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1. Introduction

There are several ways to study singularities of log pairs and one such way is to study
their discrepancies. The discrepancy of a log pair (X, D) is used to measure how singular
the ambient space X and the divisor D on X are. The discrepancy of a non-log canonical
pair is always —oo. In such a case, it gives no more information than non-log canonicity
of the log pair. Meanwhile, we can measure how singular the divisor D is by considering
smaller divisors proportional to D. To be precise, we define the following invariant: the
so-called log canonical threshold. Let X be a normal variety with at worst log canonical
singularities, let Z C X be a closed subvariety and let D be an effective Q-Cartier divisor
on X. The log canonical threshold of D along Z on X is the number

cz(X, D) :=sup{c € Q| (X,cD) is log canonical in an open neighbourhood of Z}.

For simplicity, we put ¢(X,D) = ¢x (X, D). Unlike the discrepancy, the log canonical
threshold can work even when the log pair (X, D) is not log canonical, as long as the
ambient variety X has at worst log canonical singularities.

Now we suppose that the variety X is a Fano variety with at most log canonical
singularities.
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Definition 1.1. The global log canonical threshold of the Fano variety X is the
number

let(X) := inf {Cx(X, D) ‘ D is an effective Q-Cartier Q-divisor on X}-

Q-linearly equivalent to — Kx

Tian, meanwhile, introduced the a-invariant to study the existence of Kahler—Einstein
metrics on Fano manifolds. Let X be a Fano manifold of dimension n and let g be a
Kéhler metric on X. In local coordinates (z1,...,z2,), we may write

(2 9
9ii =9 821-’ 85]'

so that we can obtain a Kahler form

v—1
Wy = —5— Zgii dz; Adz; € a1 (X)
0,J

of the Kihler metric g. Let P(X, g) be the set of smooth functions ¢ in C?(X) such that

2
0

822823 -

9i5 +
and supy ¢ = 0. The a-invariant of the manifold X is defined by the number
a(X, g) = sup {a >0 ‘ 3C > 0 such that / e” ¥ dVx < C for all p € P(X,g)}
X

where dVx = wy'. The number a(X, g) was introduced in [19] and [20].

The a-invariant of a smooth Fano manifold is proved to coincide with its global log
canonical threshold in [9]. Thus, the global log canonical threshold is just another name
for the a-invariant. However, the global log canonical threshold provides algebraic meth-
ods to compute the a-invariant of a given Fano manifold that are relatively easy in
comparison to analytic methods.

The global log canonical threshold turns out to play an important role in both bira-
tional geometry and complex geometry. We have two significant applications of the global
log canonical threshold of a Fano variety X that motivate the present paper.

The first application is for the case in which lct(X) > 1. For this we give the following
definitions.

Definition 1.2 (Prokhorov [18, Definition 4.1.2]). Let (X, D) be a log pair,
where D is a boundary. Then a Q-complement of Kx + D is a log divisor Kx + D’ such
that D' > D, Kx + D’ ~g 0 and Kx + D’ is log canonical.

Definition 1.3 (Prokhorov [18, Definition 4.5.1]). Let (X/Z > P, D) be a con-
traction of varieties such that there is at least one Q-complement of Kx + D near the
fibre over P.
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e Assume that Z is not a point (local case). Then (X/Z 5 P, D) is said to be excep-
tional over P if, for any Q-complement of Kx + D near the fibre over P, there
exists at most one (not necessarily exceptional) divisor E such that a(E, D) = —1.

e Assume that Z is a point (global case). Then (X, D) is said to be exceptional if
every Q-complement of Ky + D is Kawamata log terminal.

The following statement shows a strong relationship between local and global excep-
tional objects.

Proposition 1.4. Let (V 5 O) be a Kawamata log terminal singularity and let
f: (W,E) — V be a purely log terminal blowup of O. The following are then equiv-
alent:

o (V > O) is exceptional;
e f(F)= 0 and (E,Diff5(0)) is exceptional;
where Diff g(0) is the effective Q-divisor such that (Kw + E)|g = Kg + Diff g(0).
Proof. See [18, Proposition 4.5.5]. O

Similarly, we also define the weakly exceptional singularities.

Definition 1.5 (Kudryavtsev [15, Definition 1.6]). A log canonical singularity
(V 2 0) is called weakly exceptional if it admits exactly one purely log terminal blowup
up to isomorphism.

Definition 1.6 (Cheltsov et al. [7, Definition 1.5]). A Fano variety X is weakly
exceptional (strongly exceptional, respectively) if let(X) > 1 (let(X) > 1, respectively).

The following statement also shows a good relationship between local and global weakly
exceptional objects.

Proposition 1.7. Let V > O be a Kawamata log terminal singularity and let
f+ (W,E) — V be a purely log terminal blowup of O. The following are then equiv-
alent:

e (V 5 0) is weakly exceptional;
o f(E) =0 and E is weakly exceptional.
Proof. See [5, Theorem 3.10]. O

We easily see that strong exceptionality implies exceptionality and that exceptionality
implies weak exceptionality on a Fano variety.

Let X be a quasi-smooth well-formed complete intersection of a hypersurface of degree
d, and a hypersurface of degree dy (simply, a complete intersection of multidegree
{d1,d2}) in P(ag,a1,as,as,as). Then the surface X is a log del Pezzo surface if and
only if >~ a; > dy + da. Suppose that the surface X is defined by quasi-homogeneous
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polynomial equations f(x,y,z,t,w) = 0 and g(z,y, z,t,w) = 0 of degrees d; and da,
respectively. The quasi-homogeneous polynomial equations

z,Y, 2, t,w) =0
fy ) C C® = Spec(Clz, y, 2, t, w])
g(x’y)z’t)w) = O
define an isolated quasi-homogeneous singularity (V' 3 O), where O is the origin of C®.
If the inequality
ao+ar+ayt+az+ag—d—day>1

holds, then [21, Corollary 2.11] shows that the singularity (V' 3 O) is rational. Since V is
a complete intersection, the singularity (V' 3 O) is Gorenstein, and hence it is canonical
(see [16, Corollary 5.24] and [17, Remark 2.2]). From the weighted blowup of C® at the
origin O with weight (ag, a1, az,as, as), we obtain a purely log terminal blowup of the
singularity (V 2 O). It follows from Proposition 1.4 (Proposition 1.7, respectively) that
the following conditions are equivalent:

e the singularity (V' 3 O) is exceptional (weakly exceptional, respectively);
e the log del Pezzo surface X is exceptional (weakly exceptional, respectively).

We may obtain much information on the exceptionality of V' from the global log canonical
threshold of X. In [12], exceptional log del Pezzo surfaces are called del Pezzo surfaces
without tiger. The study of these surfaces is closely related to the uniruledness of affine
surfaces (see [12]).

The other application of the global log canonical threshold is for the case in which
let(X) > dim(X)/(dim(X)+1). The following result gives the strong connection between
the global log canonical threshold and the Kéhler—Einstein metric.

Theorem 1.8. Suppose that X is a Fano variety with at most quotient singularities.
Then X admits an orbifold Kahler—FEinstein metric if

dim X

let(x) > dmA
X > fmx 71

Proof. See [4, Appendix A]. O

As we have seen so far, from the global log canonical thresholds of Fano varieties, we
can obtain various geometrical properties.

In spite of the usefulness of the global log canonical threshold, it is usually difficult
to calculate the global log canonical thresholds for arbitrary Fano varieties. However,
there are several results that determine the global log canonical thresholds for various
Fano varieties. First, the global log canonical thresholds of smooth del Pezzo surfaces
were calculated by Cheltsov in [3]. Thus, we are concerned with the global log canonical
thresholds for singular del Pezzo surfaces. In [11], Jonhson and Kolldr determined the
complete list of del Pezzo hypersurfaces in three-dimensional weighted projective spaces
with amplitude 1. They also proved that many of those surfaces admit Kahler—Einstein
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metrics. Later, Araujo [1] also proved that the six surfaces in [11] admit Kéhler—Einstein
metrics. Meanwhile Boyer et al. [2] extended the results of [11] to the case of higher
amplitude and used these results to construct a plethora of Sasakian—Einstein metrics in
simply connected real five-dimensional manifolds. The completeness of the list in [2] was
proved by Cheltsov and Shramov in [6]. Recently, Cheltsov et al. [7] calculated the global
log canonical thresholds for the examples in [2]. They also determined the existence
of orbifold Kéhler—Einstein metrics and classified exceptional and weakly exceptional
quasi-smooth well-formed hypersurfaces in P(ag, a1, as, as). The next stage is to consider
complete intersection log del Pezzo surfaces of higher codimensions in weighted projective
spaces.

In this paper, we classify all the quasi-smooth well-formed complete intersection log
del Pezzo surfaces in weighted projective spaces with amplitude o = 1 (see Tables 1
and 2). Note that a quasi-smooth well-formed complete intersection log del Pezzo surface
has codimension at most 2 (see Theorem 4.1).

By calculating their global log canonical thresholds of the classified log del Pezzo
surfaces, we obtain the following theorem.

Theorem 1.9. Let X be a quasi-smooth well-formed complete intersection log del
Pezzo surface of codimension greater than or equal to 2 in weighted projective space
with amplitude o = 1, not the intersection of a linear cone with another hypersurface.
Suppose that the log del Pezzo surface X is not one of the following:

e a complete intersection of multidegree {2N,2N} in P(1,1, N, N,2N — 1), where N
is a positive integer;

e a complete intersection of multidegree {6,8} inP(1,2,3,4,5) such that the defining
equation of the hypersurface of degree 6 does not contain the monomial yt, where y
is the coordinate function of weight 2 and t is the coordinate function of weight 4.

Then the global log canonical threshold of the log del Pezzo surface X is strictly greater
than % In particular, the log del Pezzo surface X has an orbifold Kahler—Einstein metric.

Unfortunately, for a quasi-smooth well-formed complete intersection log del Pezzo sur-
face of multidegree {4N + 2,4N + 3} in weighted projective space P(1,2,2N + 1,2N +
1,4N + 1), where N is a positive integer, we cannot determine whether its global log
canonical threshold is strictly less than 1 or not. Suppose that X is not such a surface.
We can then classify exceptional and weakly exceptional log del Pezzo surfaces by their
global log canonical thresholds.

Theorem 1.10. Let X be a quasi-smooth well-formed complete intersection log del
Pezzo surface of multidegree {dy,ds} in weighted projective space P(ag,a1,az2,as,as),
where di < do and ag < -+ < a4, with amplitude o« = 1, neither the intersection
of a linear cone with another hypersurface nor a complete intersection of multidegree
{4N +2,4N + 3} in P(1,2,2N + 1,2N + 1,4N + 1) for any N.
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(1) The global log canonical threshold of X is strictly greater than 1 if and only if the
septuple (ag, a1, as, as, aq,dy,ds) is one of the following:

27 27 3’ 3737 67 6)’
3,3,5,5,7,10,12),

2,3,4,5,5,8,10),
3,5,6,8,13,16,18),
4,5,7,10,13, 18, 20), 5,7,10, 14,23, 28, 30),
5,14,17,21,37,42,51), 6,7,9,11,14,18,28),

( ( 2,3,5,6,7,10,12),
( (

( (

( (

(9,15,23,23,31,46,54),  (9,15,23,23,37,46,60),

( (

( (

( (

( (

3,5,7,9,11,16,18),
5,9,12,20, 31, 36, 40),
6,8,9,11,13,22,24),
9,23,30,38,67,76,90),
11,27, 36, 62,97, 108, 124),
11,29, 38, 48, 85, 96, 114),
13,23, 35,47,57,70,104),

10,17, 25, 34, 43, 60, 68), 11,18,27,44, 61,72, 88),
11,29, 39,49, 59, 88, 98), 11,29, 39,49, 67, 78, 116),
13,22,55,76,97,110,152), (13,23,34,56,89,102,112),
13,23,35,57,79,92,114),  (14,19,25,32, 45, 64, 70).

In which case, the log del Pezzo surface X is exceptional.

(2) The global log canonical threshold of X is exactly equal to 1 if and only if the
septuple (ag, a1, as, a3, as,d1,ds) is either one of

(1,2,2,3,3,4,6), (1,2,3,4,5,6,8)", (1,3,3,5,5,6,10),
(1,4,5,7,11,12,15),  (1,4,7,10,13,14,20),  (1,5,8,12,19,20, 24),
(1,5,9,13,17,18,26),  (1,7,11,17,27,28,34), (1,7,12,17,23,24,35),
(1,8,13,19,31,32,39), (1,9,15,23,23,24,46),

where * indicates that the defining equation of the hypersurface of degree 6 contains the
monomial yt, i.e. the product of the coordinate function y of weight 2 and the coordinate
function t of weight 4, or a member of the infinite series

(2,2N +1,2N + 1,4N +1,6N + 1,6N + 3,8N + 2),

where N runs through the positive integers. In which case, the log del Pezzo surface X
is weakly exceptional but not exceptional.

The layout of the paper is as follows. In §2 we set up the notation that will be used
throughout the paper. In § 3 we recall the necessary background on surfaces with quotient
singularities. In § 4 we explain how to obtain the complete list of quasi-smooth well-formed
complete intersection log del Pezzo surfaces with amplitude 1 in weighted projective
spaces. In §5 we briefly explain the methods that are used to compute the global log
canonical thresholds of log del Pezzo surfaces appearing in Tables 1 and 2. In §6 we
provide details of these computations for samples of infinite series of such surfaces and
samples of sporadic cases, referring the reader to [13] for detailed computations in the
remaining cases.
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2. Notation

The following notation will be used throughout the paper.

P(ag, a1, az, a3, as) denotes the weighted projective space Proj(Clx,y, z,t, w]) with
weights wt(x) = ag, wt(y) = a1, wt(z) = ag, wt(t) = az and wi(w) = a4, where we
always assume that ap < a1 < a2 < a3 < aq.

P, is the point in P(ag, a1, az, as, as) defined by y = z = ¢ = w = 0. The points P,
P,, P; and P, are defined in a similar way.

X denotes a quasi-smooth well-formed complete intersection log del Pezzo surface
defined by quasi-homogeneous polynomials Fy(z,y, z,t,w) and Fs(z,y, z,t,w) of
degrees di and ds, respectively, in P(ag, a1, as,as,as), where we always assume
that d1 S d2.

« is the integer ag + a1 + a2 + as + a4 — d1 — do. It is called the amplitude of X.

C, denotes the curve on X cut by the equation z = 0. The curves C,, C;, C;
and C,, are defined in a similar way.

L, is the one-dimensional stratum on P(ag, a1, az, a3, as) defined by z =t = w = 0,
and the other one-dimensional strata are labelled similarly.

Let D be a divisor on X and let P be a quotient singular point of type (1/r)(a,b)
on X. Then there is an orbifold chart 7: U — U for some neighbourhood P €
U C X such that U is smooth and 7 is a cyclic cover of degree r unramified over
U \ {P}. Note that if r = 1, then P is a smooth point on X. Put Dy = D|y and
Dy = 7 (Dy). Then we write mult p(Dy) = mult 5(Dg), where P is a point on U
such that w(P) = P, and refer to this quantity as the multiplicity of D at P.

— K x denotes the anticanonical divisor of X.

3. Preliminaries

Let Y be a singular surface with at most quotient singularities, let D be an effective
Q-divisor on Y and let P € Y be a singular point of type (1/r)(a,b). There is an orbifold
chart m: U — U for some neighbourhood U C Y containing P. Let P be a point in U
such that 7(P) = P. Put Dy = D|y and Dy =7 *(Dy).

Lemma 3.1. The log pair (U, Dy) is log canonical at the point P if and only if the
log pair (U, Dy;) is log canonical at the point P.

Proof. See [14, Proposition 3.16]. O

Let B be an effective Q-divisor on Y such that any component of B is not contained
in the support of D. Put By = Bly and By = n*(By). We write multp(D - B) for
multP(DU . BU)'
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Lemma 3.2. The inequality

B.D> Z multg(B) multg (D) >0
rQ
Qey

holds. Here, the point Q is of type (1/rq)(ag, bg).
Proof. It immediately follows from B-D =3,y multq(B - D)/rq. O

Suppose that (Y, AD) is not log canonical at a point P for a positive rational number \.
Lemma 3.3. The inequality multp(D) > 1/X holds.
Proof. It immediately follows from Lemma 3.1. (]
Let C be a reduced and irreducible curve on Y. Write
D =mC+ (2,
where m is a non-negative rational number and {2 is an effective Q-divisor whose support

does not contain the curve C.

Lemma 3.4. Suppose that P ¢ Sing(Y) U Sing(C) and that Am < 1. Then the
inequality

1
holds.
Proof. The log pair (Y,C + A{2) is not log canonical at the point P since Am < 1.

The inequality
A2-C Zmultp(A2-C) >1

then follows from [14, Theorem 7.5]. Thus, we obtain the inequality

1
(D-mC)-C=02-C> .

O

Lemma 3.5. Suppose that the point P is a singular point of type (1/r)(a,b) on' Y
and the curve C' is smooth at P. Then,

1
D—-—mC)-C > —.
(D —=mC)-C>
Proof. This immediately follows from Lemmas 3.1, 3.2 and 3.4. (]

Now we suppose that D =¢ —Ky.
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Lemma 3.6. Suppose that there is an effective Q-divisor Dy on Y such that Dy =g
—Ky and (Y, ADy) is log canonical at the point P. Then there is an effective Q-divisor D’
onY such that D' = — Ky, at least one irreducible component of Dy is not contained in
the support of D’ and (Y, AD’) is not log canonical at the point P.

Proof. See [3, Remark 2.1]. O

Lemma 3.7. Suppose that Y is a quasi-smooth well-formed complete intersection
log del Pezzo surface of multidegree {dy,ds} in P(ag,a1,az2,as3,a4). Let m: Y --» P =
P(ap,a1,a2) be the rational map induced by the projection P(ag,ay,as,as,as) --+
P(ao, a1, as) centred at Ly, and let Q) be a smooth point in'Y such that Q) ¢ C,.. Suppose
that H°(P, Op(k)) contains

e at least two different monomials of the form z®y°,

e at least two different monomials of the form z72%,

where k is a positive integer and the four constants «, (3, v and ¢ are non-negative

integers. Then,
kdyds

multo(D) L ——=—
QD) < apa1a2a3a4

for the case in which () is not contained in any curve contracted by .
Proof. The same argument as in the proof of [1, Corollary 3.7] gives the proof. O

We consider a cyclic quotient singularity W = C2/Z,, (a1, az), where the a; are positive
integers and ged(ag,az) = 1. Let o1 and z2 be eigencoordinates in C? for Z,,. And let
¢: W — W be the weighted blow-up at the origin with respect to weights (a;,az). Then
W is covered by affine charts U; and U; such that

U1:(C2/Za1(m, _GQ), UQ:(CQ/ZGQ(—ahm).

The coordinates in W and in U; are related by

a;/m

Ti=1Y; 5 Zj :yjy?j/ma ]7&13
where y; and yo are eigencoordinates in U;, for Z,,.

Lemma 3.8. Let E := ¢~ !(P) be the exceptional divisor of ¢. In the above conditions
we have

aq a9
Ky =g ¢*(K —1+ 24+ 2)E
« Ky =q oK)+ (14 2+ 2,

e if F = {x; =0}/Z,, and F is the proper transform of F, then F =q ¢*(F) — EE,
m

o 2 =— m
a1a2'
Proof. See [18, Chapter 3.2]. O
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4. Classification

In this section, we will classify all the quasi-smooth well-formed complete intersection
log del Pezzo surfaces in weighted projective spaces with amplitude o« = 1. For this
purpose, we let Y be a complete intersection of hypersurfaces defined by quasi-homo-
geneous polynomials F; of degrees d;, i = 1,2,...,¢, in the weighted projective space
P(ag,...,an) = Proj(Clzo, ..., x,]), where wt(z;) = a;, with amplitude «, not the inter-
section of a linear cone with another hypersurface.

Theorem 4.1. Suppose that the complete intersection Y is quasi-smooth. Then the

codimension ¢ of Y in P(aq,...,a,) satisfies
dimY +a+1 ifa<0,
¢ <
dimY if a >0,
where o =Y a; — Yy d;.
Proof. See [8, Theorem 1.3]. O

Theorem 4.1 implies that the codimension of a quasi-smooth complete intersection
log del Pezzo surface in a weighted projective space with amplitude o = 1 is either 1
or 2. Reference [11] provides the complete list of well-formed quasi-smooth hypersurfaces
in three-dimensional weighted projective spaces with amplitude o = 1. In the present
section, we classify codimension 2 cases. The following are the key theorems in this
section. From now on, we assume that ¢ = 2 and that Y is general.

Theorem 4.2. The complete intersection Y is quasi-smooth if and only if for every
set I ={i},i=0,...,n, one of

QS (i): there exists a monomial " in F},

QSs(i): there exists a monomial 52 in Fy,

1 a—1

QS5(i): there exist monomials x?l_ Te, in Fy and x? Te, in Fy such that e; and e

are distinct elements

holds, and for each non-empty subset I = {ig,...,ix—1} of {0,...,n}, where k > 2, one
of

. . mi,i M1,ig
e there exists a monomial z; " ---x Rt

i of degree dy in F| and there exists a
. . k—1
m2,ig M2,ip ¢

monomial x of degree dy in Fy,

g
. . mi.i Mgy . .
e there exists a monomial miol’ o... T, ;" ! of degree dy in Fy and there exist mono-
. g M2 M2,ip_q g —_
mials z; =" -y~ " e, of degree dy in Fy for p=1,...,k — 1, where the {e,}
are k — 1 distinct elements,

. . ma g m2 g, . .
e there exists a monomial z;, 0L ikﬁ;’“ ! of degree dy in Fy and there exist mono-

mials le’io e :1’1’“’1956“ of degree dy in Fy for p=1,...,k—1, where the {e,}
are k — 1 distinct elements,
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ml,i L .
ik—lk 'z, , of degree dy in Fy

io i\ Ty, of degree dy in Fy such that {e1,,} are k distinct ele-
ments, {ez,,} are k distinct elements and {ey ,, ez, } contains at least k+1 distinct
elements

1,ig

. . m
e for = 1,....k, there exist monomials x; Ry

and 730 g,
holds.
Proof. See [10, Theorem 8.7]. O

Theorem 4.3. The complete intersection Y is well formed if and only if:

e for all distinct 4, j and k, with h = ged(ao,...,G;,...,a;,...,Gk,...,ay), either
hldy or h|ds;
o for all distinct i and j, with h = ged(ao, ..., @, ..., a;,...,a,), we have h|d; and
h|d2,
e gcd(ag, ..., a4,...,a,) = 1 for all 3.
Proof. See [10, Theorem 6.11]. |

Using Theorem 4.2, we classify all four-dimensional weighted projective spaces with
two quasi-homogeneous polynomials of degrees d; and dy that define quasi-smooth well-
formed complete intersection log del Pezzo surfaces with amplitude o = 1. To this end,
we use the septuples (ag, a1, a9, as, a4, d1, ds) to represent the weighted projective spaces
P(ag, a1, as,as, as) with two quasi-homogeneous polynomials of degrees d; and ds.

If a septuple (ag, a1, a2, as, aq, dy, ds) comes from a quasi-smooth well-formed complete
intersection log del Pezzo surface Y with amplitude o = 1, then it must satisfy

ap+ay+as+az3+ag—d; —dy = 1. (41)

It also satisfies the equations of the form

d; = mjipag + - -+ + M;sa4, (4.2)
where m;;, ¢ = 1,2, 5 =0,...,4, are non-negative integers, if and only if the monomials
xgn/i()x;nil . xZLM

appear in the polynomials F;.
The following theorem shows that one can find upper bounds for m;;, i = 1,2, j =
1,...,4, except for the case of two infinite series.

Theorem 4.4. Let X be a quasi-smooth well-formed complete intersection log del
Pezzo surface defined by two quasi-homogeneous polynomials Fy and Fy of degree d
and da, respectively, in the weighted projective space P(ag, a1, az, as, ay) with amplitude
a = 1. Suppose that the log del Pezzo surface X is not the intersection of a linear cone
with another hypersurface. Suppose that the septuple (ag, ai,as, as,aq,d1,ds) is neither
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of the following:
o (1,1, M,M,2M — 1,2M,2M),
o (1,2,2M 4+ 1,2M + 1,4M + 1,4M + 2,4M + 3),

where M is a positive integer. Then 8a; > ds.

Proof. Set S = (ag,a1,as,as3,a4,d1,ds). In order to prove the statement, we mainly
use the first condition in Theorem 4.2. First of all the septuple S must satisfy one of
Q54,(4), ¢4 =1,2,3.

Case 1 (the septuple S satisfies QS1(4)). In this case, we have d; = ngay for
some positive integer ny > 1. Since d; < da, we have the inequality ag + a1 + a2 + ag +
a4 — 2n4ayq > 1. This inequality shows that d; = 2a4 and 2a; > a4. Furthermore, it is
easy to see that dy = 2a4, and hence 4a; > ds.

Case 2 (the septuple S satisfies QS2(4) but not QS1(4)). In this case, d2 =
myay for some positive integer my > 1 but dy is not divisible by a4. By the second
condition of Theorem 4.2 for I = {3,4}, the quasi-homogeneous polynomial F; has
monomials of the form x}"*z5" 3z, such that my4 +mgs > 1 and e € {0,1,2,3,4}. Then

dy = myay + mzas + ae, (43)

where ms +my = 1 due to (4.1), which implies that d; > a3 + ag. Thus, d2 = 2a4 due
to (4.1).

If e =2, 3 or 4, then 2a; > a4, and hence 4a, > 2a4 = ds.

Now we consider (4.3) with e = 0 and 1. Then we obtain 2a3 > a4 from (4.1), and
hence 4as > 2a4 = ds.

The septuple S must also satisfy one of 5,,(2), ¢ =1,2,3.

Suppose that the septuple S satisfies Q.51(2). Then d; = 2as and 2a; > as. Therefore,
8ay > 4ay > ds.

Next, suppose that the septuple S satisfies )S2(2). Then the septuple S satisfies either
ds = 2as or do = 3as. If the septuple S satisfies dos = 2as, then as = a3 = a4. However,
the well-formed condition contradicts the assumption that the septuple S does not satisfy
@ 51(4). Therefore, dy = 3as. Since dy > az+ag and ag = %ag7 (4.1) implies that 2a; > ag,
and hence 8a; > ds.

Now we suppose that the septuple S satisfies Q55(2) but none of 51(2) and Q.52(2).
Then the septuple S satisfies di = ngas + a;, and do = moas + a;,, where is # 2, jo # 2,
12 # ja, and no and mg are positive integers. Equation (4.1) and do = 2a4 imply that
ng = 1. The inequality 4as > do implies that ms is at most 3. If mo = 1, then the
septuple S is (1,1,1,1,1,2,2), which contradicts our assumption. For the case in which
mg = 3, (4.1) and (4.3) with the inequality a4 < 2ay show that io = 1, jo = 0 and
dy = a3 + ag. Then,

S e {(ao,a1,2a1 —ag — 2,3a1 — 2ag — 2,3a1 — ag — 3,3a1 — ag — 2,6a, —2&0—6) €Z7
|1 gao éal}.

Thus, we see that 6a; > ds.
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Now we suppose that mo = 2. Since a4 + aj, < 2a2 + aj, = 2a4, the index jo cannot
be 4. If i3 = 3 or 4, then we can easily obtain a4 < 2a1, and hence 8a; > dy. Therefore,
we consider only the cases 1o = 0 and 1.

If di = as + ag, then as = a3 since di > a3z + ag. Then the well-formed condition
contradicts the assumption that the septuple S satisfies neither (S1(2) nor QS3(2).
Therefore, d; = as+a;. From this equation we see that e = 0 in (4.3), that is, d; = az+ag
or dy = a4 + ag. If dy = a3 + ag, then

S e {((10,(11,(12,(12+CL1—(lo,(l2+a1—1,a2+a1,2(12+2a1—2) c Z7 | 1<ag<a; < CLQ}.

If jo = 3, then as = a1 + ap — 2. Thus, 2a; > a9, and hence 8a; > 4as > do. If jo =0,
then ag = 2a; — 2 which implies that a; = ag = 2 and

S €{(2,2,a2,a9,az +1,a +2,2a5 +2) € Z" | 2 < as}.

The well-formed condition implies that as divides either dy or do, which is a contradiction
since S satisfies neither .51(2) nor QS2(2).
By a similar method, we can derive a contradiction from the equality di = a4 + ag-

Case 3 (the septuple S satisfies QS3(4) but neither QS;1(4) nor QS2(4)).
The septuple S then satisfies two equations di; = n4a4 + a;, and do = myay + a;,, where
ia £ 4, ja # 4, 14 # j4 and two integers, ny and my, are positive. By substituting these
two equations into (4.1) we see that ny = 1, my = 1 and 2a3 > a4. For each pair (i4,j4),
we can prove the inequality 8a; > dy in essentially the same way except for the case in
which (i4,74) = (0,1). For this reason, we consider only the cases with (i4,j4) = (0,2)
and (0,1).

We first suppose that the septuple S satisfies the two equations di = a4 + ag and
da = a4 + az. The septuple S also satisfies one of QS,,(3), ¢3 = 1,2, 3.

If the septuple S satisfies QS1(3), then di; = 2a3. By substituting do = a4 + as and
dq = 2as into (4.1), we show that 2a; > as. Thus, 8a; > ds.

Next, if the septuple S satisfies QS2(3), then ds = 2as, which implies that

S € {(ag,a1,as,a1 +as — 1,2a; + az — 2, a9 + 2a1 + az — 2,2a1 + 2as — 2) € Z7
|1 <ap <ap <ag}.

Thus, 4az > ds. In this case, we consider @S, (2), ¢2 =1,2,3.

Q51(2): suppose that the septuple S satisfies @51(2). Since 4as > do, the septuple S
satisfies either d; = 2as or dy = 3as. If di = 2as, then dy = 6a; + 2ag — 6. And if
dy = 3as, then dy = 4a1 + ag — 4. Thus, 8a; > d».

(Q)52(2): suppose that the septuple S satisfies @S2(2) but not QS1(2). The septuple S
then satisfies either do = 2as or do = 3as. If do = 2a9, then as = a3 = a4. By the
well-formed condition, d; is divisible by as, which is a contradiction. If do = 3as, then
as = 2aq — 2. Thus, 6a; > ds.
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()S3(2): suppose that the septuple S satisfies QS3(2) but neither Q.51 (2) nor QS2(2). The
septuple S then satisfies d; = ngag+a. for some ny € {1,2} and some e € {0, 1, 3,4}. If
e = 4, then ag = a1 = as. The well-formed condition contradicts the assumption that
the septuple S does not satisfy QS1(2). If e = 3, then no =1 and as = ag +a; — 1. If
e =1, then no = 2 and as = ag+a; —2. Finally, if e = 0, then ny = 2 and ay = 2a; — 2.
These imply that 8a; > ds.

We now suppose that the septuple S satisfies QS3(3) but neither @51(3) nor QS>(3).
The septuple S then satisfies two equations di = a3 + a4, and d2 = mgas + a;,, where
iz # 3, j3 # 3, i3 # js3 and mg is a positive integer. From dy = a4 + a2 and (4.1), we
obtain dy = 2a3z + ag. From dy = a4 + ag, we see that i3 must be either 1 or 2. If i3 = 2,
then di = asg + as. By substituting d; = a3z + a2 and da = a4 + ag into (4.1) we obtain
ap + ay —ag = 1. Thus, 6a; > ds. If i3 = 1, then we obtain

S e {(1,(11,(12,(11 +as — 2,201 + as — 3, 2a; —|—a2—2,2a1+2a2—3) € 77 | 1<a; < az}.
The septuple S also satisfies one of QS,,(2), ¢2 = 1,2, 3.

Q51(2): if the septuple S satisfies Q51(2), then di = 2as and a2 = 2a; — 2, and hence
6a; > do.

Q52(2): if the septuple S satisfies QS2(2), then dy = 3as and as = 2a; — 3, and hence
6a; > ds.

QS3(2): suppose that the septuple S satisfies @S3(2) but neither QS1(2) nor QS2(2).
The septuple S then satisfies d; = ngas + ae, where e # 2. If e = 4, then ag = a1 = a2
since di = a4 + ag. If e = 3, then ay = ay since d; = ag + ay1. If e = 1, then as
is divisible by ao since d; = a3z + a;. And if e = 0, then a4 is divisible by as since
d1 = a4+ ag. These imply that the septuple S satisfies either Q.S1(2) or Q52(2), which
is a contradiction.

Finally, we consider the case (i4, j4) = (0, 1), that is, the septuple S satisfies two equations
d1 = a4 + ap and do2 = a4 + a1. Then we can show that the following are the only cases
that may have 8a; < ds.

Subcase 1 (the septuple S satisfies Q.S1(3) and QS1(2)). In this case, we have
d1 = 2a3 and dy = 2as. The septuple S then belongs to the set

{(17(117(12,(1272(12 —1,2a92,2a2 + a1 — 1) ez’ ‘ 1<a; < ag}.

From the condition for I = {2,3} in Theorem 4.2 and the equality as = a3, we see that
either do = may or do = mas + a; for some positive integer m and some i € {0,1,4}.
Since do = 2a9 + a1 — 1, we obtain either a; = 1 or a; = 2. Therefore, the septuple S
must be of the form

(1,1, M, M,2M — 1,2M,2M) or (1,2,2M +1,2M + 1,4M + 1,4M + 2,4M + 3),

where M is a positive integer.
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Subcase 2 (the septuple S satisfies QS1(3) and QS2(2)). In this case, d; = 2a3
and dy = 2as. We then obtain as = a3 and ag = a; = 1. Therefore, the septuple S is of
the form

(1,1, M, M,2M — 1,2M,2M),
where M is a positive integer.

Subcase 3 (the septuple S satisfies Q@S2(3) and QS;,(2), i2 = 1,2). Then
dy = 2a3 and d;, = 2as. From these, we obtain ay = a3 and ap = a; = 1 as in the
previous case. Therefore, the septuple S is of the form

(1,1, M, M,2M —1,2M,2M),

where M is a positive integer.

Subcase 4 (the septuple S satisfies QS3(3) and QS1(2)). The septuple S sat-
isfies the equations dy = 2a3 + ag, d1 = a3 + az for QS3(3) and dy = 2as for QS1(2).
Then it must be of the form

(1,2,2M + 1,2M + 1,4M + 1,4M + 2,4M + 3),

where M is a positive integer.
For the remaining cases, we can show that 8a; > ds. We omit the details. O

Now we explain how to obtain the complete list of the septuples (ag, a1, as, as, aq, d1, ds)
that represent quasi-smooth well-formed complete intersection log del Pezzo surfaces
defined by two quasi-homogeneous polynomials of degrees d; and ds in the weighted pro-
jective spaces P(ag, a1, az, as, as) with amplitude o = 1. We only consider the septuples
with 8a; > ds because the other cases are already described in Theorem 4.4.

Let L be a system consisting of the linear equation (4.1) and the linear equations of
the form (4.2) derived from the condition in Theorem 4.2 for each non-empty subset
of {0,1,2,3,4}. We fix the coefficients m;; of all the linear equations in the system L.
We may then obtain the septuples (ag, a1,as,as,aq,d;,ds) that are positive integral
solutions of the system L, if any. By Theorem 4.2, these represent quasi-smooth complete
intersection log del Pezzo surfaces defined by two quasi-homogeneous polynomials in
weighted projective spaces.

Therefore, if we find all such systems of linear equations, then we obtain the complete
list of such septuples. However, we have infinitely many possibilities for these systems
of linear equations because, for the linear equations of the system L derived from the
condition in Theorem 4.2, for the subsets I containing 0 the coefficients m;y of the
unknown ag run through all positive integers. So it is hard to perform the procedure that
fixes the coefficients m;; and solves the system L using a computer program. For this
reason, instead of L, we consider a reduced system of linear equations consisting of some
linear equations corresponding to some of the index sets I with |I| <2, 0 ¢ I, and plus
the linear equation (4.1).
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To obtain the reduced system, we first consider the reduced systems L that consist of
the linear equation (4.1) and one of the following;:

o dy = mya;;
o dy = mo;as;
o di = my;a; + ae, and dy = mo;a; + G,

for each i € {2,3,4}, where my; and mg; are positive integers and e; # i, es # 1,
e1 # es. If a reduced system L has only four linear equations, then it must contain the
linear equations dy = Mgk, ar, and dg = mgr,ax, for some ¢ € {1,2} and some distinct
k1, ko € {2,3,4}. In such a case, we replace the reduced system L of four linear equations
with linear systems of five types that are obtained by, for each [ = 0,1, ...,4, adding one
linear equation

dg = Nk, Oky + Ngky Oky + a1, (4.4)

derived from the condition in Theorem 4.2 for the index set I = {ki, k2}, where § €
{1,2}\ {¢}, ngr, and ng, are non-negative integers, to the original system L.

The number of the linear equations of each reduced system L is at least five. Since we
only consider the septuples S with 8a; > do, we only have to consider the systems L
with 1 < my;; < 8 and 0 < ny; < 8. Then the number of the reduced systems in
our consideration is finite. Furthermore, one can check that the ranks of the reduced
systems L are at least five.

Next, we consider the reduced systems L constructed by adding the linear equa-
tions derived from condition QS;, (1), i1 € {1,2,3}, in Theorem 4.2 with coefficients
1 < my; < 8 to the reduced systems L.

If a reduced system L is of rank seven, then we solve the system of linear equations.
If it has a positive integral solution with ag < a1 < as < a3 < a4 and d; < da, then we
keep it.

If a reduced system L is of rank six, then the solutions are the septuples of the form

(poN + qo,p1N + q1, 02N + g2, 03N + q3, 04N + q4, 05N + ¢5,p6 N + g6, 07N + q7),

where p;, g; are fixed rational numbers. Among the one-dimensional solutions, we find
positive integral solutions with ag < a1 < az < az < a4 and dy < ds, and keep them.

Finally, there are not so many reduced systems L of rank five among the systems
in our consideration. In such cases, one can easily find positive integral solutions with
agp < a1 < ag < az < aq and dy < do. For example, there is a reduced system L consisting
of the linear equations do = a4 + a1, di = a4 + ag, do = 2a3 and dy = 2as after removing
dependent linear equations. Then the solutions are

(1,1, a2, a2, 2a2 — 1, 2as, 2az).

Since we solve the reduced systems L instead of the systems L, their positive integral
solutions with ag < a1 < a2 < as < a4 and dy < dy are not necessarily septuples
that represent quasi-smooth well-formed complete intersection surfaces. Therefore, in
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order to obtain the complete list of the septuples that represent quasi-smooth complete
intersection log del Pezzo surfaces defined by two quasi-homogeneous polynomials in
weighted projective spaces, we must check whether the obtained positive solutions satisfy
both quasi-smoothness and well-formedness. This can easily be done with the aid of a
computer.

In the way described so far, we can obtain the complete list of the septuples that
represent quasi-smooth complete intersection log del Pezzo surfaces defined by two quasi-
homogeneous polynomials in weighted projective spaces. Tables 1 and 2 in §6 show the
result.

5. The scheme of the proof

We have 41 families of quasi-smooth well-formed complete intersection log del Pezzo
surfaces in P(ag, ay, as, as, as) in Tables 1 and 2. There are too many of these families for
us to demonstrate all the computations for the global log canonical thresholds. Moreover,
these computations are based on the same methods. In this section, we explain the steps
to evaluate the global log canonical thresholds of these families.

Step 1. Using Lemma 3.1, we compute the log canonical thresholds ¢(X, (1/ag)C.),
(X, (1/a1)Cy), (X, (1/a2)C,), c(X, (1/a3)Cy) and ¢(X, (1/a4)Cy). We then set

1 1 1 1 1
(4 = min {C(X, C’x>,c<X, Cy>,c(X, C’z),c<X7 C’t),c(X, Cw> }
ag aq a2 a3 Q4

It follows that the global log canonical threshold lct(X) is at most pu.

We claim that the global log canonical threshold lct(X) is bounded below by some
number A < p. In many cases, however, we will use p for the lower bound A, so that we
could show lct(X) = p.

First, we put A = p. Next, we proceed with Steps 2 and 3. If we cannot see that A is
a lower bound for let(X) using Steps 2 and 3, then we proceed with Steps 2 and 3 for
unknown A. Then, from Step 3 we obtain inequalities containing A\ and can determine
an optimal A for which we can obtain a contradiction to the assumption of Step 2. This
number A will be our lower bound for let(X).

Step 2. We assume that lct(X) < . Then there exists an effective Q-divisor
D =Q —KX

such that the log pair (X, AD) is not log canonical at some point P € X. In particular,
we obtain multp(D) > 1/A from Lemma 3.3.

Step 3. We show that the point P cannot be any point of X, so that the assumption
in Step 2 should not hold.

To do so, we first show that the point P cannot be a smooth point of X. For this
purpose, apply Lemma 3.7. However, this method does not always work. If the method
fails, then we try to find an appropriate linear system on X such that it has a member F'
passing through the point P and the log pair (X, AF') is log canonical at the point P.
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Following Lemma 3.6, we then assume that the support of F' is not contained in the
support of D. Using Methods 5.1 and 5.2 below, we exclude smooth points.

We then show that the point P cannot be a singular point of X, using Methods 5.1-5.3.
For Methods 5.1 and 5.2, we consider a suitable irreducible curve C'. Usually, it will be
taken from the irreducible components of Cy, Cy, C., C; or C,,. In some cases, it is taken
from the irreducible components of a member of an appropriate linear system on X.

Method 5.1. We consider an appropriate irreducible curve C' passing through the
point P. We then obtain the inequality
multp(C) multp(D) > Hlultp(C)

C-D>
T AT

from Lemma 3.2, where r is the index of the quotient singular point P. If this inequality
derives a contradiction, then the point P is excluded. This method can be applied to
exclude a smooth point.

Method 5.2. We consider a suitable irreducible curve C' smooth at P. We write
D = mC + (2, where {2 is an effective Q-divisor whose support does not contain the
curve C. We check that Am < 1. We then obtain the inequality

1
D-mC)-C=0-C>—
( m(C) - C C>)\r

from Lemma 3.5. If we can derive a contradiction from the inequality then the point P
is excluded. This method can also be applied to exclude a smooth point.

Method 5.3. Sometimes we cannot obtain a contradiction solely by using Methods 5.1
and 5.2. In such a case, we take a suitable weighted blow-up 7: ¥ — X at the point P.
We can write

Ky + DY =g m*(Kx + AD),

where DY is the log pull-back of AD by 7. We then apply Methods 5.1 and 5.2 to the
log pair (Y, DY), or repeat this method until we get a contradictory inequality.

6. Demonstrations of the methods

In the previous section we explained the methods used to compute the global log canonical
thresholds of the 41 families of quasi-smooth well-formed complete intersection log del
Pezzo surfaces in P(ag, a1, as, as,as) in Tables 1 and 2. In the present section we provide
details of these computations for samples of infinite series of such surfaces and samples
of sporadic cases.

6.1. Infinite series

We have three infinite series of families of quasi-smooth well-formed complete inter-
section log del Pezzo surfaces in P(ag, a1, as, as, ay), which are listed in Table 1. Here,
we fully describe the computations for the global log canonical thresholds of two infinite
series. For the remaining infinite series we can compute the global log canonical threshold
in a similar way.
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Table 1. Infinite series.

Weight Multidegree let(X) Singular points
2n 45
1,1 1 1,2 1 2 2,2 2 Py
LlLntlhntl2n+1)  {20+220+2} -
20n +4
(1,2,2n+1,2n+1,4n + 1) {4n + 2,4n + 3} 224n+5 P., P, P,
(2,2n+1,2n+1,4n+1,6n+1) {6n+3,8n+ 2} 1 Pu, Py = 3% 5= (2,-1)

Here, n is a positive integer.

Lemma 6.1. Let X be a quasi-smooth complete intersection log del Pezzo surface
defined by two quasi-homogeneous polynomials of degree 2n in the weighted projective
space P(1,1,n,n,2n — 1), where n is a positive integer bigger than 1. Then lct(X) =
(2n +3)/(4n + 2).

Proof. The surface X can be assumed to be defined by the quasi-homogeneous equa-
tions

wz + z(a1z + bit) + fu(z,y)z + fn(x, Yt + fon(z,y) =0,
wy + t(azz + bat) + gn(z,Y)2 + Gn(z,y)t + g2n(x,y) = 0,

where fy, fd, gq and gy are homogeneous polynomials of degree d. For the surface X to
be quasi-smooth, the polynomials a1z + b1t and asz + bot must not be proportional and
a1 # 0, by # 0. The surface X is singular at the point P,,,.

Let £ be the linear system on the surface X cut by the equation Az 4+ py = 0, where
[\ : u] € Pl Let C,, be the member of the pencil £ cut by the equation z — uy = 0 on
the surface X. Then C}, can be defined by the quasi-homogeneous equations

pwy + 2(a12 +01t) + fu(i, V)y"z + o, Dyt + fan(p, Dy =0,

wy + t(agz + bot) 4+ gn (11, 1)y 2 + Gn(p, 1)y™t + gon(p, 1)y?" =0

in Proj(Cl[y, z,t, w]). Consider the affine piece of the curve C,, defined by y # 0. It is the
affine curve defined by the equations

pw + Z(alz + blt) + fn(lu’? 1)2 + fn(lu’v 1)t + fQW(IU’? 1) =0,

in Spec(Clz, t, w]). Furthermore, it is isomorphic to the affine curve defined by the equa-
tion

z(a1z + bit) — pt(azz + bat) + (fu(p, 1) — pgn(p, 1))z
+ (fn(:uv 1) - Mﬁn(ﬂa 1>)t + (f2n(ﬂ7 1) - :ug2n(:u’7 1)) =0
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in Spec(C[z,t]). There is a constant p; such that the affine curve C),,\Cy is defined by
(12 + fit +71)(aez + Pot + 72) = 0,

where «;, §; and ~; are constants. Note that the polynomials (a1z + (1t + 1) and
(aaz + Pat + v2) must not be proportional; otherwise X would not be quasi-smooth.
Therefore, C,, can be defined by the quasi-homogeneous equations

(arz + it +ny")(azz + Bat + v2y™) = 0,
wy + t(azz + bat) + gn (1, 1)y™ 2 + Gn(p1, D)y™t + gon(p1, Dy>" = 0.

Then the curves C),, consists of two irreducible and reduced curves Ly and Lo, where L;
is defined by the equations

r— My = 07
iz + Pit +viy" =0,
wy + t(azz + bat) + gn(p1, )y" 2 + G (i1, 1)y™t + gon(p1, 1)y*" = 0.

A member of the pencil £ is always one of the following:
e an irreducible and reduced quasi-smooth curve;
e the sum of two quasi-smooth curves.

On the other hand, we consider the open subset C,\C,, of the curve C,,, which is the
affine curve defined by the equations

py + 2(a12 + b1t) + fo (e, D)Y"2 + fu(p, Dyt + fan(p, Dy = 0,

Y+ t(agz + bat) + gn (1, D)y" 2 4 G (11, 1)y™t + gon (i, 1)y*" = 0

in Spec(Cly, z,t]). We can see that there exists po such that
z(a1z + bit) — pot(azz + bot) = (azz + fst)?,

where a3 and 3 are constants. The affine curve C,,, \ Cy, is then analytically isomorphic
to the equation

22 + 1/)>2n+1(27t) = 0’

where 2" € 1)5,,11. We then obtain ¢(X,Cy,) = (2n + 3)/(4n + 2) from [14, Proposi-
tion 8.14]. Furthermore, we can see that ¢(X,C) > (2n+3)/(4n+2) for every member C
of the linear system L.

Suppose that lct(X) < (2n + 3)/(4n + 2). Then there is an effective Q-divisor

DE—KX

such that the log pair (X, ((2n+3)/(4n+2))D) is not log canonical at some point P € X.
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We have the following intersection numbers:

4 2
Ky -Cp)= — Ky L= —-Kx -Ly=—"—
x Guw=5"7 x-ia X b2=o
2n 2—2n
LL:7 L2:L2: .
S VAR 1= on 1

Suppose that P is a smooth point in the surface X. Let C' be the unique member in £
passing through the point P. Suppose that the curve C' is irreducible. By Lemma 3.6, we
may assume that C' is not contained in the support of D. Then the inequality

4n + 2 4
ltp(D)< D -C =
oy 3 < multe(D) m—1

implies a contradiction. Thus, the curve C must be reducible. Put C' = Li+ Lo, where L
and Ly are irreducible and reduced curves on the surface X. By Lemma 3.6, we may
assume that the support of C is not contained in the support of D. Without loss of
generality we may assume that Lo is not contained in the support of D. Suppose that
the point P lies on the curve L,. Then the inequality

dn + 2 2
< <D-Ly=
multp(D) D L2 om—1

implies a contradiction. Thus, the point P must belong to L \ Lo. Put D = ALy + £2,
where (2 is an effective Q-divisor on the surface X with L; ¢ Supp(f2). The inequality

2 2
" ALy Ly<D-L

A =
2n —1 2n —1

implies that 0 < A < 1/n. Since A(2n + 3)/(4n + 2) < 1, the log pair (X, L; + (2n +
3)/(4n + 2)£2) is not log canonical at the point P. Then the inequality
an + 2 2 \ 2n — 2 < 2

D—\Ly)-L; = . <z
2n—|—3<( 1)Ly m—1 m—1 "n

implies a contradiction. Thus, the point P must be the point P,,.
Let 7: X — X be the weighted blow-up at the point P, with weights (1,1). Let E be
the exceptional divisor of 7. Then we have

2n—3
2n—1

E, wD=D+-2E,

Kx =qm'(Kx) - o — 1

where D is the proper transform of D on X and « is a positive rational number.
For simplicity, put ¢ = (2n + 3)/(4n + 2). The log pull-back of the log pair (X, ¢D) is
the log pair
(X,¢D +0,E),
where
_2n—3 2n+3 «

0, = .
o 2n—1+4n+22n—1
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Let C be an irreducible member in the linear system £. We then have

2
2n —1

W*CE@ C+ E,

where C is the proper transform of C. By Lemma 3.6, we may assume that C is not
contained in the support of D. Then we have

_ 2
D-C=D-C .
+2n—1
It follows that 4i_o
_ — 2«
0<D-C= .
2n—1

Thus, we have 6, < 1.

The log pair (X, ¢D + 6,F) must not be log canonical at some point p € E. For
the point P € E, there is a curve L € £ whose proper transform L passes through the
point P. Suppose that L is irreducible. Then,

*L=¢g L E.

Th=elkt o T

We have 9
D-L=D-L e
2n—1

Thus,

_ 4 — 20

D.-L= .

2n—1

Since the log pair (X, ¢D + 0, E) is not log canonical at the point P, we have
mult5(¢pD + 0,E) > 1.

Thus,
_ 2 «
Ity D - .
e Y= Son—1) 2n-1

The inequality
@

p2n—1) 2n—1

D-L>multp Dmultp L >

implies that
4—2a>4n+2 2 «
2n—1" 2n+32n—1 2n—1"

Thus, o < 8/(2n + 3). By Lemma 3.5,

2n+3 8 4

1 D-E= =
<¢ 00 L iomi3 il

1

for all n > 2. This is a contradiction. Therefore, the curve L must be reducible. Write
L = L; + Ly and assume that P lies on the proper transform L; of the curve Li. Also,
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we may assume that the support of D does not contain one of the curves Ly and Lo. Put
D = plLq + 2, where {2 is an effective Q-divisor on the surface X whose support does
not contain the curve L. Then,

E

, FE
2n —1

, FE
2n —1

on—1"

0 =g 2+ 7Ly =¢ Ly + 7Ly =g Lo +
where 2 and Lj are the proper transforms of £2 and Lo, respectively.

The log pull-back of the log pair (X, ¢D) is the log pair
(X, opLy + 602 + 5 E),

where

_2n-3 o o]
_2n—1+2n—1+2n—1'

If 4 = 0, we obtain an absurd inequality

2—B>4n—|—2 2 I6]
2n—1 2n+32n—1 2n-—1

%

since
D-Iy=2=0
2n —1
and
D~E12multpoultpE1> 2 — b .
p2n—-1) 2n-1
Thus, p > 0.
Since 5 5
Q'LQ:(D_“L”'LQ:2n—1_’“‘zn7i1’
we have
= e 0 L= 0 Lo+ b,

- N > )
2n —1 2n —1 2n —1 2n —1
Thus, 2 > 2np + 3. Furthermore, we have 63 <1 and ¢p < 1.
By Lemma 3.5, the log pair

(B, (oL + 62)]p)
is not log canonical at the point P. We then have
1< (¢uli +¢02) - E = ¢(u+ B).
Thus, pu+ 6 > 1/¢. The log pair
(L1, (62 + 0E)|1,)

is not log canonical at the point P either. We then have

. M-3 o %
1<o2 L .
<9 O T B P |

https://doi.org/10.1017/50013091515000012 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000012

468 1. Kim and J. Park

Since
2 o —2 8
m—1 H o1 om_1’

we obtain p > 2/(2n+3). However, there are no u and [ satisfying the following inequal-

0L =

ities An 42 9
n
2>=2 , > — > .
it 8 ptps 2n+3 K 2n+3
The obtained contradiction completes the proof. O

In the following case, the global log canonical threshold is bigger than % Unfortunately,
however, we are not able to determine whether it is strictly less than 1 or not.

Lemma 6.2. Let X be a quasi-smooth complete intersection log del Pezzo surface
defined by two quasi-homogeneous polynomials of degrees 4n + 2 and 4n + 3 in the
weighted projective space P =P(1,2,2n+1,2n+1,4n+ 1), where n is a positive integer.
Then lct(X) > (20n 4+ 4)/(24n + 5).

Proof. The surface X can be assumed to be defined by the quasi-homogeneous equa-
tions

22 fan(2,y) + & fon(2,y)2 + 2 fon (2, y)t + ary® T + 2t + 2w = 0,
TGan+2(T,Y) + Gont2(2,Y)2 + Gonto (@, Y)t + 2(a22® + ast®) + cxzt + yw = 0,

where the a; are non-zero constants, ¢ is a constant and fj, fj, g; and g; are quasi-
homogeneous polynomials of degree j. The surface X is singular at the points P,, P,
and P,.

The curve C, is defined by the quasi-homogeneous equations

ary* 4 2t =0,
by 2 4+ boy T 4+ yw =0

in Proj(Cly, z,t,w]), where by = go,,4+2(0,1) and by = G2, 4+2(0,1). Then C, = L1 + Lo +
R,, where Ly, Ly and R, are irreducible and reduced quasi-smooth curves defined by
le{x:y:Z:O}’
Ly={x=y=t=0},
R, = {2z = ayy® ™ + 2t = by™z + boy"t + w = 0}.
Then we have L1 N Ly = {P,}, LiNR, = {P:}, LaNR, ={P,} and LiNLaNR, = .

We also have ¢(X,C;) = 1.
Suppose that lct(X) < (20n +4)/(24n + 5). There is then an effective Q-divisor

DEQ —KX

such that the log pair (X, ((20n + 4)/(24n + 5))D) is not log canonical at some point
PeX.
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Since H(P, Op(2n + 1)) contains the monomials 22"+, 2 and ¢, from Lemma 3.7, we
obtain the inequality

2 1)(4 2)(4 4 24
multo (D) < (2n+1)(4n + 2)(4n + 3) _4n+3 n+5
1x22n+1)2n+1)4n+1) 4n+1  20n+4

for the point @ € X \ C,. It follows that the point P belongs to C,.
We have the following intersection numbers:

1 1 1
—Kx Li=—Kx-Ly= ~Kx Ry = . Ly Ly= ,
X T Gn+ )+ 1) X m+1 T T any 1
1 6n + 1 1
It Ry=Ly Ry=——, L[?=12=— , R?2=-— )
! ? m+1 P2 T n+D)An+1) T 2n+1

We may assume that the support of the curve C}, is not contained in the support of D.
Suppose that the curve L; is not contained in the support of D. Put D = 3;L;+ 3R, +12,
where i # j and (2 is an effective Q-divisor such that L; and R, are not contained in the
support of {2. We have

1 B, &
=D-L;>B;L; L +BR, L; = —2 )
(2n+1)(4n+1) biLi-Li+ 0 Il ot

The inequalities

1 24n +5
dn+1)(D - L;) = ,
G+ DD L) = 57779 < 55,54
1 6n + 1
2+ 1) (D — B;L;) - L < (2n+1
@n+1)(D = fLy) - Lj < (2n + )((2n—|—1)(4n—|—1)+2n—|—1(2n—|—1)(4n+1))
_ 8n + 2 24n + 5
C (2n+1)dn+1) " 20n+4’

1 1 24n+5

D—-08R,) R, < <
( BRa) 2n+1+4n—|—12n+1 20n + 4

imply the contradiction that the point P cannot lie on C,. Therefore, the support of D
must contain the curves L and Lo. Put D = a1 L + as Lo + A, where A is an effective
Q-divisor whose support contains neither L; nor Lo. The inequality

1 1 1
=D R, >a1L; R, Ly R, =
1 R a1l - Ry +asls - R 0412n+1+0422n+1

implies that a1 + ap < 1. We have

2dn+5

o+ 1)(D-R,) =1 .

(2n +1)( )= 1< o4
Thus, P € R,. Moreover, we have

1 6n+1 6n + 2 24n 4+ 5

(D—aiLy)- Ly < @n+ )An+1) + Cn+ D)([dn+1)  (2n+ ){dn+1) < %0n+4

for kK = 1,2. Thus, the point P must be the point P,,.
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Without loss of generality, we assume that a; < as. From

24n 4+ 5 1 6n+1
An+1)(D — a1 Ly) - Ly =
son g < Wnt DD —aly) - Ly =gmm daig =

we obtain (8n+1)/(20n +4) < a; < 1/2.
Let 7: X — X be the weighted blow-up at the point P, with weights (1,1). Let E be
the exceptional divisor of 7. Then,

1—4n - 1
Ky =1 (Ky)+ —"F “Ln=Li+—F
x=mEx)+ B mh =it e B
_ 1 — o
*Ly=Ilo+—F ‘A=A E
T =tet ek T Tl

where « is a positive rational number and L, Ly and A are the proper transforms of
L1, Ly and A, respectively. Let O; be the intersection point of F and L; for i = 1,2. Put
€ = (20n +4)/(24n + 5). The log pull-back of the log pair (X,eD) is the log pair

(X,e(a1Ly + azLls + A) + 0F),
where

74n—1+ a1 " o) n o
T+l Sdnt1l  Cant+1l  Cin+1

0

This is not log canonical at some point O € E. The inequalities

(07

A T 2
1 6n+ 1 1 1
Tt M@ DAty il “dntn
_ 167 9
1 6n+1 1 1
= + g

Cn+DAn+ 1) P@ntDn+1) a1 “ant1

imply that a < 1. Then, 8 < 1. Suppose that the point O is contained in the set
E\ (L1 U Ly). We have
- 1
A-E=a<l<-,
€
which is a contradiction. Thus, the point O is either O or Os.

Suppose that the point O is the point O;. Then the log pair (X,ca;L; + A + 0F) is
not log canonical at the point O;. Since ea; < 1, we have

o i | 6n + 1 1 |
5A~L1+9E-L1:5< nt )

Cnr D@+ D) et DEn+) Pl “dnti

(-1, L Lo 1
mntl MMyl T mr1 T %
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1 n dn —1 n 6n+1 n 1
e e
2n+1)(dn+1)  4dn+1 "@n+ D(an + 1) Yan 41
< 24n + 3 <1,
24n+5
which is a contradiction. Thus, the point O must be the point Oy. However, the same
argument shows that this is not possible either. This completes the proof. O

:5(

6.2. Sporadic cases

There are 38 sporadic families of quasi-smooth well-formed complete intersection log
del Pezzo surfaces in weighted projective spaces and these are listed in Table 2. Here we
describe the computations for the global log canonical thresholds of five sporadic cases.

Lemma 6.3. Let X be a quasi-smooth complete intersection log del Pezzo surface
defined by two quasi-homogeneous polynomials of degree 6 and 8 in the weighted projec-
tive space P(1,2,3,4,5). If the defining equation of degree 6 contains the monomial yt,
then lct(X) = 1. If not, then lct(X) = 5.

Proof. The surface X can be assumed to be defined by the quasi-homogeneous equa-
tions

wf(x,y,2,t) +yy* +at) + 22 + 2w =0,
zg(x,y, 2, t,w) + t(by* +t) + 2w = 0.
Here, f and g are quasi-homogeneous equations of degrees 5 and 7, respectively; a and b
are constants with ab # 1. The surface X is singular at the point P,,.
The curve C,, is defined by the quasi-homogeneous equations
y(y? +at) + 2° =0,
tby? +t) + 2w =0
in Proj(Cly, z, t,w]). The curve C, is an irreducible and reduced curve on the surface X.
It is smooth at C, N C,. Consider the open set C, \ C, of the curve C, that is a
Zs-quotient of the affine curve
y(y? +at)+ 22 =0,
tby? +t)+2=0

in Spec(Cly, z,t]). This affine curve is isomorphic to the curve defined by the equation
y(y* +at) + 2 (by* +1)> =0

in Spec(Cly, t]). From this equation, we can see that ¢(X,C,) = 1ifa # 0; ¢(X, C;) = 1—72
ifa=0.
Put ¢(X,C,) = X and suppose that lct(X) < A. There is then an effective Q-divisor

DE@ —KX

such that the log pair (X, AD) is not log canonical at some point P € X.
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Table 2. Sporadic cases.

Weight Multidegree let(X) Singular points
(1,1,1,1,1) {2,2} 2/3
(1,2,2,3,3) {4,6} 1 P, P,
(1,2,3,4,5) {6*, 8} 1 P,
(1,2,3,4,5) {6**, 8} 7/12 P,
(1,3,3,5,5) {6,10} 1 Py, P., P, P,
(1,4,5,7,11) {12,15} 1 P:, R,
(1,4,7,10,13) {14, 20} 1 P,
(1,5,8,12,19) {20, 24} 1 P,
(1,5,9,13,17) {18, 26} 1 P,, P,
(1,7,11,17,27) {28, 34} 1 P., P,
(1,7,12,17,23) {24, 35} 1 P;, P,
(1,8,13,19,31) {32,39} 1 P, P,
(1,9,15,23,23) {24, 46} 1 P,, P, Pt, P,
(2,2,3,3,3) {6,6} >6/5 Py =4x 3(1,1)
(2,3,4,5,5) {8,10} >9/8 Py, P, Pw
(2,3,5,6,7) {10,12} > 3/2 Py, Py =2 x 3(1,1)
(3,3,5,5,7) {10,12} >7/4 P., P,, Py, Pyy _4>< :(1,1)
(3,5,6,8,13) {16, 18} >5/3 Py, Py, P =3 x £(1,1)
(3,5,7,9,11) {16, 18} > 14/11 Py, P., Py, Pr. =2 x 3(1,2)
(4,5,7,10,13) {18, 20} >2 P., P, Pyt =2x £(3,4)
(5,7,10, 14, 23) {28, 30} 35/12 Py, Prz =3 % 1(2,4), Py =2 x £(5,3)
(5,9,12,20,31) {36, 40} 55/24 Py, Poy =2 % £(3,4), P. = 3(1,1)
(5,14,17,21,37) {42,51} 10/3 P., Py, Pyy = 1(5,3
(6,7,9,11, 14) {18,28} >17/2 Py, Py =2 % £(5,4), P = 3(1,1)
(6,8,9,11,13) {22, 24} >3 P., Py, Pp. = 1(1,1)
(9,15,23,23,31) {46, 54} >23/6 Py, Py, Poy =2 % 55(18,7), Poy = 3(1,1)
(9,15,23,23,37) {46, 60} 45/8 Py, P., Py, Py, Pry = £(1,1)
(9,23, 30, 38,67) {76,90} 81/14 Py, Py, Pr. = %(1,1)
(10,17, 25,34, 43) {60, 68} 6 P., Py, Pr. = £(4,3), Py =2 x £-(3,16)
(11,18, 27,44, 61) {72,88} 77/16 P., Py, Pot =2 % $5(7,5), Py. = 5(4,7)
(11,27,36,62,97) {108,124} 121/24 Py, Py, PL = £(4,7)
(11,29, 39,49, 59) {88,98} >117/16 Py, P., P,
(11,29,39,49,67) {78,116} 77/10 P, P:, P,
(11,29, 38,48,85) {96,114} 99/14 P., P,, P,
(13,22,55,76,97) {110,152} 117/20 Py, Py, Py. = $5(4,9)
(13,23,34,56,89) {102,112} 104/15 P., P, P,
(13,23,35,47,57) {70,104} 65/8 Py, P, Py,
(13,23,35,57,79) {92,114} 91/12 P., P., P,
(14,19, 25, 32, 45) {64, 70} 28/3 P,, P,, P,

*The polynomial of degree 6 contains the monomial yt.
**The polynomial of degree 6 does not contain the monomial yt.
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By Lemma 3.6, we may assume that the curve C,, is not contained in the support of D.
Suppose that the point P is the point P,. Since the curve C, is singular at the point P,
with multiplicity at least 2, we have

2 1x1x6x8
- < . — =
< 2multp, (D) <5D-C, 51><2><3><4><5

2.
A

This is a contradiction. Thus, the point P cannot be the point P,,.
For every point @ in C, \ {P,}, we have
I1Xx1x6x8

9
lto(D) < D-C, — _ 2
multe (D) G = 3o x3xax5 5 -

> =

Therefore, P ¢ C,.
Let £ be the pencil on X cut by the equation

az? + fy = 0,

where [a, 3] € PL. There is a curve C in the pencil £ that passes through the point P.
Since the point P lies outside C,, the curve C is cut by an equation y = ax? for some a.
Therefore, the curve C is defined by the quasi-homogeneous equations

_ 2
y=ar,

zf(z,y,2,t) + y(y* +at) + 2% + 2w = 0,
xg(x,y, 2, t,w) + t(by* +t) + zw = 0.

The curve C is quasi-smooth at the point P, at which the curve C, and C meet. The
affine piece of C' defined by z # 0 is the curve

f(l,a,2,t) + o +aat + 22 +w =0,
g(L,a, z,t,w) + ba’t +t2 + zw =0

in Spec(C[z,t,w]). This is isomorphic to the curve defined by
24+ ba’t —2(f(1, 0, 2, t) + o +aat + 2%) +g(1,a, 2, t, —(f(1, @, 2,t) +® +aat +22)) = 0

in Spec(C[z,t]). Since the equation keeps the monomial > regardless of the constants a,
a and b, we have multg(C) < 2 for any point @ on C. Thus, we have ¢(X, 3C) > A.
Furthermore, the equation always has the monomials ¢?> and 2 and so the curve C' must
be irreducible. Therefore, we may assume that the curve C is not contained in the support

of D. Then,
1 1x2x6x8 4
— < . = = —.
N Smulte(D) S DO = 2o s T
This is a contradiction. The obtained contradiction completes the proof. O

Lemma 6.4. Let X be a quasi-smooth complete intersection log del Pezzo surface
defined by two quasi-homogeneous polynomials of degrees 18 and 26 in the weighted
projective space P = P(1,5,9,13,17). Then, let(X) = 1.
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Proof. The surface X can be assumed to be defined by the quasi-homogeneous equa-
tions

xf(x7yvzat)+z2+yt—|—xw20,
zg(z,y, z,t,0) + 2 + 20 = 0,

where f and g are quasi-homogeneous equations of degrees 17 and 25, respectively. The
surface X is singular at the points P, and P,.
The curve C, is defined by the quasi-homogeneous equations

22 4yt =0,
2+zw=0

in Proj(Cly, 2, t, w]). The divisor C, consists of L,,, and an irreducible and reduced curve
R,. Note that the curves L,,, and R, meet at the points P, and FP,.

Consider the open subset C,, \ Cy, of the curve C, that is a Z;7-quotient of the affine
curve

224yt =0,
2 +2=0

in Spec(Cly, z,t]). The affine curve is isomorphic to the curve defined by the equation
yt +t* = 0 C Spec(Cly, 1]).

It shows that the log pair (X,C,) is log canonical along C, \ C,. Consider the open
subset Cy \ Cy of the curve C, that is a Zs-quotient of the affine curve

22 4+t=0,
2+zw=0

in Spec(C[z, t,w]). The affine curve is isomorphic to the curve defined by the equation
zw + z* = 0 C Spec(C[z, w]).

Therefore, the log pair (X, Cy) is log canonical along C; \ Cy,. Consequently, ¢(X, Cy) = 1.
Suppose that let(X) < 1. There is then an effective Q-divisor

DEQ —KX

such that the log pair (X, D) is not log canonical at some point P € X.
Since H(P, Op(9)) contains the monomials z*y, % and z, by Lemma 3.7, we have the
inequality

9 x 18 x 26 36
< -2
multo(P) S 5= 0 3 K17 85

for each point @ € X \ C,. Therefore, the point P must belong to C,.
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We have the following intersection numbers:

_ 1 _ 3 _ 4

7KXLyw—g, 7KXRx—g, 7KXsz%,
— 22 2 __21 2 _ _ 19
LW'Rw_%’ Lyw_ 85 R = 85"

By Lemma 3.6, we may assume that the support of the curve C, is not contained in the
support of Supp(D).

Suppose that Supp(D) does not contain the curve R, and put D = pL,,,+A, where A
is an effective Q-divisor with Ly,, ¢ Supp(A). The inequality

3 _ __ 22

implies that 0 < p < 5. Therefore, the log pair (X, Ly, + A) is not log canonical at the
point P and the point P lies on the curve L,,,. However, this is impossible because of
the inequality

multq(Alz,,) < 17(D — pLyw) - Ly = 17(& + p2l) < 1

for each point @ on Ly,,.
Now we suppose that Supp(D) does not contain the curve L,,, and put D = vR, + (2,
where (2 is an effective Q-divisor with R, ¢ Supp({2). Then the inequality

1 _ __ 22

implies that 0 < v < i For any point @ on R, we have
multg(2|g,) < 17(D - vR,) - R, = 17(& + vi2) < 1.

From this inequality we can derive a contradiction as before.
Consequently, let(X) = 1. a

Lemma 6.5. Let X be a quasi-smooth complete intersection log del Pezzo surface
defined by two quasi-homogeneous polynomials of degree 6 in the weighted projective

space P(2,2,3,3,3). Then, lct(X) > g.

Proof. The surface X is defined by the quasi-homogeneous equations

f3(1’>y) + fg(Z,t,’u)) = 07
g3($,y) + QQ(Z,t,U)) = Oa

where f; and g; are homogeneous polynomials of degrees ¢ and j, respectively. For X to
be quasi-smooth, the equation f3(x,%)gs(z,y) = 0 must define six distinct points in P!
and for any [a,b] € P!, the rank of the quadratic form afa(z,t,w) + bga(2,t,w) must be
at least 2.

The surface X is singular only at the points P;, P», P3 and P, of type %(1, 1), which
are contained in the set {z =y = fa(z,t,w) = g2(z,t,w) = 0}.
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Let £ be the pencil on X cut out by the equation
ax + By =0,

where [o, 3] € P!. Let Cs be the member of the pencil £ cut out by the equation
x — By =0, that is, Cg is defined by the quasi-homogeneous equations

38, 1)y + fa(z,t,w) =0,
93(6,1)y° + ga(z,t,w) =0

in Proj(Cly, z,t,w]). Note that the quadratic form

g3(ﬁ7 1)f2(z,t,w) - f3(67 1)92(2,25,’[1}) =0

is of rank either 2 or 3. Furthermore, there is a constant 3’ such that the corresponding
quadratic form is of rank 2. The curve Cg is defined by the equations

Mz + prt + riw)(Aez + pat + vow) =0,
g3(ﬂ/7 1)y3 + 92(Zat,w) = 07

where the two points [A1:p1:14] and [Ao:ps:1e] are distinet in P2, The divisor Cp
consists of two irreducible and reduced curves C; and Cs5. Each curve C; is defined
by x — B'y = Nz + pit + viw = g3(8, 1)y + ga(2,t,w) = 0. The curves C; and Cy
intersect transversally. Note that a member C' in the pencil £ is quasi-smooth if its
corresponding quadratic form is of rank 3. Thus, for each member C of the pencil £, we
have ¢(X, 3C) = 2.

Now, we claim that lct(X) > g. Suppose not. Then there is an effective Q-divisor

DEQ —KX

such that the log pair (X, $D) is not log canonical at some point P € X.
We have the following intersection numbers:
~Kx - Ci=-Kx-Co=3%, C1-Co=1,  C]=0Cj=-1
Suppose that P € X \ Sing(X). Then there is a curve C € L passing through the point P.
If the curve C is irreducible then we have

1x2x6x%x6 2
ltpD<D-C = _z
multp C= 3% 2x3x3x3 3

P
6

Therefore, the curve C' must be reducible. It consists of two irreducible curves C and
C5. By Lemma 3.6, we may assume that the support of the curve C is not contained in
Supp(D). Without loss of generality, we can assume that C; ¢ Supp(D). Since we have

multp C; <D~Olzé<%,
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the point P must belong to Cs. Put D = uCs 4 (2, where 2 is an effective Q-divisor
whose support contains neither C; nor Cs. The inequality

%ZD'CH?,UCH'CQ:M

implies that 0 < g < 3. Then the log pair (X,Cs + 212) is not log canonical at the

point P. However,

X <

3

R2:Co=(D—pCs) - Co< 3+

Wl
ol
O
N[

which is a contradiction. Thus, P € Sing(X). We may assume that the point P is the
point P; without loss of generality.
Let 7: X — X be the weighted blow-up at the point P; with weights (1,1). Let E be
the exceptional divisor of 7. We then have
* 1 * B «
where D is the proper transform of D and « is a positive rational number. The log
pull-back of the log pair (X, gD) is the log pair

- 6= 1 6 «
(x50 (1 82)e).

This is not log canonical at some point O € E. We then obtain

5 « _
— — — < multp(D).
5 3 o(D)
Let N be the sublinear system of |Op(3)| that consists of curves passing through the
point P;. We can find two constants a and b such that the quadratic form afs(z,t, w) +
bga(z, t, w) is of rank 2. Then the surface X is defined by the quasi-homogeneous equations

(12 + dyy)(caz + doy)(csz + dsy) + (M2 + prt + viw)(Aez + pat + vow) =0,
93(x7y) + gQ(thvw) = 07

where (c1z4d1y)(cax+doy)(csz+dsy) = afs(x,y)+bgs(z,y) and (A1z+pit+rviw)(Aez+
pat+row) = afa(z,t, w)+bga(z,t,w). Note that the equations x = y = \z+ut+riw =
g2(z,t,w) = 0 define two singular points, say P; and Py, of the four singular points of X.
Let N be the member of the linear system N cut out by the equation A1 z+pu1t+viw = 0.
Then N consists of the three irreducible and reduced curves My, Ms and Mjs intersecting
each other at the points P; and Ps.

By Lemma 3.6, we can assume that the support of D does not contain one of My, Ma,
Ms. Without loss of generality, we can assume that the curve M is not contained in the
support of D. The inequality

O<D-M1:D-M1+%E2:

Wl =
wl| o
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implies that o < 1. Since

1,6 a_,

3 5 3 ’
the log pair (X, gD + F) is not log canonical at the point O. For the point O € E there
exists a member C' in the pencil N' whose proper transform C on X passes through the

point O. Suppose that C is irreducible. Then we have
mC=C+E.

We have

and hence D - C =1 — a. Thus,

g—%<multoD<D-O:1—a

implies that a < % However, by Lemma 3.5, we have
S <multo(D|g) < D-E =a,

which is a contradiction. Thus, the member C' must be reducible. Then C' consists of
the three curves Ly, Lo and Lz. We can assume that the support of the member C is
not contained in the support of D. Without loss of generality, we can assume that the
curve L is not contained in the support of D. Put D = asLs + a3Ls + {2, where §2 is an
effective Q-divisor such that Ly and L3 are not contained in the support of 2. We then
have

The inequality

implies that a2+a3<%.IfOeE1,then
1 « S _ 5 «
S D LizmultoD> 2 -2,
373 Lz STy

which is a contradiction. If O € Lo, then we consider the log pair

(X, g(OCQEQ + Oégig + Q) + GE),

1 6 (%) a3 ﬂ
O=_—+ (2422472,
3+5<3 T3 +3>

Since it is not log canonical at the point O that lies on Ly \ Ly, we have

6 - - _ 6/1 1 I¢] 1 6({ae a3z f
1< Q2 Lo+ 0FE - Lo=-(-4-a0—as—2 | +-+-(=2+24+2).
<5 2+ 2 5(3+3a2 Qs 3>+3+5< + +

where

Thus, as — ag > %, which is a contradiction. Similarly, if O € L3, we can obtain a

contradiction. O
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Lemma 6.6. Let X be a quasi-smooth complete intersection log del Pezzo surface
defined by two quasi-homogeneous polynomials of degrees 28 and 30 in the weighted
projective space P = P(5,7,10, 14, 23). Then, lct(X) = %

Proof. The surface X can be defined by the quasi-homogeneous equations
t(t —y*) + 2w = 0,
(z — b12%) (2 — box®) (2 — b3x®) + yw = 0,
where the b;, i = 1,2, 3, are distinct constants. The surface X is singular at the point P,,.
The surface X also has three singular points of type %(2,4) at P = [1:0:51:0:0],
Py =[1:0:b2:0:0] and Py = [1:0:b3:0:0] and two singular points of type %(5,3) at
Q1=100:1:0:0:0], Q2 =1[0:1:0:1:0].
The curve C,, is defined by the quasi-homogeneous equations
t(t—y*) =0,
23 4 yw =0
in Proj(Cly, z,t,w]). It shows that the curve C, consists of two irreducible and reduced
curves Cy 1 and Cy 2. The curve Cy 1 is defined by z =t = 23 + yw = 0 and the second
curve C, o is defined by x =t — y* = 23 + yw = 0. Consider the open set C, \ Cy, of the
curve C, that is a Zssz-quotient of the affine curve
t(t—y*) =0,
24y=0
in Spec(Cly, z,t]). The affine curve is isomorphic to the curve defined by
t(t — 2%) = 0 C Spec(CJz, t]).

It shows that the log canonical threshold of the log pair (X, C,) at the point P, is 1—72
and the log pair is log canonical elsewhere. Therefore, ¢(X, %C’z) = %
The curve Cy is defined by the quasi-homogeneous equations

2 + 2w = 0,
(z — b12°%) (2 — bax®) (2 — b3x?) = 0

in Proj(Clz, z,t,w]). Then Cy = Cy1 + Cy 2 + Cy 3, where the C, ; are irreducible and
reduced curves defined by the equations y = t* + zw = z — bja? = 0. Consider the open
set Cy \ Cy, of the curve Cy that is a Zas-quotient of the affine curve

> +2=0,
(z — byx?) (2 — bax?) (2 — b3x?) = 0

in Spec(Clz, z,t]). The affine curve is isomorphic to the curve defined by

(z — bit*) (2 — bat*) (2 — bst*) = 0 C Spec(C|z, 1]).
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This shows that the log canonical threshold of the log pair (X, C),) at the point P, is at
least % and the log pair is log canonical elsewhere. Therefore, the log pair (X, %Cy) is
log canonical.

Suppose that lct(X) < 2. Then there is an effective Q-divisor

DEQ —KX

such that the log pair (X, %D) is not log canonical at some point P € X.
Since the space H(P, Op(35)) contains the monomials 27, ¢y and xz3, for each point
Q € X\ (C, USing(X)) we obtain the inequality
35 x 28 x 30 12

lto (D) < =<
multo(D) S 55— 0w 4 23 < 35

from Lemma 3.7. It follows that the point P must belong to C, U Sing(X).
We have the following intersection numbers:

3 6 27
—Kx -Cy1=—Kx -Cyo= 7% 23 Cep-Crp= 23’ Cil = 03’2 - 7% 23
2
—Kx-Cy1=—-Kx -Cyp=—-Kx -Cy3= 5% 23’
4 ) ) 3 26
Cy1 Cya=0Cy1-Cys=Cya Cys =155, O =Cp=Chg=—-——g.

By Lemma 3.6, we may assume that the support of the curve C' is not contained in
Supp(D). Suppose that C; o is not contained in the support of D. Put D = uCy 1 + A,
where A is an effective Q-divisor whose support does not contain the curve C, ;. The
inequality

3 6
7x 23 Co2 2 o Cr2 = piog

implies that 0 < p < ﬁ. For any point O; other than P, on Cy 2, we have

multo, (D) < 7(D - Cy2) = & < 12,

and for any point O; on Cy 1 other than P,,, we have

multo, (Ale, ,) < 7(D — pCy) - Cay < 7(75’23 THER 7i723> <2
These show that the point P must be one of the singular points of X other than @Q;
and @)». Similarly, if the curve Cj 1 is not contained in the support of D, then we can
derive the same conclusion.

By Lemma 3.6, we may assume that the support of the curve Cy is not contained in
Supp(D). Suppose that Cy ; is not contained in the support of D. Put D = 1,Cy 2 +
v3Cy 3 + {2, where {2 is an effective Q-divisor whose support contains neither C, > nor
Cy.3. The inequality

2 4
rog — D Cua 2 1Cly2-Cya+rsCys-Cya = o5
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implies that 11 + 1o < 1—10. We have

2 12
Itp (D) <5(D-Cypy) = — < —=.
multp, (D) < 5( 1) 53 < 3%
2 1 2 12
ltp, (Dle, ) < 5(D — Cyy < L 12
multp, (Do, ) S 5D = v2Cy.) - Cyo 5(5 <23 710 “5x 23> <35
9 1 2 12
< 5D — . (2 1 2\ _ 12
Hlultp3(D‘Cy13) < 5(D 1/30%3) Cy73 < 5(5 <23 + 10 X 5 x 23> < 35

Thus, the point P cannot be any of the points P, P» or P3. Similarly, if either Cy 5 or
Cy.3 is not contained in the support of D, then we obtain the same result. Thus, the
point P must be the point P,,.

Let m: X — X be the weighted blow-up at the point P,, with weights (4,1). As before,
we may assume that D contains neither C,; nor C, ; for some i € {1,2} and some
j €{1,2,3}. Let E be the exceptional divisor of 7. Then,

x 18 . ~ 1
Ky=qm (KX) — %E, 7 Cri =0 Csz,i + %E,
* _ ~ 4 * _ B «

where C, ;, C, ; and D are the proper transforms of C, ;, C, ; and D, respectively, and
« is a positive rational number. The divisor F contains one singular point O4 of type
i(l, 1) on the surface X. The point Oy is contained in C,.; but not in C’y,l.

The log pull-back of the log pair (X, %D) is the log pair

_ 35 /35 a 18
52D+ (2122 E).
(’12 +(12><23+23>>

This is not log canonical at some point O € E. We have the inequality

- _ 4o 2 «
< .D=C, . - D+ —F?= -
0< Gy Coi D+ 5 5x23 23
Hence, we have a < % Since
% x 2 + 18 <1
1223 23 ’
the log pair
-
(X, 3D+ E)
is not log canonical at the point O. Since
35 - 3% «
—D-FE=—x-<1
12 21"

the point O must be the singular point of X on the exceptional curve E, which is the
point O4. The inequality

35 = 35 «Q 18
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implies that

12 « _
—_— = — lto(D).
161 23 <~ multo(D)
However,
lto(D) <D - Cyps = 4 — —
RO S wi =161 4x23)
which is a contradiction. The obtained contradiction completes the proof. O

Acknowledgements. This work was supported by the Research Center Program
(Grant CA1205-02) of the Institute for Basic Science and the Basic Science Research
Program (Grant 2010-0008235) of the National Research Foundation of Korea.

References

1. C. ArAUJO, Kéhler—Einstein metrics for some quasi-smooth log del Pezzo surfaces, Trans.
Am. Math. Soc. 354(11) (2002), 4303-4312.

2.  C. BOYER, K. GALICKI AND M. NAKAMAYE, On the geometry of Sasakian—Einstein
5-manifolds, Math. Annalen 325(3) (2003), 485-524.

3. 1. CHELTSOV, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Analysis 18(4)
(2008), 1118-1144.

4. 1. CHELTSOV AND C. SHRAMOV, Log canonical thresholds of smooth Fano threefolds, with
an appendix by Jean-Pierre Demailly, Russ. Math. Surv. 63(5) (2008), 859-958.

5. 1. CHELTSOV AND C. SHRAMOV, On exceptional quotient singularities, Geom. Topol.
15(4) (2011), 1843-1882.

6. I. CHELTSOV AND C. SHRAMOV, Del Pezzo zoo, Exp. Math. 22(3) (2012), 313-326.

7. 1. CHELTSOV, J. PARK AND C. SHRAMOV, Exceptional del Pezzo hypersurfaces, J. Geom.
Analysis 20(4) (2010), 787-816.

8. J.J. CHEN, J. A. CHEN AND M. CHEN, On quasi-smooth weighted complete intersections,
J. Alg. Geom. 20(2) (2011), 239-262.

9. J.-P. DEMAILLY AND J. KOLLAR, Semi-continuity of complex singularity exponents and
Kéhler-Einstein metrics on Fano orbifolds, Annales Scient. Ec. Norm. Sup. 34(4) (2001),
525-556.

10. A. R. IANO-FLETCHER, Working with weighted complete intersections, in Ezplicit bira-
tional geometry of 3-folds, London Mathematical Society Lecture Note Series, Volume 281,
pp. 101-173 (Cambridge University Press, 2000).

11.  J. JoHNSON AND J. KOLLAR, Kéahler-Einstein metrics on log del Pezzo surfaces in
weighted projective 3-spaces, Annales Inst. Fourier 51(1) (2001), 69-79.

12.  S. KEEL AND J. MCKERNAN, Rational curves on quasi-projective surfaces, Memoirs of
the American Mathematical Society, Volume 669 (American Mathematical Society, Prov-
idence, RI, 1999).

13. 1. KiM, Log canonical thresholds of complete intersection log del Pezzo surfaces,
PhD Thesis, Pohang University of Science and Technology, 2014 (available at http://
postech.dcollection.net/jsp/common/DcLoOrgPer.jsp?sltemId=000001673786).

14. J. KOLLAR, Singularities of pairs, Proc. Symp. Pure Math. 62 (1997), 221-287.

15. S. KUDRYAVTSEV, On purely log terminal blow-ups, Mat. Zametki 69(6) (2001), 892-898.

16. S. MoRI AND J. KOLLAR, Birational geometry of algebraic varieties, Cambridge Tracts
in Mathematics, Volume 134 (Cambridge University Press, 1998).

17. M. MUSTATA, Jet schemes of locally complete intersection canonical singularities, Invent.

Math. 145(3) (2001), 397-424.

https://doi.org/10.1017/50013091515000012 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000012

18.

19.

20.

21.

Log canonical thresholds of complete intersection log del Pezzo surfaces 483

YU. PROKHOROV, Lectures on complements on log surfaces, Mathematical Society of
Japan Memoirs, Volume 10 (Mathematical Society of Japan, Tokyo, 2001).

G. T1AN, On Kéhler-Einstein metrics on certain Kahler manifolds with ¢1 (m) > 0, Invent.
Math. 89(2) (1987), 225-246.

G. TIAN AND S.-T. YAu, Kéhler-Einstein metrics on complex surfaces with ¢; > 0,
Commun. Math. Phys. 112(1) (1987), 175-203.

K. WATANABE, Rational singularities with k*-action, in Commutative algebra: Proc. Conf.
Trento, Italy, 1981, Lecture Notes in Pure and Applied Mathematics, Volume 84, pp. 339—
351 (Marcel Dekker, New York, 1983).

https://doi.org/10.1017/50013091515000012 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000012

https://doi.org/10.1017/50013091515000012 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000012

