable. However, the application of transfer learning to design
problems is an understudied area where benefits and limitations are unknown.
This motivates us to ask the following question: To what extent is the design
knowledge acquired from one problem computationally transferable to another
problem in a different context?

To answer this question, this study develops a computational design agent that
can learn design knowledge and mimic the prominent behavioral patterns of
human designers. To test the transferability of the knowledge learned by this agent
in new design problems, we first introduce a process-level representation of the
design action data inspired by the function-behavior-structure model (Gero &
Kannengiesser 2014).While design behaviors at the design action level (referred to
as the low level) can be significantly dependent on the problem context, the
process-level representation introduced in this article is a high-level abstraction
that has the potential to represent problem-agnostic behaviors. Therefore, we are
particularly interested in transferring knowledge at the design process level for the
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sake of model generality and transferability across domains. With such a process-
level representation of the design action sequence, we adopt reinforcement learn-
ing (RL) and develop RL-based design agents that canmimic human behaviors and
are capable of transferring the learned knowledge from one design problem to
another.

In this approach, to acquire and incorporate human knowledge into the self-
learning capability of RL, we introduce a rewardmechanism that utilizes sequential
design data from human designers through the first-order Markov chain model.
More precisely, we use Temporal Difference (TD) based Q-Learning (Jang et al.
2019) to train the RL agent with this reward mechanism based on our previous
study (Rahman, Bayrak& Sha 2022).We tested the generality and transferability of
the design knowledge over two distinct solar design problems: an energy-plus
home design problem and the solarize UARK campus design challenge. We train
the agent on the design data collected from the energy-plus home design problem
and transfer the design knowledge to the solarize UARK campus design problem.
The transferability of the design knowledge is tested by the accuracy of the
predicted design actions in the solarize UARK campus data set.

The remainder of the article is organized as follows. In Section 2, we present
the relevant research on agent-based design and transferability of design heur-
istics. Section 3 introduces the technical background of RL (i.e., the Q-learning
method) and an overview of the research approach. Section 4 describes the
experiments conducted for the collection of human behavioral data in two
different design challenges. In that section, we also present the data processing
methods and the model formulation for the RL-based design agent, including
the model setup and the metrics for evaluating the model performance. In
Section 5, the results are presented first and then explained and discussed, from
which the insights are generated and summarized. Section 6 concludes the article
with a summary of contributions and limitations, as well as potential directions
for future work.

2. Literature review

2.1. Agent-based design

Agent-based modeling is a commonly adopted methodology for studying individ-
ual design strategies or team-based design. There exist different types of models to
build artificial design agents. McComb, Cagan & Kotovsky (2015) developed a
Cognitively-Inspired Simulated Annealing Teams (CISAT) modeling framework,
an agent-based platform to simulate team-based engineering design. To mimic
human search strategies from design crowdsourcing data, artificial agent-based
inverse learning methods with Bayesian optimization (BO) have been developed
(Sexton & Ren 2017). Chaudhari, Bilionis & Panchal (2020) used Bayesian infer-
ence to compare simple heuristic models and expected utility (EU)-based models
to identify which model provided the best description of designers’ information
acquisition decisions. Sha, Kannan&Panchal (2015) developed a normativemodel
that integrates a Weiner process BO with game theory to study designers’ sequen-
tial decisions under competition. Later, Bayrak & Sha (2020) addressed the same
problem by testing a data-driven approach integrating a long short-term memory
(LSTM) network with non-cooperative games.
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Additionally, there are studies that use deep learning techniques to build design
agents. For example, Fuge, Peters & Agogino (2014) developed a collaborative
filtering-based system to recommend appropriate design procedures to novice
designers. The approach showed a significant improvement over the traditional
text-based selection method. In our previous study, we developed a design agent
using an LSTM network to predict future design actions based on historical design
behavior data. The prediction accuracy was found to outperform traditional
Markov models (Rahman, Xie & Sha 2021). Later, the authors further improved
its prediction accuracy by combining static data characterizing human attributes
and dynamic design action data in the LSTM framework (Rahman et al. 2020).

In addition to using text data, Raina et al. (2019) developed a two-step deep
learning-based design agent based on image data from a truss design problem. In
the first step, a convolutional neural network-based auto-encoder maps design
images to a low-dimensional embedding to generate a sequence of truss design
layouts. In the second step, a rule-based image processing inference algorithm
outputs the design operations needed to construct the truss structures in the
generated sequence and iteratively improves the design.

These existing studies mainly focus on using historical data to provide design
feedback or extracting strategies from all designers to identify average design
patterns. In this study, we leverage the power of RL to develop a design agent that
mimics human design behaviors and test the transferability of learned knowledge
to other design problems.

2.2. Transfer learning in RL and design

Transfer learning in RL can be categorized mainly into three major groups that
include parameter transfer, instance transfer, and representation transfer (Lazaric
2012).

In parameter transfer, the target task can use the RL parameters (i.e., initial
values or learning rate) according to the source tasks. Parameter transfer is suitable
when the source and target tasks share a common state action space (Phillips 2006).
Mehta et al. (2008) introduced a Variable Reward Hierarchical Reinforcement
Learning (VRHRL), a parameter transfer method, which uses previously learned
policies to speed up and improve the result. They assume that the reward function
is a linear combination of reward weights throughout theMarkovDecision Process
(MDP). In another study, the Attend, Adapt, and Transfer (A2T)model, a deep RL
model, was introduced by Rajendran et al. (2015), which can select and transfer the
value function frommultiple source tasks to the state space of the target task, but in
the same problem domain.

In instance transfer, samples of states, actions, and corresponding rewards from
different source tasks are used to learn the target task. For example, Sunmola &
Wyatt (2006) transferred trajectory samples from the source task and used them in
the model of new tasks to simplify the estimation of the model.

In representation transfer, the RL agent learns a representation of the source
task and performs an abstraction process to fit it to the target task. In this process,
studies have used neural networks for feature abstraction (Duan et al. 2016; Zhang,
Satija & Pineau 2018), while other strategies, such as the reward-shaping method
(Konidaris & Barto 2007), have also been explored. In the reward-shapingmethod,
an intermediate reward function is introduced, which provides initial estimates of
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the value function of the new task to the agent after a reasonable amount of
training. This is different from using a neural network as a value function estimator
to directly learn the values.

Although transfer learning has been used in many applications, it has rarely
been studied in design behavior research. Raina et al. (2019) proposed an
approach to transferring design strategies between similar design problems in
the same context. This study used a hidden Markov model for problem repre-
sentation and the CISAT framework as an agent to learn design strategies. They
used this model to transfer the learned design strategy from a home cooling
system design problem to a scaled-down and scaled-up version of it. The results
indicate that transferring previous experience from the source problem
improves the agent performance in the target problem, especially in the initial
stages of the design process rather than in the later stages. Another example from
Raina, Cagan & McComb (2022) integrated deep policy networks with a tree
search algorithm to discover generalizable problem-solving behaviors with
computational agents without prior data. Their work showed that their agents
can learn high-performing design behaviors for truss and circuit design prob-
lems and those behaviors were transferable within the same problem context
under different boundary conditions. Whalen & Mueller (2021) presented
Graph-based Surrogate Models (GSMs) for trusses and explored transfer learn-
ing to enhance their adaptability across different design spaces, resulting in
more flexible and data-efficient surrogate models with reduced prediction
errors. Behzadi & Ilieş (2021) introduced a novel approach combining transfer
learning and generative adversarial networks for topology optimization, enhan-
cing generalization ability and reducing computational costs in design explor-
ation.

Raina et al. (2019) presented evidence for design knowledge transferability for
scaled problems and Raina et al. (2022) showed transferability for different
boundary conditions within the same problem context. These studies focused on
transferring design behaviors at the lower detailed action level. In this article, we
extend the transferability question to significantly different design problems
beyond scaled problems. We enable transferability to problems in different con-
texts by introducing a new high-level design process model to represent design
knowledge that can be generalized across problem contexts.

3. Design problem and technical background

3.1. The design problem under investigation

In this study, the designers’ behavioral data are collected from two design
challenges: the energy-plus home design and the solarize UARK campus design
(Figure 1). The reason for choosing these two specific problems is to demonstrate
the feasibility of our approach in the controlled experimental setup where we
could measure the transfer of design knowledge from one problem to another.
Additionally, these two problems are chosen because they have different solu-
tions and the design patterns used to solve them are not identical. We train our
design agents using the energy-plus home design dataset. Therefore, it is treated
as the source task, and the solarized UARK campus design is used as the target
task. It is worth mentioning that this article focuses on design activities within a

5/26

https://doi.org/10.1017/dsj.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.7


CAD process, but the approach is applicable to any design situation where
designers’ action data can be recorded and transcribed. For example, it will be
very suitable for studying configuration design problems that often involve
sequences of design actions. For conceptual design problems, since the decision
processes in that stage could be sequential and parallel, our approach is more
suitable for iterative and sequential design data. In the following, each of the tasks
is described in detail.

In the energy-plus homedesignproblem, participantswere asked to build a solar-
powered home in Dallas, Texas. The objective is to maximize the annual net energy
(ANE) while minimizing the construction cost. The overall budget for this design
problem is $200,000. Furthermore, we set specific design constraints to confine the
design space, as summarized in Table 1. This system design problem involves many

Figure 1. An example of the energy-plus home design problem (left) and an example of the solarize UARK
campus design problem (right).

Table 1. Design requirements of the design challenges

Design challenges Design variables Design constraints

Energy–plus home design

Story 1

Number of windows > 4

Size of windows >1.44 m2

Number of doors ≥ 1

Size of doors (Width × Height) > 1.2 m × 2m

Height of wall >2.5 m

Distance between ridge to panel >0

Solarize UARK campus design

Solar panel model Choose 1 from 3 options

Solar panel height ≥ 3.5 m

Solar panel width 5.25 m–6 m

Panel Placement (Overall) Panel edges must not overlap

Panel Placement (parking lot) ≥ 7 m from the nearest panel
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design variables with complex coupling relationships among these variables (e.g.,
designers may want to addmany solar panels for higher ANE, however, the distance
between solar panels cannot be too small, so there is a limit for the number of solar
panels to be placed). For this reason, the design space is large and different designers
may have different strategies to explore and exploit the design space.

In contrast to the energy-plus home design problem, the solarize UARK campus
design is more open-ended. In this problem, participants were provided with a
computer-aided design (CAD)model of a student housing complex and its adjacent
parking lot on a university campus and asked to use the open space on the roof of the
buildings and the paved area on the parking lot to design the solar system. The goals
of the design challenge are threefold. First, the annual energy output should be
greater than 1,000,000 KWh. Second, the overall budget should not exceed
$1,900,000. Finally, the payback period should be less than 10 years. Participants
are encouraged to work iteratively and record the performance of different solutions
they explored, so that they can compare their own design iterations to continuously
improve the performance of their designs. To achieve the design goals, designers
needed to carefully control the design variables, including the location, length, tilt
angle, and model of each solar panel considering the dependencies among them.
Therefore, participants would benefit from the holistic perspective of systems
thinking. For example, the optimal tilt angle of a solar panel depends on the height
and where it will be placed. The degree to which designers could manipulate each
variable is limited by a set of constraints, as shown in Table 1.

Both design problems are carried out using Energy3D, a CAD software for
renewable energy systems (Xie et al. 2018; Rahman et al. 2019). Energy3D collects
design data in a non-intrusive way. The non-intrusive data collection process can
reduce the cognitive bias during an experiment. Energy3D logs design data at a
fine-grained level. In particular, it logs every design action performed and collects
design files (including all artifacts) every 20 seconds. Therefore, the data collected
from Energy3D fully capture what designers do (i.e., design actions) throughout
the design process. Energy3D collects the design process data in JSON format,
which records time stamps, design actions, design artifacts, and simulation results.
On average, a participant has about 1500 lines of design process data. An example
of two lines of the design actions log is presented in the text box below.

In this study, we extract only design actions related to design objectives, such as
“Add wall,” “Edit wall,” “Edit roof,” “Show sun path,” and so on. We ignore design
actions that have no effect on design outcomes, such as “Camera” and “Add tree.”
This post-processing leads to 115 unique design actions in the energy-plus home
design problem and 106 unique design actions in the solarize UARK campus
design problem.

{“Timestamp”: “2020-05-23 08:17:38”, “File”: “Design-Contest.ng3”, “Edit Rack”:
{“Type”: “Rack”, “Building”: 2, “ID”: 485, “Coordinates”: [{“x”: 1.496, “y”: 47.053,
“z”: 54.7}]}}
{“Timestamp”: “2020-05-23 08:19:49”, “File”: “Design-Contest.ng3”,
“PvAnnualAnalysis”: {“Months”: 12, “Panel”: “All”, “Solar”: {“Monthly”:
[892.25,1060.33,1478.38,1544.75,1819.32,1950.18,2048.8,
1876.89,1423.77,1241.81,794.41,697.7], “Total”: 511869.84}}}
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3.2. Technical preliminaries

Typical RL approaches rely on the formulation of a Markov Decision Process
(MDP) to learn optimal behaviors in sequential decision-making problems. The
goal of an MDP is to find the optimal policy for decision-making based on a pre-
defined reward mechanism. Q-learning helps to find such a policy by generating a
Q-value for each state-action pair that is used to determine the best decision for a
given state of a problem environment. The Q-values of all state-action pairs are
typically stored in a Q-table that is learned through a pre-defined number of
iterations using the epsilon-greedy algorithm (Sutton & Barto 2018). Once the
agent selects an action, it reaches a new state S0. In the new state, the agent selects
the best possible action that yields the maximum Q-value and obtains the corres-
ponding reward from the environment. Based on the reward values, the Q-table is
updated using a temporal difference formulation (Jang et al. 2019) according to the
following equation:

Qtþ1 s,að Þ¼Qt s,að Þþα R s,að Þþ γmax Qt s
0,a0ð Þf g�Qt s,að Þð Þ, (1)

whereQ returns the expected cumulative reward of performing an action in a state
(Sutton & Barto 2018). Qtþ1 s,að Þ is the new Q-value for state s and action a in the
next iteration tþ1. Qt s,að Þ is the current Q-values. α is the learning rate, a
hyperparameter that defines how much new information can be accepted in the
current iteration versus the old information from previous iterations. When α is
close to zero,Q-values are never updated, whereas an α value close to 1 means that
the learning process occurs quickly. R(s,a) is the value of the reward for taking
action a in the state s. max Qt s

0,a0ð gf is an estimate of the maximum future reward
value, and γ is the discount factor that controls howmuch these future rewards will
be taken into account when updating the Q-values. This approach balances the
importance of immediate and future rewards.

In this article, we adopt a probabilisticmodel for the action transition, known as
the noisy rational decision model, where the RL agent chooses one of the actions
with the following probability function based on the Q-values (Wu et al. 2021) to
model noise in agent decisions,

Pr ajsð Þ¼ exp θ �Q s,að Þð ÞP
ai ∈Ai

exp θ �Q s,aið Þð Þ , (2)

where Ai denotes the action space of an agent. The equation takes values from the
Q-table and provides a probability of taking each possible action a in a given state s.
The hyperparameter θ∈ 0, inf½ Þ determines the decision-making strategy of an
agent. When θ is zero, the equation provides a uniform distribution (i.e., all design
actions are equally likely to be selected with the probability of 1

dim Aið Þ). When θ goes
to infinity, the probability of the action with the highest Q-value (e.g., the most
frequently occurring design action at a given state) approaches 1. We use this θ to
control howmuch to reinforce (or exploit) a commonly seen action pair in the data
and howmuch to explore alternative action pairs. Note that this model is similar to
the logit choice model commonly used in the design and marketing literature
(Gensch & Recker 1979) where Q-values correspond to the utility of discrete
choices.
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4. Research overview

4.1. Research approach

This study consists of two tasks, as shown in Figure 2. The first task is to develop an
RL-based design agent to mimic the sequential decision-making behaviors of
human designers. The data used to train the agent are obtained from a series of
actions performed by the designers. The actions could be adding a component,
deleting a component, or changing the parameters of a component. To evaluate the
performance of the agent, we conducted a comparative study using the first-order
Markov chain model as the baseline.

Once sequential design data are collected, a design process model is applied
to convert each design action to its corresponding design process stage. A
design process model at the ontological level captures the context-independent
essence of design thinking regardless of the particular design action involved.
Therefore, such a higher-level abstraction in problem representation helps
generalize design knowledge and facilitate the transfer of design knowledge
from one problem to another. Moreover, by applying the design process model
to group similar design actions, the procedure turns out to be a dimension
reduction that helps improve the computational efficiency. This is particularly
useful in system design, where there could be a large number and a variety of
actions involved.

After mapping the detailed sequential data into our high-level design process
representation, we calculate transition probabilities for each state-action pair
based on the first-order Markov chain model and use these transition probabil-
ities for the reward table. There are two different ways to obtain the transition
probability matrices when creating the reward table. One way is to use the
average transition probability matrix that aggregates the sequential design data
of N subjects (designers). In this situation, one Q-learning model will be

Figure 2. The overview of the research tasks.
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developed to predict the behaviors of N designers. The other way is to use each
individual’s transition probability matrix to constructN Q-learning models that
can be used to predict the design actions ofN designers separately. In both ways,
we tune the hyperparameter θ and investigate how it influences the accuracy of
the Q-learning model in predicting the sequential actions of each individual
designer. Based on these configurations, we are interested in knowing which way
is a better way to construct the reward table for the RL-based agent. To evaluate
the performance of RL-based agents in prediction, we compare them with those
without a reinforcement mechanism, that is, the models purely based on MC
analysis. The results of these comparative studies are presented in Section 5.

Our second task is to test the transferability of learned design knowledge
between design problems. In particular, we apply the Q-tables learned from the
source design problem (Design Problem 1) to predict the designers’ behaviors in
the target design problem (Design Problem 2).

4.2. Problem representation and RL model

Wedefine the RL elements, that is, states, actions and rewards, in the context of the
design problem below:

States describe the current situation in which the agent interacts with the
environment. In this study, since our goal is to mimic human design behaviors,
we define the state in RL as the state of a designer’s thought process in design.
Various ontological models have been proposed to represent design processes and
interpret design thinking (Gero&Kannengiesser 2014). In this study, the proposed
state representation model is inspired by the function-behavior-structure (FBS)
design process model. The FBS model is a design ontology that has been widely
used to represent a variety of design problems independent of the application
context. The FBS model was later extended to design processes in CAD environ-
ments with additional sub-processes (Kannengiesser & Gero 2009).

Inspired by this CAD version of FBS, we define six states of design thinking in
Energy3D: Formulation, Reformulation, Synthesis, Interpretation, Evaluation,
and Analysis. These states are treated as the states in RL. In the design data
collected from two challenges, we observe that designers can transition between
any pair of states when using Energy3D. Therefore, we use a fully connected
graph (Figure 3) as a state representation for the proposed RL model. Note that
the primary focus of this article is to study whether problem-independent design
knowledge can be transferred at a high-level abstraction using a representation
rather than validating the capability of the FBS model. Alternative representa-
tions are possible, and we select the FBS model based on its applicability to CAD
design problems. Finding the best representation for knowledge transfer is
beyond the scope of this study.

Actions in our RL problem are the actions (e.g., CAD operations in Energy3D)
performed by the designers. In this study, we combine similar design actions,
such as adding a wall and adding solar panels, into one category (see Table 2).
This mapping is done manually as problem representation is commonly a
manual effort in data science. There are several benefits in doing the mapping.
First, abstracting actions into higher-level categories captures the context-
independent essence of design thinking, and thus improves generalizability.
Second, these categories significantly decrease the number of possible state-
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action pairs and reduce the computational burden during the training of RL
agents. Finally, in a previous pilot study on human-AI interactions (Rahman
et al. 2020), where a trained deep learning model was used to recommend design
actions to designers, we observed that designers felt interrupted if they received
specific CAD operations. Instead, they would prefer to receive more general
guidance at a higher level of instruction. Therefore, grouping design actions into
categories may better serve the development of RL-based design agents for the
future of the human-AI partnership in design.

Reward is the feedback from the environment in response to a particular action.
An RL agent aims to maximize the total reward calculated by summing all
instantaneous rewards. However, this sum can potentially grow indefinitely.
Therefore, a discount factor (γ) is included in the reward function to reduce the
contribution of future rewards. A typical reward function is expressed as follows:

Rt ¼ rtþ1þ γrtþ2þ γ2rtþ3þ…, (3)

where rt is the instantaneous reward at time t. Typical RL models are self-learning
methods that use a reward from the environment. As our target is to build an agent

Table 2. Design action categories and their corresponding actions

Design action category Action category Example

Addition of any components Add Add wall, Add solar panel, etc.

Edit of any components Edit Edit door, Edit wall, etc.

Environmental check Show Show Helidon, Show sun path, etc.

Evaluation of cost Cost Cost

Removal of any components Remove Remove window, Remove the roof, etc.

Analysis of annual net energy Analysis Energy Annual Analysis

Figure 3. The FBS design process model (Gero 1990) and the design thinking states are defined in the
proposed reinforcement learning model.
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that mimics human designers, we use the data containing the designers’ actions
(e.g., those shown in Table 2) to formulate a reward table. Specifically, we employ
the first-order Markov chain model’s transition probability matrix of the action
sequences to construct the reward table. The transition probabilities can be the
values of an individual participant’s transition probability matrix or the average
values of all the participants’ transition probability matrices, characterizing the
aggregated one-step-ahead sequential behaviors of all designers. Figure 4 shows the
average transition probability matrix of participants in the source design task. This
Markov chain-based reward mechanism reinforces the action pairs that occur
more frequently in the training process. Combining this data-driven reward with
the self-learning ability of RL is a uniqueness of our model.

4.3. Model setup and evaluation

Markov chain agent:We choose the first-orderMarkov chainmodel as our baseline
model to compare with the Q-learning agent, as it has been widely used for
sequential learning of design behaviors in the existing literature (Kan & Gero
2009; Yu et al. 2015; McComb, Cagan & Kotovsky 2017). First, we compute the
transition probability matrix for each designer in the dataset and then apply the
leave-one-out cross-validation method for the prediction. This means that we
aggregate the matrices of the n�1ð Þ designers and use the resulting aggregated
transition probability matrix to predict the sequence of the nth designer. By
iterating this process, we obtain the prediction accuracy for all designers and
report the average as the final prediction accuracy. The average prediction accuracy
for the baseline model of the source design problem is 41%.

Figure 4. Average transition probability matrix of participants.
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Q-learning agent: We use the k-fold cross-validation technique to evaluate the
Q-learning agent. So, k rounds of training and testing are performed so that in each
iteration, k�1ð Þ partitions are used to obtain the reward table and train the
Q-learning agent. The remaining partition is used to test the Q-learning agent.
In this study, we chose k¼ 11 with a trade-off between maximizing the training
dataset and minimizing total training cycles.

To initiate the training process, a 6 × 6 Q table is initialized, where the rows
represent six states (see Figure 3) and the columns represent six actions
(see Table 2). Initially, all values in the Q table are set to zero. As the iterations
progress, the Q table undergoes updates. This entails that after taking a
specific action, the designer transitions to a new state, and the corresponding
value in the Q table is updated based on the reward table. In this way, the Q table
dynamically evolves through the training iterations, capturing the
learned knowledge and guiding future decision-making. We determine the
optimal settings for the hyperparameters (α and γ) of the RL model using
trial-and-error by testing values in [0.1, 0.9] for both parameters, and train
the Q-learning agent based on the best combination found. The final parameter
values are learning rate α¼ 0:3 and discount factor γ¼ 0:6 (see equation (1)).
Similarly, the value of θ in equation (2) is tuned to achieve maximum accuracy.
The Q-table is updated by every iteration and the training process takes 10,000
iterations.

Table 3 presents the learned Q table, which illustrates the transitions from state
to action. The Q values in the table indicate that the transition to the Edit action
generally has higher values compared to other actions. For instance, the transition
from the Formulation state to the Edit action has the highest Q-value of 31.97.
However, it is important to note that there are some cases where transitioning to
Edit does not have the highest Q-value. For example, the transition from Refor-
mulation to Add achieves the highest Q-value, which is 24.19.

Metric for prediction accuracy: In this study, the agent only predicts the next
action (i.e., the one-step look-ahead decision) based on the designer’s action in the
last step. As the agent chooses an action from a probability distribution, the
prediction can vary from one iteration to another. Therefore, to account for the
stochastic nature, we run a total of 50 realizations for each prediction. For each
action sequence, we compare the predicted actions with the actual decisions and
count the number of correctly predicted actions. The prediction accuracy is then
obtained by dividing that number by the length of the action sequence. Finally, we

Table 3. The learned Q table in the reinforcement learning model

State/Action Add Analysis Show Remove Cost Edit

Formulation 29.69 9.96 7.77 10.98 11.34 31.97

Analysis 12.03 16.92 10.37 10.72 22.30 29.36

Interpretation 14.78 12.82 22.87 9.32 11.59 22.30

Reformation 24.19 11.27 7.70 22.54 12.16 23.84

Evaluation 13.01 20.74 8.75 10.93 12.55 32.72

Synthesis 14.84 11.87 7.47 9.61 13.34 44.57
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take the average of the 50 predictions to report the final accuracy, as shown in
equation (4).

Prediction accuracy¼ 1
50

X50
i¼1

nci
l

� �
, (4)

where nc is the number of correctly predicted actions and l is the length of a
designer’s action sequence. We use this metric to evaluate the transferability of
design knowledge between problems. The accuracy of a model trained with the
source problem data using the proposed high-level problem representation to
predict the actions in the target problem is used as the indicator of transferability.
The benchmark for prediction assessment is set using a model trained with the
target problem data.

5. Result and discussion
In this section, we first present a detailed description of the design experiments.
Subsequently, we present the results of the two research tasks as illustrated in
Figure 2. The first task aims to test the design knowledge transferability using a
Q-learning model trained by energy-plus home design to predict the participants’
sequential decisions in the solarizedUARK campus design challenge. In the second
task, we show the in-depth training procedure and present the capability of the
model to learn useful design patterns and predict sequential design decisions using
the energy-plus home design data. For that purpose, we discuss the results obtained
from the Q-learning model trained using a reward table formulated by the average
transition probability of participants in the energy-plus home design challenge.We
also compare it with the Q-learning models trained using the reward table
formulated by each individual transition probability matrix.

5.1. Experimental setup

Both of the design experiments are carried out as a form of design challenge, as it
motivates the participants to explore the design space and improve their solution as
much as possible. Additionally, designers are incentivized by monetary reward
which relates to the quality of their designs. The energy-plus home design problem
is conducted in a classroom setting and consists of three phases: pre-session,
in-session and after-session. In the pre-session, the designers get familiar with
the Energy3D environment, the design problem, and basic solar science concepts.
The instruction and guidance provided in the pre-session help minimize the
potential bias due to the differences in participants’ pre-knowledge and learning
curves. The pre-session lasts about 30 minutes while the in-session lasts about
90 minutes. During the in-session, participants perform the design task according
to the design requirements. The after-session, which lasts about 10 minutes, is for
participants to claim rewards and sign out of the challenge.

The Solarize UARK Campus design problem is conducted in a virtual setting
due to COVID-19. At the beginning of the design challenge, participants receive all
the necessary information and a tutorial session through an introductory presen-
tation. The participants are then given seven full days to complete the design
challenge at their own pace.
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In the energy-plus home design problem, a total of 52 students from the
University of Arkansas participated in the design challenge. Among them, 29 stu-
dents were undergraduate students and 23 were graduate students. 48 of themwere
male while four were female. These designers are indexed according to their
registered sessions and laptop numbers. Sessions are indexed by letters from A
to G, and laptops are indexed with Arabic numerals. For example, A02 indicates
that the participant joined session A and worked on laptop number 2. The total
length of the design sequence for all designers in this design challenge is 17,510.
The maximum length design sequence among these 52 participants is 629 and the
minimum is 89.

In the Solarize UARK Campus design problem, we obtained design data from
45 participants, including 36 undergraduate and 9 graduate students. Among the
participants, 40 of them were male and five were female. The participants were
indexed by their corresponding flash drive number in which the instruction for
design challenge was provided. The total length of the design sequence for all
designers is 102,855. The maximum length of the design sequence among these
designers is 7231 and theminimum is 414. At the end of the design, the participants
return their flash drives, which recorded both their design behavior data and the
design work files. For consistency, we simply refer to the student designers in both
design problems as designers in the remainder of this article.

5.2. The results on the transferability of design knowledge

We present the capabilities and performance of the Q-learning model to capture
high-level design patterns in the energy-plus home design dataset (source) in
Section 5.3. In this section, we focus on the transferability of the design knowledge
learned in the source problem to the target problem of the solarize UARK campus
design challenge. To this end, we use the Q-learning model trained in the source
problem to predict the designers’ design sequence in the target problem. Using
these problems, we also test the design transferability using the Markov chain
model for reference. In the Q-learning model, the “design knowledge” transferred
is the Q-table learned from the source design problem; while in the Markov chain
model, the “design knowledge” transferred is the aggregated transition probability
matrix. Note that both models use the higher-level abstraction introduced in this
article to improve model generalizability.

Both models are compared with the baseline Markov chain model trained
from the solarize UARK campus design without transferring any “design
knowledge.” The baseline model is trained with all the designers’ design sequence
data except for the highest or lowest ten designers (i.e., the test dataset). Similarly,
we choose the top ten highest and lowest performing designers to compare the
models’ performance.

Figure 5 shows the prediction accuracy of the transferred Q-learning and
Markov chain models along with the baseline Markov chain model for the high-
performing group. The result shows that the transferred Q-learning model
achieves the highest performance in predicting the sequential decisions of the
ten designers among the three models. The highest prediction accuracy is 0.78,
achieved when predicting designers 114 and 44. However, the prediction accur-
acy of the transferred Markov chain model is lower than the baseline Markov
chainmodel for the ten designers. The average prediction accuracy of the baseline
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model is 0.56 illustrated by the dotted line in Figure 5. This result indicates that
the frequently occurring design patterns in the source and target problems are
similar, and reinforcing these patterns from the source problem also improves
the prediction accuracy in the target problem for high-performing designers.
This finding suggests that the Q-learning model can transfer the high-level
problem-agnostic knowledge between the two datasets better than the Markov
chain model.

Similar results are also observed in the low-performing group, as shown in
Figure 6. However, the overall performance of the transferred Q-learning model
in the low-performing group is lower than that in the high-performing group. For
example, among the ten cases, only five instances have a prediction accuracy
higher than the average prediction accuracy of the baseline MC model, much
lower than that of the high-performing group. This result is expected since the
accuracy of the Q-learning model with the average reward model on the source
task is lower in the low-performing group than in the low-performing group on
average, as discussed below in Figure 7. Since higher accuracy indicates a better
capacity of the model in capturing design behavioral patterns and embedded
knowledge, both Figures 5 and 6 show that theMCmodel is not an ideal model to
test the transferability of design knowledge in CAD-based design activities.

Finally, we can use the Q-learning model to answer the research question: “To
what extent is the design knowledge acquired from one problem computationally
transferable to another problem in a different context?” In Figure 7, we show the
correlation between the accuracy of the transferred Q-learning model and the
baseline Markov chain model in the target task for both the high-performing and
low-performing groups. The results show a strong correlation for both groups,

Figure 5.The prediction accuracy of the transferredQ-learning, Markov chain and the baselineMarkov chain
model for the high-performance design.
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Figure 6.The prediction accuracy of the transferredQ-learning, Markov chain and the baselineMarkov chain
model for the low-performance design.

Figure 7. The correlation between the transferred Q-learning model and the baseline
Markov chain model for the high-performing group (blue) and the low-performing
group (orange).
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where the correlation coefficients for the high-performing and the low-performing
groups are 0.94 and 0.95, respectively. This high correlation in both groups
suggests high transferability. This result indicates that the amount of design pattern
that the MC model can capture from the baseline model in the target problem is
directly proportional to the amount that the Q learning model can transfer from
the source problem. In other words, if the ability of the baseline model to predict
the behavior of a participant is high, then the ability of the transferred Q-learning
model to predict their behavior is also high. If the accuracy of the baseline model to
predict the behavior of a designer in the target task is low, it suggests that this
designer weakly follows distinct patterns to be learned using a model. Therefore,
the accuracy of the transferred Q-learning model is also proportionally low for
those participants. This finding does not mean that the transferability of the
Q-learning model is low, but rather the Q-learning model trained in the source
task can only capture design patterns that can be captured with a model trained in
the target task. This finding is reasonable since machine learning models can only
work if there is a pattern to be learned.

5.3. The prediction results of the Q-learning model using the
energy-plus home design dataset

5.3.1. Results
Figure 8 shows an example of the prediction accuracy for the individuals, F15, G05,
G07, C03, C05, and C07. It shows that the prediction accuracy increases as θ
increases from 0 to 0.25, after which the accuracy does not increase significantly
and saturates to its final value for all the design sequences tested. Among all
designers, G05 achieves the highest prediction accuracy of 73%, higher than the
baseline of 41% achieved by the Markov chain model. We also observe that, for
some designers, the prediction accuracy obtained at the maximum θ tested
(i.e., when θ¼ 0:29) is even lower than that of the baseline model, and this
observation was found in the tests of other folds. Since θ controls the effect of
reinforcement (as θ increases, the probability of the occurrence of reinforced action
pairs increases), these results suggest that reinforcing certain behavioral patterns

Figure 8. Prediction accuracy as a function of θ value in equation (2)).
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does not necessarily improve prediction accuracy. This is because if a designer’s
data do not (or weakly) show the patterns that are reinforced, using the RL agent
will generate more wrong hits and result in a low predict accuracy.

These results also inspire us to investigate the relationship between prediction
accuracy and the designers’ performance. In this study, the design performance is
measured in the following equation in the unit of KWh/dollar.

Design performance¼Budget×ANE
Cost

: (5)

It should be noted that the Budget in this context is a predetermined constraint,
while the cost can be adjusted according to the preferences of the designers. We
choose the ten highest and ten lowest-performing designers and compare their
prediction accuracy. In each group, the RL agent is trained based on data outside of
the investigated group. For example, when studying the ten designers in the high-
performing group, we train the RL agent using the remaining 42 designers and test
the agent on these ten designers. Figure 9 shows the prediction accuracy for both
the high- and low-performing groups. In the high-performing group, the model
yields a high prediction accuracy ( > 41% generated by the baseline model) in nine
out of ten designers. In the low-performing group, the model only produces high
accuracy in four designers. It is worth mentioning that the model produces the
highest prediction accuracy for designer G05, who achieves the highest perform-
ance among all designers. Figure 9c shows the relationship between the Q-learning
prediction accuracy and performance for all designers. While the regression

Figure 9. (a) Prediction accuracy of the high-performing design group. (b) Prediction accuracy of the low-
performing design group. (c) Relationship between prediction accuracy and performance.

19/26

https://doi.org/10.1017/dsj.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2024.7


analysis shows a correlation coefficient of 0.3, a weak correlation between design
performance and prediction accuracy in trend, there is a noticeable (and statistic-
ally significant) difference in model accuracy between the low-performing and
high-performing groups. The impact of participant performance is discussed later
in Table 4 with t-tests. Including the participants in between clouds this pattern
and hence results in a weak correlation.

5.3.2. Discussion
To understand the participants’ design strategies, we compare the transition
probability matrix of the designers with the highest (G05) and lowest performance
(F12) in the high-performing group. Figure 10 shows the transition probability
matrices in the heat maps. The bigger circles indicate a higher transition probabil-
ity, while the smaller circles indicate a lower transition probability.

In the Markov chain analysis of the high-performing group, it can be seen that
the designer (G05) with the highest performance likes to repeat a few particular
action pairs, while the designer (F12) with the lowest performance uses a more
uniform distribution of the transition probabilities. For example, the top three
highest transition probabilities of G05 are “Edit-Edit” (0.82), “Edit-Add” (0.71),
and “Edit-Analysis” (0.58), while these probabilities for F12 are 0.57, 0.46, and 0.25,
respectively. Meanwhile, G05 never used the action pairs of “Analysis-Analysis,”
“Cost-Remove,” and “Remove-Show,” but these behavioral patterns were found in
F12’s design sequence. Therefore, although both designers achieve satisfactory
design performance (i.e., performance for G05 and F12 is 51137 and 40285,
respectively) since they were both in the high-performing group, G05 finished
the design task by focusing on exploiting a few specific action pairs, while F12
explored many different operations in Energy3D for the design objective. This also
explains why the RL agent produces a higher prediction accuracy when predicting
G05’s action sequence because the prominent design patterns were able to be
learned and reinforced by the agent.

Table 4. The results of the one-sided paired t-test for the comparison of prediction accuracy between
groups with three different configurations

High performance–Low
performance

Average reward–Individual
reward

Markov chain agent–Q-learning
agent

High Q Avg–Low Q Avg High Q Avg–High Q Ind High Q Avg–High MC Avg

p–value: 0.03 p–value: 0.025 p–value: 5.09E–05

High MC Avg–Low MC Avg High MC Avg–High MC Ind Low Q Avg–Low MC Avg

p–value: 0.02 p–value: 0.49 p–value: 0.19

High Q Ind–Low Q Ind Low Q Avg–Low Q Ind High Q Ind–High MC Ind

p–value: 0.25 p–value: 0.29 p–value: 0.09

High MC Ind–Low MC Ind Low MC Avg–Low MC Ind Low Q Ind–Low MC Ind

p–value: 0.013 p–value: 0.0018 p–value: 0.98

Note: “High” and “low” indicate the high-performing and the low-performing groups. “Avg” and “Ind” indicate the average and individual reward
formulations. “Q” and “MC” indicate the Q-learning agent and the Markov chain agent. So, “High Q Avg” indicates the prediction accuracy of the
Q-learning model with an average reward formulation for the high-performing group.
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In the low-performing group, most designers’ transition probabilities are more
uniformly distributed, indicating that they had tried a variety of operations in
Energy3D to explore the design space, yet those explorations may not necessarily
be beneficial to the design objective. When using the RL agent to predict these
designers’ action sequences, it produces the highest prediction accuracy for A14.
Figure 10c shows the transition probabilitymatrix of A14. Similarly toG05, specific
design patterns were found in A14’s design process. However, the design perform-
ance achieved by A14 (7524 KWh/dollar) is way less than that of G05 (51137
KWh/dollar). This may be attributed to the fact that A14 used many redundant
CAD operations. For example, the transition probability of using “Analysis-
Analysis” for this designer is 0.33, higher than the average probability of the matrix
0.17, but it is redundant and not helpful. This is because once “Analysis” (analyzing
the ANE of the current design) is performed, it should be unnecessary to analyze
the design again, as the ANE information should have been acquired already.

Furthermore, A14 did not use the “Show” action at all, which indicates that this
designer is not interacting with the CAD environment and is not active in learning
the solar science concepts underpinning the design problem. This result indicates
that even if the RL agent may predict well for both high-performing and low-
performing designers, their design strategies could be different albeit consistent
throughout the process and therefore lead to very different design performance.
This is also in congruence with the findings in the literature. Burnap et al. (2015)
showed that both experts and consistently wrong non-experts can present such

Figure 10. The heat maps of the transition probability matrix of (a) G05, (b) F12, and (c) A14.
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behaviors. However, it is worth noting that our models do not rely only on
consistency but also on the previous design action data to predict future actions.

To systematically evaluate the performance of theQ-learningmodel, we compare
it with a baseline model, that is, theMarkov chain model. In this comparative study,
we also tested two different formulations of the Q-table. One is obtained using the
average transition probability matrix by aggregating all the designers’ action
sequences in the training dataset with the Markov chain analysis. The other one is
obtained from each individual designer’s transition probabilitymatrix. Furthermore,
this comparison was made between the high- and low-performing groups. There-
fore, in total, 12 comparisons were conducted using the one-sided paired t-test.
Table 4 shows the 12 tests and their corresponding p-values.

The first column shows the comparison of the prediction accuracy between
high- and low-performing groups with different models and under different
settings for the transition probability matrix. For example, to compare the predic-
tion accuracy of the Q-learning agent using a reward formulation of the average
transition probabilities in the high-performing group versus the low-performing
group, the null hypothesis (H0) is that the accuracy for both groups is not
significantly different, while the alternative hypothesis (Ha) is that the former is
significantly higher than the latter. With a level of significance of 0.05, the p-value
(0.03) in the table indicates that the Q-learning agent trained from the reward
formulation using average transition probabilities predicts more accurately in the
high-performing group than in the low-performing group.

The p-values highlighted in bold in Table 4 indicate the tests that show
statistical significance. The following conclusions in three categories are supported
by the t-test results.

• High-performing group versus low-performing group: Using the Q-learning with
the average reward formulation, the prediction accuracy achieved in the high-
performing group is higher than in the low-performing group.

• High-performing group versus low-performing group: Using the MC model, the
prediction accuracy achieved in the high-performing group is higher than that of
the low-performing group, regardless of whether it is an average or individual
reward formulation.

• Rewards formulated by average versus individual transition probability matrix: In
the high-performing group, the predictive performance of the Q-learning model
with the average reward formulation is better than with the individual reward
formulation.

• Rewards formulated by average versus individual transition probability matrix: In
the low-performing group, the predictive performance of the Markov chain
model with the average reward formulation is better than that with the individual
reward formulation.

• Markov-chain agent versus Q-learning agent: In the high-performing group,
using the average reward formulation, the predictive performance of the
Q-learning model is better than that of the Markov chain model.

These findings can be explained intuitively. For example, the accuracy of
Q-learning using an average (aggregated) reward model is higher in the high-
performing group compared to the low-performing group. Frequently occurring
action pairs in the aggregated reward model may not necessarily be useful to
improve accuracy, especially in the low-performing group, where designers may or
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may not follow a particular pattern. Therefore, reinforcing these common patterns
does not help with predicting the actions in that group. On the other hand, the
high-performing group tends to follow a more consistent set of design strategies
throughout.

In the same way, we can also explain why using an average transition prob-
ability matrix that aggregates designers’ sequential design behaviors (equivalent to
reinforcing the prominent patterns) improves a model’s predictive performance in
the high-performing group. In the average reward mechanism, all the prominent
design strategies from the entire group are reinforced, while in the individual
reward, those strategies may not be observed as frequently. This also explains why
the Q-learning model is found to outperform theMarkov chain model in the high-
performing group, since theMarkov chainmodel does not reinforce these patterns.

6. Conclusion
This article presented a study to test the extent to which the design knowledge
acquired from a source problem using a Q-learning agent can be computationally
transferable to a target problem in a different design context. We introduced a
higher-level problem representation that allows capturing generalizable knowledge
at the design process level. Using this representation, we developed a design agent
based onQ-learning, amodel-freeRL algorithm tomimic humandesign strategies in
the (source) system design context. A unique aspect of this model is that it does not
require a pre-defined reward matrix to train the Q-table. Instead, it relies on a data-
driven reward formulation using the first-order Markov chain model that ensures
the trained agent mimics human designers’ one-step look-ahead sequential behav-
iors. In the Q-learning model, we integrated a probabilistic model (known as the
“noisy rational decision model”) for the action transition, which allowed the control
of reinforcement of the frequently occurring design action pairs in the training data.

There are three main findings from this study about human sequential decisions
and the transfer of design knowledge. First, the performance of theQ-learningmodel
in the high- and low-performance groups was sensitive to the setting of the reward
matrix, that is, whether the reward matrix was formulated using the aggregated
transition probability matrix or individual matrices. This again implies that the
Q-learning agent performs effectively when the patterns in the sequential data are
strong. Second, designbehavioral patternsweremore prominent inhigh-performing
designers; therefore, their knowledge can be better captured and transferred. In other
words, when transferring knowledge between different problems, the knowledge
transferred from expert designers may be more reliable than that from novice
designers. Third, compared to the commonly usedMarkov chainmodel, Q-learning
agents were able to produce higher prediction accuracy in the high-performing
group in both source and target problems. However, in the low-performing group
(where the design patterns are weak in general), the p-value (i.e., 0.19) did not
support the hypothesis that the Q learning model is better than the Markov chain
model, and this has been found to be true regardless of the use of aggregated
transition probability matrix or individual matrices.

There are a few limitations in the current work from which we identify
opportunities for future research directions. First, the current RL model does
not learn the optimal policy for good designs (designs that yield high objective
values). Rather, it tries tomaximally replicate the prominent design patterns found
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from the first-order Markov chain model, so when the model is applied to learn
expert designers’ knowledge, it helps transfer the beneficial design patterns and
transfer them to target design problems as needed. We acknowledge the potential
to reinforce biases and undesirable behaviors if the agent is trained solely on data
from a single designer. However, this effect can be mitigated by incorporating
average knowledge and data from multiple designers or design experts. By assum-
ing that experienced designers’ action sequences are positively correlated with
performance, our approach serves as a starting point for optimizing joint perform-
ance. The findings of this study encourage the future exploration of different
sequential learning models in support of the formulation of the reward matrix
beyond the Markov model. Second, some of the conclusions made are limited to
the particular CAD-based design context and the two design problems that are
both accomplished in the same CAD software.

The scope of this study is also limited to developing this generalizable process and
providing evidence for knowledge transfer at a high-level problem abstraction. The
extent of transferability may be influenced by participant characteristics such as
experience level. A detailed analysis of the influence of such variables is left to a future
study. In addition, the present study is limited to individual settings. Team-based
decision-making adds other variables that could influence the findings, such as team
structures, communication mechanisms, and interpersonal trust. A study of trans-
ferability in group settings is another interesting direction for future exploration.

In the next step, we plan to validate the RL-based agents in more design case
studies to test the transferability of design knowledge across totally different design
activities, for example, two different senior design projects where design topics and
tools are all different. There is evidence in the literature showing that analogies from
distant problemsmay stimulate novel design generation in human designers (Fu et al.
2013). Since we use a high-level abstraction of the design process, we expect
transferrability even in distant problems considering that there are well-known
problem-agnostic search strategies such as exploration-exploitation. However, trans-
ferability may be lower compared to similar problems, as the problem context may
call for specific search strategies. Finally, we utilize the FBS framework for high-level
design abstractions. Alternative high-level problem representations exist with varying
capabilities for knowledge transfer across design problems. Finding the best repre-
sentation for high-level knowledge transfer is a topic for a future study. One of the
contributions of this article is that the proposed approach and procedure are general
enough to support these identified future research explorations and many others as
long as the data of design action sequence are obtainable.
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