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PERMANENTS OF (0, 1)-MATRICES HAVING AT 
MOST TWO ZEROS PER LINE 

BY 

J. R. HENDERSON 

SUMMARY. Let Un denote the nth ménage number. Within the 
class of order n matrices of zeros and ones with at most two 
zeros in every row and column the minimum permanent is Un 

when n is even and—1 + Un when n is odd. 

If A = (a{j) is a real order n matrix, the permanent of A (per A) is defined to be 
2 aua)a2Tt(2) • " " anvin)9 ^ e sum being over all permutations IT e Sn> the symmetric 
group on n letters. Permanents have considerable combinatorial interest, a result 
in part due to the fact that 

(1) per A = per B 

when A, B are "combinatorially equivalent", i.e., when there exist permutation 
matrices P, Q such that B=PAQ. For example, the "problème des ménages" 
asks for the number (Mn) of ways In symbols al9 a2,... , an9 bl9 b2,... , bn may 
be arranged in a circle so that the a's and 6's occur alternately but ai9 èt- are not 
adjacent for any z=l, 2 , . . . , n. The answer is Mn=2nl Un where an explicit 
formula for the «th ménage number Un is known [4] but equivalently, it may be 
defined as the permanent of the order n (0, l)-matrix having exactly two zeros in 
every line (row or column), 

0 0 
0 1 0 

0 1 
1 

(2) 

. 1 0 
1 0 1 0 

0 0_ 

or of any combinatorially equivalent matrix [3]. 
Further interest in permanents is fostered by various unresolved conjectures 

concerning maximum and minimum permanent values within certain classes of 
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matrices, e.g., [2]. In particular, the van der Waerden conjecture remains un
resolved [1]. Let &(n, k)(é$(n, k)) denote the class of all order n(0, l)-matrices 
having exactly n—k (at most n—k) zeros per line. It is the purpose of this paper 
to determine the minimum permanent within 3§(n, n—2). Specifically we shall 
show: 

THEOREM 1. The minimum permanent in 
for n odd. 

(n, n—2) is Unfor n even and — 1 + Un 

Before turning to the proof we shall make a simplification (Lemma 1) and obtain 
some useful formulae (Lemma 2). Use will be made of the fact that members of 
&(n, n—2) are combinatorially equivalent to (0, l)-complements of the direct 
sum of (0, l)-complements of matrices of type (2) of orders pl9p2,... ,pv where 
n=p±+p2+ • • • +pv is a partition of n with a l l ^ > 2 . 

LEMMA 1. The minimum permanent in £%(n, n—2) can be found in the union of the 
following two subclasses of 33(n, n—2): 

(i)ê(n,n-2) 
(ii) the class of order n matrices of the form: 

(3) 

0 

.1 

1 1 

B 

with B e #(«—1, n—3). (Note, since the constant line sum of B is two less than its 
order, all combinatorially inequivalent forms for B have been implicitly described 
above.) 

Proof. If A has minimum permanent within the class &(n, n—2) then we can 
assume that every one in A is in some line with sum exactly equal to n—2, else such 
a one can be removed without change in the permanent value. For convenience 
we shall say such a reduced A has "property R". Now suppose A $ â(n9 n—2). 
Clearly A cannot have a line, say a row, of sum n since by property R every column 
would contain two zeros and hence since the matrix is square, some row would 
contain more than two zeros, i.e., A <£ 3§{n, n—2). It follows that A has both a 
row and a column with sum n — 1. Let the first column of A be such a column, 
taking its zero to be in the first row. By property R the last n— 1 rows have row 
sums equal to n—2 so the first row must be the one with sum n—\. Hence A is of 
the form (3) with the row sums of B equal to n—3. Repeating the argument for the 
column sums of B we conclude B e #(n—1, n—3). 

It is obvious that an even simpler application of property R solves the analogous 
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problem of the minimum permanent in £S(n9 «—1). Namely, the minimum per
manent in this class is Dn9 the nth derangement number, for which an explicit 
formula is known but which can be equivalently defined as the permanent of the 
(0, l)-complement of the order n identity matrix [3]. 

By a "list" we mean a finite unordered set of positive integers. A particular list 
of length ix will be denoted either as 

(4) [Pi, p 2 9 . . . , pj 
or, more commonly as 

(5) (j>2, P2, • • • , Pfil 

The notation (5) will be used rather than (4) when some terms have possibly been 
suppressed, i.e., 

(Pl> P2> • - • > Pfi) = [Pi, Pto • • • » Pfi> Pn+1> • • • » JVfvl 

for some non-negative integer v and for some positive integers />M+i,... ,/v+v 
By U[pl9p29... tpp] we shall denote the permanent of the matrix which is the 
(0, l)-complement of the direct sum of (0, l)-complements of matrices of type (2) 
of orders pl9p29. •. ,JV respectively. If some/?t=l, the corresponding summand 
will be an order one zero matrix. By (1) the value U[pl9p29... ,/>,,] is independent 
of the ordering of the pjs and by Lemma 1 U[pl9p29... ,/>J, for some partition 
n=p1+p2-\ hPn of n9 is the minimum permanent wanted. U(pl9p29... 9p^) 
has the same definition as U[pl9p29... ,/?v], the notation implying that indication 
of some matrix summands might have been suppressed. In particular, an equation 
involving U(pl9p29... ,/?„), U(ql9 q29... , qv)9 etc., holds when identical, arbitrary 
(positive integer) terms are adjoined to all lists. 

LEMMA 2. Ifk>l9l>\9 

k+l-l Tc-1 l-l 

(6) u(k, i) =u(k+i)+2 2 u(i)- 2 m , 0 -2 v(k, o. 
t = l i = l *'=1 

Ifk=l9 />1 , (6) has the modified form 

(7) 2 17(1, 0 = 3 2 U(ï)+2U(l)+U(l+l). 

Ifl>2, 

(8) 1/(1,1) = U(!-Ï)+U(T)+U(l+Ï). 

Proof. If the zero in the (1, 1) position of the matrix An in (2) is replaced by a 
one, the new permanent value, per A„, is 

[7n+per A\_x 
so by induction, 

(9) per^i-iX 
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Moreover, this is the permanent of any matrix obtained by replacing a zero of A„ 
by a one since all such matrices are combinatorially equivalent. Let k>\, / > 1 , 
and consider the matrices which define U[k, I], U[k+l]: 

(10) 

0 0 
0 1 

1 0 
1 
0 
0 1 

1 1 0 
0 0. 

0 0 
0 1 

1 0 
1 
0 

0 

0 1 

1 0 
0 0. 

These matrices differ only in an order 2 submatrix as indicated. By comparing the 
sets of k+l ones, no two in a line, occurring in the two matrices (10) and by 
making use of (9), we obtain the identity (6). This fails if k—\, but a slight modi
fication of the comparison gives 

u(i, 9-2 u(o-2 2 u® = u(i+i)-zu(i, 9 

which is a rearrangement of (7). If /— 1 > 1 we can rewrite (7) with /•— 1 replacing 
/. Subtraction of these two forms of (7) then gives (8). 

By (8) £7(1, /)>£/(/+1) for />2 so that except possibly for 17(1,1), 17(1, 2), 
permanent values smaller than 17(1, /) can be found among the values U(l+l). 
Theorem 1 will now be proven. First we show U[pl9p29... ,p,Ji>U[q] if 

A * 

0 = 2 A* 

unless ^=2 and \p±—/?2| = 1« Finally we complete the proof by showing 
U[k9k+l]=-l + U[2k+l]. 

Proof of Theorem 1. Our first reduction is to show: 

(11) Ukfl) = U(l+k)+U(l-k) if fc>l and / > k+ l . 

Subtracting expressions for t/(2, 4), U(2, 3) as obtained from (6) we have 

U(2, 4)-17(2, 3) = U(6)+U(5)+U(l, 3)-17(1, 4)-17(2, 3) 

and using (8) this simplifies to (11) when k=2 and /=4. The same approach works 
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for [7(fc, /) by induction. Assume the result for [7(fc', /') for all pairs k\ / '(fc'>l 

and V>k'+\) satisfying k'<k or / ' < / if fc'=fc. Again by (6), 

U(k9 Z)-[/(fc, J - l ) = U(k+I)+U(k+l-l)-U(l91) 

K } -2U(i, 0 + 17(1, J - l ) + 2 £ / ( f , J_l)_C7(fc, / - l ) . 

Using (8) for the terms 17(1, /), [7(1, /—1) and applying the induction hypothesis 
to the two summations in (12) we obtain the result wanted. 

The proof of Theorem 1 has now been reduced to a consideration of those lists 
of the form 

[fc, fc,..., fc, fc+1, fc+1,..., fc+1] with fc ^ 1. 

We next note that: 

(13) U(kf k) > U(2k) if k > 1. 

Applying (11) to (6) and making use of (8) (assuming k>3)9 we have 

(14) U(k, k) = U(2k)+2U(l)+2U(2k-l)-2U(k-l, fc) 

(15) U(k, fc+1) = C7(2fc+l)+2(7(l)+l7(2k~l)+(7(2fc)~l7(fc-l,fc)--C7(fc,fc). 

Equating the two expressions for U(k, fc)— I7(2fc)—2t7(l) as obtained from (14), 
(15) we get 

(16) U(k9 fc+l)-L7(2fc+l) = (7(fc-l, fc)-l/(2fc-l). 

So (14) becomes 

(17) U(k, fc)-l/(2fc) = 2{17(1)+1/(5)-17(2, 3)}, fc ^ 3 

after successive applications of (16). For fc=2 (14), (15) must be modified, but simi
larly equating the analogous expressions for U{29 2)—U(A)—2U{\) we obtain 

U(29 3)-17(5) = 17(1, 2)-[7(3)-17(2). 

Consequently, for fc>l, (17) becomes 

l/(fc, fc)-C7(2fc) = 2{C7(l)+[7(2)+17(3)-17(1, 2)} 

and using (7) for 7=2, 

[7(fc, fc)-[7(2fc) = 2{[/(l, l ) - 2 [ / ( l ) - [ / ( 2 )} . 

If we consider the terms in the permanent value [7(1,1) we have 

(18) [7(1,1) = [7(2)+2[/(l)+[/( ) 

and therefore (17), for fc>l can be written 

[7(fc, fc)-[7(2fc) = 2[7( ) 

so that [7(fc, fc)— [7(2fc)>0 if fc>l and the same result follows from (18) for fc=l. 
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To complete the proof of Theorem 1 we note that U[k9 /c+l] = —1 + U[2k+l] 

for k>\. This is readily checked for k=l, 2 and for k>3 (16) gives us 

U[k, k+l]-U[2k+l] = U[2, 3]-t/[5] = - 1 . 

A final point should be noted: For all «7e 3, the minimum permanent in 

£§(n, n—2) is attained in ê(n, n—2). 
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