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A classification of Q-linear maps from
Q
×/Q×

tors to R
Charles L. Samuels

Abstract. A 2009 article of Allcock and Vaaler explored the Q-vector space G := Q
×/Q×tors ,

showing how to represent it as part of a function space on the places of Q. We establish a
representation theorem for the R-vector space of Q-linear maps from G to R, enabling us
to classify extensions to G of completely additive arithmetic functions. We further outline a
strategy to constructQ-linearmaps from G toQ, i.e., elements of the algebraic dual of G. Our
results make heavy use of Dirichlet’s 𝑆-unit Theorem as well as a measure-like object called
a consistent map, first introduced by the author in previous work.

1 Introduction

1.1 Background

Let Q be a fixed algebraic closure of Q and let Q
×
tors denote the group of roots of

unity in Q
×
. We write G = Q

×/Q×
tors and note that G is a vector space over Q

with addition and scalar multiplication given by

(𝛼, 𝛽) ↦→ 𝛼𝛽 and (𝑟, 𝛼) ↦→ 𝛼𝑟 .

An innovative article of Allcock and Vaaler [2] showed how to interpret G as a
certain function space in the following way.

For each number field 𝐾 , we write 𝑀𝐾 to denote the set of all places of 𝐾 .
If 𝐿/𝐾 is a finite extension and 𝑤 ∈ 𝑀𝐿 , then 𝑤 divides a unique place 𝑣 of 𝐾 ,
and in this case, we write 𝐾𝑤 to denote the completion of 𝐾 with respect to 𝑣.
Additionally, we let 𝑝𝑣 be the unique place of Q such that 𝑣 divides 𝑝𝑣 and let
‖ · ‖𝑣 be the unique extension to 𝐾𝑣 of the usual 𝑝𝑣-adic absolute value on Q𝑣 .
In this notation, the well-known product formula may be expressed as∑︁

𝑣∈𝑀𝐾

[𝐾𝑣 : Q𝑣 ]
[𝐾 : Q] log ‖𝛼‖𝑣 = 0

for all non-zero elements 𝛼 ∈ 𝐾 .
Letting𝑌 denote the set of all places ofQ, we define𝑌 (𝐾, 𝑣) = {𝑦 ∈ 𝑌 : 𝑦 | 𝑣}.

Further setting

J = {(𝐾, 𝑣) : [𝐾 : Q] < ∞, 𝑣 ∈ 𝑀𝐾 } ,

Allcock and Vaaler observed that the collection {𝑌 (𝐾, 𝑣) : (𝐾, 𝑣) ∈ J} is a
basis for a totally disconnected, Hausdorff topology on𝑌 , and moreover, there is
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a Borel measure 𝜆 on𝑌 such that

𝜆(𝑌 (𝐾, 𝑣)) = [𝐾𝑣 : Q𝑣 ]
[𝐾 : Q] for all (𝐾, 𝑣) ∈ J .

Each element 𝛼 ∈ G corresponds to a locally constant function 𝑓𝛼 : 𝑌 → R
given by the formula 𝑓𝛼 (𝑦) = log ‖𝛼‖𝑦 . WhenG is equippedwith a norm arising
from theWeil height, they proved that𝛼 ↦→ 𝑓𝛼 defines an isometric isomorphism
from G onto a denseQ-linear subspace of{

𝑓 ∈ 𝐿1 (𝑌 ) :
∫
𝑌

𝑓 (𝑦)𝑑𝜆(𝑦) = 0
}
.

More recently, the author [16, 17] began the study of various dual spaces
related to G. To that end, we defined a map 𝑐 : J → R to be consistent if

𝑐(𝐾, 𝑣) =
∑︁
𝑤 |𝑣

𝑐(𝐿, 𝑤) (1.1)

for all number fields 𝐾 , all places 𝑣 of 𝐾 , and all finite extensions 𝐿/𝐾 . The
set of all consistent maps forms a vector space over R with addition and scalar
multiplication given by the formulas

(𝑐 + 𝑑) (𝐾, 𝑣) = 𝑐(𝐾, 𝑣) + 𝑑 (𝐾, 𝑣) and (𝑟𝑐) (𝐾, 𝑣) = 𝑟𝑐(𝐾, 𝑣).

We shall writeJ ∗ to denote this space. Every Radonmeasure 𝜇 on𝑌 yields a cor-
responding consistent map via the formula 𝑐(𝐾, 𝑣) := 𝜇(𝑌 (𝐾, 𝑣)), however, not
every consistent map is built in this way (see [1]). The most fundamental consis-
tent map arises from themeasure 𝜆 appearing in [2] which we shall simply denote
by 𝜆, ie.,

𝜆(𝐾, 𝑣) = [𝐾𝑣 : Q𝑣 ]
[𝐾 : Q] .

Themain result of [16] constructed an isomorphismbetweenQ
×/Z× and a certain

Q-linear subspace of J ∗. Later in [17], we studied the R-vector space 𝐿𝐶𝑐 (𝑌 ) of
locally constant functions from 𝑌 to R with compact support, and additionally,
we examined its co-dimension 1 subspace

𝐿𝐶0
𝑐 (𝑌 ) =

{
𝑓 ∈ 𝐿𝐶𝑐 (𝑌 ) :

∫
𝑌

𝑓 (𝑦)𝑑𝜆(𝑦) = 0
}
.

As a special case of a more general set of theorems, we showed that

J ∗ � 𝐿𝐶𝑐 (𝑌 )∗ and J ∗/spanR{𝜆} � 𝐿𝐶0
𝑐 (𝑌 )∗. (1.2)

In both cases, these isomorphisms are defined explicitly, and as such, we regard
them as algebraic versions of the Riesz Representation Theorem (see [4, 6, 15], for
example).

1.2 Main Results

While we consider [16, 17] to be strong results, they leave open any questions
about two important spaces:

(I) The Q-vector space of Q-linear maps from G to Q, i.e., the algebraic dual
G∗ of G.
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(II) The R-vector space of Q-linear maps from G to R, which we shall denote
by L(G,R).

For each 𝑐 ∈ J ∗ and 𝛼 ∈ Q×
, we let

Φ𝑐 (𝛼) =
∑︁
𝑣∈𝑀𝐾

𝑐(𝐾, 𝑣) log ‖𝛼‖𝑣 ,

where 𝐾 is any number field containing 𝛼. Because 𝑐 is assumed to be consistent,
this definition does not depend on the choice of 𝐾 , and moreover, its value is
unchanged when 𝛼 is multiplied by a root of unity. Hence,Φ𝑐 : G → R is a well-
definedQ-linear map, and we may defineΦ∗ : J ∗ → L(G,R) byΦ∗ (𝑐) = Φ𝑐 .
Our main result is the following representation theorem for L(G,R).

Theorem 1.1 ThemapΦ∗ : J ∗ → L(G,R) is a surjectiveR-linear transformation
such that ker(Φ∗) = spanR{𝜆}.

If 𝐹 is a number field and 𝑞 is a place of 𝐹 , we observe that J ∗
𝑞 :=

{𝑐 ∈ J ∗ : 𝑐(𝐹, 𝑞) = 0} is a subspace of J ∗. Given an arbitrary consistent map
𝑐 ∈ J ∗, the coset 𝑐 + ker(Φ∗) contains a unique element 𝑑 ∈ J ∗

𝑞 , namely

𝑑 (𝐾, 𝑣) = 𝑐(𝐾, 𝑣) − 𝑐(𝐹, 𝑞)𝜆(𝐾, 𝑣).

This observation yields the following consequence of Theorem 1.1.

Corollary 1.2 Let 𝐹 be a number field and let 𝑞 be a place of 𝐹 . Then the map 𝑐 ↦→
Φ𝑐 defines an R-vector space isomorphism from J ∗

𝑞 to L(G,R).

By using the specific case 𝐹 = Q and 𝑞 = ∞, Corollary 1.2 provides a
useful framework to classify extensions to G of completely additive arithmetic
functions. Assuming that 𝑐 ∈ J ∗

∞, we note the following famous examples:

Natural Logarithm: Φ𝑐 extends the natural logarithm on N if and only if
𝑐(Q, 𝑝) = −1 for all 𝑝 ≠ ∞.

Prime Omega Function: Let Ω(𝑛) be the number of prime factors of 𝑛, counted
with multiplicity (see [5, 9, 11]). ThenΦ𝑐 extendsΩ if and only if 𝑐(Q, 𝑝) =
−1/(log 𝑝) for all 𝑝 ≠ ∞.

Integer Logarithm: Let Ψ(𝑛) be the sum of the prime factors of 𝑛, counted with
multiplicity (see [3, 10, 13]). Then Φ𝑐 extends Ψ if and only if 𝑐(Q, 𝑝) =

−𝑝/(log 𝑝) for all 𝑝 ≠ ∞.

It would be interesting to discover a version of Corollary 1.2 that could be applied
to all additive functions rather than only to completely additive functions. For
now, we are unaware of any way to formulate such a result.

Of the previous work on this subject, we should regard Theorem 1.1 as most
analogous to [17, Theorem 1.3], which established the right hand isomorphism
of (1.2). It is important to note, however, that our result cannot be proved by
directly applying existing work. AlthoughG appears as a dense subset of 𝐿𝐶0

𝑐 (𝑌 )
with respect to the 𝐿1-norm, we impose no continuity assumption on elements
of L(G,R). Hence, prior to proving Theorem 1.1, we cannot be certain that an
arbitrary mapΦ ∈ L(G,R) may be extended to a linear map on 𝐿𝐶0

𝑐 (𝑌 ). While
3
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our proof is inspired by some ideas of [17], several different methods are needed,
including an application of Dirichlet’s 𝑆-unit Theorem.

Related to these observations, there is a version of Theorem 1.1 which classi-
fies all continuous linear maps from G to R, where G is equipped with the Weil
height norm as in [2]. Specifically, if we let J ′ be the set of consistent maps 𝑐 for
which

sup
{���� 𝑐(𝐾, 𝑣)𝜆(𝐾, 𝑣)

���� : (𝐾, 𝑣) ∈ J
}
< ∞,

then 𝑐 ↦→ Φ𝑐 is an isomorphism of J ′ onto the space of continuous linear
maps from G to R. However, this fact does indeed follow directly from previous
work, namely [17, Theorem1.6]. Because of our observations followingCorollary
1.2, both the natural logarithm and the prime Omega function have continuous
extensions to G, while the integer logarithm has no such extension.

1.3 Rational Valued Linear Maps

With an eye toward studyingG∗, we are particularly interested in identifying con-
sistent maps 𝑐 for whichΦ𝑐 (𝛼) ∈ Q for all 𝛼 ∈ G. To facilitate these efforts, we
shall write

I∗ = {𝑐 ∈ J ∗ : Φ∗ (𝑐) ∈ G∗} = {𝑐 ∈ J ∗ : Φ𝑐 (𝛼) ∈ Q for all 𝛼 ∈ G}

and note thatI∗ is aQ-linear subspace ofJ ∗. The question now arises to provide
a necessary and sufficient condition for the claim that 𝑐 ∈ I∗. This prob-
lem appears to be quite challenging, however, we may obtain several interesting
examples by applying two supplementary results, the first of which is as follows.

Theorem 1.3 Suppose 𝐾 is a number field, and for each place 𝑣 of 𝐾 , let 𝑦𝑣 ∈ R.
Then there exists a unique consistent map 𝑐 ∈ J ∗ such that

𝑐(𝐿, 𝑤) = [𝐿𝑤 : 𝐾𝑣 ]
[𝐿 : 𝐾] 𝑦𝑣 (1.3)

for all 𝑣 ∈ 𝑀𝐾 , all finite extensions 𝐿/𝐾 , and all places 𝑤 of 𝐿 dividing 𝑣. Moreover,
ifΦ𝑐 (𝛼) ∈ Q for all 𝛼 ∈ 𝐾× then 𝑐 ∈ I∗.

Given a point y = (𝑦𝑣 )𝑣∈𝑀𝐾 , we write 𝑐y to denote the consistent map from
Theorem 1.3. We plainly have that 𝑐y (𝐾, 𝑣) = 𝑦𝑣 for all places 𝑣 of 𝐾 , and there-
fore, if we wish for 𝑐y ∈ I∗, it is sufficient to find a point y = (𝑦𝑣 )𝑣∈𝑀𝐾 such
that ∑︁

𝑣∈𝑀𝐾
𝑦𝑣 log ‖𝛼‖𝑣 ∈ Q for all 𝛼 ∈ 𝐾×.

In the special case where 𝐾 = Q or where 𝐾 an imaginary quadratic extension
ofQ, we can locate examples of this sort rather easily. Indeed, such number fields
have a uniqueArchimedean place∞, sowemay choose 𝑦∞ = 0 and 𝑦𝑣 log 𝑝𝑣 ∈ Q
for all non-Archimedean places 𝑣 of 𝐾 . The resulting consistent map 𝑐y certainly
belongs to I∗.

Themore interesting cases, however, arise fromnumber fields havingmultiple
Archimedean places. The following theorem is somewhat technical, but useful in
constructing other examples of consistent maps in I∗.

4

https://doi.org/10.4153/S0008439525101343 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101343


Theorem 1.4 Suppose 𝐾 is a number field. Let {𝑣1, 𝑣2, . . . , 𝑣𝑛} be the complete list
of Archimedean places of𝐾 and let {𝛼1, 𝛼2, . . . , 𝛼𝑛−1} be a fundamental set of units in
𝐾 . For each non-Archimedean place 𝑣 of 𝐾 , let 𝛽𝑣 ∈ O𝐾 be such that ‖𝛽𝑣 ‖𝑣 < 1 and
‖𝛽𝑣 ‖𝑤 = 1 for all non-Archimedean places 𝑤 ≠ 𝑣. Finally, let y = (𝑦𝑣 )𝑣∈𝑀𝐾 . Then∑︁

𝑣∈𝑀𝐾
𝑦𝑣 log ‖𝛼‖𝑣 ∈ Q for all 𝛼 ∈ 𝐾×

if and only if the following two conditions hold:

(i) We have

©­­­­«
log ‖𝛼1‖𝑣1 log ‖𝛼1‖𝑣2 · · · log ‖𝛼1‖𝑣𝑛
log ‖𝛼2‖𝑣1 log ‖𝛼2‖𝑣2 · · · log ‖𝛼2‖𝑣𝑛

...
...

. . .
...

log ‖𝛼𝑛−1‖𝑣1 log ‖𝛼𝑛−1‖𝑣2 · · · log ‖𝛼𝑛−1‖𝑣𝑛

ª®®®®¬
©­­­­«
𝑦𝑣1
𝑦𝑣2
...

𝑦𝑣𝑛

ª®®®®¬
∈ Q𝑛−1

(ii) For all non-Archimedean places 𝑣 of 𝐾 , we have that

𝑦𝑣 log ‖𝛽𝑣 ‖𝑣 +
𝑛∑︁
𝑖=1

𝑦𝑣𝑖 log ‖𝛽𝑣 ‖𝑣𝑖 ∈ Q.

The existence of the fundamental set of units {𝛼1, 𝛼2, . . . , 𝛼𝑛−1} is guaranteed
by Dirichlet’s Unit Theorem, and furthermore, [16, Lemma 3.1] establishes the
existence of the points 𝛽𝑣 . As a result, it is always possible to select points 𝛼𝑖 and
𝛽𝑣 that satisfy the assumptions of Theorem 1.4. Now we may use Theorems 1.3
and 1.4 to construct maps 𝑐 ∈ I∗ which are distinct from known examples.

Example 1.5 We consider 𝐾 = Q(
√
2) and fix an embedding of 𝐾 into R with

| · | denoting the usual absolute value onR. We know that𝐾 has two Archimedean
places which we shall denote by 𝑣1 and 𝑣2. We may assume that

‖𝑎 + 𝑏
√
2‖𝑣1 = |𝑎 + 𝑏

√
2| and ‖𝑎 + 𝑏

√
2‖𝑣2 = |𝑎 − 𝑏

√
2|

for all 𝑎, 𝑏 ∈ Z. We observe that𝐾 has class number equal to 1, its ring of integers
is O𝐾 = Z[

√
2] , and 1 +

√
2 is the fundamental unit in 𝐾 . Additionally, a prime

𝑝 ∈ Q splits in 𝐾 if and only if 𝑝 ≡ 1, 7 mod 8.
We now select the points 𝑦𝑣 for use in Theorem 1.4.

(i) We define

𝑦𝑣1 =
1

log(1 +
√
2)

and 𝑦𝑣2 = − 1
log(1 +

√
2)
.

(ii) If 𝑝 . 1, 7 mod 8 and 𝑣 divides 𝑝, we let 𝑦𝑣 = 0.
(iii) If 𝑝 ≡ 1, 7 mod 8 then we let 𝑣 and 𝑤 be distinct places of 𝐾 dividing 𝑝.

In this case, 𝑝 has the form 𝑝 = 𝛽𝑣 𝛽𝑤 , where 𝛽𝑣 and 𝛽𝑤 are generators of
the prime ideals

{𝛼 ∈ O𝐾 : ‖𝛼‖𝑣 < 1} and {𝛼 ∈ O𝐾 : ‖𝛼‖𝑤 < 1} ,

respectively. In this situation, we define

𝑦𝑣 =
log ‖𝛽𝑣 ‖𝑣1 − log ‖𝛽𝑣 ‖𝑣2
(log 𝑝) (log(1 +

√
2))

𝑦𝑤 =
log ‖𝛽𝑤 ‖𝑣1 − log ‖𝛽𝑤 ‖𝑣2
(log 𝑝) (log(1 +

√
2))

.
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It is straightforward to verify that the points 𝑦𝑣 satisfy the two properties of
Theorem 1.4, and then by Theorem 1.3, 𝑐 = 𝑐y ∈ I∗. In other words, Φ𝑐 is a
(rational-valued) linear functional on G.

Since 𝛽𝑣 and 𝛽𝑤 are conjugates over Q, the values in (iii) satsify 𝑦𝑣 = −𝑦𝑤 .
Therefore, we have 𝑐(𝐾, 𝑣) = −𝑐(𝐾, 𝑤) whenever 𝑣 and𝑤 divide the same place
ofQ, or equivalently, we have 𝑐(Q, 𝑝) = 0 for all 𝑝 ∈ 𝑀Q. The first few non-zero
values of 𝑐(𝐾, 𝑣) are approximated in the following table.

𝑝 Factorization of 𝑝 in Z[
√
2] 𝑐(𝐾, 𝑣) for 𝑣 | 𝑝 (approx.)

∞ NA ±1.13459
7 (3 +

√
2) (3 −

√
2) ±0.596913

17 (5 + 2
√
2) (5 − 2

√
2) ±0.513516

23 (5 +
√
2) (5 −

√
2) ±0.0.513516

31 (7 + 3
√
2) (7 − 3

√
2) ±0.464359

41 (7 + 2
√
2) (7 − 2

√
2) ±0.261831

47 (7 +
√
2) (7 −

√
2) ±0.120733

71 (11 + 5
√
2) (11 − 5

√
2) ±0.406159

1.4 Organizational Summary

We shall structure the remainder of this article by separating the proof of
Theorem 1.1 into two components. First, in Section 2, we show that Φ∗ is a lin-
ear transformation such that ker(Φ∗) = spanR{𝜆}. The surjectivity component
of the proof requires applying Theorem 1.3, and hence, we use Section 3 to prove
that result. Finally, in Section 4, we complete the proof of Theorem 1.1 by proving
thatΦ∗ is surjective. The proof of Theorem 1.4 is included in that section as well.

2 The Kernel of Φ∗

Theorem 2.1 The map Φ∗ : J ∗ → L(G,R) is an R-linear transformation such
that ker(Φ∗) = spanR{𝜆}.

Before proceeding with the proof of Theorem 2.1, we remind the reader of the
relevant features ofDirichlet’s Unit Theorem [12, Theorem7.31]. If𝐾 is a number
field, then O𝐾 denotes its ring of integers and

O×
𝐾 = {𝛼 ∈ 𝐾 : ‖𝛼‖𝑣 = 1 for all 𝑣 - ∞}

is called its group of units. If 𝐾 has 𝑛 Archimedean places, then Dirchlet’s Unit
Theorem asserts that the O×

𝐾
has rank equal to 𝑛 − 1. If 𝜁 is a root of unity and

𝛼1, 𝛼2, . . . , 𝛼𝑛−1 ∈ O𝐾 are such that {𝜁, 𝛼1, 𝛼2, · · · , 𝛼𝑛−1} generates O×
𝐾
, then

the collection {𝛼1, 𝛼2, · · · , 𝛼𝑛−1} is called a fundamental set of units in 𝐾 .
The proof of Theorem 2.1 begins with the following lemma.

6

https://doi.org/10.4153/S0008439525101343 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101343


Lemma 2.2 Let 𝐾 be a number field having Archimedean places {𝑣1, 𝑣2, . . . , 𝑣𝑛},
let {𝛼1, 𝛼2, . . . , 𝛼𝑛−1} be a fundamental set of units in 𝐾 , and define

𝐴 =

©­­­­«
log ‖𝛼1‖𝑣1 log ‖𝛼1‖𝑣2 · · · log ‖𝛼1‖𝑣𝑛
log ‖𝛼2‖𝑣1 log ‖𝛼2‖𝑣2 · · · log ‖𝛼2‖𝑣𝑛

...
...

. . .
...

log ‖𝛼𝑛−1‖𝑣1 log ‖𝛼𝑛−1‖𝑣2 · · · log ‖𝛼𝑛−1‖𝑣𝑛

ª®®®®¬
.

Then rank(𝐴) = 𝑛 − 1 and dim(ker 𝐴) = 1.

Proof For simplicity, we write 𝐷𝑖 = [𝐾𝑣𝑖 : Q𝑣𝑖 ] and define the following
additional matrices:

𝐷 =

©­­­­«
𝐷1 0 · · · 0
0 𝐷2 · · · 0
...

...
. . .

...

0 0 · · · 𝐷𝑛

ª®®®®¬
and

𝐵 = 𝐴𝐷 =

©­­­­«
𝐷1 log ‖𝛼1‖𝑣1 𝐷2 log ‖𝛼1‖𝑣2 · · · 𝐷𝑛 log ‖𝛼1‖𝑣𝑛
𝐷1 log ‖𝛼2‖𝑣1 𝐷2 log ‖𝛼2‖𝑣2 · · · 𝐷𝑛 log ‖𝛼2‖𝑣𝑛

...
...

. . .
...

𝐷1 log ‖𝛼𝑛−1‖𝑣1 𝐷2 log ‖𝛼𝑛−1‖𝑣2 · · · 𝐷𝑛 log ‖𝛼𝑛−1‖𝑣𝑛

ª®®®®¬
.

Clearly det(𝐷) ≠ 0 so that 𝐴 and 𝐵 must have the same rank. However, if we
let 𝐵𝑖 denote the matrix obtained by removing column 𝑖 from 𝐵, then it is well-
known that | det(𝐵𝑖) | is non-zero and independent of 𝑖. This value is called the
regulator of 𝐾 and is thoroughly studied throughout the literature on algebraic
number theory (see [12, Def. 10.8], for example). In any case, it now follows that
the rows of 𝐵 are linearly independent so that

rank(𝐴) = rank(𝐵) = 𝑛 − 1.

Now applying the rank-nullity theorem, we conclude that dim(ker(𝐴)) = 1. �

Our next result is the primary ingredient in identifying the kernel of Φ∗. As
we shall find, it also plays a crucial role in showing thatΦ∗ is surjective.

Lemma 2.3 Suppose that 𝑐 : J → R is a consistent map and 𝐾 is a number field. If
Φ𝑐 (𝛼) = 0 for all 𝛼 ∈ 𝐾× then

𝑐(𝐾, 𝑣) = 𝑐(Q,∞)𝜆(𝐾, 𝑣) (2.1)

for all 𝑣 ∈ 𝑀𝐾 .

Proof We first establish (2.1) in the case that 𝑣 is Archimedean. To this end,
we let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be the complete list of Archimedean places of 𝐾 so that the
consistency property (1.1) implies that

𝑐(Q,∞) =
𝑛∑︁
𝑖=1

𝑐(𝐾, 𝑣𝑖). (2.2)

7
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If 𝑛 = 1 then 𝜆(𝐾, 𝑣1) = 1, and the required property follows immediately from
(2.2). Therefore, we shall assume that 𝑛 ≥ 2.

According toDirichlet’s Unit Theorem, wemay let {𝛼1, 𝛼2, . . . , 𝛼𝑛−1} be a set
of fundamental units in 𝐾 and let 𝐴 be the (𝑛 − 1) × 𝑛matrix 𝐴 given by Lemma
2.2. Additionally, we let

𝐶 =

©­­­­«
𝑐(𝐾, 𝑣1)
𝑐(𝐾, 𝑣2)

...

𝑐(𝐾, 𝑣𝑛)

ª®®®®¬
and Λ =

©­­­­«
𝜆(𝐾, 𝑣1)
𝜆(𝐾, 𝑣2)

...

𝜆(𝐾, 𝑣𝑛)

ª®®®®¬
.

As we have assumed thatΦ𝑐 (𝛼) = 0 for all 𝛼 ∈ 𝐾 , we have

𝐴𝐶 =

©­­­­«
Φ𝑐 (𝛼1)
Φ𝑐 (𝛼2)

...

Φ𝑐 (𝛼𝑛−1)

ª®®®®¬
=

©­­­­«
0
0
...

0

ª®®®®¬
so that 𝐶 ∈ ker(𝐴). However, the product formula implies that Λ also belongs
to ker(𝐴), and since Λ is clearly non-zero, Lemma 2.2 establishes that ker(𝐴) =
{𝑟Λ : 𝑟 ∈ R}. We now obtain a real number 𝑟 such that

𝑐(𝐾, 𝑣𝑖) = 𝑟𝜆(𝐾, 𝑣𝑖) for all 1 ≤ 𝑖 ≤ 𝑛.

Finally, property (2.2) shows that

𝑐(Q,∞) =
𝑛∑︁
𝑖=1

𝑐(𝐾, 𝑣𝑖) = 𝑟
𝑛∑︁
𝑖=1

𝜆(𝐾, 𝑣𝑖) = 𝑟

and we have established (2.1) for all Archimedean places 𝑣 of 𝐾 .
We now establish (2.1) when 𝑣 is non-Archimedean. Because of what we have

already shown, we may assume for the remainder of this proof that

𝑐(𝐾, 𝑢) = 𝑐(Q,∞) [𝐾𝑢 : Q∞]
[𝐾 : Q] (2.3)

for all Archimedean places 𝑢 of 𝐾 . According to [16, Theorem 3.1], there exists
𝛽 ∈ 𝐾 such that ‖𝛽‖𝑣 < 1 and ‖𝛽‖𝑤 = 1 for all other non-Archimedean places
𝑤 of 𝐾 . Now applying (2.3), we obtain

Φ𝑐 (𝛽) = 𝑐(𝐾, 𝑣) log ‖𝛽‖𝑣 +
∑︁
𝑢 |∞

𝑐(𝐾, 𝑢) log ‖𝛽‖𝑢

= 𝑐(𝐾, 𝑣) log ‖𝛽‖𝑣 + 𝑐(Q,∞)
∑︁
𝑢 |∞

[𝐾𝑢 : Q∞]
[𝐾 : Q] log ‖𝛽‖𝑢 .

According to the product formula on 𝐾 , the summation on the right hand side
may be simplified so that

Φ𝑐 (𝛽) = 𝑐(𝐾, 𝑣) log ‖𝛽‖𝑣 − 𝑐(Q,∞) [𝐾𝑣 : Q𝑣 ][𝐾 : Q] log ‖𝛽‖𝑣 .

From our assumptions we have thatΦ𝑐 (𝛽) = 0 and ‖𝛽‖𝑣 ≠ 1, so it follows that

𝑐(𝐾, 𝑣) = 𝑐(Q,∞) [𝐾𝑣 : Q𝑣 ][𝐾 : Q]
8
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as required. �

Proof Suppose that 𝑐, 𝑑 ∈ J ∗ and 𝑟 ∈ R. For each 𝛼 ∈ Q×
, we assume that 𝐾

is a number field containing 𝛼 and observe that

Φ𝑐+𝑑 (𝛼) =
∑︁
𝑣∈𝑀𝐾

[𝑐(𝐾, 𝑣) + 𝑑 (𝐾, 𝑣)] log ‖𝛼‖𝑣

=
∑︁
𝑣∈𝑀𝐾

𝑐(𝐾, 𝑣) log ‖𝛼‖𝑣 +
∑︁
𝑣∈𝑀𝐾

𝑑 (𝐾, 𝑣) log ‖𝛼‖𝑣

= Φ𝑐 (𝛼) +Φ𝑑 (𝛼)

which proves thatΦ∗ (𝑐 + 𝑑) = Φ∗ (𝑐) +Φ∗ (𝑑). Also, we have

Φ𝑟𝑐 (𝛼) = 𝑟
∑︁
𝑣∈𝑀𝐾

𝑐(𝐾, 𝑣) log ‖𝛼‖𝑣 = 𝑟Φ𝑐 (𝛼)

establishing that Φ∗ (𝑟𝑐) = 𝑟Φ∗ (𝑐) and showing that Φ∗ is a linear transforma-
tion.

Assuming that 𝑐 ∈ spanR{𝜆}, there exists 𝑟 ∈ R such that

𝑐(𝐾, 𝑣) = 𝑟 · [𝐾𝑣 : Q𝑣 ][𝐾 : Q]

for all number fields 𝐾 and all places 𝑣 of 𝐾 . For each non-zero point 𝛼 ∈ Q, the
product formula now implies that

Φ𝑐 (𝛼) =
∑︁
𝑣∈𝑀𝐾

𝑐(𝐾, 𝑣) log ‖𝛼‖𝑣 = 𝑟
∑︁
𝑣∈𝑀𝐾

[𝐾𝑣 : Q𝑣 ]
[𝐾 : Q] log ‖𝛼‖𝑣 = 0

proving thatΦ𝑐 ≡ 0 and spanR{𝜆} ⊆ ker(Φ∗).
Nowassuming thatΦ𝑐 ≡ 0 and (𝐾, 𝑣) ∈ J , we certainly have thatΦ𝑐 (𝛼) = 0

for all 𝛼 ∈ 𝐾×. Hence, Lemma 2.3 applies to yield

𝑐(𝐾, 𝑣) = 𝑐(Q,∞)𝜆(𝐾, 𝑣)

for all 𝑣 ∈ 𝑀𝐾 establishing that 𝑐 ∈ spanR{𝜆} and ker(Φ∗) ⊆ spanR{𝜆}, as
required. �

3 Extensions of Consistent Maps

Before we continue with the proof of Theorem 1.1, we will provide our proof of
Theorem 1.3. As we shall find, Theorem 1.3 is required in the proof of Theorem
1.1, and as such, it makes sense to provide its proof first.

If 𝐾 is a number field and 𝐿/𝐾 is a finite extension, we note the two well-
known identities

[𝐿 : 𝐾] =
∑︁
𝑤 |𝑣

[𝐿𝑤 : 𝐾𝑣 ] and Norm𝐿/𝐾 (𝛼) =
∏
𝑤 |𝑣

Norm𝐿𝑤/𝐾𝑣 (𝛼) (3.1)

for all 𝛼 ∈ 𝐿 (see [8, Eq. (2) and Prop. 4], for example).

Proof If 𝐿 is any number field, let 𝐹 be a finite extension of 𝐿 containing 𝐾 .
Further, if 𝑡 is a place of 𝐹 dividing the place 𝑣 of 𝐾 , then we write 𝑦𝑡 = 𝑦𝑣 . For

9
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each 𝑤 ∈ 𝑀𝐿 we define

𝑑𝐹 (𝐿, 𝑤) =
∑︁
𝑡 |𝑤

[𝐹𝑡 : 𝐾𝑡 ]
[𝐹 : 𝐾] 𝑦𝑡 , (3.2)

where the summation on the right hand side of (3.2) runs over places 𝑡 of 𝐹
dividing 𝑤. We claim that 𝑑𝐹 (𝐿, 𝑤) is independent of 𝐹 .

To see this, we suppose that 𝐸 is a finite extension of 𝐹 . In the ensuing calcu-
lations, we shall adopt the convention of writing 𝑡 for places of 𝐹 and 𝑠 for places
of 𝐸 . Clearly if 𝑠 | 𝑡 then 𝑦𝑡 = 𝑦𝑠 and 𝐾𝑠 = 𝐾𝑡 , so we obtain

𝑑𝐸 (𝐿, 𝑤) =
∑︁
𝑠 |𝑤

[𝐸𝑠 : 𝐾𝑠]
[𝐸 : 𝐾] 𝑦𝑠

=
∑︁
𝑡 |𝑤

∑︁
𝑠 |𝑡

[𝐸𝑠 : 𝐹𝑡 ] · [𝐹𝑡 : 𝐾𝑡 ]
[𝐸 : 𝐹] · [𝐹 : 𝐾] 𝑦𝑡

=
∑︁
𝑡 |𝑤

[𝐹𝑡 : 𝐾𝑡 ]
[𝐹 : 𝐾] 𝑦𝑡

∑︁
𝑠 |𝑡

[𝐸𝑠 : 𝐹𝑡 ]
[𝐸 : 𝐹] .

Now applying the left hand equality of (3.1), we obtain that

𝑑𝐸 (𝐿, 𝑤) =
∑︁
𝑡 |𝑤

[𝐹𝑡 : 𝐾𝑡 ]
[𝐹 : 𝐾] 𝑦𝑡 = 𝑑𝐹 (𝐿, 𝑤)

showing that 𝑑𝐹 (𝐿, 𝑤) is indeed independent of 𝐹 . Hence, we may define 𝑐 :
J → R by 𝑐(𝐿, 𝑤) = 𝑑𝐹 (𝐿, 𝑤), where 𝐹 is any number field containing both
𝐾 and 𝐿.

To prove that 𝑐 is consistent, we assume that𝑀 is a finite extension of 𝐿 and𝑤
is a place of 𝐿. We select a number field 𝐹 containing both 𝑀 and 𝐾 . Then using
𝑥 to denote places of 𝑀 , we obtain from (3.2) that∑︁

𝑥 |𝑤
𝑐(𝑀, 𝑥) =

∑︁
𝑥 |𝑤

𝑑𝐹 (𝑀, 𝑥)

=
∑︁
𝑥 |𝑤

∑︁
𝑡 |𝑥

[𝐹𝑡 : 𝐾𝑡 ]
[𝐹 : 𝐾] 𝑦𝑡

=
∑︁
𝑡 |𝑤

[𝐹𝑡 : 𝐾𝑡 ]
[𝐹 : 𝐾] 𝑦𝑡 = 𝑑𝐹 (𝐿, 𝑤) = 𝑐(𝐿, 𝑤),

proving that 𝑐 is consistent.
To establish (1.3), we assume that 𝐿 is a finite extension of 𝐾 , 𝑣 is a place of 𝐾 ,

and 𝑤 is a a place of 𝐿 dividing 𝑣. Now apply (3.2) with 𝐹 = 𝐿 to obtain

𝑐(𝐿, 𝑤) = [𝐿𝑤 : 𝐾𝑤 ]
[𝐿 : 𝐾] 𝑦𝑤 =

[𝐿𝑤 : 𝐾𝑣 ]
[𝐿 : 𝐾] 𝑦𝑣

which is the required property (1.3).
To prove that this consistent map is unique, we suppose that 𝑐, 𝑑 ∈ J ∗ both

satisfy (1.3). This means 𝑐(𝐿, 𝑤) = 𝑑 (𝐿, 𝑤) for all finite extensions 𝐿/𝐾 and
all places 𝑤 of 𝐿. Now if 𝐿 ′ is an arbitrary number field and 𝑤′ is a place of 𝐿 ′,
we may choose a number field 𝐿 containing both 𝐾 and 𝐿 ′. Then applying the
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consistency of 𝑐 and 𝑑, we obtain

𝑐(𝐿 ′, 𝑤′) =
∑︁
𝑤 |𝑤′

𝑐(𝐿, 𝑤) =
∑︁
𝑤 |𝑤′

𝑑 (𝐿, 𝑤) = 𝑑 (𝐿 ′, 𝑤′)

proving that 𝑐 = 𝑑.
Finally, we assume thatΦ𝑐 (𝛼) ∈ Q for all 𝛼 ∈ 𝐾×. If 𝛽 ∈ Q×

we may let 𝐿 be
a number field containing both 𝛽 and 𝐾 . Now applying (1.3) we obtain

Φ𝑐 (𝛽) =
∑︁
𝑤 ∈𝑀𝐿

𝑐(𝐿, 𝑤) log ‖𝛽‖𝑤

=
∑︁
𝑣∈𝑀𝐾

∑︁
𝑤 |𝑣

𝑐(𝐿, 𝑤) log ‖𝛽‖𝑤 =
∑︁
𝑣∈𝑀𝐾

𝑦𝑣

∑︁
𝑤 |𝑣

[𝐿𝑤 : 𝐾𝑣 ]
[𝐿 : 𝐾] log ‖𝛽‖𝑤 .

Then using the right hand equality of (3.1), we find that

Φ𝑐 (𝛽) =
∑︁
𝑣∈𝑀𝐾

𝑦𝑣

∑︁
𝑤 |𝑣

[𝐿𝑤 : 𝐾𝑣 ]
[𝐿 : 𝐾] log ‖Norm𝐿𝑤/𝐾𝑣 (𝛽)‖

1/[𝐿𝑤 :𝐾𝑣 ]
𝑣

=
1

[𝐿 : 𝐾]
∑︁
𝑣∈𝑀𝐾

𝑦𝑣

∑︁
𝑤 |𝑣

log ‖Norm𝐿𝑤/𝐾𝑣 (𝛽)‖𝑣

=
1

[𝐿 : 𝐾]
∑︁
𝑣∈𝑀𝐾

𝑦𝑣 log ‖Norm𝐿/𝐾 (𝛽)‖𝑣

=
1

[𝐿 : 𝐾]Φ𝑐 (Norm𝐿/𝐾 (𝛽)).

which is clearly rational. �

4 Surjectivity of Φ∗

In order to complete the proof of Theorem 1.1, we must establish the following
result.

Theorem 4.1 The mapΦ∗ : J ∗ → L(G,R) is surjective.

The proof of Theorem 4.1 requires some background notation as well as three
lemmas. Let𝐾 be a number field and let 𝑆 be a finite subset of𝑀𝐾 containing the
Archimedean places of 𝐾 . The set

𝑈𝐾,𝑆 =
{
𝛼 ∈ 𝐾× : ‖𝛼‖𝑣 = 1 for all 𝑣 ∈ 𝑀𝐾 \ 𝑆

}
is a subgroup of 𝐾× called the group of 𝑆-units in 𝐾 , which according to Dirich-
let’s 𝑆-unit Theorem (see [14, Thm. III.3.5] or [7, §1.1]), is finitely generated of
rank #𝑆 − 1. If 𝜁 is a root of unity and 𝛼1, 𝛼2, . . . , 𝛼#𝑆−1 ∈ 𝑈𝐾,𝑆 are such that
{𝜁, 𝛼1, 𝛼2, · · · , 𝛼#𝑆−1} generates𝑈𝐾,𝑆 , the then collection {𝛼1, 𝛼2, · · · , 𝛼#𝑆−1}
is called a fundamental set of 𝑆-units in 𝐾 . Of course, this terminology generalizes
our definitions from the beginning of Section 2.

For our proof thatΦ∗ is surjective, we require a reinterpretation of Dirichlet’s
𝑆-unit Theorem in the language of linear algebra. To this end, we write

𝐾div =
{
𝛼 ∈ Q×

: 𝛼𝑛 ∈ 𝐾 for some 𝑛 ∈ N
}
,

11

https://doi.org/10.4153/S0008439525101343 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101343


and note that 𝐾div is a subgroup ofQ
×
containingQ

×
tors. We further write

G𝐾 = 𝐾div/Q
×
tors

and observe thatG𝐾 is a subspace ofG. If𝛼 ∈ 𝐾div, we shall adopt the convention
of writing 𝛼̄ to denote its image under the canonical homomorphism 𝐾div →
𝐾div/Q

×
tors. For each place 𝑣 of 𝐾 and 𝛼 ∈ 𝐾div, we may assume that ℓ ∈ N is such

that 𝛼ℓ ∈ 𝐾 and define

‖𝛼‖𝑣 = ‖𝛼ℓ ‖1/ℓ𝑣 .

The right hand side of this equality does not depend on the choice of ℓ, and hence,
‖ · ‖𝑣 is a well-defined map on G𝐾 which satisfies

(A1) ‖𝛼𝛽‖𝑣 = ‖𝛼‖𝑣 ‖𝛽‖𝑣 for all 𝛼, 𝛽 ∈ 𝐾div
(A2) ‖𝛼𝑟 ‖𝑣 = ‖𝛼‖𝑟𝑣 for all 𝛼 ∈ 𝐾div and all 𝑟 ∈ Q.

Equivalently, 𝛼 ↦→ log ‖𝛼‖𝑣 defines a linear transformation from G𝐾 toRwhen
viewed asQ-vector spaces. Finally, we let

G𝐾,𝑆 = {𝛼 ∈ G𝐾 : ‖𝛼‖𝑣 = 1 for all 𝑣 ∈ 𝑀𝐾 \ 𝑆}

and note the following manner of identifying a basis for G𝐾,𝑆 overQ.

Lemma 4.2 Suppose that 𝐾 is a number field having 𝑛 Archimedean places. Assume
that 𝑆∞ is the complete set of Archimedean places of 𝐾 , 𝑆0 = {𝑤1, 𝑤2, . . . , 𝑤𝑚} is a
finite (possibly empty) set of non-Archimedean places of 𝐾 , and 𝑆 = 𝑆∞ ∪ 𝑆0. Further
assume the following:

(I) {𝛼1, 𝛼2, . . . , 𝛼𝑛−1} is a fundamental set of units in 𝐾
(II) For every 1 ≤ 𝑖 ≤ 𝑚, 𝛽𝑖 ∈ 𝐾 is such that ‖𝛽𝑖 ‖𝑤𝑖 < 1 and ‖𝛽𝑖 ‖𝑤 = 1 for all

non-Archimedean places 𝑤 ≠ 𝑤𝑖 .

Then {𝛼̄1, 𝛼̄2, . . . , 𝛼̄𝑛−1, 𝛽1, 𝛽2, . . . , 𝛽𝑚} is a basis for G𝐾,𝑆 over Q. In particular,
G𝐾,𝑆 is a finite dimensional subspace of G𝐾 with dim(G𝐾,𝑆) = #𝑆 − 1.

Proof For each 0 ≤ 𝑘 ≤ 𝑚, we define 𝑇𝑘 = 𝑆∞ ∪ {𝑤1, 𝑤2, . . . , 𝑤𝑘 } so that
𝑇𝑚 = 𝑆. We shall prove by induction on 𝑘 that

{𝛼̄1, 𝛼̄2, . . . , 𝛼̄𝑛−1, 𝛽1, 𝛽2, . . . , 𝛽𝑘 }

is a basis for G𝐾,𝑇𝑘 for all 0 ≤ 𝑘 ≤ 𝑚. The lemma would then follow by taking
the special case 𝑘 = 𝑚.

Base Case: Since we have assumed that {𝛼1, 𝛼2, . . . , 𝛼𝑛−1} is a fundamental
set of units in 𝐾 , we obtain that

(i) For every 𝛼 ∈ 𝑈𝐾,𝑇0 , there exist 𝑟1, 𝑟2, . . . , 𝑟𝑛−1 ∈ Z such that 𝛼 =

𝛼
𝑟1
1 𝛼

𝑟2
2 · · · 𝛼𝑟𝑛−1

𝑛−1 .
(ii) If 𝑟1, 𝑟2, . . . , 𝑟𝑛−1 ∈ Z are such that𝛼𝑟11 𝛼

𝑟2
2 · · · 𝛼𝑟𝑛−1

𝑛−1 = 1 then 𝑟𝑖 = 0 for all 𝑖.

Let 𝛼̄ ∈ G𝐾,𝑇0 and assume that𝛼 is some representative of 𝛼̄ in𝐾div. By definition
of 𝐾div, there exists ℓ ∈ N such that 𝛼ℓ ∈ 𝐾×. But clearly we also have that
‖𝛼ℓ ‖𝑤 = 1 for all non-Archimedean places 𝑤 of 𝐾 , and hence, 𝛼ℓ ∈ 𝑈𝐾,𝑇0 =

𝑈𝐾,𝑆∞ . Then according to (i), there exist 𝑟1, 𝑟2, . . . , 𝑟𝑛−1 ∈ Z such that 𝛼ℓ =
12
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𝛼
𝑟1
1 𝛼

𝑟2
2 · · · 𝛼𝑟𝑛−1

𝑛−1 . We now conclude that

𝛼̄ℓ = 𝛼̄
𝑟1
1 𝛼̄

𝑟2
2 · · · 𝛼̄𝑟𝑛−1

𝑛−1

Since ℓ is a positive integer, we get that

𝛼̄ = 𝛼̄
𝑟1/ℓ
1 𝛼̄

𝑟2/ℓ
2 · · · 𝛼̄𝑟𝑛−1/ℓ

𝑛−1 ,

proving that 𝛼̄ ∈ span{𝛼̄1, 𝛼̄2, . . . , 𝛼̄𝑛−1}.
Now assume that 𝑎𝑖 ∈ Z and 𝑏𝑖 ∈ N are such that

𝛼̄
𝑎1/𝑏1
1 𝛼̄

𝑎2/𝑏2
2 · · · 𝛼̄𝑎𝑛−1/𝑏𝑛−1

𝑛−1 = 1.

After raising both sides to the 𝑏1𝑏2 · · · 𝑏𝑛−1 power, we obtain

1 = 𝛼̄
𝑟1
1 𝛼̄

𝑟2
2 · · · 𝛼̄𝑟𝑛−1

𝑛−1 = 𝛼
𝑟1
1 𝛼

𝑟2
2 · · · 𝛼𝑟𝑛−1

𝑛−1 , where 𝑟𝑖 = 𝑎𝑖
∏
𝑗≠𝑖

𝑏𝑖

As a result, there must exist a root of unity 𝜁 such that 𝜁 = 𝛼
𝑟1
1 𝛼

𝑟2
2 · · · 𝛼𝑟𝑛−1

𝑛−1 .We
certainly have that 𝜁𝑑 = 1 for some 𝑑 ∈ N, and hence,

1 = 𝛼
𝑑𝑟1
1 𝛼

𝑑𝑟2
2 · · · 𝛼𝑑𝑟𝑛−1

𝑛−1 .

By applying (ii), we conclude that 𝑑𝑟𝑖 = 0 for all 𝑖, and since 𝑑 is certainly non-
zero, we obtain that 𝑟𝑖 = 0. It now follows that 𝑎𝑖 = 0, as required.

Inductive Step: We now let

B𝑘 = {𝛼̄1, 𝛼̄2, . . . , 𝛼̄𝑛−1, 𝛽1, 𝛽2, . . . , 𝛽𝑘 }

and proceed with the inductive step assuming that B𝑘−1 is a basis for G𝐾,𝑇𝑘−1 .
We shall first show that B𝑘 is linearly independent. To this end, we assume that
𝑟1, 𝑟2, . . . , 𝑟𝑛−1, 𝑠1, 𝑠2, . . . , 𝑠𝑘 ∈ Q are such that

1 =

𝑛−1∏
𝑖=1

𝛼̄
𝑟𝑖
𝑖

𝑘∏
𝑗=1

𝛽
𝑠 𝑗

𝑗
. (4.1)

We remind the reader that ‖ · ‖𝑤𝑘 is indeed a well-defined map on G𝐾 which
satisfies (A1) and (A2). Moreover, by our assumption (II), we have ‖𝛽 𝑗 ‖𝑤𝑘 = 1 for
all 1 ≤ 𝑗 ≤ 𝑘 − 1. Additionally, the points 𝛼𝑖 are ordinary units in 𝐾 , meaning
that ‖𝛼𝑖 ‖𝑤𝑘 = 1 for all 1 ≤ 𝑖 ≤ 𝑛− 1. Now applying ‖ · ‖𝑤𝑘 to both sides of (4.1),
we conclude that

1 = ‖𝛽𝑘 ‖𝑠𝑘𝑤𝑘 .
Again by our assumption (II), we know that ‖𝛽𝑘 ‖𝑤𝑘 < 1, and hence, we conclude
that 𝑠𝑘 = 0. Plugging this value into (4.1), we obtain

1 =

𝑛−1∏
𝑖=1

𝛼̄
𝑟𝑖
𝑖

𝑘−1∏
𝑗=1

𝛽
𝑠 𝑗

𝑗

so it follows from the inductive hypothesis that 𝑟𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1 and
𝑠 𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑘 − 1.

Since B𝑘 contains 𝑛 + 𝑘 − 1 elements, in order to complete the proof, it is
sufficient to show that dim(G𝐾,𝑇𝑘 ) ≤ 𝑛 + 𝑘 − 1. To this end, we apply Dirichlet’s
𝑆-unit Theorem with 𝑇𝑘 in place of 𝑆 to obtain a fundamental set of 𝑇𝑘-units
{𝛾1, 𝛾2, . . . , 𝛾𝑛+𝑘−1}. We claim that

{𝛾̄1, 𝛾̄2, . . . , 𝛾̄𝑛+𝑘−1}
13
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spans G𝐾,𝑇𝑘 . To see this, let 𝛾̄ ∈ G𝐾,𝑇𝑘 and let 𝛾 be a representative of 𝛾̄ in 𝐾div.
Then there exists ℓ ∈ N such that 𝛾ℓ ∈ 𝐾×, and note that 𝛾ℓ must belong to
𝑈𝐾,𝑇𝑘 . As a result, we obtain integers 𝑟1, . . . , 𝑟𝑛+𝑘−1 such that 𝛾ℓ =

∏𝑛+𝑘−1
𝑖=1 𝛾

𝑟𝑖
𝑖
,

and therefore,

𝛾̄ =

𝑛+𝑘−1∏
𝑖=1

𝛾̄
𝑟𝑖/ℓ
𝑖

proving that 𝛾̄ ∈ span{𝛾̄1, 𝛾̄2, . . . , 𝛾̄𝑛+𝑘−1}. It now follows that dim(G𝐾,𝑇𝑘 ) ≤
𝑛 + 𝑘 − 1, establishing the lemma. �

We will also need the following basic linear algebra lemma.

Lemma 4.3 Suppose 𝑉 is vector space over a field 𝐹 containing subspaces 𝐴 and 𝐵.
Let 𝑥, 𝑦 ∈ 𝑉 .

(i) If 𝐴 + 𝐵 = 𝑉 then (𝑥 + 𝐴) ∩ (𝑦 + 𝐵) ≠ ∅.
(ii) If 𝐴 ∩ 𝐵 = {0} then (𝑥 + 𝐴) ∩ (𝑦 + 𝐵) contains at most one point.
(iii) If 𝐴 ⊕ 𝐵 = 𝑉 then (𝑥 + 𝐴) ∩ (𝑦 + 𝐵) contains a unique point.

Proof For (i), we observe that 𝑥 = 𝑎1 + 𝑏1 and 𝑦 = 𝑎2 + 𝑏2 for some 𝑎1, 𝑎2 ∈ 𝐴
and 𝑏1, 𝑏2 ∈ 𝐵, and therefore, we obtain

𝑥 + 𝑎2 = 𝑎1 + 𝑎2 + 𝑏1 and 𝑦 + 𝑏1 = 𝑎2 + 𝑏1 + 𝑏2.

Hence

𝑎2 + 𝑏1 = 𝑥 + 𝑎2 − 𝑎1 ∈ 𝑥 + 𝐴 and 𝑎2 + 𝑏1 = 𝑦 + 𝑏1 − 𝑏2 ∈ 𝑦 + 𝐵,

showing that 𝑎2 + 𝑏1 ∈ (𝑥 + 𝐴) ∩ (𝑦 + 𝐵).
To prove (ii), suppose that 𝑎, 𝑏 ∈ (𝑥+𝐴)∩ (𝑦+𝐵). It follows that 𝑎−𝑏 belongs

to both 𝐴 and 𝐵, forcing 𝑎 − 𝑏 = 0, or equivalently, 𝑎 = 𝑏. Now (iii) follows from
(i) and (ii).

�

In order to prove Theorem 4.1, we will need to identify a consistent map
associated to an arbitrary linear map Φ : G → R. Our next lemma is the key
ingredient in constructing such a map. For a linear mapΦ : G → R and 𝛼 ∈ Q×

,
we shall adopt the convention thatΦ(𝛼) = Φ(𝛼̄).

Lemma 4.4 Suppose Φ : G → R is a Q-linear map and 𝑟 ∈ R. Then for every
number field 𝐾 , there exists a consistent map 𝑐𝐾 : J → R such that

𝑐𝐾 (Q,∞) = 𝑟 and Φ(𝛼) = Φ𝑐𝐾 (𝛼) for all 𝛼 ∈ 𝐾×. (4.2)

Moreover, if 𝐿 is a finite extension of 𝐾 and 𝑐𝐿 satisfies (4.2) with 𝐿 in place of 𝐾 , then
𝑐𝐿 (𝐾, 𝑣) = 𝑐𝐾 (𝐾, 𝑣) for all places 𝑣 of 𝐾 .

Proof We shall select values 𝑦𝑣 for each 𝑣 ∈ 𝑀𝐾 and then apply Theorem
1.3. As in the proof of Lemma 2.3, we begin by considering the case where 𝑣
is Archimedean. We suppose that {𝑣1, 𝑣2, . . . , 𝑣𝑛} are the Archimedean places
of 𝐾 , assume that {𝛼1, 𝛼2, . . . , 𝛼𝑛−1} is a fundamental set of units in 𝐾 , and let
𝐴 be the matrix from the statement of Lemma 2.2. In this situation, ker(𝐴) is a
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one-dimensional subspace of R𝑛. Writing

Λ = (𝜆(𝐾, 𝑣1), 𝜆(𝐾, 𝑣2), . . . , 𝜆(𝐾, 𝑣𝑛))𝑇 ,

we see clearly that ker(𝐴) = {𝑟Λ : 𝑟 ∈ R}. We shall further write

b = (Φ(𝛼1),Φ(𝛼2), . . . ,Φ(𝛼𝑛−1))𝑇

and note that 𝐴−1 (b) is a coset of ker(𝐴) in R𝑛.
Now define the 𝑛 − 1 dimensional subspace Δ of R𝑛 by

Δ =

{
(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 :

𝑛∑︁
𝑖=1

𝑥𝑖 = 0

}
.

Plainly we have that Δ ∩ ker(𝐴) = {0} so that R𝑛 = Δ ⊕ ker(𝐴). According to
Lemma 4.3(iii), each coset of Δ shares a unique point with each coset of ker(𝐴).
Therefore, there exists a unique point x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 such that

x ∈ [(𝑟, 0, 0, . . . , 0) + Δ] ∩ 𝐴−1 (𝑏). (4.3)

We let 𝑦𝑣𝑖 = 𝑥𝑖 for all 𝑖, and as a result, we have defined 𝑦𝑣 for each Archimedean
place 𝑣 of 𝐾 and note that ∑︁

𝑣 |∞
𝑦𝑣 = 𝑟. (4.4)

Now let {𝑤1, 𝑤2, 𝑤3, . . .} be the complete list of non-Archimedean places of
𝐾 . For each 𝑗 , we apply [16, Lemma 3.1] to obtain a point 𝛽 𝑗 ∈ O𝐾 such that
‖𝛽 𝑗 ‖𝑤𝑗 < 1 and ‖𝛽 𝑗 ‖𝑤𝑖 = 1 for all 𝑖 ≠ 𝑗 . For 𝑚 ∈ N ∪ {0}, we now define

𝑆𝑚 = {𝑣1, 𝑣2, . . . , 𝑣𝑛, 𝑤1, 𝑤2, . . . , 𝑤𝑚} .

Now for each 𝑗 ∈ N, we define

𝑦𝑤𝑗 =
Φ(𝛽 𝑗 ) −

∑
𝑣 |∞ 𝑦𝑣 log ‖𝛽 𝑗 ‖𝑣

log ‖𝛽 𝑗 ‖𝑤𝑗
(4.5)

so that we have defined 𝑦𝑣 for all non-Archimedean places 𝑣 of 𝐾 . According to
Theorem 1.3, there exists a consistent map 𝑐𝐾 : J → R such that

𝑐𝐾 (𝐾, 𝑣) = 𝑦𝑣 for all 𝑣 ∈ 𝑀𝐾 . (4.6)

Because of (4.4), 𝑐𝐾 clearly satisfies the first equality of (4.2) so it remains only to
show the second equality.

To see this, we obtain from (4.3) that

©­­­­«
Φ(𝛼1)
Φ(𝛼2)
...

Φ(𝛼𝑛−1)

ª®®®®¬
= 𝑏 = 𝐴x = 𝐴

©­­­­«
𝑦𝑣1
𝑦𝑣2
...

𝑦𝑣𝑛

ª®®®®¬
=

©­­­­«
∑𝑛
𝑖=1 𝑦𝑣𝑖 log ‖𝛼1‖𝑣𝑖∑𝑛
𝑖=1 𝑦𝑣𝑖 log ‖𝛼2‖𝑣𝑖

...∑𝑛
𝑖=1 𝑦𝑣𝑖 log ‖𝛼𝑛−1‖𝑣𝑖

ª®®®®¬
,

or equivalently,

©­­­­«
Φ(𝛼1)
Φ(𝛼2)
...

Φ(𝛼𝑛−1)

ª®®®®¬
=

©­­­­«
∑
𝑣 |∞ 𝑐𝐾 (𝐾, 𝑣) log ‖𝛼1‖𝑣∑
𝑣 |∞ 𝑐𝐾 (𝐾, 𝑣) log ‖𝛼2‖𝑣

...∑
𝑣 |∞ 𝑐𝐾 (𝐾, 𝑣) log ‖𝛼𝑛−1‖𝑣

ª®®®®¬
.
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Each point 𝛼𝑖 is a unit, so we have ‖𝛼𝑖 ‖𝑣 = 1 for all non-Archimedean places 𝑣
of 𝐾 . Therefore, it follows that

©­­­­«
Φ(𝛼1)
Φ(𝛼2)
...

Φ(𝛼𝑛−1)

ª®®®®¬
=

©­­­­«
Φ𝑐𝐾 (𝛼1)
Φ𝑐𝐾 (𝛼2)

...

Φ𝑐𝐾 (𝛼𝑛−1)

ª®®®®¬
,

or in other words,

Φ(𝛼𝑖) = Φ𝑐𝐾 (𝛼𝑖) for all 1 ≤ 𝑖 ≤ 𝑛 − 1.

Next, we let 𝑗 ∈ N and observe that

Φ𝑐𝐾 (𝛽 𝑗 ) =
∑︁
𝑣∈𝑀𝐾

𝑐(𝐾, 𝑣) log ‖𝛽 𝑗 ‖𝑣

=

∞∑︁
𝑖=1

𝑐(𝐾, 𝑤𝑖) log ‖𝛽 𝑗 ‖𝑤𝑖 +
∑︁
𝑣 |∞

𝑐(𝐾, 𝑣) log ‖𝛽 𝑗 ‖𝑣

= 𝑐(𝐾, 𝑤 𝑗 ) log ‖𝛽 𝑗 ‖𝑤𝑗 +
∑︁
𝑣 |∞

𝑐(𝐾, 𝑣) log ‖𝛽 𝑗 ‖𝑣 ,

where the last equality follows because of our assumption that ‖𝛽 𝑗 ‖𝑤𝑖 = 1 for all
𝑖 ≠ 𝑗 . Now using (4.6), we obtain

Φ𝑐𝐾 (𝛽 𝑗 ) = 𝑦𝑤𝑗 log ‖𝛽 𝑗 ‖𝑤𝑗 +
∑︁
𝑣 |∞

𝑦𝑣 log ‖𝛽 𝑗 ‖𝑣 ,

and using (4.5) to replace 𝑦𝑤𝑗 , we quickly obtain

Φ(𝛽 𝑗 ) = Φ𝑐𝐾 (𝛽 𝑗 ) for all 𝑗 ∈ N.

Assuming now that 𝛼 ∈ 𝐾×, there exists 𝑚 ∈ N such that 𝛼 is
an 𝑆𝑚-unit. In other words, we have 𝛼̄ ∈ G𝐾,𝑆𝑚 . According to Lemma
4.2, {𝛼̄1, 𝛼̄2, . . . , 𝛼̄𝑛−1, 𝛽1, 𝛽2, . . . , 𝛽𝑚} is a basis for G𝐾,𝑆𝑚 , so there exist
𝑟1, . . . , 𝑟𝑛−1, 𝑠1, . . . 𝑠𝑚 ∈ Q such that

𝛼̄ =

𝑛−1∏
𝑖=1

𝛼̄
𝑟𝑖
𝑖

𝑚∏
𝑖=1

𝛽
𝑠 𝑗

𝑗
.

Since Φ and Φ𝑐𝐾 are both linear maps, we conclude that Φ(𝛼̄) = Φ𝑐𝐾 (𝛼̄), as
required.

For the second statement of the Lemma, we have assumed that Φ𝑐𝐿 (𝛼) =

Φ(𝛼) for all 𝛼 ∈ 𝐿×, so in particular, this equality holds for all 𝛼 ∈ 𝐾×. As a
result, we have

Φ𝑐𝐿 (𝛼) = Φ𝑐𝐾 (𝛼) for all 𝛼 ∈ 𝐾×.

For each such point 𝛼, Theorem 2.1 implies that 0 = Φ𝑐𝐿 (𝛼) − Φ𝑐𝐾 (𝛼) =

Φ𝑐𝐿−𝑐𝐾 (𝛼). If 𝑣 is a place of 𝐾 , we may apply Lemma 2.3 with 𝑐 = 𝑐𝐾 − 𝑐𝐿
to conclude that

[𝑐𝐿 − 𝑐𝐾 ] (𝐾, 𝑣) = [𝑐𝐿 (Q,∞) − 𝑐𝐾 (Q,∞)]𝜆(𝐾, 𝑣) = (𝑟 − 𝑟)𝜆(𝐾, 𝑣) = 0,

so the result follows immediately. �
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We now complete the proof of Theorem 1.1 by proving thatΦ∗ is surjective.

Proof We suppose that Φ : G → R is a Q-linear map. For each number field
𝐾 , we apply Lemma 4.4 with 𝑟 = 0 to obtain a consistent map 𝑐𝐾 : J → R such
that

𝑐𝐾 (Q,∞) = 0 and Φ(𝛼) = Φ𝑐𝐾 (𝛼) for all 𝛼 ∈ 𝐾×.

Now we let 𝑐 : J → R be given by

𝑐(𝐾, 𝑣) = 𝑐𝐾 (𝐾, 𝑣)

and claim that 𝑐 is consistent. To this end, we assume that𝐾 is a number field, 𝑣 is
a place of 𝐾 , and 𝐿 is a finite extension of 𝐾 . Using the fact that 𝑐𝐿 is consistent,
we obtain that ∑︁

𝑤 |𝑣
𝑐(𝐿, 𝑤) =

∑︁
𝑤 |𝑣

𝑐𝐿 (𝐿, 𝑤) = 𝑐𝐿 (𝐾, 𝑣),

and then applying the second statement of Lemma 4.4, we conclude that∑︁
𝑤 |𝑣

𝑐(𝐿, 𝑤) = 𝑐𝐾 (𝐾, 𝑣) = 𝑐(𝐾, 𝑣).

Since 𝑐 is nowknown to be consistent, the functionΦ𝑐 iswell-defined.Moreover,
if 𝛼 ∈ Q×

, we let 𝐾 be a number field containing 𝛼 and apply the first statement
of Lemma 4.4 to obtain

Φ𝑐 (𝛼) =
∑︁
𝑣∈𝑀𝐾

𝑐(𝐾, 𝑣) log ‖𝛼‖𝑣 =
∑︁
𝑣∈𝑀𝐾

𝑐𝐾 (𝐾, 𝑣) log ‖𝛼‖𝑣 = Φ𝑐𝐾 (𝛼) = Φ(𝛼).

As this equality holds for all 𝛼 ∈ Q×
, we have shown that Φ∗ (𝑐) = Φ implying

thatΦ∗ is surjective. �

Our only remaining task is to prove Theorem 1.4.

Proof For simplicity, we letΦ : 𝐾× → R be given by

Φ(𝛼) =
∑︁
𝑣∈𝑀𝐾

𝑦𝑣 log ‖𝛼‖𝑣

and first assume thatΦ(𝛼) ∈ Q for all 𝛼 ∈ 𝐾×. Each point 𝛼𝑖 is a unit in 𝐾 , and
hence, ‖𝛼𝑖 ‖𝑤 = 1 for all non-Archimedean places 𝑤 of 𝐾 . For all 1 ≤ 𝑖 ≤ 𝑛, we
now have that

𝑛∑︁
𝑖=1

𝑦𝑖 log ‖𝛼𝑖 ‖𝑣𝑖 = Φ(𝛼𝑖) ∈ Q,

and (i) follows immediately. Similarly, we have assumed that ‖𝛽𝑣 ‖𝑤 = 1 for all
non-Archimedean places 𝑤 ≠ 𝑣, so we conclude immediately that (ii) holds.

Now suppose that (i) and (ii) hold and let 𝛼 ∈ 𝐾×. Let 𝑆∞ be the set of
Archimedean places of 𝐾 . There exists a finite set 𝑆 of places of 𝐾 containing 𝑆∞
such that 𝛼 ∈ 𝑈𝐾,𝑆 , and hence, 𝛼̄ ∈ G𝐾,𝑆 . Let 𝑆0 = 𝑆 \ 𝑆∞. Now according to
Lemma 4.2, the set

{𝛼̄1, 𝛼̄2, . . . , 𝛼̄𝑛−1} ∪ {𝛽𝑣 : 𝑣 ∈ 𝑆0}
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is a basis for G𝐾,𝑆 . Therefore, there exist 𝑟1, 𝑟2, . . . , 𝑟𝑛−1 ∈ Q and 𝑠𝑣 ∈ Q for all
𝑣 ∈ 𝑆0 such that

𝛼̄ =

𝑛−1∏
𝑖=1

𝛼̄
𝑟𝑖
𝑖

∏
𝑣∈𝑆0

𝛽𝑠𝑣𝑣 .

Now using our definitions presented prior to Lemma 4.2, Φ is a well-defined
linear map on G𝐾,𝑆 , and hence

Φ(𝛼) = Φ(𝛼̄) =
𝑛−1∑︁
𝑖=1

𝑟𝑖Φ(𝛼̄𝑖) +
∑︁
𝑣∈𝑆0

𝑠𝑣Φ(𝛽𝑣 ) =
𝑛−1∑︁
𝑖=1

𝑟𝑖Φ(𝛼𝑖) +
∑︁
𝑣∈𝑆0

𝑠𝑣Φ(𝛽𝑣 )

It follows from (i) thatΦ(𝛼𝑖) ∈ Q for all 𝑖, and (ii) implies thatΦ(𝛽𝑣 ) ∈ Q for all
𝑣 ∈ 𝑆0. We now obtainΦ(𝛼) ∈ Q, as required. �
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