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Q / Qtors to R
Charles L. Samuels

Abstract. A 2009 article of Allcock and Vaaler explored the Q-vector space G = @X /@;rs,
showing how to represent it as part of a function space on the places of Q. We establish a
representation theorem for the R-vector space of Q-linear maps from G to R, enabling us
to classify extensions to G of completely additive arithmetic functions. We further outline a
strategy to construct Q-linear maps from G to Q, i.e., elements of the algebraic dual of G. Our
results make heavy use of Dirichlet’s S-unit Theorem as well as a measure-like object called
a consistent map, first introduced by the author in previous work.

1 Introduction

1.1 Background

Let Q be a fixed algebraic closure of Q and let @:)rs denote the group of roots of

—X —X —X
unity in Q . We write G = Q /Q,,, and note that G is a vector space over Q
with addition and scalar multiplication given by

(,B) = aB and (r,a)— a'.

An innovative article of Allcock and Vaaler [2] showed how to interpret G as a
certain function space in the following way.

For each number field K, we write Mg to denote the set of all places of K.
If L/K is a finite extension and w € My, then w divides a unique place v of K,
and in this case, we write K,, to denote the completion of K with respect to v.
Additionally, we let p, be the unique place of Q such that v divides p, and let
|| - |l be the unique extension to K, of the usual p,-adic absolute value on Q,,.
In this notation, the well-known product formula may be expressed as

[K, :Qy]
7 logllall, =0
vg;‘K [K:Q]

for all non-zero elements « € K. .
Letting Y denote the set of all places of Q, we define Y (K,v) = {y € Y : y | v}.
Further setting

J={(K,v):[K:Q] <0, veMg},

Allcock and Vaaler observed that the collection {Y(K,v) : (K,v) € J}isa
basis for a totally disconnected, Hausdorff topology on Y, and moreover, there is
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a Borel measure A on Y such that

AY(K,v)) = M forall (K,v) € 7.

(K :Q]
Each element @ € G corresponds to a locally constant function f, : ¥ — R
given by the formula f, (y) = log||a||y. When G is equipped with a norm arising
from the Weil height, they proved that @ +— f, defines an isometric isomorphism
from G onto a dense Q-linear subspace of

1 . _
{f eL'(¥): /y FO)AA) = o} .

More recently, the author [16, 17] began the study of various dual spaces
related to G. To that end, we defined a map ¢ : J — R to be consistent if

c(K,v) = Z c(L,w) 1.1)
wlv

for all number fields K, all places v of K, and all finite extensions L/K. The
set of all consistent maps forms a vector space over R with addition and scalar
multiplication given by the formulas

(c+d)(K,v)=c(K,v)+d(K,v) and (rc)(K,v)=rc(K,v).

We shall write J* to denote this space. Every Radon measure p on Y yields a cor-
responding consistent map via the formula ¢ (K, v) := u(Y (K, v)), however, not
every consistent map is built in this way (see [1]). The most fundamental consis-
tent map arises from the measure A appearing in [2] which we shall simply denote
by 4, ie,,

The main result of [16] constructed an isomorphism between@>< / ZX and a certain
Q-linear subspace of J*. Later in [17], we studied the R-vector space LC,.(Y) of
locally constant functions from Y to R with compact support, and additionally,
we examined its co-dimension 1 subspace

LC(Y) = {f € LC(Y): /Yf(y)d/l(y) = 0}-
As a special case of a more general set of theorems, we showed that
J*=LC.(Y)" and J*/spang{d} = LC2(Y)". (1.2)

In both cases, these isomorphisms are defined explicitly, and as such, we regard
them as algebraic versions of the Riesz Representation Theorem (see [4, 6, 15], for
example).

1.2 Main Results

While we consider [16, 17] to be strong results, they leave open any questions
about two important spaces:

(I) The Q-vector space of Q-linear maps from G to Q, i.e., the algebraic dual

G of G. 5
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(I) The R-vector space of Q-linear maps from G to R, which we shall denote
by L(G,R).

—X
Foreachc € J"anda € Q , we let

®c(a)= ), e(K.v)logllall,,

veMgk

where K is any number field containing . Because ¢ is assumed to be consistent,
this definition does not depend on the choice of K, and moreover, its value is
unchanged when « is multiplied by a root of unity. Hence, ®. : G — Ris a well-
defined Q-linear map, and we may define ®* : 7 — L(G,R) by ®*(c) = D..
Our main result is the following representation theorem for £(G, R).

Theorem 1.1 Themap ®* : I+ — L(G,R) is a surjective R-linear transformation
such that ker(®*) = spang {1}.

If F is a number field and g is a place of F, we observe that jq* =
{c € I* : ¢(F, q) =0} is a subspace of J*. Given an arbitrary consistent map
¢ € J*, the coset ¢ + ker(®*) contains a unique element d € J*, namely

d(K,v) =c(K,v) —c(F,q)A(K,v).
This observation yields the following consequence of Theorem 1.1.

Corollary 1.2 Let F be a number field and let q be a place of F. Then the map ¢ —
@ defines an R-vector space isomorphism from J; to L(G, R).

By using the specific case F = Q and ¢ = oo, Corollary 1.2 provides a
useful framework to classify extensions to G of completely additive arithmetic
functions. Assuming that ¢ € J.;, we note the following famous examples:

Natural Logarithm: @, extends the natural logarithm on N if and only if
c(Q,p) =—1forall p # co.

Prime Omega Function: Let Q(n) be the number of prime factors of n, counted
with multiplicity (see [5, 9, 11]). Then @ extends Q if and only if ¢(Q, p) =
—1/(log p) for all p # oo.

Integer Logarithm: Let W(n) be the sum of the prime factors of n, counted with
multiplicity (see [3, 10, 13]). Then @, extends V¥ if and only if ¢(Q, p) =

—p/(log p) forall p # co.

It would be interesting to discover a version of Corollary 1.2 that could be applied
to all additive functions rather than only to completely additive functions. For
now, we are unaware of any way to formulate such a result.

Of the previous work on this subject, we should regard Theorem 1.1 as most
analogous to [17, Theorem 1.3], which established the right hand isomorphism
of (1.2). It is important to note, however, that our result cannot be proved by
directly applying existing work. Although G appears as a dense subset of LC(Y)
with respect to the L'-norm, we impose no continuity assumption on elements
of £(G,R). Hence, prior to proving Theorem 1.1, we cannot be certain that an
arbitrary map ® € L(G, R) may be extgnded to a linear map on LC2(Y). While
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our proof is inspired by some ideas of [17], several different methods are needed,
including an application of Dirichlet’s S-unit Theorem.

Related to these observations, there is a version of Theorem 1.1 which classi-
fies all continuous linear maps from G to R, where G is equipped with the Weil
height norm as in [2]. Specifically, if we let " be the set of consistent maps ¢ for

which
s

then ¢ +— @, is an isomorphism of J’ onto the space of continuous linear
maps from G to R. However, this fact does indeed follow directly from previous
work, namely [17, Theorem 1.6]. Because of our observations following Corollary
1.2, both the natural logarithm and the prime Omega function have continuous
extensions to G, while the integer logarithm has no such extension.

c(K,v)

:(K,v)ej}<oo,

1.3 Rational Valued Linear Maps

With an eye toward studying G*, we are particularly interested in identifying con-
sistent maps ¢ for which @, (@) € Q for all @ € G. To facilitate these efforts, we
shall write

I'={ceJ :®(c)eG'}={ce J" :D.(a) € Qforalla € G}

and note that 7 * is a Q-linear subspace of J*. The question now arises to provide
a necessary and sufficient condition for the claim that ¢ € Z*. This prob-
lem appears to be quite challenging, however, we may obtain several interesting
examples by applying two supplementary results, the first of which is as follows.

Theorem 1.3 Suppose K is a number field, and for each place v of K, let y, € R.
Then there exists a unique consistent map ¢ € J * such that

[Ly : K]

c(L,w) = [L:K] v

(1.3)
forallv € Mk, all finite extensions L/K, and all places w of L dividing v. Moreover,
if®:(a) € Qforalla € K* thenc € I*,

Given a pointy = (y,)yemg, We write cy to denote the consistent map from
Theorem 1.3. We plainly have that ¢, (K, v) =y, for all places v of K, and there-
fore, if we wish for ¢y, € I, it is sufficient to find a pointy = (y,)yemy such
that

Z yylog|la|l, € Q foralla € K*.

veEMg

In the special case where K = Q or where K an imaginary quadratic extension
of Q, we can locate examples of this sort rather easily. Indeed, such number fields
have a unique Archimedean place oo, so we may choose yo, = Oand y, logp, € Q
for all non-Archimedean places v of K. The resulting consistent map cy certainly
belongs to J*.

The more interesting cases, however, arise from number fields having multiple
Archimedean places. The following theorem is somewhat technical, but useful in
constructing other examples of consisteértlt maps in J .
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Theorem 1.4 Suppose K is a number field. Let {vy,Vv,, ..., v,} be the complete list
of Archimedean places of K and let {@1, a3, . . ., @—1 } be a fundamental set of units in
K. For each non-Archimedean place v of K, let B, € Ok be such that |8, ||, < 1 and
I3y |lw = 1 for all non-Archimedean places w # v. Finally, let y = (yy)vemy - Then

> wwlogllelly €Q foralla € K*

veMgk

if and only if the following two conditions hold:

(i) We have
logllailly, logllailly, --- loglleilly, \ /[y
logllazlly,  logllazlly, -+ logllazlly, || v o
(S
log ”an—l ||v1 10g “a'n—l ”vZ -+ log ”an—l ”vn Yy,
(ii) For all non-Archimedean places v of K, we have that
n
v loglIBylly + Y vy, loglIBy Iy, € Q.
i=1
The existence of the fundamental set of units {a, @, . . ., @,—1 } is guaranteed

by Dirichlet’s Unit Theorem, and furthermore, [16, Lemma 3.1] establishes the
existence of the points 3. As a result, it is always possible to select points @; and
[y that satisfy the assumptions of Theorem 1.4. Now we may use Theorems 1.3
and 1.4 to construct maps ¢ € 7 * which are distinct from known examples.

Example 1.5 We consider K = Q(V2) and fix an embedding of K into R with
| -| denoting the usual absolute value on R. We know that K has two Archimedean
places which we shall denote by v and v,. We may assume that

la+bV2|,, =la+bV2| and |la+bV2|,, =|a-bV2|

foralla, b € Z. We observe that K has class number equal to 1, its ring of integers
isOg = Z[\/z], and 1 + V2 is the fundamental unit in K. Additionally, a prime
p € Qsplitsin K ifand only if p = 1,7 mod 8.

We now select the points y,, for use in Theorem 1.4.

(i) We define

1 1

= — Vy, = ————.

log(1+V2) " log(1+V?2)
(i) If p # 1,7 mod 8 and v divides p, we let y, = 0.
(iii) If p = 1,7 mod 8 then we let v and w be distinct places of K dividing p.

In this case, p has the form p = 8, 8, where 8,, and 3,, are generators of
the prime ideals

Yy

{a € Ok : |la|lv <1} and {a €Ok :||w <1},
respectively. In this situation, we define

_ log [IBv1lv, —log |8y Iy, o = log [|Bw v, —log ”ﬁw”\)Z.
(log p) (log(1 + V2)) 5 (log p)(log(1 +V2))
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It is straightforward to verify that the points y, satisfy the two properties of
Theorem 1.4, and then by Theorem 1.3, ¢ = ¢y € I*. In other words, @, is a
(rational-valued) linear functional on G.

Since B, and B,, are conjugates over Q, the values in (iii) satsify y, = —y,,.
Therefore, we have ¢(K, v) = —c(K, w) whenever v and w divide the same place
of Q, or equivalently, we have c(Q, p) = Oforall p € Mg. The first few non-zero
values of ¢ (K, v) are approximated in the following table.

’ p ‘Factorization of pin Z[V2] ‘C(K, v) forv | p (approx.)‘

0o NA +1.13459
7 G+V2)(3-12) +0.596913
17 (5+2V2)(5-2V2) +0.513516
23 (5+V2)(5-12) +0.0.513516
31 (7+3V2)(7 - 3V2) +0.464359
411 (7+2V2)(7-2V2) +0.261831
47 (7+V2)(7-2) +0.120733
710 (11+5v2)(11 - 5V2) +0.406159

1.4 Organizational Summary

We shall structure the remainder of this article by separating the proof of
Theorem 1.1 into two components. First, in Section 2, we show that ®* is a lin-
ear transformation such that ker(®*) = spang {1}. The surjectivity component
of the proof requires applying Theorem 1.3, and hence, we use Section 3 to prove
that result. Finally, in Section 4, we complete the proof of Theorem 1.1 by proving
that @ is surjective. The proof of Theorem 1.4 is included in that section as well.

2 The Kernel of ®*

Theorem 2.1  The map ®* : J* — L(G,R) is an R-linear transformation such
that ker(®*) = spang {1}.

Before proceeding with the proof of Theorem 2.1, we remind the reader of the
relevant features of Dirichlet’s Unit Theorem [12, Theorem 7.31]. If K is a number
field, then Ok denotes its ring of integers and

Og ={aeK: ||, =1forallv { oo}

is called its group of units. If K has n Archimedean places, then Dirchlet’s Unit
Theorem asserts that the Oy has rank equal to n — 1. If £ is a root of unity and
@y, @z, ...,a,-1 € Ok aresuch that {, a1, ;,- -+, @,-1} generates O, then
the collection {a1, @2, - -+, @,—1} is called a fundamental set of units in K.

The proof of Theorem 2.1 begins with the following lemma.

6
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Lemma 2.2 Let K be a number field having Archimedean places {vi,v,,..., v},
let {a1, @z, ..., @y_1} be a fundamental set of units in K, and define

log |lailly, logllailly, --- logllailly,
logllazlly, logllazll,, --- logllazlls,
log [|an—1llv, logllan-1llv, --- logllan_1ill,

Then rank(A) = n — 1 and dim(ker A) = 1.

Proof For simplicity, we write D; = [K,, : Q,,] and define the following
additional matrices:

D, 0 -+ 0
0 Dy -+ 0
D=| . . .
0 O - Dy,
and
Dilogllailly, Dalogllailly, -+ Dylogllaills,
Dilogllazlly, Dalogllazlly, -+ Dplogllazlly,
B=AD = . . . .
Dllog”a’n%”vl DZIOg”a'nfl”vz Dnlog”anflllv,,

Clearly det(D) # 0 so that A and B must have the same rank. However, if we
let B; denote the matrix obtained by removing column 7 from B, then it is well-
known that | det(B;)| is non-zero and independent of i. This value is called the
regulator of K and is thoroughly studied throughout the literature on algebraic
number theory (see [12, Def. 10.8], for example). In any case, it now follows that
the rows of B are linearly independent so that

rank(A) = rank(B) =n — 1.
Now applying the rank-nullity theorem, we conclude that dim(ker(A)) = 1. =

Our next result is the primary ingredient in identifying the kernel of ®*. As
we shall find, it also plays a crucial role in showing that @ is surjective.

Lemma 2.3  Suppose that ¢ : J — R is a consistent map and K is a number field. If
@, (@) =0 forall @ € K* then

c(K,v) =c(Q,0)A(K,v) 2.1
forallv € Mg.

Proof We first establish (2.1) in the case that v is Archimedean. To this end,
we let vy, Vs, ..., V, be the complete list of Archimedean places of K so that the
consistency property (1.1) implies that

n

c(Q, 00) = ZC(K, vi). (2.2)

i=1
7
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If n = 1 then A(K, v{) = 1, and the required property follows immediately from
(2.2). Therefore, we shall assume that n > 2.

According to Dirichlet’s Unit Theorem, we may let {a, a3, . . ., @y—1 } be aset
of fundamental units in K and let A be the (n — 1) X n matrix A given by Lemma
2.2. Additionally, we let

c(K,v1) A(K, 1)
C(K, VZ) A(Ks VZ)
C= . and A= .
c(K,vy) AK,vy)
As we have assumed that ®. (@) = 0 for all @ € K, we have
D (ay) 0
q)c(a'Z) 0
AC = . =1.
(I)c(a'n—l) 0

so that C € ker(A). However, the product formula implies that A also belongs
to ker(A), and since A is clearly non-zero, Lemma 2.2 establishes that ker(A) =
{rA : r € R}. We now obtain a real number r such that

c(K,v;) =rA(K,v;) foralll <i<n.

Finally, property (2.2) shows that

n

c(Q, ) = ZC(K, Vi) = riﬁ(}(’w) -
i=1

i=1
and we have established (2.1) for all Archimedean places v of K.

We now establish (2.1) when v is non-Archimedean. Because of what we have
already shown, we may assume for the remainder of this proof that

[Ku : Qo]
[K: Q]
for all Archimedean places u of K. According to [16, Theorem 3.1], there exists

B € K such that ||B]|, < 1and ||8||,, = 1 for all other non-Archimedean places
w of K. Now applying (2.3), we obtain

@ (B) = ¢(K,v) loglIBll, + > c(K,u) log [IBll.

uloo

= (K ) log 1Bl +¢(Q00) ) LBl

uloo

c(K,u) = c(Q, ) (2.3)

: Qu]

[K-Q] log || B]]u-

According to the product formula on K, the summation on the right hand side
may be simplified so that

@ () = e(K.v) og Bl - (@ o)L -2 tog ol
From our assumptions we have that ®.(8) = 0 and ||B]|, # 1, so it follows that
_ [Ky : Q]
o) =@ ey

https://doi.org/10.4153/5S0008439525101343 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439525101343

as required. |

—X
Proof Supposethatc,d € J* andr € R. Foreach @ € Q , we assume that K
is a number field containing @ and observe that

Dera(@) = Y [e(K,v)+d(K,v)]log lell,

veMgk
= Y cK.v)logllall, + D d(K,v)logllell
veMg vEMk

= D¢ (a) + Py(a)

which proves that @* (¢ + d) = ®*(c) + ©*(d). Also, we have

O c(@)=r Y c(K.v)logllell, = rd(a)

veMk

establishing that ®*(rc) = r®*(c¢) and showing that ®* is a linear transforma-

tion.
Assuming that ¢ € spanp {1}, there exists 7 € R such that
K, :
Koy o 1K QU]
(K : Q]

for all number fields K and all places v of K. For each non-zero point @ € Q, the
product formula now implies that

[Kv : Q]
Dela) = D, c(Kowlogllall =r D, ~mologllall, =0
veMk veMk ’
proving that ®. = 0 and spang {1} C ker(d*).
Now assuming that ®. = Oand (K, v) € J, we certainly have that ®. (@) = 0
for all @ € K*. Hence, Lemma 2.3 applies to yield

c(K,v) =c(Q,0)A(K, V)

for all v € Mk establishing that ¢ € spang{4} and ker(®*) C spang{A1}, as
required. u

3 Extensions of Consistent Maps

Before we continue with the proof of Theorem 1.1, we will provide our proof of
Theorem 1.3. As we shall find, Theorem 1.3 is required in the proof of Theorem
1.1, and as such, it makes sense to provide its proof first.

If K is a number field and L/K is a finite extension, we note the two well-
known identities

[L:K]= Z[LW :K,] and Normy k(@)= n Normp, /k, (@) (3.1)

wlv wlv

forall @ € L (see [8, Eq. (2) and Prop. 4], for example).

Proof If L is any number field, let F be a finite extension of L containing K.
Further, if ¢ is a place of F' dividing the 8lace v of K, then we write y, = y,,. For
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eachw € My, we define

dr(tw) = Y 62
tlw
where the summation on the right hand side of (3.2) runs over places ¢ of F
dividing w. We claim that dg (L, w) is independent of F.

To see this, we suppose that E is a finite extension of F. In the ensuing calcu-
lations, we shall adopt the convention of writing ¢ for places of F and s for places
of E. Clearly if s |  then y, = y; and Ky = K}, so we obtain

ae(tow = Y 12l
slw '
. [E,: F]- [F : K]
%;zl; [E:F]- F K] "
_ [F : Ki] [Es : Ft]
=2 [F: K] ytszl; [E:F]

tlw

Now applying the left hand equality of (3.1), we obtain that

dp(L,w) =" [[F K] =dp(L,w)
tlw
showing that dp (L, w) is indeed independent of F. Hence, we may define ¢ :
J — Rbyc(L,w) = dp(L,w), where F is any number field containing both
K and L.

To prove that c is consistent, we assume that M is a finite extension of L and w
is a place of L. We select a number field F' containing both M and K. Then using
X to denote places of M, we obtain from (3.2) that

Z c(M,x) = Z dr (M, x)

x|w x|w

-S>

x|w t|x
=> [[F RV = A (Low) = e(Low),
tlw

proving that ¢ is consistent.
To establish (1.3), we assume that L is a finite extension of K, v is a place of K,
and w is a a place of L dividing v. Now apply (3.2) with F' = L to obtain

e(L,w) = [Ly :Kw]yw _ [l[lz II;]V]

[L:K]

which is the required property (1.3).

To prove that this consistent map is unique, we suppose that ¢,d € J* both
satisfy (1.3). This means c¢(L,w) = d(L,w) for all finite extensions L/K and
all places w of L. Now if L’ is an arbitrary number field and w” is a place of L,
we may choose a number field L contali(r)ling both K and L’. Then applying the
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consistency of ¢ and d, we obtain
c(L',w') = Z e(L,w) = Z d(L,w)=d(L,w")
wlw’ ww’

proving that ¢ = d.

Finally, we assume that ®. (@) € Qforalla € K*.1f 8 € @x we may let L be
a number field containing both 8 and K. Now applying (1.3) we obtain

O (B) = > c(L,w)logl|Bllw
weMy,
[Lw5Kv]
= (L,w)1 w = v ) 0 | w-
ZM;< w) log |l ZMy ; T oIl

Then using the right hand equality of (3.1), we find that

@u(B)= Y v ) et og Norme, e (Y1)

veEMk wlv

1
- [L:K] Z Yv Zlog”Norme/Kv Bl

veEMk wlv

= E 2 Vv losINormek (Bl

VEMK

1o, (Normyx (B)).

T [L:K]

which is clearly rational. ]

4 Surjectivity of ®*

In order to complete the proof of Theorem 1.1, we must establish the following
result.

Theorem 4.1 The map ®* : J* — L(G,R) is surjective.

The proof of Theorem 4.1 requires some background notation as well as three
lemmas. Let K be a number field and let S be a finite subset of Mk containing the
Archimedean places of K. The set

Uk,s = {a € K*:|a|, =1forally € Mg \ S}

is a subgroup of K* called the group of S-units in K, which according to Dirich-
let’s S-unit Theorem (see [14, Thm. II1.3.5] or [7, §1.1]), is finitely generated of
rank #S — 1. If { is a root of unity and @, @2, . .., @:s—1 € Uk s are such that
{{, 1,2, -+, ass-1} generates Uk g, the then collection {1, @2, -+ , @ss-1}
is called a fundamental set of S-units in K. Of course, this terminology generalizes
our definitions from the beginning of Section 2.

For our proof that @* is surjective, we require a reinterpretation of Dirichlet’s
S-unit Theorem in the language of linear algebra. To this end, we write

Kaiv = {ae@x:a" EKforsomeneN},
11
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—X —X
and note that Kg;y is a subgroup of Q containing Q.. We further write

—X
QK = KdiV/Qtors

and observe that Gk is a subspace of G. If @ € Ky, we shall adopt the convention
of writing @ to denote its image under the canonical homomorphism Ky, —
Kdiv/@z;rs- For each place v of K and @ € Kg;y, we may assume that £ € Nis such
that & € K and define

4
lally = lla[1}/".
The right hand side of this equality does not depend on the choice of £, and hence,
|| - || is a well-defined map on Gk which satisfies

AD llaglly = llallvIBlly forall @, B € Kgiy
(A2) |l&"|lv = ||e|l}, forall@ € Kg4iy and allr € Q.

Equivalently, @ + log |||, defines a linear transformation from Gk to R when
viewed as Q-vector spaces. Finally, we let

Gk s={a e Gk ||, =1forallv € Mg \ S}

and note the following manner of identifying a basis for Gk s over Q.

Lemma 4.2 Suppose that K is a number field having n Archimedean places. Assume
that Se is the complete set of Archimedean places of K, So = {w1,wp,...,wp}isa
finite (possibly empty) set of non-Archimedean places of K, and S = So U So. Further
assume the following:

(D) {ay,az,...,an-1} is a fundamental set of units in K
(I) Forevery 1 <i < m, ; € K is such that ||B;|lw, < 1and ||Bi|lw = 1 forall
non-Archimedean places w # w;.

Then {1, @z, ..., &n—1,P1,P2s- - -+ Bm} is a basis for Gk s over Q. In particular,
Gk s is a finite dimensional subspace of Gk with dim(Gk s) = #S — L.

Proof ForeachO < k < m, we define Ty = Soo U {W1,Ww3,...,wr} so that
T,, = S. We shall prove by induction on k that

{6,19@2’ e ,an—l»Bl,Bz, e 9Bk}

is a basis for Gg 1, for all 0 < k < m. The lemma would then follow by taking
the special case k = m.

Base Case: Since we have assumed that {a1, @3, ..., @,_1} is a fundamental
set of units in K, we obtain that

(i) For every @ € Uk g, there exist ri,r3,...,Fp—1 € Z such that @ =
ala? g
19 n-1+

(i) Ifry,ra,...,7n—1 € Zaresuchthata!'@)? ---a’""' = 1thenr; = Oforalli.
1 %

n-1
Leta € Gk 1, and assume that @ is some representative of @ in K ;y. By definition
of K4y, there exists £ € N such that o € K*. But clearly we also have that
llaf|l,, = 1 for all non-Archimedean places w of K, and hence, o’ € Uk 1, =
Uk s.,- Then according to (i), there exliszt F1, 72y ... Fn1 € Z such that a’ =
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r
1

Yn-1

1 - We now conclude that

rz...
a;a, @

SO _ srisr s
a" =a'a, a
Since ¢ is a positive integer, we get that

- ~ri/€ -/t ~Tn-1/t
(ZZQ’TI/ a;’z/ .. 1/

proving that @ € span{ay, @z, ..., @n-1}
Now assume that a; € Z and b; € N are such that

ax/b; ~an-1/bn-1 _ 1
5 = 1.

_al/b] —
Ql a an—l

After raising both sides to the b1b, - - - b,,_; power, we obtain

—ata? ... =" g2... o'} .= .

l1=aa, a," =a'a, a,", wherer; =a; l_[ b;
J#I

As a result, there must exist a root of unity ¢ such that ¢ = ozf‘ agz e a/:l"_‘l1 . We

certainly have that ¢ d = 1 for some d € N, and hence,

dry d dry,-
1r1a/2r2"'a Tn-1

l=«a el

By applying (ii), we conclude that dr; = O for all , and since d is certainly non-
zero, we obtain that 7; = 0. It now follows that a; = 0, as required.
Inductive Step: We now let

Bk = {&1,&2, e 9dn—l,Bl’B25 cee 7Bk}

and proceed with the inductive step assuming that By _; is a basis for Gk 7;_,.
We shall first show that By is linearly independent. To this end, we assume that

F1,F2, ooy n_1,51,52,...,5k € Q are such that
n—1 k
1=[1a/]]8} (4.1)
i=1 j=1
We remind the reader that || - ||, is indeed a well-defined map on Gx which

satisfies (A1) and (A2). Moreover, by our assumption (II), we have || 3|, = 1 for
all 1 < j < k — 1. Additionally, the points a; are ordinary units in K, meaning
that ||@;|lw, = 1forall 1 <i < n—1.Now applying || - ||, to both sides of (4.1),
we conclude that

1= [|Bkll3, -
Again by our assumption (II), we know that || Bk ||\, < 1,and hence, we conclude
that s = 0. Plugging this value into (4.1), we obtain
n—1 k—1
— 5T 357
t=[[er] |5
i=1 j=1
so it follows from the inductive hypothesis that 7; = Oforall 1 <i < n — 1 and
si=0foralll <j<k-—1.

Since By contains n + k — 1 elements, in order to complete the proof, it is
sufficient to show that dim(Gk 1, ) < n+ k — 1. To this end, we apply Dirichlet’s
S-unit Theorem with T} in place of S to obtain a fundamental set of T -units
{¥1, Y25 - - +» Yn+k—1}. We claim that

{71, 72, . 139 ')7n+k—l}
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spans Gk 1, To see this, let ¥ € Gk 1, and let y be a representative of ¥ in Kgy.
Then there exists £ € N such that y* € K*, and note that y* must belong to

Uk 1, . As aresult, we obtain integers ry, . . ., "p4k—1 such that y‘; = f’:lk_l yl.r",
and therefore,
n+k—1
v= 1"
i=1
proving that 7 € span{y1, 72, ..., Vn+k—-1}. It now follows that dim(Gk 1,) <
n + k — 1, establishing the lemma. []

We will also need the following basic linear algebra lemma.

Lemma 4.3  Suppose V is vector space over a field F containing subspaces A and B.
Letx,y € V.

@) fA+B=Vthen(x+A)N(y+B) 0.
(i) If AN B = {0} then (x + A) N (y + B) contains at most one point.
(iii) If A® B =V then (x + A) N (y + B) contains a unique point.

Proof For (i), we observe that x = a; + b1 and y = a; + b, for some a,a; € A
and b1, b, € B, and therefore, we obtain

x+a2=a1+a2+b1 and y+b1:a2+b1+b2.
Hence
a,+b;=x+a,-a;€x+A and a,+b;=y+b;—-b, € y+B,

showing that a, + by € (x + A) N (y + B).

To prove (ii), suppose that a, b € (x+A) N (y+B). It follows that a — b belongs
to both A and B, forcing a — b = 0, or equivalently, a = b. Now (iii) follows from
(i) and (ii).

|

In order to prove Theorem 4.1, we will need to identify a consistent map
associated to an arbitrary linear map @ : G — R. Our next lemma is the key

ingredient in constructing such a map. For alinearmap® : G — Rand a € @X,
we shall adopt the convention that ®(«@) = ©(a).

Lemma 4.4 Suppose ® : G — R is a Q-linear map and r € R. Then for every
number field K, there exists a consistent map cx : J — R such that

ck(Q,0) =7 and ®(a) =D, (@) foralla € K*. (4.2)

Moreover, if L is a finite extension of K and c, satisfies (4.2) with L in place of K, then
cr.(K,v) = ck (K, v) for all places v of K.

Proof We shall select values y, for each v € Mg and then apply Theorem
1.3. As in the proof of Lemma 2.3, we begin by considering the case where v
is Archimedean. We suppose that {v{,v,,...,v,} are the Archimedean places
of K, assume that {a1, @y, ..., @,_1} is a fundamental set of units in K, and let
A be the matrix from the statement of lI:‘emma 2.2. In this situation, ker(A) is a
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one-dimensional subspace of R". Writing
A= (UK, 1), AK,v), .. AK )T,
we see clearly that ker(A) = {rA : r € R}. We shall further write
b= (®(a)), D(2), ..., P(an1))"

and note that A~!(b) is a coset of ker(A) in R”.
Now define the n — 1 dimensional subspace A of R" by

n
A {(xl’xz""’xn)T 12)‘[ =0}.

i=1
Plainly we have that A N ker(A) = {0} so that R” = A @ ker(A). According to

Lemma 4.3(iii), each coset of A shares a unique point with each coset of ker(A).
Therefore, there exists a unique point x = (x1,x7, . .. ,xn)T such that

x € [(r,0,0,...,0) + Al N A~ (D). (4.3)

We let y,, = x; for all i, and as a result, we have defined y, for each Archimedean
place v of K and note that
Z Yy =71. (4.4)

Voo
Now let {w, w;, w3, ...} be the complete list of non-Archimedean places of

K. For each j, we apply [16, Lemma 3.1] to obtain a point §; € Ok such that
1Bjllw; < 1and||B;llw; = 1foralli # j.Form € N U {0}, we now define

Sm={Vi, V2, ., Ve, WL Wo, o, Wi )

Now for each j € N, we define

_9(B)) = Ty yvlog 1B v
10g 118111,

so that we have defined y, for all non-Archimedean places v of K. According to
Theorem 1.3, there exists a consistent map cx : J — R such that
cxk(K,v) =y, forallve Mg. (4.6)

Because of (4.4), ck clearly satisfies the first equality of (4.2) so it remains only to
show the second equality.
To see this, we obtain from (4.3) that

q)(a,l) )’vl Z?:] )’v,- lOg ||C¥1 ”Vi
O(az) b x4l ity Y logllezlly,
. = = X = . = . s
q)(an—l) Yv, Z:'lzl Yv; 1Og”a'n—l”v,-

or equivalently,

@(ay) 2ivjeo CK (K, v) log [lan ||y
@ (az) Zvie €k (K, v) logllazlly

D(an-1) 2vjeo CK (K, v) log [lay-1lly
15
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Each point ¢; is a unit, so we have ||@;||,, = 1 for all non-Archimedean places v
of K. Therefore, it follows that

®(ay) Dy (ay)
D(as) D, (a2)

D(an-1) @y (an-1)
or in other words,
D(a;) =D, (a;) foralll <i<n-—1.
Next, we let j € N and observe that

D (B)) = Y c(K,v)log Bl

veEMk

=" (K, wi) logl|B;llw; + Y c(K,v)log 1B}l
i=1

Voo
= c(K,w;)log [1Bjll, + > c(K,v)log 1Bl

v|m

where the last equality follows because of our assumption that ||3;||,, = 1 forall
i # j. Now using (4.6), we obtain

Deye () = Y, 10g 1Bl + Y yuloglIBslv

Voo
and using (4.5) to replace y,,;, we quickly obtain

D(Bj) =P (B;) forallj €N.

Assuming now that @ € K, there exists m € N such that « is
an Sp;-unit. In other words, we have @ € @Gk s,,. According to Lemma
4.2, {a1,a2, ..., @n-1,P1, B2, - .., Bm} is a basis for Gk s,,, so there exist
Flyeens¥n1,815...5m € Qsuch that

Since ® and @, are both linear maps, we conclude that ®(@) = D, (@), as
required.

For the second statement of the Lemma, we have assumed that @, (@) =
®(w) for all @ € L*, so in particular, this equality holds for all @ € K*. As a
result, we have

@, (@) =D (@) foralla € K*.

For each such point @, Theorem 2.1 implies that 0 = &, (@) — P (@) =
D, _cx (@). If v is a place of K, we may apply Lemma 2.3 with ¢ = cx — ¢,
to conclude that

[CL - CK](K’ V) = [CL(Qs 00) - CK(Q’ OO)]/l(K’ V) = (I" - r)/l(K’ V) =0,

so the result follows immediately. [ ]
16
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We now complete the proof of Theorem 1.1 by proving that ®* is surjective.

Proof We suppose that ® : G — R is a Q-linear map. For each number field
K, we apply Lemma 4.4 with r = 0 to obtain a consistent map cx : J — Rsuch
that

ck(Q,0) =0 and ®(a) =P, (@) forala € K*.
Now we let ¢ : J — R be given by

c(K,v) =ckg(K,v)

and claim that c is consistent. To this end, we assume that K is a number field, v is
aplace of K, and L is a finite extension of K. Using the fact that ¢, is consistent,
we obtain that

DeLw) =Y c(Lw) = eL(K,v),
wlv wlv
and then applying the second statement of Lemma 4.4, we conclude that
Z c(L,w) =ck(K,v) =c(K,v).
wlv

Since ¢ is now known to be consistent, the function ®,. is well-defined. Moreover,

ifa e @X, we let K be a number field containing @ and apply the first statement
of Lemma 4.4 to obtain

O(a)= Y e(K)logllally = > ex(K.v)loglally = @y (@) = D(a).

veMgk veEMk

As this equality holds for all @ € @x, we have shown that ®*(¢) = ® implying
that ®* is surjective. L]

Our only remaining task is to prove Theorem 1.4.

Proof For simplicity, we let ® : K* — R be given by
®(a)= . yloglell,

veMgk

and first assume that ® (@) € Q for all @ € K*. Each point @; is a unit in K, and
hence, ||a;||,, = 1 for all non-Archimedean places w of K. Forall 1 < i < n, we
now have that

> vilogllailly, = ®(e) € Q,
i=1

and (i) follows immediately. Similarly, we have assumed that ||3,,||,, = 1 for all
non-Archimedean places w # v, so we conclude immediately that (ii) holds.

Now suppose that (i) and (ii) hold and let @ € K*. Let S, be the set of
Archimedean places of K. There exists a finite set S of places of K containing Se,
such that @ € Uk 5, and hence, @ € Gk 5. Let So = S \ Se. Now according to
Lemma 4.2, the set

{a,as, ... ,@n—{; U{By:v e So}
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is a basis for Gk s. Therefore, there existry,r,,...,r,—1 € Qand s, € Q forall
v € §g such that

n-1
= ~ri NS
a= | |a/l. | | By
i=1 veSy

Now using our definitions presented prior to Lemma 4.2, ® is a well-defined
linear map on Gk 5, and hence

n-l n-1
D(a) = D(a) = ) ri®(@) + ». sv®@(By) = Y ri®(@) + ). s, ®(By)
i=1 veSy i=1 veSy
It follows from (i) that ®(a;) € Q for all {, and (ii) implies that ®(3,,) € Q for all
v € So. We now obtain ®(a) € Q, as required. [
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