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Abstract

In this paper we construct a family of variational families for a Legendrian embedding, into the 1-jet
bundle of a closed manifold, that can be obtained from the zero section through Legendrian embeddings,
by discretising the action functional. We compute the second variation of a generating function obtained
as above at a nondegenerate critical point and prove a formula relating the signature of the second
variation to the Maslov index as the mesh goes to zero. We use this to prove a generalisation of the Morse
inequalities thus refining a theorem of Chekanov.

2000 Mathematics subject classification: primary 53C15; secondary 53D35.

1. Introduction

In [1] Arnold calls a Legendrian embedding/ : L -» JlM, into the 1-jet bundle, that
can be obtained from the zero section by a smooth deformation through Legendrian
embeddings a quasi-function. Intersections of / with Mo x R, where Mo denotes
the zero section of T*M, are called critical points of / and these are said to be
nondegenerate if the intersection is transverse. It can be shown that every such
quasi-function is of the form/ = VfU0x{0), where \jr = rj/1 for some contact isotopy
W)o<t<\ of JXM. Under the assumption that M is closed (that is, compact and
boundaryless) and a Riemannian metric on M has been chosen, we show that to each
nondegenerate critical point c e L of / we may naturally assign a number

H(c,i/r') en/2 + 1.

Assuming that all critical points are nondegenerate we denote by pk the number of
critical points c € L such that fi(c, \(r') = k and by bt the kth Betti number of M
(with coefficients in any field). We prove the following result.
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THEOREM 1.1. Let f : L -*• JlM be a quasi-function on a closed Riemannian
manifold M of dimension n having only nondegenerate critical points. Then

Pn/2-k — Pn/2-k+l H > t>k - bk-\ H V (-1)%

for every k e Z.

Theorem 1.1 is a refinement of a theorem by Chekanov announced by Arnold in [ 1 ]
(see also Chekanov [5]). The latter theorem asserts that, in the nondegenerate case,
the number of critical points is bounded from below by the sum of the Betti numbers.
A proof of Chekanov's Theorem is also given by Chaperon [4] and is based on a
result by Theret [ 16] concerning the existence of a generating function. Our proof is
independent of their work.

A method of generating contact isotopies is based on using a time-dependent
Hamiltonian H: [0, 1] x JlM -*• K. Indeed all contact isotopies may be obtained
in this way. A special instance is given by the following: given a Morse function
/ : M —> K, let H(x, y, z) = —f (x) define a time-independent Hamiltonian. The
critical points of / are in one-to-one correspondence with the critical points of the
associated quasi-function. In particular, the Morse index indw (x0) of a critical point
x0 e M of / is related to the Maslov index by

M(*o, t'H) = n/2 - indw(x0)

and thus in this special case Theorem 1.1 reduces to the classical Morse inequalities.
Our methods also refine a related theorem in the symplectic setting proved by Hofer

[9] and Laudenbach and Sikorav [11]. This pertains to finding a lower bound for the
number of points of intersection of the zero section of the cotangent bundle with its
image under a time-dependent Hamiltonian symplectomorphism. An outline of our
approach follows.

Let V' be a contact isotopy of JlM with Hamiltonian H: [0, 1] x JlM ->• R.
When M = K" we may associate with H an action functional as follows. Consider
the path space

&> = [c = (x, y): [0, 1] -»• r R" | y(0) = 0}

and, given c e !?, let z = zc: [0, 1] ->• K be the unique solution of

z = (y,x)-H(t,x,y,z), z(0) = 0

(assuming such a solution exists). Define the action functional <t>H : & —> K by

* « ( c ) = I ({y,x)-H(t,x,y,z))dt.
Jo
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A calculation shows that the fibre critical points of <PW with respect to the fibration
& —• R": (x, y) i-» x(l) generate the Legendrian submanifold \jr'(Lo).

We consider discretisations of the form <t> :̂ &N —*• R for N € N which also have
this property. Here

9" = {cN = (JCO, ...,xN,yi,...,yN)e ^2N+[)n | x h yj e 1 " } ,

which is fibred over R" by &N -*• R": c" i-» *N, can be thought of as a space of
discrete paths in R2*, and <t>̂  is the discrete action functional which is given by

The functions V}: R2n+1 —> R are constructed by using the contact isotopy V'> and
the Zj s are given by the iterative rule

Zo = O, Zj = {yj,Xj -* y _i ) - Vj-i(Xj-Uyj,Zj-i) + Zj-i, j > 0.

We show that such discretisations always exist for N sufficiently large and H having
compact support.

A path c e & is a critical point of Ow if and only if (c, zc) is a trajectory of
yjr' starting in Lo x {0}, where Lo denotes the zero section of 7*1" , and ending in
Lo x R. Similarly, a discrete path cN G ̂ ^ is a critical point of <£" if and only if
(cN, {ZJ }) corresponds to a 'broken trajectory' of \J/' with (JCO. Jo. Zo) G ̂ -o x {0} and
(x^, yjv, zjy) 6 Z.o x R. Furthermore, given such a path cN, critical for 4)^, and such
that T/r'(^o x {0}) intersects Lo x R transversally at {xN, yN, ZN), d2<t>%(cN) will be
nondegenerate. We show that, given a critical point c e ^ with the same property,
for sufficiently large N the signature of the second variation of the discretisation is
given by:

PROPOSITION 1.2. s ign^O^Cc") = 2^{cN, f).

This generalises a theorem of Robbin and Salamon in [14] for quadratic Hamil-
tonians. Also, it strengthens the theorem of Viterbo [17] which states that, in the
symplectic case, the difference of the signature of the second variation of <PN at two
critical points is independent of N, but at the cost of having to take N sufficiently
large.

The action functional and its discretisation are extended to the 1-jet bundle of a
closed manifold M as follows. First, M is embedded in R* for a suitable k. Next, a lift
H: y'R*-*- R of His chosen such that H \ y iR*u = Hop, wherep: JlRk\M -> JlM
is the natural projection map. Finally, the appropriate action functional is defined to
be 4># restricted to the space of paths having x(l) e M, and similarly for the
discretisation. Theorem 1.1 follows from generalising Proposition 1.2 and appealing
to the stabilised Morse theory (the Conley index).
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2. Contact structures

In this section we recall some basic notions of contact structures. A contact
structure on a 2n + 1 -dimensional manifold Q is a maximally nonintegrable field of
hyperplanes £ c T Q. If we assume that £ is transversally orientable, that is, £ is
given by the kernel of some 1-form a, then the contact condition can be stated as

(1) aA(da)"^0.

In this case a is said to be a contact form for the contact structure £. An important
equivalent formulation of the contact condition (1) is that da is a nondegenerate
2-form on §.

Given a contact manifold (Q, £) and an integral submanifold L c Q note that, for
each p € Q, the tangent space Tp L is an isotropic subspace of the symplectic vector
space (%p,dap), that is, dap vanishes on TPL. This implies, in particular, that the
dimension of L can be at most n. In such a case L is said to be Legendrian.

A diffeomorphism i/f: Q —>• Q which preserves the oriented field of hyperplanes
£ is called a contactomorphism, that is, equivalently, if

\jr*a = esa

for some function g: Q -*• R.
Note that if ^ : Q —> Q is a contactomorphism, then, by a direct calculation, its

derivative restricts to give a linear conformal symplectomorphism

for every p € Q.
A smooth family (V '̂)o<<<i of diffeomorphisms r//': Q -*• Q with \j/° = id is

called an isotopy of Q. When each \J/' is a contactomorphism, the family i/r' is called
a contact isotopy.

A contact vector field is defined to be a vector field X : Q -*• TQ which satisfies

3fxa = ha

for some function h: Q —> R.
The contact Hamiltonian associated to a contact vector field X: £) -*• T Q is

defined to be the function / / : M —> R given by

(2) / / = -i(X)a.

It is easy to check that every function H: Q —>• R is the contact Hamiltonian of a
unique contact vector field X = XH : Q -
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1 -jet bundles. The standard contact structure on the 1 -jet bundle J' M — T*M xR
of an n-dimensional manifold M is given as kernel of the l-form

a = dz - A.can.

Here z denotes the standard coordinate on OS and A.can the canonical l-form on T*M
which is given by the defining property <r*Acan = a for every l-form a: M -*• T*M.

Let \j/' be a contact isotopy of JlM and X: [0, 1] x JlM -*• 7 7 ' M be the
associated time-dependent contact vector field defined by

Associated to X is the time-dependent Hamiltonian H: [0, 1] x J lM —• R given by
(2). We express this in local coordinates.

About any point (c, z) 6 JXM one can construct a distinguished set of local
coordinates x i , . . . , xn, y\,... , yn, z in which a takes the form

Using these coordinates it is easy to check that X is given by Hamilton's equations:

8H
(3a) x, = —

dH dH
(3b) yi = -—-yi —

dx( dz
(3c) z = (y,x)-H

and thus ifr' is the time-f map of the flow associated to Hamilton's equations for H.

3. The variational principle

In this section we describe an abstract method for generating all solutions of
Hamilton's equations in the 1-jet bundle J lM subject to c(0) e Mo, the zero section of
7*M,andz(0) = 0. LetH: [0, l]xJlM -» R be a time-dependent Hamiltonian. To
ensure that (4) below has a solution z: [0, 1] -*• R for every smooth path c: [0, 1] - •
T*M assume that dzH is bounded. Let n: ^M -*• M be the fibre bundle, where

&M = {c: [0, 1] -» TM | c(0) € Mo}

is a space of smooth paths and n is the projection c i-> nT>Mc{\) € M. To each path
c 6 ^ M associate a function z = zc- [0, 1] -»• R given as the unique solution of

(4) z(t) = A«n(c(0) - H(t, dt), z(t)), z(0) = 0.
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Now define the action functional <J>W : &M —> K by

*w(C> = Z(l) = / (̂ can(c) - H(t,C,Z))dt.
Jo

A point c e &M is called a fiber critical point of <J>W if the differential of <t>w

disappears along Tc{&M)M(c), the tangent space at c of the fibre over n(c).

PROPOSITION 3.1. There is a one-to-one correspondence between the set of fibre
critical points ofQ>H arid the solutions of Hamilton's equations subject to c(0) € Mo,
z(0) = 0. Furthermore, c € &M is fibre critical if and only if

(5) i(c)dkcm + dHlz(c) + dzH(t, c, z)K™ = 0.

PROOF. Let (—£,£) —>• &M • s H> CS be a parametrised family of paths and
abbreviate c0 = c. Denote by y: [0, 1] - • c*T(T*M) the associated variational
field

3

~~ 3 7
Define z(: [0, 1] -»• K for each s by (4) and denote the derivative with respect to s at
s = 0 by £. Now £ evaluated at t € [0, 1] is given by the expression

Kit) = —

= I c*^y(Xcm - Hz dx) - dzHi; dx
Jo

f
— I (Ky)(-i(c)dA.can — dHxz) - dzHt;)dx + A.can(y(O),

where the third equality follows from Cartan's identity for the Lie derivative. Thus
the 1-form a applied to the vector field (y, £) satisfies

a(y(t),K(t))= I {«YH-i(c)dkcm-dHt.l-dlHXaa)-dzHa(y,l;))dT,
Jo

This we can solve explicitly. Evaluating at t = 1 we find

!in - dH,,z -
/.I

= /
Jo

Thus it follows that c e £?M is fibre critical if and only if (5) holds and since (5) in
local coordinates is equivalent to (3a), (3b) this proves the proposition. •
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Note that at a fibre critical point c the differential of <$>H is given by

It thus follows that c is a critical point only if c(l) € Mo.

4. Variational families

The notion of a variational family formalises the variational principle that was
considered in the previous section. In this section we consider some basic properties
of variational families in general. We start by briefly recalling some ideas from the
theory of symplectic reduction.

Suppose that (P, co) is a symplectic manifold and that W c P is a coisotropic sub-
manifold. This means that Tp W" is contained in Tp W for each p e W, where Tp W"
denotes the symplectic complement of Tp W. Then the subspaces Tp W

w determine
an isotropic distribution TWW in TP which by the closedness of co is integrable. It
follows from Frobenius' theorem that W is foliated by isotropic leaves. If we assume
that the quotient space P' = W/~ is a manifold, where the equivalence relation is
given by: p0 ~ p i if po and p i lie in the same leaf, then we note that the P' is naturally
a symplectic manifold.

We next recall that if L is a Lagrangian submanifold of P which intersects W
cleanly, that is, L n W is a submanifold of P and TP(L D W) = TpLDTpW for all
p e L fl W, then the image of L in P' is also Lagrangian, but may only be immersed.

To pass from Lagrangian immersions to Legendrian immersions we use the pro-
cess of contactisation. This applies to all symplectic manifolds (P,co), where the
symplectic form is given as the differential of a 1-form —X. Such manifolds are said
to be exact. A contactisation of an exact symplectic manifold (P,co) is a contact
manifold (P x R, dz — A.), where A. is a 1-form satisfying the relation co = — dX.
Here z denotes the coordinate on K. Given an exact symplectic manifold (P,a>),
a contactisation of a Lagrangian immersion f : L —* P is a Legendrian immersion
/ : L -*• P x K lifting / . If the Lagrangian immersion / : L - • P is exact, that is,
f*X = dS for some function 5 : L -> R, then the lift L - • P x 1 : c i-+ ( / (c), 5(c))
is Legendrian. Conversely, it is easy to see that if/ admits a lift, then it must be exact.
Note, however, that the contactisation of an exact Lagrangian immersion is not unique
since the function S is unique only up to the addition of a locally constant function.

We now give the definition of a variational family. This is a pair consisting of a
fibre bundle n: E -*• X and a smooth function <t>: E ->• R. The variational family
is called transversal if the graph of d<$> in T*E intersects the conormal bundle of the
fibres

W£ = {(c, r,) € TE | T] € (ker</7r(c))x}
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transversally. For a transversal variational family (£\ 0 ) , the set of fibre critical points
is given by

•*?£,* = {c € E | d<b(c) 6 (kerdn{c))L)

which by transversality is a manifold. To each fibre critical point we can uniquely
associate a covector v* e T*(c)X by the relation v* o dn(c) = d<&(c). This gives rise
to a map i<j>: ^E.G -*• JlX given by mapping c e ^€E,<t> to the 1-jet (n(c), v*, ^ (c) ) .

The following proposition is due to Hormander [10]. We include here a proof for
the sake of completeness.

PROPOSITION 4.1. Given a transversal variational family (E, <J>), themapi®: C€E^
—> J ' M is a Legendrian immersion.

PROOF. Note that the graph of cf<t> is a Lagrangian submanifold of T*E and NE

is a coisotropic submanifold. Note also that the quotient NE/~ can be identified
with T*X. It follows from the above discussion that the map i'^: (&E.'S> —*• T*X,
given by composing i* with the projection JlX -* T*X, is a Lagrangian immersion.
Moreover, the pullback of kcm by t'o is given by

Ocan = V* O d(n\VeJ = d(t>\VEJ

and so i'^ is an exact immersion. Contactising, it follows that t* is a Legendrian
immersion. •

Denote by L* the image of i* and by Xo the zero section of T*X. Clearly, a point
c e ^E.t. is a critical point of <J> if and only if t<i>(c) is in L* D Xo x K. Moreover,
when E is a finite dimensional vector bundle we have:

LEMMA 4.2. A point c e crit O « a nondegenerate critical point o/O if and only if
L<j, a/!<i X o x l intersect transversally

The proof of this uses the following elementary fact.

LEMMA 4.3. Let (V, a>) be a symplectic vector space and N C V a coisotropic
subspace. Then given two Lagrangian subspaces Ao and A i satisfying

AocN, A,nAr = {0},

Ao is transverse to At if and only if, in the quotient, the reduced spaces Ao and A\
are transversal.
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PROOF OF LEMMA 4.2. Apply Lemma 4.3 in case V = TP(T*E), N = TPNE,
Ao = TPEO and A, = Tp(graph(d<t>)) where p = (c, rf<t>(c)) and Eo denotes the zero
section of T*E. D

EXAMPLE 4.4 (Action). Let H: [0, 1] x JlM -> K be a time-dependent Hamil-
tonian and 4>w: &M -> K the action functional given in Section 3. By Proposi-
tion 3.1 the pair {&M, <t>w) is a variational family for the Legendrian submanifold
ifr[(M0 x {0}), where \jr' = ^j/'H denotes the contact isotopy generated by H. Note
that we do not say anything about transversality.

Restricted variational families. Let M be a submanifold of X and let L -*•
J'X: c t-> (f (c), S(c)) be a Legendrian immersion transversal to JXX\M. We extend
the notion of symplectic reduction to such Legendrian immersions as follows.

Evidently f : L -*• T*X is an exact Lagrangian immersion. Define / ' : L' -*•
T*M, where V = f~\T*X\M), byf' = rofoi. Here i: L' <̂ -» L is the inclusion

and r : T*X\M ->• 7*M is the natural projection. By transversality V is a manifold
of the same dimension as M. Using r*A.can = j *A.can, where y : 7 * ^ 1 ^ " ^ T*X is the
inclusion, it is now easy to see that / ' is again an exact Lagrangian immersion with
/'*Acan = d(S o i). The lift L' -> JlM: c t-+ (f'(c), S o i(c)) we refer to as the
reduction of (/, 5).

Suppose that (n: E -*• X, O: E —> K) is a transversal variational family and
denote by

(ir« = TT|EM : £ w - • M, <t>M = <D|£M : £ M - • R),

where £M = £ | M , the variational family obtained by restricting to M. In the case of
a finite dimensional vector bundle these are related by:

LEMMA 4.5. Given a transversal variational family (E, <t>), the restricted vari-
ational family (EM, <t>M) is transversal if and only if L$ is transverse to JlX\M.
Moreover, if both variational families are transversal, then L^u is the reduction
of L<t.

PROOF. The first part of the lemma follows easily by choosing local coordinates on
X in which M is linear and the second part follows by a direct calculation. •

COROLLARY 4.6. If both (E, 4>) and (EM, <t>w) are transversal, then c e EM

is a nondegenerate critical point of <t>M if and only if L* and TMX x R, where
TML C T*X denotes the conormal bundle ofM, intersect transversally at t<t>(c).

PROOF. This follows immediately from Lemma 4.2, Lemma 4.3 and Lemma 4.5.

•
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5. Continuous-time theory

In this section we assume that M is a closed manifold embedded in K* and that
i/r': 7 'M —> 7 'M is a given contact isotopy. We construct a variational family
(,5V, <t>H) on Rk whose restriction to M, {&, <£), generates the Legendrian subman-
ifold \jr' (Mo x {0}) c J' M, and consider the second variation of the function 4>.

5.1. Construction of variational family. Suppose that H: [0, 1] x JlRk -> R is
a time-dependent Hamiltonian with the property that for every x e M

H(t,x,y,z) = H(t,x,y',z) whenever y-y'±TxM.

Denoting by p: JxRk\M -»• JXM the natural projection (JC, y, z) i-> (x, y\TxM, z), it
follows that H descends to a time-dependent Hamiltonian H: [0, 1] x JlM -> K
given by

(6) H\j^u=Hop.

We insist that H, is C1 -bounded for every t e [0, 1]. This ensures that the Hamiltonian
flows of H and H define global diffeomorphisms for all t € [0, 1].

The next lemma shows how the Hamiltonian flow of H is related to that of H
(compare with [2]).

LEMMA 5.1. Let H be a time-dependent Hamiltonian on J'K* and denote by (p'
the associated contact isotopy. Then the following are equivalent:

(i) H satisfies (6) for some function ~H: [0, 1] x JlM ->• R;
(ii) <p' leaves JxRk\M invariant;

(iii) (p' descends to a contact isotopy on JlM.

PROOF, (i) implies (ii). Let X — (x, y, z) denote the vector field generated by H.
It is sufficient to show that X,(p) e Tp(J

lRk\M) for all p e JlRk\M. To see this note
that, for any p = (x,y,z) 6 JlRk\M,

x,(p) = dyH,(x, y, z) = d,H,(x, U(x)y, z) = U(x)dyH,(x, y, z).

Here T*M has been identified with TM, using the induced inner product, and n (x) e
\Hkxk denotes the orthogonal projection onto TXM. It follows lhatx,(p) e TXM and
hence X,(p) e Tp(J

lRk\M) as required.
(ii) implies (iii). We first claim that if a contactomorphism cp preserves J'Rk\M,

then it has the property that

(7) p(<p(p)) = p(<p(q)) whenever p{p) = p(q).
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To see this note that the subspace Np = Tp(J
lRk\M) nfp is a coisotropic subspace of

the symplectic vector space (t-p, dap), for each p € JlRk\M, and that the symplectic
complement is given simply by Np = Tp(p~\p(p))). Also note that dcp(p) restricts
to a map from Np to Nv(p). Property (7) now follows from the fact that the fibers of p
are connected.

Consequently, we may define xfr' : J1 M —>• J1 M by p o <p' o j = f o p , where j
denotes the inclusion J'M.k\M <^-> J'R*. Clearly f is a diffeomorphism. That V' is
a contactomorphism follows from a direct calculation using the identity j *a = p*a.

(iii) implies (i). Since <p' descends to a contact isotopy \j/' on JlM it is clear that
<p' preserves 7'K*|M. Also it follows that the contact vector fields X, X generated
by the isotopies <p', \jr' respectively are related by ptX = X. These satisfy i(X)a =
—H, i{X)a — -H, where H is the Hamiltonian function generating ifr'. A direct
calculation now shows that H and H are related by (6). This completes the proof of
the lemma. •

REMARK 5.2. It follows from Lemma 5.1 that, when H satisfies (6), there is a
commutative diagram

J K \M > J K \M

JlM —£-»• JlM

but note that <p' is not uniquely determined by the restriction of H to / 'R*|M.

We now return to the main problem and assume, from now on, that our contact
isotopy \j/' is generated by H. We define the variational family ( ^ , O) as follows.

Let & = ^ V , w be the space of paths

& = {c = (x,y): [ 0 , 1 ] - * rR*|>>(0) = 0, *(l) € M)

in T*U.k, and let n be the projection & ->• M given by c = (x, y) i-> x(\). Define
the action functional <t> = <J>WiW: ^ -»• Kby

= I
Jo

((y(t),x(t)) - H(t,x(t),y(t),z(t)))dt,
Jo

where z: [0, 1] ->• K is the unique solution of the initial value problem

(8) z(t) = (y(t),x(t))-H(t,x(t),y(t),z(t)), z(0) = 0.

Lemma 5.1 now implies the following.
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PROPOSITION 5.3. ({?, <P) is a variational family for the Legendrian submanifold

In particular, c € & is a critical point of 4> if and only if (c, z) is a solution of
Hamilton's equations and c(l) is in TML, the conormal bundle of M.

REMARK 5.4. The variational families (&M, O77) of Example 4.4, and (£?, <J>),
considered above, both generate the Legendrian submanifold irl(M0 x {0}) C J'M.
These are related as follows: let c € £? be a fibre critical point of <t>, then c e &M,
given by composing c with the projection T*Rk\M —>• 7*M, is a fibre critical point of
O77. Conversely, any fibre critical point c of O77 lifts uniquely to a fibre critical point
c of 4> by using the contact isotopy <p'.

5.2. The second variation. From the proof of Proposition 3.1 the differential of 4>
is given by

d<t>(c)(y)= / e^-a'HdT((r],x-dvH)+(y + dxH+ydzH^)) dt+(y(1)
J

where y e Tc&> = {y = (?, i>): [0, 1] -» K2* | JJ(O) = 0, £(1) e rx(1,W}. In order
to deal with the boundary term (;y(l),£(l)) we now restrict <t> to the space

g = <fR,,M = { c € ^ | c(l) 6 rA/1}

of paths satisfying Lagrangian boundary conditions. Before giving a formula for the
second variation of <1> at a critical point we introduce some notation.

Let c e & be a critical point of <J> and denote by z: [0, 1] -*• K the corresponding
solution of (8). Define, for reasons that will become apparent later, the matrix valued
functions GK, G^, G^, Gm: [0, 1] -> R*x* and GK: [0, 1] - • K by

G « = d2
xxH + d]zHyT + yd2

zxH + d2
zzHyyT,

G,n = d2
xy,H + yd2

zyH,

(9) G^=d2
xH + d2

yzHyT,

GK = dzH.

Here the derivatives of H are evaluated at (/, c(t), z(t)) e [0, 1] x J'R*. Note that
GtfO) and G,,(/) are symmetric and that G(n(t) = Gn^(t)T. Construct from these
the symmetric matrix valued function S = Sc: [0, 1] -> I2*x2* by

(10)( 1 0 )
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Also, denote by Jo the 2k x 2k matrix

/ - (

and by % = "i>cM the tangent space of £ at c:

VC = {Y- [0,1] -> K2i | K(0 ) e Ao, y d ) e A , } .

Here Ao = R* x {0} and Ai = Tcm(TML) are Lagrangian subspaces of R2*.

PROPOSITION 5.5. The second differential ofQ>ata critical point c is of the form

d2<t>(c)(yu Yi) = (A{c)yu y2)o,

where y\,Yi £ ^ and the second variation, A(c), is given by

(11) A(c)y = ef'-c<d* (Joy - Sy + ±GtJoy).

PROOF. Fix a two parameter family of curves

cS[,s2 = (xSl,S2,ySl,s2) e£, su s2 e ( -e , s)

with c0.o = c and denote the derivatives by

, __a_ __a_ ^ _±
Si.Si.S2 — „ xs,,s2<

 rli,sl.s2 — „ ysi.s2y hi.s,.s2 — „ S.v, ,.v2

oSj dSi as,

for i = l ,2 . Here, of course, zSl,S2 is given by solving (8) with JC, y, z replaced by xSliSl,
ySliS2, zSl.i2. Abbreviate & = ^,o,o, li = *7;,o.o, ?. = ^.o.o and set y, = (^,, r?,), fit =
{^, *);, £/)• We now proceed with the proof of the proposition.

Differentiate the identity

2 J , , J 2 — \y»i.J2> •**i.J2/ " (.•> •*$I,JJ> yji,*2' 2 i i . j 2 )

with respect to s2 and 5, successively and then evaluate at s{ = s2 = 0 to obtain

Kti = (9,, m. x) + (K, li) + (IJI, h) + (y, 9J2)

- J 2 / / , ( M , , M2) - (9XH, d,fr) - {dyH, dSlr,2) - dzHdSl^2.

Using the fact that c is critical rewrite this as
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where £ = 9,V|f2 or more concisely, by using the substitution A. — £ - (y, 9S|£2), as

jt>- = (»?2. ki) + [lu &) - dzHX - rf2//,(/z>, tn).

Since k(0) = 0 the solution to this ODE evaluated at t = 1 is

(12) = J
Also since 0 = 3(| (y(l), &(1)) = (ij,(l),f2(l)> + M O , 3,,k(l)> it follows that
A.(l) = ^(1) + (^i(l),^2(l)>- Now partially integrate the second summand on the
right hand of (12) side to obtain

f ( l ) - / e/' -Cf d r ( (r]2 , | , ) - ft,, &) - G{(»?,, Hi) ~ d2H,(nu /z

Since c is critical observe, by Proposition 3.1, that

for all f € [0, 1] thus, in particular,

The proposition now follows. •

REMARK 5.6. A(c) extends to a self-adjoint operator on L2([0, 1], R2k) with dense
domain

KM = {YZ Wll2([0, l ] ; R " ) I K(0) e Ao, y d ) 6 A , } .

In addition, A(c) is injective if and only if ty(l)A0 is transverse to Als where
€ Sp(2fc) is given by

In such a case we will say that c is a nondegenerate critical point of <t>.

REMARK 5.7. The contact isotopy <p', generated by H, linearised along the path
a — (c, z): [0, 1] —> JlRk and restricted to contact planes, gives rise to the path of
linear conformal symplectomorphisms

This path may be naturally identified with the path e^'^G( dXx\>c,H, where ^cH is given
in Remark 5.6, via the canonical symplectomorphisms

{$p,dap)^ (R2k,co0): ( £ , r), {y,$)) H + ( § , ^ ) ,

where/? = (x, y, z).
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REMARK 5.8. Identify T*M with TM using the induced inner product. The tangent
space to TML at p = (x, y) is given by

TP{TML) = {(£, i,) e R2* : H e £*#, (</ n(jr)£)y + n(*)»j = 0 } ,

where FI(JC) e Rkxk denotes the orthogonal projection onto TXM. Note that defining
IIP : TXM ->• R by / / , (£) = ±((</n(;t)£);y, £) gives a quadratic form on TXM, the
second fundamental form of Af at x along the normal vector y.

REMARK 5.9. Let G: [0, 1] x J' R* ->• R be the time-dependent Hamiltonian given
by

G(t, $,»;, <) = i ( G l f ( 0 $ , >̂ + (G^(r)f.»?) + 5<G,,(/)i?, >̂ + G{(/)?.

We call such Hamiltonians, where G^(t), G,f (r), G , , (0 6 R*x* with Gf?(f), G , , (0
symmetric and Gt(r) e R, quadratic, and define G t , ( 0 = Gn((t)

T. Define the
functional 4>c = <t>c,H,M '• ^c ->• R by

= y
where f : [0, 1 ] —> R is the unique solution of the initial value problem

(13) t
Notice that if c is a nondegenerate critical point of <S>, then 0 is the unique critical
point of 4>o also nondegenerate, and in this case the above proposition shows that the
second variation of 4> at c agrees with the second variation of <PC.

REMARK 5.10. A quadratic Hamiltonian G: [0, l ] x 7 ' R * - • R as above generates
the contact isotopy

e/o-G<<^o + I f e£-G<
Jo

where * G : [0, 1] ->• Sp(2*) is given by

(14) * c = -J0SGVG, * c ( 0 ) = 1.

Conversely, given any smooth family of symplectic matrices * : [0, 1] —>• Sp(2/fc)
and any smooth positive function a: [0, 1] —> R>0 there exists a contact isotopy of
the form

ftfy = fl(0*(0 (1°) , W) = a(t)2i;o + Q(t, fo, >?o),

where 4* = * G for some quadratic Hamiltonian G and Q(t, •, •) is quadratic. We call
such contact isotopies pseudo-linear.
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6. Discrete variational families.

In this section we construct a family of finite dimensional variational families
(&N, <P") for our Legendrian submanifold TJ/1(M0 X {0}) C J ' M . This is done in
two stages. The first stage is to consider the special case when M is R" and the
contactomorphism V' is C-close to the identity. The second stage is the general
case. Alternative constructions are given by Chekanov [5] and Theret [16]. The
corresponding construction in the case of cotangent bundles was first carried out by
Laudenbach and Sikorav [11].

6.1. Generating functions of type V. When M is R" and the contactomorphism
is C-close to the identity it turns out that the contactomorphism is generated by a
function defined on R"+l. We explain this presently.

Let <p: J' R* —>• J' R* be a contactomorphism and denote it as follows:

(xo,yo,Zo) •->• (*i,;yi>Zi) = (u(xo,yo,Zo), v(x0,y0,zo), w(xo,yo,zo)).

A generating function of type V for <p is a function V: R2t+I -> R such that

dv
x\-xo= —(x0,yi,zo),

dy
dV 8V

(15) yi - y0 — --— (x0, yi,Zo) - yo—(xo, >'i, Zo).
dx dz

Z\-zo = {y\,x{ -xo> - V(xo,yi,zo)

if and only if (xi, y\, z\) = <p(x0, y0, z0)- This generalises the notion of a generating
function of type V, as defined in [12], to the contact setting. In case <p admits a
generating function of type V note that cp has compact support (that is, <p is equal to
the identity outside a compact set) if and only if V has.

PROPOSITION 6.1. (i) Every contactomorphism <p: JlRk -* J'K* which is
sufficiently close to the identity in the C1 -topology admits a unique generating function
of type V.

(ii) For each smooth function V: R2k+l -> R having compact support and suf-
ficiently small first and second derivatives there exists a unique contactomorphism
<p: J' R* —» J' R* such that V is a generating function of type V for <p.

PROOF. For (i), the assumption on <p ensures that the map
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has a global inverse. Thus there exists a m a p / : R2*+l -*• 1* such that

yo = f (*o. v(x0, y0, Zo), Zo)-

Also, since <p: (x0, yo, Zo) H» (JCI, y\, Zi) is a contactomorphism, we have

(16) dz\ - ^ y u dxu = e8 \dzo - Y,ymdxo,J

for some function g: R2*+1 —> R. Thus, using the notation set up earlier, the chain
rule gives

dz\ - Yy*idx" = Y (d*«w ~ (yi' 9«'")) dxoi

+ Yl (dy°>w - (>•• a*»"» dy* + (d*w -{yu 9*M)) dz°-
Comparing with (16) we find that

(17) 8yow- (dyou)T
yi = 0,

and

(18) dxow - (dXou)T
yi = - (d^w - {ylt 3a«))y0.

We claim that V: K2n+I -> K defined by

(19) V(xo,yi,Zo):=(yi,xi-xo)-Zi+Zo

= {yu u(xo,f(xo, yu Zo), Zo)—xo)-w(xo,f(xo, yu Zo). Zo)+Zo

satisfies (15).
This claim is proved by a straightforward calculation, differentiating (19) and using

the identities (17) and (18). The uniqueness of generating functions of type V is clear.
For (ii), let V: U.2k+l —> K be a smooth function satisfying the hypotheses. We

construct <p as follows. Let /x: R2*+1 ->• K2*+1 be the map defined by

(*o. yu Zo) i-)- \x0, (l - 3 a V(x0, yu Zo))~' (ji + 3,0 V(JT0, ^i , Zo)), Zoj

and v: R2*+1 -> R2M be the map defined by

(x0, yuZo)^ (x0 + dyi V,yuZo + {yu dyi V) - V).

The hypotheses on V ensure that /x and v are diffeomorphisms. We define cp to be
the composition v o /x'1. That <p is a contactomorphism is seen directly as follows.
Expand the formula for the contact 1-form a = dz\ — £ >>n dxu. After cancellations
this becomes

dzi - J2 yu d*u = (1 - K V) dzo - £ O , 0 , V + yu) dxOi.
From the definition of the function y0 we have the equality

d*0V + yi = ( l - 3 a V)y0

hence Ĵ is a contactomorphism as required. D
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The pseudo-linear case. When <p is the time-/i map of a contact isotopy generated
by a quadratic Hamiltonian G the pair (£1, r){) is given in terms of (fo, ?7o) by

VW(20)

where a > 0 and

are as given in Remark 5.10. In this case the condition of <p being C'-close to the
identity is replaced by requirement that

(21) det (£>)^0

which holds for /, > 0 sufficiently small. Again, we say a generating function
K2A+I —<• K: (£, rj, £) i->- W(%, r), £) is quadratic if it is quadratic in £ and ^ and
linear in f. A simple modification of the proof of Proposition 6.1 now gives:

PROPOSITION 6.2. Every contactomorphism cp: J[Rk ->• J'K* generated by a
quadratic Hamiltonian with (21) holding admits a unique quadratic generating func-
tion of type V.

Conversely, for each function W = W(%, 77, £) on U.2k+l, quadratic in £ and rj and
linear in £, satisfying

(22) 1 -3 ( 1V#O, det(l + 3^ W) ^ 0,

there exists a unique pseudo-linear contactomorphism cp: J' K* —• 7 ' U.k such that W
is a generating function of type V for (p.

We now give an explicit formula for the quadratic generating function of the pseudo-
linear contactomorphism cp above. Observe from (20) that when condition (21) holds

- £0 = (aA - l)£0 + aBr}0

^{aA-D^ + BD-'-q, -aBD-lCi;0

= (aA -aBD~lC - l)£0
 l

Here the last equality follows from the fact that f e Sp(2k). Also note that

to, + (a - fl-')D-'(aQ0 + aDr)0)

0 + (1 - a/r')»?i + (a2 - 1)IJ0-
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It follows that the generating function of type V for <p is given by

(23) W($o, m, ft) = -{{a2D-{a-o, Ho) + {(aiD'Y - l)£0, m)

6.2. Discrete-time variational theory. We consider the general case where M is an
arbitrary closed manifold embedded in Rk and ijr': JlM -> JlM is a given contact
isotopy. We assume that f is generated by the contact Hamiltonian H: [0, 1] x
JXM - • K and that H: [0, 1] x JxRk ->• R is some function which satisfies (6). It
follows that H will not have compact support. Hence we multiply H by a smooth
cutoff function and assume, by abuse of notation, that H is equal to zero outside of
a large compact set containing U»e[o ij ^ ' (^ )> where <p' denotes the contact isotopy
generated by H, and M the set M x {0} x {0} c JlRk.

We now construct a family of finite dimensional variational families generating the
Legendrian submanifold ir[(M0 x {0}), by discretising the time variable. Pick an
integer N and define

for7 = 0 , . . . ,N - 1. Then

and for N sufficiently large each <pj+1 satisfies the hypotheses of Proposition 6.1 (i).
Hence for each j there exists a function Vj: R2i+1 —*• R such that

dy'
dVj dV;

(24) LL

Zj+i - Zj = {yJ+i,xj+i -xj) - Vj

if and only if (xj+,, y}•+1, Zj•+!) = <pj+l(Xj, yy, ^ ) .
Now define, by analogy with the continuous-time case, the space

&" = K ' . M = {c = (xo,...,xN,yu..., yN) e !(2"+1>* | xN e M]

of discrete paths in K2*, and to each c e &N associate a sequence (zo, • • • , ZN) given
by the iterative rule

(25) zo = 0, z, = (yj, x; - *,•_,) - VJ_I(XJ-U yj, zj-i) + zj-i, j > 0.

Let n: ^H —*• M denote the projection c H> XN. The discrete action functional
<f>N = <&N

HM: &>N -* R can now be defined by
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PROPOSITION 6.3. (£?N, $>N) is a variational family for the Legendrian submani-

foldf\M0 x {0}) <zJlM.

Proposition 6.3 follows from Lemma 6.4.

LEMMA 6.4. There is a one-to-one correspondence between the set of fibre critical
points of<S>N and solutions of (24) {for) = 0 , . . . , N — \) with y0 = Zo = 0, xN € M.

PROOF. The partial derivatives of <i>N are

= (1 O, V/v-1) ' ' ' \ 1 «z 'j' +1 / [Xj + 1 Xj Oy *j )

fory = 0, . . . , TV — 1 (on defining y0 = 0). Since 1 — dz V, is nonzero for each /, this
proves the lemma. •

As before, c e £?N is a critical point of <t>N if and only if (c, z) is a solution of
Hamilton's discrete equations (24) and cN = (xN, yN) e TM1. In particular, c is a
critical point of Q>N if and only if it is obtained by sampling a path c e crit <t>.

REMARK 6.5. In applications it will be useful to note the following. Let x — xN and
£ = (xQ, . . . , *JV_I , y\, . . . ,yiv) denote the base and fibre coordinates respectively of
&>N - M x R2m where m = Nk. Then <&N can be written in the form

where P e |R2mx2m is a nondegenerate symmetric matrix of signature zero and W is
given by

N

W(x, f) = (x, yN) - J2 Vj-dxj-uyj, Zj-t).

Also, the gradient of W with respect to £, 3? W, is bounded.

REMARK 6.6. Suppose L C JlM is a Legendrian submanifold given by a varia-
tional family (E — M x K', S). Then rJrl(L) is also given by a variational family.
This is seen as follows.

Choose any function 5: E ->• K, where £ = R* x R', satisfying 5 | £ = 5, and
define the space

= {($, c) G R' x K(2A/+1)* | c 6
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of augmented discrete paths. Now define the generalised discrete action functional
$ " : &>N -*• R by

N

$w(£,c) = zN = ^2((yj'xj -xj-i) - Vj^i(Xj.i,yj,Zj-i)) + Zo,
j — i

where

2o = S(x0,£), zy = (y,-,*,- -*,_,) - Vj_i(xj-Uyj,Zj-i) + Zj-\, j > 0.

It is now easy to check that (&N, <t>N) is a variational family for ^ ' ( L ) .

REMARK 6.7. An alternative and more explicit way of constructing a discrete action
functional is by setting

Vj(Xj,yj+u Zj) = H(tj,Xj,yj+uZj)(tj+i - tj),

where tj = j /N and N is sufficiently large so that the hypotheses of Proposition 6.1
(ii) hold for each V .̂ A disadvantage of this method is that it does not generate the
original Legendrian submanifold but one that is close to it. This is the approach used
by Robbin and Salamon in the symplectic setting [14].

6.3. The second variation. We start with some notation. Let c e 3?N be a critical
point of <$>" and {zj} the associated sequence given by the iterative rule (25). For
j = 0 , . . . , N - 1 define Wj:H, Wj,(r>, W,,^, W,,,,, e Rkxk and Wj.t e R by

where Vj is evaluated at (Xj,yJ+uZj). Note that Wj^, Wj,nn are symmetric and
wJ.ti = wLv Abbreviate a] = (1 - dz V,) • • • (l - dz Vj) for I >j, setting it to 1
otherwise. Denote by W* = W"M the tangent space of &N at c:

K = {y = (&, . . . . & , » ? . , . . . . nN) € K(2N+l)k | & , e TXNM} .

We now give a formula for the second variation of 4>N at c. As before, n (x) € R*x*
denotes the orthogonal projection onto TXM.
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PROPOSITION 6.8. The second derivative of<&N at a critical point c is of the form

where y\,Yi £ W? and the second variation, AN(c): W" -*• W" : (£, r/) \-+ (u, v),
is given by the expressions

«>=«?-.'<

uN = (dTl(xN)%N)yN + Tl(xN)r)N

for j = 0 , . . . , N — 1, where r)0 = 0.

PROOF. Differentiate the formulae in the proof of Lemma 6.4. •

REMARK 6.9. For j = 0, . . . , N - 1 let W,: R2lc+l ->• 1 be the function defined
by

Using these we may associate with the critical point c the function 4>^ = <t>"H M: W"
K defined by

where fy is given by the iterative rule

(26) ?0 = 0, K,= {r)j,$j ~ ?,-,) - Wj-db-u i?7-, <,--,) + ?,_,, 7 > 0

and where IIlN denotes the second fundamental form. As in the continuous-time case,
if c is a nondegenerate critical point of <J>W, then 0 is the unique critical point of <i>£\
also nondegenerate, and in this case Proposition 6.8 implies that the second variation
of <t>N at c agrees with the second variation of <f>̂ .

Recall that in the continuous-time case given a critical point c of <f> we can construct
a functional <J>C whose second variation agrees with the second variation of 4> at c (see
Remark 5.9). The following proposition shows how <t>̂  and 4>c are related.

PROPOSITION 6.10. <t>" is the discretisation o

PROOF. Let (c, z): [0, 1] -> 7 'M be a solution of Hamilton's equations beginning
in Lo x {0} and (cN, {zj}) the corresponding solution of Hamilton's discrete equations.
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Note that, by Remark 5.7, linearising Hamilton's equations for H along (c, z) and
restricting to contact planes, which are canonically identified with R2*, yields the
equations

£ = G,f£ + Gnnr),

fj = -GH% - G^r) - GKr).

Similarly, linearising Hamilton's discrete equations along (cN, [ZJ }) and restricting to
contact planes yields the equations

It follows that the W, s define a family of generating functions of type V for the
pseudo-linear contact isotopy generated by G and the result now follows. •

COROLLARY 6.11. (&N, <t>N) is always transversal as a variational family.

PROOF. We need to show that, given y = (£0 , . . • , %N, VI, • • • . >?/v) e W" satisfy-
ing fjy = 0, if d2<t>N(c)(y, Y') is 0 for all / ' e W?, then / is identically 0. This is
seen as follows. Suppose y satisfies the hypotheses of the statement we are seeking
to show, then

forj = l,...,N — l, and n(xN)r]N = 0. Denoting by Aj the conformal symplectic
matrix associated to Wj, it follows that

for j — 1,... , N — 1, and that (t-N, r]N) is in the symplectic complement of the
coisotropic subspace Nc» = TCr/(T*Rk\M). Since <p' preserves 7'K*|W, we have
Aj NCj = NCJ+I. It follows that (^0. 0) is in the symplectic complement of NCo which
implies that £0 = 0 and hence y is identically 0, as required. •

COROLLARY 6.12. The second variation of<$>N at a critical point c is nondegenerate
if and only ifWcHA0 is transverse to Ai = TCfl(TML).

PROOF. This follows immediately from Corollary 6.11, Corollary 4.6 and Re-
mark 5.7. •

REMARK 6.13. If the variational family (E, 5), given in Remark 6.6, is transversal,
then the variational family (&N, <PN) will also be transversal. This follows by arguing
as in the proof of Corollary 6.11 and using Lemma 4.5.
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7. The Maslov index

In this section we define the Maslov index for the points of intersection of
i/r'(Mo x {0}) and Mo x R, assuming that the intersection is transversal. We be-
gin by summarising the properties of the Maslov index for various spaces of paths that
we will require. Proofs of these may be found in [13].

Let A: [a, b] -*• ^f(k) be a path of Lagrangian subspaces and let Z = (X, Y): [a, b]
-» _£f ( R \ R2*) denote a choice of a frame for A. This means that Z(t): Rk -» R2*
is an injective linear map such that

A(0 = lmZ(t), X(t)TY(t) = Y(t)TX(t)

for all t. Also, let V e Jzf(k) be a fixed Lagrangian subspace. A crossing for the path
A is a number t e [a, b] such that A(f) intersects V nontrivially. At a crossing t the
crossing form is defined to be the quadratic form

T(A, V, t): A( f )n V-+R

given by

v^(X(t)u,Y(t)u)-(Y(t)u,X(t)u),

where v = Z(t)u. A crossing t is said to be regular if F(A, V, t) is nonsingular.
When the path A has only regular crossings the Maslov index, n(A, V), is defined by

H(A, V) = \ sign r(A, V, a) + J^ s ign r ( A ' ^, 0 + 5 sign T(A, V, b),
a<Kb

where the sum is taken over all crossings t. By perturbing, keeping endpoints fixed,
this definition extends to give a well defined Maslov index for all paths. The integers
ka and kb are defined by

ka = dim A(<a) (IV, kb = dim A(b) D V.

We now state some properties of the Maslov index.
(Integrality.) The integers \x, ka and kb are related by

H + {ka- h)/2 e 1.

(Product.) Under the natural identification of _Sf (k) x S£(k') as a submanifold of

jSf (* + *')

H(A 8 A', V 0 V") = fi(A, V) + n(A', V).
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(Localisation.) For the path A given by the frame t \-+ (1, A (0) and V the subspace
1* x {0} the Maslov index is given by

/x(A, V) = i sign A(b) - \ sign A (a).

(Zero.) If A(0 n V has constant dimension for all f then /z(A, V) = 0 .
For a pair of Lagrangian paths A, A': [a, ft] -*• S£{k) the relative crossing form

r (A , A', 0 on A(f) n A(t)' is defined by

r(A, A', t) = r(A, A'(0, 0 - r(A(o, A', t).

When the pair A, A' have only regular crossings the relative Maslov index, /x(A, A'),
is defined by

fi(A, A') = \ sign r ( A , A', a) + ^ sign T(A, A', r) + 5 sign T(A, A', ft).

The relative Maslov index has the following property.
(Naturality.) For a Lagrangian pair A, A' and a symplectic path

, * A ' ) = M(A, A').

Finally, for a path of symplectic matrices * : [a, b] -> Sp(2£) the Maslov index,
, is defined by

/*(*) = M ( * V , V),

where V = K* x {0}. (Note that this definition differs from the one given in [13] since
here the Maslov index is defined with respect to the horizontal and there with respect
to the vertical.)

The following property of the Maslov index for symplectic paths will be used.
(Homotopy.) Two symplectic paths * , * ' with * ( a ) = * ' («) and *(ft), *'(ft) e

Spo(2ifc) are homotopic within this class if and only if they have the same Maslov
index, where Spo(2k) denote the set of matrices * € Sp(2&) such that 4* V transverse
to V.

We now define the Maslov index for the points of intersection of i/f' (Mo x {0}) and
Mo x R, or equivalently, the critical points of 4>^.

Let c e @*M be a critical point of <t>̂  and denote by c = (x, y) e & its unique
lift to a critical point of <J> (see Remark 5.4). Induced by c is the path of symplectic
matrices

* c / / : [0, 1] -> Sp(2*)
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(see Remarks 5.6 and 5.7) and this reduces, via symplectic reduction of the coisotropic
distribution T(T*Rk\M), to the path of symplectic linear transformations

*c.«(r): {Tm{TM), -dkcm-m) — • (Tm{TM), -dkcmW)).

We define the Maslov index, fx(c, H), by

(27) M ^ . W ) =M(*c.7/Ao. A,),

where Ao = TX(O)M and Ai is the path obtained by reducing

(28) A,(r) = { ( f , i | ) € R a : ^ r i W W }

Here the right hand side of (27) is defined by choosing a unitary trivialisation of
the vector bundle c*T(T*M). By the naturality property this is independent of the
trivialisation chosen. By the integrality property

li(c,~H) en/2 + 1.

If we assume that the embedding M °-> Rk is an isometry, then this definition is
independent of the choice of embedding. Indeed, the induced Riemannian structure
on T* M, via the embedding M <-^- R*, induces a splitting of Tp (T* M) into a horizontal
and a vertical space:

TP{T*M) = HP® Vp,

given by

Hp = { (£ , ( < / n 2k }
j

where /? = (J:, y). In this notation Ai(f) is just the horizontal subspace //?(/>•

LEMMA 7.1. L^r c € ^ M and c e £? be critical point of <&-H and <$> respectively
and related as above. Then there is an equality

H(c, 77) = M(*C.HAO, A,( l )) + \ sign //r(1),

where A, : [0, 1] -> jSf(Jt) is given by (28).

The proof of this lemma uses the following fact about symplectic reductions.

LEMMA 7.2. Let Ao, A, : [0, 1] ->• -S?(it) &e a pair ofLagrangian paths and N C
R2* a coisotropic subspace such that

A0(r) n AT = {0}, A,( / )CJV.
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Then the Maslov index of the pair (Ao, A \) agrees with the Maslov index of the reduced
pair(A0, A,)

H(A0, A,) = fi(A0,Ai).

PROOF. By choosing a basis for the isotropic subspace Nw and then extending it to
a basis of the Lagrangian subspace A i (t) we can assume that

JV = R " x { O ) x R " x R*-\

A, = R" x {0} x {0} x HI*""

for all /. Hence it is sufficient to check that the assertion of the proposition holds
when only Ao is allowed to vary and A! and N are as above. Since A0(r) f) Nw =
{0} it follows that we may choose a Lagrangian frame for Ao of the form Z =
(X, Y): [0,1] ->• if(R*, R2*), where

* - ' o i ' - y = Dj

and thus a Lagrangian frame for Ao is given by Z = (X, Y): [0, 1] ->• jSf (Rn, R2").
We compute the crossing form for the pair (Ao, A J .

A crossing for (Ao, Aj) is a number t e [0, 1] such that there is a u = («', 0) 6 R*
such that Y(t)u' = 0, that is, if and only if f is a crossing for (Ao, A,). At a crossing
t the crossing form is given by

r(A0, A,, t)(v) = (X(t)u, Y(t)u) - (Y(t)u, X(t)u)

= (Y(t)u', T(t)ur]j = r(A0, A,, t)(v'),

where v = Z(t)u, v' = Z(t)u'. This proves the lemma. •

PROOF OF LEMMA 7.1. In view of Lemma 7.2 it is sufficient to show that

/z(*c,HA0, A,) = Ai(*c,H Ao, Ai(l)) + 5 sign//c(1).

Let <$>: [0, 1] -> Sp(2i) be a path of symplectic matrices satisfying

and abbreviate * = VC,H- Then
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By multiplying by a path of unitary matrices if necessary we may assume that

where 5 : [0, 1] -> R"*" is a path of symmetric matrices with 5(0) = 0. Now by the
product and localisation properties of the Maslov index

H(A0, A,) = 5 sign 5(1) = | s ign/ / c ( I ) .

This proves the lemma. •

8. The signature identity

In this section we generalise the signature theorem of Robbin and Salamon in [14]
to the case of nondegenerate critical points of the action functional on the 1-jet bundle
of a closed manifold.

THEOREM 8.1. Let c e & be a nondegenerate critical point o/4>, c its projection
to &M and cN 6 £?N the corresponding critical point of ®N. Then, for sufficiently
large N, the signature of the second variation of<&N at cN is given by

sign AN(cN) = 2/Lt(c, W).

This strengthens the theorem of Viterbo [17], which states that, in the symplectic
case, the difference of the signature of the second variation of <t>N at two critical points
is independent of N, but at the cost of having to take N sufficiently large.

Below we prove a result which implies this theorem.
LetG: [0, I]x/'1R* ->• R be a quadratic Hamiltonian and denote by * G : [0, 1] - •

Sp(2k) the associated path of symplectic matrices given by (14). Also, let F c R* be a
linear subspace and 5 : F —> F a linear transformation such that (5£, £') = (£, 5£')
for all £, £' 6 F. Define the Lagrangian subspace

AF,B = {(£, I ) 6 l 2 i : ? £ F, 5£ + nFr,} ,

where UF e R*^ denotes the orthogonal projection onto F. Now define the function

KF.B- W?-+Rby

where

WN
F ={y = ( § 0 , . . . , $N, nu ... , r,N) e
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and where the Wj s are computed using (23), and the £,- s using (26). Denote by A£ F B

the second variation of <t>£ F B.
In view of Proposition 6.10 and Lemma 7.1, Theorem 8.1 now follows from:

THEOREM 8.2. Let G, F and B be as above and assume that VI/
G(1)AO is transverse

to AfiB. Then, for N sufficiently large, the signature of the second variation o/<t>^ F B

is given by

s\gnAN
GFB = 2M(VI>GA0, A F , B ) + signB.

The proof we give is based on that given by Robbin and Salamon [14] in the case
where F = Rk, B = 0 and G is independent of z.

PROOF. Without loss of generality assume that

Af,B = {(£', 0, -B£' , IJ") e R" x K*-" x R" x K*"" = R2k : f' e 0T, rj" e R*""}

where dim F = n and where B 6 K"M is symmetric.
The proof of the theorem now proceeds in three steps.
STEP 1. The theorem holds in the case

In this case the path of symplectic matrices associated to G is given by

/ t 0 0
0 1 0 0

C(t) 0 1 0 | '
\ 0 0 0

where

C(t) = I -G^.{x)dT.
Jo

Thus, from the product and the localisation properties of the Maslov index,

M(*GA0, AF,B) = \ sign(C(l) + B)-\ sign B.

Also, from (23),

and defining

i=0
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for j = 1 , . . . , N, it is easy to see that CN = C(l) . Hence the second variation is
given by

N-\

7=1 7=0

Now define the following system of coordinates on W" = R2Nk+n:

and denote u = (u\, u", . . . ,u'N, u"N), v = (v\, v", . . . , u^, v^) . In these coordinates
the L2-inner product of u and v is given by

y=l

5
J = l 7 = 1 7 = 1

7=1 7=0 7=0

7=1 7=0

5 5
7=1 7=0

Thus the second variation satisfies

5 [AG.F.BY, Y) = <«, "> + 5 ((Cw + B)w, w)

and hence

sign A^ FB = sign (Cw + 5 ) = sign(C(l) + B) = 2[i(VGA0, AF,B) + sign B.

STEP 2. The theorem holds for quadratic Hamiltonians independent of £.
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Let G be a ^-independent Hamiltonian with *C(1)AO transverse to AF,B and
suppose, for a given value of k', that G: IR2* -*• K is any symplectic shear of the
form

where G'^, is a nondegenerate symmetric matrix of signature zero. (It follows that k'
is necessarily even.) From Step 1 it follows that

sign AN
G, Rt, 0 = 2/*(*cA0, A O ) = 0-

where Ao = K*' x {0}. Now define Go = G © G': [0, 1] x J '!*+*' -»• K by

G0(t, £, I ' , »j, IJ', f ) = G(f, §, q, ?) + G'(t ' , i;').

By additivity of the signature

sign AN
GoFmt,BW = sign AN

CFB

and by the product property of the Maslov index

0 A;, AF,fl 0 Ao) =

Hence it suffices to prove the theorem for Go with F replaced by F — F © K*' and fi
by B = B © 0.

Now, for &' sufficiently large, let G\ be a symplectic shear of the form considered
in Step 1, with F replaced by F, satisfying

At(*c, Ao, A ? I B ) = M ( * C O A O , Afg ) ,

where Ao = Ao © Ao. This exists by the localisation and integrality properties of
the Maslov index. Also, choose a symplectic matrix <J> € Sp(2& + 2k') such that
A f j = 4>A0. Then

* e i Ao, Ao) =

and the symplectic path <J>~'*Gj satisfies

<t>-'*G,(0) = * - ' , <D- '*c , ( l )Aon Ao = {0}.

Thus by the homotopy property of the Maslov index there exists a homotopy of
symplectic paths <&-'*x: [0, 1] -> Sp(2/fc + 2k') between <t>-'*Go and <P~lVG> and
within the same class. From this we can construct a quadratic Hamiltonian Gx such
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Now choose N sufficiently large such that for each A. the function <J>̂  ^ g is defined.
Then

GO.F.B = s i g n A c 1 ,F .B = 2 A A ( * G , A 0 , A?.g) + signfi

Here the first equality follows from Corollary 6.12.
STEP 3. The general case.

To the quadratic Hamiltonian

G(t, $, ri, f) = ±<GK(r)f, £) + <Grt(O£, >?> + j(G,,(r)»j, r,)

associate the quadratic f -independent Hamiltonian

± ± \ i , rj).

Now consider the homotopy Gk — kG' + (1 — k)G between G and G'. Notice that
v^Cj = v{/G as symplectic paths for all A.. Step 3 now follows from Corollary 6.12.
This completes the proof of the theorem. •

9. Proof of the generalised Morse inequalities

Recall from Remark 6.5 that the discrete action functional Ow : M x R2m —>• K can
be written in the form

where P e (R2mx2m is a nondegenerate symmetric matrix of signature zero and where

the gradient of W in the direction of the fibre, 3? W, is bounded. We prove the

generalised Morse inequalities by studying the critical points of <fcw. As

M x K2m is noncompact stabilised Morse theory will be used; see Conley [6].

In order to study the critical points of <t>N we consider the (negative) gradient flow.

This is defined by the equations

d% dW dx dW

ds 3§ ds dx

Now induced by P there is a splitting

K2m = E~ e E+

into the negative and positive eigenspaces. It follows that, for some S > 0,
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for £~ e E~, £+ e E+. Thus we can find constants e > 0 and R > 0 such that

Indeed, for |£ ~ | > R and R sufficiently large,

~Y~ = (r, - ^ r - a« w) > siri2

and similarly for |£+|2 > R. Thus an isolating block, in the sense of Conley, for the
compact invariant set A of all bounded orbits of the gradient flow, is given by

with exit set

for R sufficiently large.
We use the following notation

bt(A) = dim Hk(N,L),

bk(M) = dim Hk(M),

c*(A) = # { c e A | d&N(c) = 0,

Pk(A)=#{ceA\d<t>N(c) = O,

where ind<t« (c) denotes the Morse index of 4>w at c and is defined to be the number of
negative eigenvalues of the Hessian d2&N(c). Here the numbers bk(A) are known as
the Conley-Betti numbers. These are related to the ct(A) by the Morse inequalities.

THEOREM 9.1 (Morse inequalities). For k = 0 , . . . ,n + 2m

ck(A) - ct_,(A) + • • • ± o(A) > *t(A) - 6t_,(A) + • • • ± *b(A)

with equality holding for k = n + 2m.

These inequalities are proved in [12].
The Conley-Betti numbers are related to the Betti numbers of M by the Thom

isomorphism. Specifically, denote by Em the w-dimensional Euclidean space, by
Bm and 5m"' the closed unit ball and unit sphere respectively in Em, and abbreviate
££• = Em\ (0). Then by homotopy

(MxBmxBm,Mx dBm x Bm) ~ (M x Bm, M x Sm~x) ~ (M x £m, M x £").
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Thus

Hk{N, L) = Hk(M xEm,M x £o
m) = Hk_m(M)

where the last equality is the Thom isomorphism. In other words,

(29) bk(A) = bk_m{M).

Also by Theorem 8.1

(30) ck = p n / 2 + m - k .

The proof of Theorem 1.1, the generalised Morse inequalities, is now completed by
putting together (29), (30) and the Morse inequalities.
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