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Abstract

In this article, we give new proofs of two of Ramanujan’s 1/π formulae

1
π

=
2
√

2
992

∞∑
m=0

(26390m + 1103)
(4m)!

3964m(m!)4

and
1
π

=
2

842

∞∑
m=0

(21460m + 1123)
(−1)m(4m)!

(84
√

2)4m(m!)4

using the theory of modular forms. The method can also be used to prove other classical 1/π formulae.
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1. Introduction

Ramanujan listed 14 formulae of 1/π in his 1914 paper [8, 11], where all the formulae
are of the form

1
π

=

∞∑
n=0

(a + bn) dncn. (1.1)

Two among them are quite impressive:

1
π

=
2
√

2
992

∞∑
m=0

(26390m + 1103)
(4m)!

3964m(m!)4 (1.2)

and
1
π

=
2

842

∞∑
m=0

(21460m + 1123)
(−1)m(4m)!

(84
√

2)4m(m!)4
. (1.3)
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Although R. Gosper computed 17 million digits of π with formula (1.2) in 1985,
extensive discussions of proofs of formulae similar to (1.2) appear only around
1987 [2]. The most mysterious constant in the expression is the number 1103 in (1.2)
(or 1123 in (1.3)), whose verification heavily relies on the numerical computation and
certain number-theoretical properties of the constant a in (1.1). Motivated by an idea
proposed by Newman [7], we prove the formulae of Ramanujan without knowing any
number-theoretical properties of the constant a in (1.1).

Following the Borweins [2], we will sketch an outline of the proof of series similar
to (1.2). The proof begins with one of the identities in [2, page 181]:

(1 + k2)
(2K(k)

π

)2
= 3F2

(1/4 3/4 1/2
1 1 ;

16k2(1 − k2)2

(1 + k2)4

)
, (1.4)

which can be rewritten as (2K(k)
π

)2
= a(k)

∞∑
n=0

bncn(k), (1.5)

where K(k) is the complete elliptic integral of the first kind and a(k) and c(k) are
rational functions of k.

Let

θ2(q) =
∑
n∈Z

q(n+1/2)2
,

θ3(q) =
∑
n∈Z

qn2
,

θ4(q) =
∑
n∈Z

(−1)nqn2

and

η(q) = q1/24
∞∏

n=1

(1 − qn).

It is known that [2, page 69](2K(k)
π

)2
= 24/3η4(q2)(kk′)−2/3 = θ4

3(q), (1.6)

where

k =
θ2

2(q)

θ2
3(q)

, k′ =
θ2

4(q)

θ2
3(q)

.

Taking logarithmic differentiation by k on both sides of (1.5) and using formula
(2.3.10) in [2],

dq
dk

=
π2q

2kk′2K2
,

we find that
1
6

P(q) = u(k)
(2K(k)

π

)2
+ v(k)

∞∑
n=0

nbncn(k), (1.7)
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where

P(q) = 1 − 24
∞∑

n=1

nq2n

1 − q2n ;

u(k) =
k(k′)2

4

(a′

a
+

2
3

(k′)2 − k2

k(k′)2

)
=

1 − 4k2 + k4

6(1 + k2)
,

v(k) =
ac′

4c
k(k′)2 =

1
2

(
1 −

8k2

(1 + k2)2

)
,

c(k) =
16k2(1 − k2)2

(1 + k2)4

are all rational functions of k.
Taking logarithmic differentiation on both sides of the transformation formula of

the η-function
η(e−2π/τ) = τ1/2η(e−2πτ) (1.8)

would lead to
τ2P(e−πτ) + P(e−π/τ) = 6τ/π.

Let τ =
√

n, n ∈ N. Then

nP(e−π
√

n) + P(e−π/
√

n) = 6
√

n/π. (1.9)

Let
G1 =

nP(qn) − P(q)
θ4

3(q)
(1.10)

and q = e−π/
√

n in (1.10). We can obtain from (1.6) and (1.10) that

nP(e−π
√

n) − P(e−π/
√

n) = nG1

(2K(k)
π

)2
, (1.11)

where k = k(e−π
√

n).
Eliminate P(e−π/

√
n) from (1.9) and (1.11); we obtain the identity

P(e−π
√

n) =
3

π
√

n
+

G1

2

(2K(k)
π

)2
. (1.12)

Put (1.12) in (1.7) and replace every (2K(k)/π)2 by (1.5); then

1
π

=

∞∑
m=0

(2
√

nv(k)m + G0)bmcm(k), (1.13)

where k = k(e−π
√

n),

bm =
(4m)!

44m(m!)4 ,

2v(k) =

(
1 −

2
((k′)2/(2k))2 + 1

)
,

c(k) =

( 2
2k/(k′)2 + (k′)2/(2k)

)2
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and

G0 =

√
n

3

(
1 −

3
2(((k′)2/(2k))2 + 1)

−
1

1 + k2

G1

2

)
.

Remark 1.1. We claim that our formula (1.13) coincides with [2, (5.5.16)]. The
function c(k) coincides with x2

n in [2, (5.5.16)] from the definition of xn in [2, (5.5.16)]
and the formula [2, (5.5.7)]. From (1.10) and [2, (5.2.12) and (5.2.15i)], one can find
that the α of the Borweins is related to G1 by

α(n) =

√
n

3

(
1 + k2 −

G1

2

)
. (1.14)

From [2, (5.5.16)], (1.14) and (1.13),

dm(n)xn =
α(n)

1 + k2 −

√
n

2
1

1 + ((k′)2/(2k))2 +
√

n
(k′)2/(2k) − 2k/(k′)2

(k′)2/(2k) + 2k/(k′)2

=

√
n

3

(
1 −

G1

2(1 + k2)
−

3
2

1
1 + ((k′)2/(2k))2

)
+ 2
√

nv(k)

and our claim follows. A similar argument can be applied to [2, (5.5.17)] and our
formula (3.3).

We also note that if k = k(e−π
√

n) and q = e−π/
√

n, (1.8) implies that

2k
(k′)2 = 8

η12(q2n)
η12(qn)

=
1
8
η12(q2)
η12(q4)

. (1.15)

From (1.10), (1.6) and (1.15),
G1

1 + k2 =
nP(qn) − P(q)

4((k′)4 + 4k2)1/2η4(q2)(2kk′)−2/3

=
nP(qn) − P(q)
η2(q2n)η2(q2)

( 2k
(k′)2

)1/6 c(k)1/4

4
√

n

=
nP(qn) − P(q)
η2(q2n)η2(q4)

c(k)1/4

8
√

n
. (1.16)

The motivation for the identity (1.16) will be stated in the next section.

2. Case 1: n = 58

Ramanujan [2, 8] took specific values for the integer n in order to produce his
14 formulae in his paper. It is quite astonishing that he succeeded in producing
the formulae (1.2) (with n = 58) and (1.3) (with n = 37) in that those values of n
are so large that the modular equations corresponding to these values are extremely
complicated. Although Weber had shown in his book [9, Table VI] that

2k
(k′)2 =

( √29 − 5
2

)6
(2.1)
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when k = k(e−π
√

58), there are no tractable modular equations for these large moduli
(for example, n = 58 or n = 37) so that one can figure out the explicit value of G1.

Our strategy will be as follows.

Definition 2.1. An η-product [α1, . . . , αN](τ) (or [α1, . . . , αN] for short) of level N is
defined as a finite product of certain η-functions:

[α1, . . . , αN] =
∏
δ|N

ηαδ(e2πiδτ),

where αδ ∈ Z and the divisors δ of N are sorted by ascending order.

An η-product ηa(e2πiτ)ηb(e4πiτ)ηc(e58πiτ)ηd(e116πiτ) of level 58 can be written as
[a, b, c, d], since 58 has four divisors.

Theorem 2.2. If:

(1) 24 |
∑
δ|N δαδ;

(2) 24 |
∑
δ|N

N
δ
αδ;

(3)
∏

δ|N δ
αδ is a rational square;

(4) (
∑
δ|N αδ) is a multiple of 4,

then [α1, . . . , αN] is a weakly modular form holomorphic in the upper half plane with
level N and weight (

∑
δ|N αδ)/2.

Proof. The proof of this important theorem can be found in [1, Theorem 6.2]. �

Corollary 2.3. If n = 58, then η4(e2πinτ)η4(e8πiτ) is a weakly modular form of weight
4 and level 58.

Proof. [0, 4, 0, 4] satisfies every condition of Theorem 2.2 and the result follows. �

Let
H(q) =

nP(qn) − P(q)
η2(q2n)η2(q4)

.

Note that if n = 58, then nP(eπinτ) − P(eπiτ) is a modular form of weight 2 and level
58 [4, page 18, Exercise (1.2.8)]. Since the η-function is zero-free in the upper half
plane, we conclude from Corollary 2.3 that H(eπiτ)2 is a weakly modular form of
weight 0 and level 58 (while H(eπiτ) itself is not).

The key observation is that H(eπiτ)2 is a linear combination of certain η-products
of weight 0 and level 58. Newman [7] conjectured in his paper that every weight-0
modular function on Γ0(N) holomorphic at all cusps except ∞ is a linear combination
of η-products of weight 0 and level N, where N is a square-free composite number.

It is more convenient to work with modular forms holomorphic at every cusp except
at ∞. The congruence subgroup Γ0(58) has four cusps: ∞, 0, 1/2, 1/29. The modular
form H(eπiτ)2 is holomorphic at ∞, but not holomorphic at all other cusps of Γ0(58).
One needs to find out a level-58 η-product [a, b, c, d] such that H2 × [a, b, c, d] is
holomorphic at all cusps except at∞.
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Theorem 2.4. An η-product [α1, . . . , αN] of level N is holomorphic at a cusp r = −d/c
(c, d are relatively prime) if and only if

1
24

∑
δ|N

(gcd(c, δ))2

δ
αδ ≥ 0.

Proof. The result follows from [5, Proposition 3.2.8]. �

Corollary 2.5. L := H(eπiτ)2 × [−2, 8, 10,−16] is holomorphic at all cusps of Γ0(58)
other than∞.

Proof. Theorem 2.4 implies that [−2, 8, 10,−16]/[0, 4, 0, 4] is holomorphic at every
cusp other than ∞. It suffices to verify that 58P(e58πiτ) − P(eπiτ) is holomorphic at all
cusps of Γ0(58), which follows from [4, page 18, Exercise (1.2.8)]. �

From [7], it suffices to construct a finite number of η-products [ai, bi, ci, di] (of level
58, weight 0, holomorphic at all cusps of Γ0(58) except at∞) and coefficients mi so that
S 0 = m0L +

∑
i mi[ai, bi, ci, di] has only terms of positive degree in its q-expansion at

∞, which implies that S 0 has to be 0. Since L has a pole of order 36 at∞, we only need
to find out η-products whose orders of poles at∞ are not larger than 36. Theorems 2.2
and 2.4 suggest that the constraints for such an η-product [a, b, c, d] should satisfy:

• 24 | (a + 2b + 29c + 58d) and −24 × 36 ≤ (a + 2b + 29c + 58d) ≤ 0;
• 24 | (58a + 29b + 2c + d) and (58a + 29b + 2c + d) ≥ 0;
• (29a + 58b + c + 2d) ≥ 0 and (2a + b + 58c + 29d) ≥ 0;
• 2 | (b + d);
• 2 | (c + d);
• a + b + c + d = 0.

The constraints give exactly 36 η-products of level 58 and weight 0. Those products
are listed in Table 1.

In order to calculate mi, it suffices to work out the null space of a matrix M, whose
column comes from the coefficients of terms with degree ≤ 0 in the q-expansions
of [ai, bi, ci, di] at ∞. We use Mathematica to obtain all η-products and calculate q-
expansions of L and [ai, bi, ci, di] to get the entries of matrix M. Then we use the
matkerint command in PARI/GP to get a reduced Z-basis B of the null space of M, so
that the entries of B are the corresponding coefficients. The calculation shows that the
null space is seven dimensional and we list six vectors of its Z-basis in Table 1, where
m0 , 0. The numbers in each column of Table 1 are the coefficients m0,m1, . . . in the
linear combination.

Theorem 2.6. If [a, b, c, d] is an η-product of weight 0 and level 58, then

[a, b, c, d]
( i
√

58

)
= 2−b/258(a+b)/4

( √2
2

√
29 − 5

2

)(a+d)/2
.
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Table 1. Coefficients for linear combinations.

L(q) 2 1 3 2 −4 −7

[−2, 4, 26,−28] 1769 −696 232 58 638 21025
[2, 2, 22,−26] −6964 −3911 −11 668 −8127 17 730 38 414
[6, 0, 18,−24] −1087 1741 2099 2079 −6240 −36 907
[10,−2, 14,−22] −174 −399 −448 −581 970 1638
[14,−4, 10,−20] −42 16 38 73 −102 −1427
[−10, 20, 10,−20] −512 −280 −808 −512 1088 2088
[−1, 1, 29,−29] −40 488 −15 176 −53 375 −35 630 69 125 58 603
[3,−1, 25,−27] −4786 8241 11 908 10 363 −31 852 −194 229
[7,−3, 21,−25] 1057 −1878 −589 −1462 3764 7141
[11,−5, 17,−23] −56 111 8 91 −176 828
[15,−7, 13,−21] 1 −2 0 −2 3 −56
[19,−9, 9,−19] 0 0 0 0 0 1
[−4, 12, 12,−20] 1008 −3680 −960 2672 1888 12 192
[−3, 9, 15,−21] −7352 22 936 16 608 −24 032 −46 032 −52 512
[1, 7, 11,−19] −1496 −6904 −7488 −144 8880 7840
[−2, 6, 18,−22] 29 284 −74 054 −72 386 82 004 170 808 306 698
[2, 4, 14,−20] −6144 12 496 48 −12 032 −7328 157 328
[6, 2, 10,−18] −1044 −618 −1134 508 2184 −33 786
[−1, 3, 21,−23] −123 816 27 132 −37 952 −250 468 −33 384 293 008
[3, 1, 17,−21] −1712 1968 32 924 21 572 −73 864 −688 620
[7,−1, 13,−19] −656 −5984 −5292 −11 764 11 832 80 812
[11,−3, 9,−17] −584 −444 1120 484 −1320 −28 096
[−8, 16, 8,−16] 1936 1896 4680 1408 −6624 −17 224
[−2, 8, 10,−16] 528 −45 488 −59 568 7312 103 584 149 200
[−1, 5, 13,−17] −69 008 64 552 63 752 −33 344 −280 320 62 520
[3, 3, 9,−15] 720 −19 992 3624 −10 304 27 776 −405 352
[0, 2, 16,−18] 41 820 −79 122 −33 270 −133 188 136 −352 434
[4, 0, 12,−16] −21 456 −35 560 −93 656 −68 720 87 552 728 568
[8,−2, 8,−14] −4476 −12 502 12 030 388 −5096 −267 222
[−6, 12, 6,−12] −15 232 −16 688 −47 888 704 65 024 170 640
[0, 4, 8,−12] 49 296 −80 832 140 000 −118 256 136 352 −1 267 904
[1, 1, 11,−13] 94472 −22 976 −228 456 109 024 −187 440 −463 000
[5,−1, 7,−11] −5560 −125 840 58 680 −25 968 44 368 −808 536
[−4, 8, 4,−8] 34 848 −17 776 115 600 −88 640 −78 656 −283 408
[2, 0, 6,−8] −42 640 −317 616 149 008 230 128 −18 080 43 9248
[−2, 4, 2,−4] −165 504 49 160 −203 272 153 536 65 472 −1 058 168
[0, 0, 0, 0] 51 152 −62 968 −8280 −159 808 140 320 1 529 048
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Proof. Equation (1.8) and the constraint a + b + c + d = 0 for the weight imply that

[a, b, c, d]
( i
√

58

)
= ηa(e−2π/

√
58)ηb(e−4π/

√
58)ηc(e−π

√
58)ηd(e−2π

√
58)

= 2−b/258(a+b)/4ηb+c(e−π
√

58)ηa+d(e−2π
√

58)

= 2−b/258(a+b)/4
(
η(e−2π

√
58)

η(e−π
√

58)

)a+d
.

Then the result follows from (1.15) and (2.1). �

Theorem 2.7. (H(e−π/
√

58))2 = 65 870 496 + 8 439 552
√

29.

Proof. We have stated that the q-series L and [ai, bi, ci, di] span a linear space of
dimension 7. The entries of each column in Table 1 are the coefficients in a linear
combination m0L +

∑
i mi[ai, bi, ci, di] = 0. Then our theorem follows from coefficients

in any column1 of Table 1 and Theorem 2.6. �

Theorem 2.7 implies that H(e−π/
√

58) = 36
√

2(148 + 11
√

29). So,

G0 =

√
58
3

(
1 −

3
4 × 992

( √29 − 5
2

)6
−

36
√

2(148 + 11
√

29)

99 × 16
√

58

)
=

2
√

2 × 1103
992 . (2.2)

The following results follow from the computation of Weber:

c(k) =
1

98012 =
1

994 , (2.3)

2v(k) =
1820

√
29

992 . (2.4)

Combining (2.2)–(2.4) and (1.13),

1
π

=
2
√

2
992

∞∑
m=0

(26390m + 1103)
(4m)!

3964m(m!)4

and we complete the proof of (1.2).

Remark 2.1. The conjecture of Newman for weakly holomorphic modular forms of
weight 0 suggests that the technique developed in the current section can be applied
to other composite square-free n in [8] or other Ramanujan–Sato series of other
levels in [3]. We have rigorously proved formulae (40)–(44) in [8] and a few other
Ramanujan-type formulae in which n are square-free idoneal numbers (for example,

1Although one column suffices, we can use other columns to cross-check our calculations. We also note
that these linear combinations can be treated as modular equations (with comparatively small coefficients)
that might deserve further investigations.
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n = 30, 42 etc) associated to imaginary quadratic number fields of class number 4.
Among all these idoneal numbers, n = 190 and n = 253 give two extremely rapidly
convergent series:

1
π

=

∞∑
m=0

(a1m + b1)
(4m)!

44m(m!)4

( 1

3
√

19(481 + 340
√

2)

)4m
,

a1 =
20(693 121 + 5457

√
2)

233 289
√

19
,

b1 =
1 877 581 − 869 892

√
2

466 578
√

19

and

1
π

=

∞∑
m=0

(a2m + b2)
(−1)m(4m)!

44m(m!)4

( 1

21
√

2(1121 + 338
√

11)

)4m
,

a2 =
1495(11 092

√
11 − 19 437)

1 630 818
,

b2 =
−37 515 813 + 11 937 508

√
11

6 523 272
.

Each term adds 16 or 19 decimal digits, respectively.

3. Case 2: n = 37

Formula (1.4) is not the only hypergeometric identity that Ramanujan dealt with in
the 1914 paper. Following what we have done in the introduction, we can start with
another formula from [2, page 181, Theorem 5.7]:

(1 − 2k2)
(2K(k)

π

)2
= 3F2

(1/4 3/4 1/2
1 1 ;−

16k2(1 − k2)
(1 − 2k2)4

)
. (3.1)

One can use the same method as the derivation of (1.7) to obtain the formula below:

1
6

P(q) = ū(k)
(2K(k)

π

)2
+ v̄(k)

∞∑
m=0

(−1)mmbmc̄m(k), (3.2)

where

ū(k) =
1 + 2k2 − 2k4

6(1 − 2k2)
,

v̄(k) =
1
2

(1 + 4k2 − 4k4

(1 − 2k2)2

)
,

c̄(k) =
16k2(1 − k2)
(1 − 2k2)4 .
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Combining (1.12), (3.2) and replacing every (2K(k)/π)2 by (3.1), we obtain a
formula similar to (1.13):

1
π

=

∞∑
m=0

(2
√

nv̄(k)m + Ḡ0)(−1)mbmc̄m(k), (3.3)

where k = k(e−π
√

n), q = e−π/
√

n,

bm =
(4m)!

44m(m!)4 ,

2v̄(k) =

(
1 −

2
1 − (2kk′)−2

)
,

c̄(k) =

( 2
(2kk′)−1 − 2kk′

)2
,

Ḡ0 =

√
n

3

(
1 −

3
2(1 − (2kk′)−2)

−
1

(k′)2 − k2

G1

2

)
and G1 is still defined by (1.10).

Although Weber [9, Table VI] had already shown that

2kk′ =
(√

37 − 6
)3
, (3.4)

where k = k(e−π
√

37), the method working for n = 58 fails for the case n = 37. This is
because 37 is a prime number which does not offer us enough prime factors to construct
sufficiently many η-products of level 37. Fortunately, Mazur and Swinnerton-Dyer
constructed certain modular forms on Γ0(37) in [6], which is just the last piece that we
need for the computation of G1.

The key observation in our proof is that the function

M(q) =
1

θ8
2(q)

+
1

θ8
3(q)

+
1

θ8
4(q)

, q = exp(πiτ),

is an SL2(Z)-invariant holomorphic modular form of weight −4 in the upper half plane.
Notice that

M(q) =
1

θ8
3(q)

(1 − (kk′)2)2

(kk′)4 ,

so

G2
1 = (37P(q37) − P(q))2M(q)

( (1 − (kk′)2)2

(kk′)4

)−1
.

The function
S (q) = (37P(q37) − P(q))2M(q)

is a modular function of weight 0 on Γ0(37). Instead of working with the modular
curve X0(37), we prefer to work on a similar Riemann surface with smaller genus, that
is, X+

0 (37) := X0(37)/w, where w : z 7→ −1/(37z) is the Fricke involution. The genus
of the Riemann surface X+

0 (37) is 1.
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Mazur and Swinnerton-Dyer [6] constructed a basis of meromorphic functions on
the Riemann surface X+

0 (37). Here we summarize their construction briefly. Following
Theorems 2.2 and 2.4 in Section 2, one obtains that f1(z) = η2(e74πiτ)/η2(e2πiτ) is a
modular function of weight 0 on Γ0(37). The transformation formula (1.8) of the
η-function suggests that f2(τ) = 37 f1(τ) + ( f1(τ))−1 is a modular function on X+

0 (37)
with a pole of order 3 at infinity. We need a modular function with a double pole
at infinity to form part of a basis of meromorphic functions on X+

0 (37). Mazur and
Swinnerton-Dyer remarked that [6, page 20] φ(τ) = (37P(e37πiτ) − P(eπiτ))/12 is a
weight-2 modular form on Γ0(37) with φ(−1/(37τ)) = −37τ2φ(τ). It is also known
that [6, page 20], given a quadratic form

Q(x) := xT


4 0 2 1
0 2 1 1
2 1 20 1
1 1 1 10

 x,

the associated θ-function
θ(τ) =

∑
x∈Z4

exp (πiτQ(x))

is also a weight-2 modular form on Γ0(37) with θ(−1/(37τ)) = −37τ2θ(τ). So,
ϕ = (3θ − φ)/4 is a cusp form of weight 2 and f3 = θ/ϕ is a meromorphic function
on X+

0 (37). Mazur and Swinnerton-Dyer noted that [6, page 21]

x =
f2 − f3 − 5

f3 − 6
= e−4πiτ + 2e−2πiτ + 5 + · · · (3.5)

and
y =

( f2 − 11)( f3 − 1)
f3 − 6

= e−6πiτ + 3e−4πiτ + 9e−2πiτ + 21 + · · · (3.6)

are modular functions on X+
0 (37) with a pole of orders 2 and 3 at infinity, respectively,

and they are the explicit modular parameterization of the elliptic curve E : y2 − y =

x3 − x with conductor 37.

Theorem 3.1. x(i/
√

37) = 15 + 2
√

37 and y(i/
√

37) = 69 + 12
√

37.

Proof. In [6, page 21], it is shown that the functions f2 and f3 are related by the
algebraic equation

f 2
2 − ( f 3

3 − 8 f 2
3 + 16 f3 − 2) f2 + 12 f 3

3 − 99 f 2
3 + 200 f3 − 107 = 0.

From the formula (1.8) of the η-function, f2(i/
√

37) = 2
√

37, which leads to
f3(i/
√

37) = (
√

37 + 6)/2 or −2 −
√

37. We can discard the second solution and the
result follows directly from (3.5) and (3.6). �

Following the construction in [6], the function

T (q) = 372(37P(q37) − P(q))2M(q) + (37P(q37) − P(q))2M(q37)
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is a modular function on X+
0 (37). The only pole of T is at infinity, so T can be expressed

as a polynomial of x, y. With a Gaussian elimination process, a polynomial expansion
for 16T can be given below:

16T = − 76 950 + 592740x + 19285650x2 − 127471338x3 + 92127717x4

+ 723037734x5 − 1173733308x6 − 1018583271x7 + 2790914580x8

− 94187160x9 − 2475353880x10 + 999364437x11 + 720381546x12

− 518203053x13 + 30859947x14 + 35407512x15 − 4823613x16

− 378801x17 − 2889x18 − 844650y − 11372238xy

+ 117580086x2y − 208224792x3y − 467267283x4y

+ 1515431403x5y − 215958168x6y − 2499996123x7y

+ 1722900159x8y + 1177433235x9y − 1430836020x10y

+ 95279805x11y + 299139750x12y − 94708881x13y

+ 361422x14y + 1880190x15y + 44424x16y + 81x17y.

Theorem 3.2.

S (e−π/
√

37) = 4050(2 011 673 312 873 + 330 717 057 625
√

37)/37.

Proof. A straightforward calculation from Theorem 3.1 and the polynomial expansion
of T shows that

T (e−π/
√

37) = 299 700(2 011 673 312 873 + 330 717 057 625
√

37).

Recall that M(q) is a modular form of weight −4 over SL2(Z), which implies that
M(e−π

√
37) = 372M(e−π/

√
37). So,

S (e−π/
√

37) = 4050(2 011 673 312 873 + 330 717 057 625
√

37)/37. �

Recall that

1
((k′)2 − k2)2 G2

1 =
1

1 − (2kk′)2 (nP(qn) − P(q))2M(q)
( (1 − (kk′)2)2

(kk′)4

)−1
.

With Theorems 3.1, 3.2 and (3.4),

1
(k′)2 − k2 G1 =

1
2

+
101

14
√

37
.

Hence

Ḡ0 =

√
37
3

(
1 +

3
4 × 882

(
√

37 − 6)3 −
1
2

(1
2

+
101

14
√

37

))
=

1123
4 × 882

. (3.7)
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Weber’s computation (3.4) implies that

c̄(k) =
1

8822 =
1

(21
√

2)4
(3.8)

and

2v̄(k) =
145
√

37
882

. (3.9)

Combining (3.7)–(3.9) and (3.3),

1
π

=
2

842

∞∑
m=0

(21460m + 1123)
(−1)m(4m)!

(84
√

2)4m(m!)4

and the proof of (1.3) is complete.

Remark 3.1. Similar constructions are much easier for (35)–(38) in [8] (all related
modular curves have genus 0, so theta functions are unnecessary for the basis
construction of modular functions). In the case n = 37, the construction of theta
functions is by no means ad hoc. It is rooted in the basis problem of modular forms
(which can be systematically constructed from quaternion algebra) on congruence
subgroups which can be used to give a rigorous proof for other Ramanujan–Sato series
where n are prime numbers (for example, Chudnovsky’s formula in [3, 11]). We will
give more details in a subsequent paper [10].
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