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Abstract
This paper focuses on dynamics of systems of particles that allow interactions beyond binary, and their behavior
as the number of particles goes to infinity. More precisely, the paper provides the first rigorous derivation of a
binary-ternary Boltzmann equation describing the kinetic properties of a gas consisting of hard spheres, where
particles undergo either binary or ternary instantaneous interactions, while preserving momentum and energy. An
important challenge we overcome in deriving this equation is related to providing a mathematical framework that
allows us to detect both binary and ternary interactions. Furthermore, this paper introduces new algebraic and
geometric techniques in order to eventually decouple binary and ternary interactions and understand the way they
could succeed one another in time. We expect that this paper can serve as a guideline for deriving a generalized
Boltzmann equation that incorporates higher-order interactions among particles.
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1. Introduction

The Boltzmann equation, introduced by L. Boltzmann [11] and J.C. Maxwell [27], describes the time
evolution of the probability density of a rarefied, monoatomic gas in thermal non-equilibrium in R𝑑 , for
𝑑 ≥ 2. The Boltzmann equation accurately describes very dilute gases since only binary interactions
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between particles are taken into account. However, in certain situations, higher-order interactions are
much more likely to happen; therefore, they produce a significant effect in the time evolution of the
gas. A relevant example is a colloid, which is a homogeneous non-crystalline substance consisting
of either large molecules or ultramicroscopic particles of one substance dispersed through a second
substance. As pointed out in [29], multi-particle interactions, which are modeled by a sum of higher-
order interaction terms, significantly contribute to the grand potential of the colloidal gas. A surprising
result of [29], but of invaluable computational importance in numerical simulations, is that interactions
among three particles are actually characterized by the sum of the distances between particles, as
opposed to depending on different geometric configurations among interacting particles. The results of
[29] have been further verified experimentally (e.g., [16]) and numerically (e.g., [23]).

1.1. Previous work and the goal of this paper

Motivated by the fact that the Boltzmann equation is valid only for very dilute gases and by the
observations of [29] in [5], we suggested a kinetic model which goes beyond binary interactions
incorporating sums of higher-order interaction terms. In particular, we introduced a generalized equation,
which could serve as a toy model for incorporating higher-order interactions among particles and is of
the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 =

𝑚∑
𝑘=2

𝑄𝑘 ( 𝑓 , 𝑓 , · · · , 𝑓︸��������︷︷��������︸
𝑘-times

), (𝑡, 𝑥, 𝑣) ∈ (0,∞) × R𝑑 × R𝑑 ,

𝑓 (0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣), (𝑥, 𝑣) ∈ R𝑑 × R𝑑 ,

(1.1)

where, for 𝑘 = 1, ..., 𝑚, the expression 𝑄𝑘 ( 𝑓 , ..., 𝑓 ) is the k-th order collisional operator and 𝑚 ∈ N
is the highest order collisions allowed. Notice that for 𝑚 = 2, equation (1.1) reduces to the classical
Boltzmann equation. We note that equations similar to (1.1) were studied for Maxwell molecules in the
works of Bobylev, Gamba and Cercignani [8, 7] using Fourier transform methods.

The task of rigorously deriving an equation of the form (1.1) from a classical many particle sys-
tem, even for the case 𝑚 = 2 (i.e., the Boltzmann equation), is a challenging problem that has been
first settled for short times and hard sphere interactions in the pioneering work of Lanford [26], and
for short range potentials by King [25]. This program was revisited by Gallagher, Saint-Raymond,
Texier in [18], where important quantitative information on the convergence was provided. See also
[12, 28, 30, 31, 19] and the references mentioned in these papers. More recent works related to
derivation of the Boltzmann equation itself have been carried out using the notion of fluctuations
in, for example, [9, 10, 20]. Regarding longer times, the equation was derived for hard spheres for
long times originally only for initial data near vacuum in [24]. However, recently, a different deriva-
tion has been carried out by Deng, Hani and Ma [15] as long as the Boltzmann equation itself is
well-posed.

A relevant step towards rigorously deriving (1.1) for 𝑚 = 3 has been recently obtained in [5],
where we considered a certain type of three-particle interactions that lead us to derive a purely ternary
kinetic equation, which we called a ternary Boltzmann equation. However, the derivation of (1.1)
for 𝑚 = 3 has not been addressed yet, and that is exactly what we do in this paper. Furthermore,
we expect that this paper can serve as a guideline for rigorously deriving generalized Boltzmann
equation.

We start by describing challenges that we faced when introducing a framework that allows detection
of binary and ternary interactions, while also accommodating a decoupling of such interactions so that
it is clear which one is responsible for a creation of a binary or ternary collision terms in the nonlinear
equation (1.1).
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1.2. Challenges of detecting both binary and ternary interactions

The first challenge we face in deriving (1.1) for 𝑚 = 3 is to provide a mathematical framework allowing
us to detect both binary and ternary interactions among particles. We achieve that by assuming the
following:

◦ Binary interactions are modeled as elastic collisions of hard spheres of diameter 𝜖 (i.e., two particles
interact when the distance of their centers defined as

𝑑2(𝑥𝑖 , 𝑥 𝑗 ) := |𝑥𝑖 − 𝑥 𝑗 |

becomes equal to the diameter 𝜖). We call this an (𝑖, 𝑗) interaction. As known, the relevant scaling to
observe binary interactions is the Boltzmann-Grad scaling [21, 22]

𝑁𝜖𝑑−1 � 1, (1.2)

as the number of particles 𝑁 → ∞ and their diameter 𝜖 → 0+.
◦ Ternary interactions that we consider in this paper are going to be of an interaction zone type as in

[5], by which we mean a particle i interacts with the pair of uncorrelated particles ( 𝑗 , 𝑘) when the
non-symmetric ternary distance

𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) :=
√
|𝑥𝑖 − 𝑥 𝑗 |2 + |𝑥𝑖 − 𝑥𝑘 |2

becomes
√

2𝜖 . We call this an (𝑖; 𝑗 , 𝑘) interaction. The particle i is called the central particle of the
interaction, and the particles 𝑗 , 𝑘 are called adjacent particles.In terms of scaling, one could interpret
an (𝑖; 𝑗 , 𝑘) interaction of interaction zone 𝜖 as a special hard sphere interaction of radius

√
2𝜖 in R2𝑑

since the collisional condition 𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) =
√

2𝜖 can be equivalently written as

|x𝒊,𝒊 − x𝒋 ,𝒌 |2𝑑 =
√

2𝜖,

where x𝒊,𝒊 =

(
𝑥𝑖
𝑥𝑖

)
and x𝒋 ,𝒌 =

(
𝑥 𝑗
𝑥𝑘

)
. Then a 2𝑑-particle with position x𝒊,𝒊 would span a volume of

order 𝜖2𝑑−1 in a unit of time. Assuming there are N-particles in the system, in order to observe 𝑂 (1)
interaction per unit of time, there are 𝑁2 − 1 options for the 2𝑑-particle positioned at x𝒋 ,𝒌 . We obtain
that 𝑁2𝜖2𝑑−1 = 𝑂 (1), or equivalently,

𝑁𝜖𝑑−1/2 � 1, (1.3)

as the number of particles 𝑁 → ∞ and the interaction zone 𝜖 → 0+, which is the scaling used in [5]
to control ternary interactions.

Simultaneous consideration of both binary and ternary interactions brings the first crucial obstacle
which is of conceptual nature; the apparent incompatibility of the Boltzmann-Grad scaling (1.2) dictated
by binary interactions and the scaling (1.3) of ternary interactions, if both of them are of order 𝜖 . This
incompatibility creates major difficulties even at the formal level. We overcome this scaling obstacle by
assuming that, at the N-particle level, hard spheres of diameter 𝜖2 can participate in binary interactions
as well as in ternary interactions via an interaction zone 𝜖3. Imposing scalings (1.2) with 𝜖 := 𝜖2 and
(1.3) with 𝜖 := 𝜖3, we obtain the common scaling

𝑁𝜖𝑑−1
2 � 𝑁𝜖𝑑−1/2

3 � 1, (1.4)
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Figure 1. Both binary and ternary interactions at the same time.

Figure 2. Binary interaction: 𝜖2
2 + 𝜆2

2 > 2𝜖2
3 , 𝜆2 > 𝜖2.

Figure 3. Ternary interaction: 𝜆2
1 + 𝜆2

2 = 2𝜖2
3 , 𝜆1, 𝜆2 > 𝜖2.

as 𝑁 → ∞ and 𝜖2, 𝜖3 → 0+. Notice that the scaling (1.4) implies that for sufficiently large N, we have

𝜖2 << 𝜖3, (1.5)

which will have a prominent role in this paper.
The next challenge we address is the need to decouple binary and ternary interactions for a system

of finitely many particles. More precisely, our framework a-priori allows that particles i and j interact
as hard spheres:

𝑑2(𝑥𝑖 , 𝑥 𝑗 ) = 𝜖2,

while at the same time there is another particle k such that the particle i interacts with the particles j and k:

𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) =
√

2𝜖3.

Such a configuration is illustrated in Figure 1. Pathological configurations, including the one we just
described, are going to be shown to be negligible. This is far from trivial, and for more details on the
microscopic dynamics, see Subsection 1.3 and Section 3. In particular, we shall show that as long as
0 < 𝜖2 < 𝜖3 < 1, only the following two interaction scenarios are possible with nontrivial probability
under time evolution:

1. Two particles interact as hard spheres, while all other particles are not involved in any binary or
ternary interactions at the same time. This type of configurations generates the binary collisional
operator. It is illustrated in Figure 2.

2. Three particles interact via an interaction zone, while none of them is involved in a binary interaction
with either of the other two particles of the interaction zone at the same time. The rest of the particles
are not involved in any binary or ternary interactions. This type of configurations is responsible for
generating the ternary collisional operator. It is illustrated in Figure 3.
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Figure 4.

Finally, since we will eventually let the number of particles 𝑁 → ∞, the main challenge we need to
address is the stability of a good configuration1 under the adjunction of one or two collisional particles.
Assume, for a moment, that we have a good configuration of m-particles and we add 𝜎 particles to the
system, where 𝜎 ∈ {1, 2}, such that a binary or ternary interaction is formed among one of the existing
particles and the 𝜎 new particles. In general, under backwards time evolution, the system could run into
another binary or ternary interaction; see, for example, Figure 4, which illustrates the mathematically
most difficult case where the newly formed (𝑚 + 2)-configuration runs into a binary interaction. To the
best of our knowledge, this is the first time there was the need to address the possibility of a newly
formed interacting configuration running into an interaction of a different type (binary to ternary or
ternary to binary) backwards in time. However, in Section 8 and Section 9, we develop novel algebraic
and geometric tools which help us eliminate pathological scenarios, including the one described in
Figure 4, by showing that outside of a small measure set, negligible in the limit, the newly formed
configuration does not run into any additional interactions backwards in time. For more details on the
technical difficulties faced, see Subsection 1.6.

In the next subsection, we investigate more precisely what happens when a binary or a ternary
interactions occurs and describe the time evolution of such a system.

1.3. Dynamics of finitely many particles

Let us describe the evolution in R𝑑 , 𝑑 ≥ 2, of a system of N hard spheres of diameter 𝜖2 and interaction
zone 𝜖3, where 0 < 𝜖2 < 𝜖3 < 1. The assumption 𝜖2 < 𝜖3 is necessary for ternary interactions to be of
non trivial probability; see Remark 3.1 for more details.

1.3.1. Interactions considered
We first define the interactions considered in this paper.

Definition 1.1. Let 𝑁 ∈ N, with 𝑁 ≥ 3, and 0 < 𝜖2 < 𝜖3 < 1. We define binary and ternary interactions,
also referred to as collisions, as follows:

◦ Consider two particles 𝑖, 𝑗 ∈ {1, ..., 𝑁} with positions 𝑥𝑖 , 𝑥 𝑗 ∈ R𝑑 . We say that the particles 𝑖, 𝑗 are
in an (𝑖, 𝑗) binary interaction if the following geometric condition holds:

𝑑2(𝑥𝑖 , 𝑥 𝑗 ) := |𝑥𝑖 − 𝑥 𝑗 | = 𝜖2. (1.6)

◦ Consider three particles 𝑖, 𝑗 , 𝑘 ∈ {1, ..., 𝑁}, with positions 𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘 ∈ R𝑑 . We say that the particles
𝑖, 𝑗 , 𝑘 are in an (𝑖; 𝑗 , 𝑘) interaction2 if the following geometric condition holds:

𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) :=
√
|𝑥𝑖 − 𝑥 𝑗 |2 + |𝑥𝑖 − 𝑥𝑘 |2 =

√
2𝜖3. (1.7)

1By which we mean a configuration which does not run into any kind of interactions under backwards time evolution.
2We use the notation (𝑖; 𝑗 , 𝑘) because the interaction condition is not symmetric. The particle i is the central particle of the

interaction (i.e., the one interacting with the particles j and k, respectively).
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When an (𝑖, 𝑗) interaction occurs, the velocities 𝑣𝑖 , 𝑣 𝑗 of the i-th and j-th particles instantaneously
transform according to the binary collisional law:

𝑣′𝑖 = 𝑣𝑖 + 〈𝜔1, 𝑣 𝑗 − 𝑣𝑖〉𝜔1,

𝑣′𝑗 = 𝑣 𝑗 − 〈𝜔1, 𝑣 𝑗 − 𝑣𝑖〉𝜔1,
(1.8)

where

𝜔1 :=
𝑥 𝑗 − 𝑥𝑖

𝜖2
. (1.9)

Thanks to (1.6), we have 𝜔1 ∈ S𝑑−1
1 . The vector 𝜔1 is called binary impact direction and it represents

the scaled relative position of the colliding particles. Moreover, one can see that the binary momentum-
energy system

𝑣′ + 𝑣′1 = 𝑣 + 𝑣1,

|𝑣′ |2 + |𝑣′1 |
2 = |𝑣 |2 + |𝑣1 |2,

(1.10)

is satisfied.
When an (𝑖; 𝑗 , 𝑘) interaction happens, the velocities 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 of the i-th, j-th and k-th particles

instantaneously transform according to the ternary collisional law derived in [5]

𝑣∗𝑖 = 𝑣𝑖 +
〈𝜔1, 𝑣 𝑗 − 𝑣𝑖〉 + 〈𝜔2, 𝑣𝑘 − 𝑣𝑖〉

1 + 〈𝜔1, 𝜔2〉
(𝜔1 + 𝜔2),

𝑣∗𝑗 = 𝑣 𝑗 −
〈𝜔1, 𝑣 𝑗 − 𝑣𝑖〉 + 〈𝜔2, 𝑣𝑘 − 𝑣𝑖〉

1 + 〈𝜔1, 𝜔2〉
𝜔1,

𝑣∗𝑘 = 𝑣𝑘 −
〈𝜔1, 𝑣 𝑗 − 𝑣𝑖〉 + 〈𝜔2, 𝑣𝑘 − 𝑣𝑖〉

1 + 〈𝜔1, 𝜔2〉
𝜔2,

(1.11)

where

(𝜔1, 𝜔2) :=
(
𝑥 𝑗 − 𝑥𝑖√

2𝜖3
,
𝑥𝑘 − 𝑥𝑖√

2𝜖3

)
. (1.12)

Thanks to (1.7), we have (𝜔1, 𝜔2) ∈ S2𝑑−1
1 . The vectors (𝜔1, 𝜔2) are called ternary impact directions,

and they represent the scaled relative positions of the interacting particles. Moreover, it has been shown
that the ternary momentum-energy system

𝑣∗ + 𝑣∗1 + 𝑣∗2 = 𝑣 + 𝑣1 + 𝑣2,

|𝑣∗ |2 + |𝑣∗1 |
2 + |𝑣∗2 |

2 = |𝑣 |2 + |𝑣1 |2 + |𝑣2 |2,
(1.13)

is satisfied. In particular, expression (1.11) provides the unique solution to (1.13) equipped with the
extra condition

𝑣∗2 = 𝑣2 + 𝑐𝜔1, 𝑣∗3 = 𝑣3 + 𝑐𝜔2, 𝑐 ∈ R.

We note that we had a choice in selecting the additional condition to uniquely solve (1.13). However,
the one we chose in this work expresses the uncorrelation of the adjacent particles since their velocities
are transformed uniformly with respect to the impact directions.

Remark 1.2. We note that both binary and ternary interactions are involutionary (i.e., reversible and
measure-preserving). For more details, see Proposition 2.2 and Proposition 2.5 for binary and ternary
interactions, respectively.
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1.3.2. Phase space and description of the flow
Let 𝑁 ∈ N, with 𝑁 ≥ 3, and 0 < 𝜖2 < 𝜖3 < 1. The natural phase space3 to capture both binary and
ternary interactions is

D𝑁 ,𝜖2 , 𝜖3 =
{
𝑍𝑁 = (𝑋𝑁 , 𝑉𝑁 ) ∈ R2𝑑𝑁 : 𝑑2(𝑥𝑖 , 𝑥 𝑗 ) ≥ 𝜖2, ∀(𝑖, 𝑗) ∈ I2

𝑁 ,

and 𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) ≥
√

2𝜖3, ∀(𝑖, 𝑗 , 𝑘) ∈ I3
𝑁

}
,

(1.14)

where 𝑋𝑁 = (𝑥1, 𝑥2, ..., 𝑥𝑁 ), 𝑉𝑁 = (𝑣1, 𝑣2, ..., 𝑣𝑁 ), represent the positions and velocities of the N-
particles, and the index sets I2

𝑁 , I3
𝑁 are given by

I2
𝑁 = {(𝑖, 𝑗) ∈ {1, ..., 𝑁}2 : 𝑖 < 𝑗}, I3

𝑁 = {(𝑖, 𝑗) ∈ {1, ..., 𝑁}3 : 𝑖 < 𝑗 < 𝑘}.

Let us describe the evolution in time of such a system. Consider an initial configuration 𝑍𝑁 ∈
D𝑁 ,𝜖2 , 𝜖3 . The motion is described as follows:

1. Particles are assumed to perform rectilinear motion as long as there is no interaction

�𝑥𝑖 = 𝑣𝑖 , �𝑣𝑖 = 0, ∀𝑖 ∈ {1, ..., 𝑁}.

2. Assume now that an initial configuration 𝑍𝑁 = (𝑋𝑁 , 𝑉𝑁 ) has evolved until time 𝑡 > 0, reaching
𝑍𝑁 (𝑡) = (𝑋𝑁 (𝑡), 𝑉𝑁 (𝑡)), and that there is an interaction at time t. We have the following cases:
◦ The interaction is binary: Assuming there is an (𝑖, 𝑗) interaction, the velocities of the in-

teracting particles instantaneously transform velocities according to the binary collisional law
(𝑣𝑖 (𝑡), 𝑣 𝑗 (𝑡)) → (𝑣′𝑖 (𝑡), 𝑣′𝑗 (𝑡)) given in (1.8).

◦ The interaction is ternary: Assuming there is an (𝑖; 𝑗 , 𝑘) interaction, the velocities of the interacting
particles instantaneously transform velocities according to the ternary collisional law

(𝑣𝑖 (𝑡), 𝑣 𝑗 (𝑡), 𝑣𝑘 (𝑡)) → (𝑣∗𝑖 (𝑡), 𝑣∗𝑗 (𝑡), 𝑣∗𝑘 (𝑡)),

given in (1.11).

Let us note that (I)–(II) are not sufficient to generate a global in time flow for the particle system
since the velocity transformations are not smooth. In general, pathologies might arise as time evolves,
meaning more than one type of interactions happening at the same time, grazing interaction, or infinitely
many interactions in finite time. Although well-defined dynamics were shown to exist in [1] for hard
spheres and in [5] for the purely ternary case, those results do not imply well-posedness of the flow for
the mixed case, where both binary and ternary interactions are taken into account. The reason for that is
that a binary interaction can be succeeded by a ternary interaction and vice versa, a situation which was
not addressed in [1] or [5]. However, we are showing that a non-grazing interaction cannot be succeeded
by the same interaction. In other words, when two particles (𝑖, 𝑗) interact, the next interaction could
be anything, binary or ternary, except a binary recollision of the particles (𝑖, 𝑗). Similarly, when three
particles run into an (𝑖; 𝑗 , 𝑘) interaction, the next interaction can be anything except a ternary (𝑖; 𝑗 , 𝑘)4
interaction. This observation allows us to define the flow locally a.e. and then run some combinatorial
covering arguments to geometrically exclude a zero Lebesgue measure set such that the flow is globally
in time defined on the complement.

Let us informally state this result. For a detailed statement, see Theorem 3.23.
Existence of a global flow: Let 𝑁 ∈ N and 0 < 𝜖2 < 𝜖3 < 1. There is a global in time measure-

preserving flow (Ψ𝑡
𝑚)𝑡 ∈R : D𝑁 ,𝜖2 , 𝜖3 → D𝑁 ,𝜖2 , 𝜖3 described a.e. by (I)-(II) which preserves kinetic energy

and and is time reversible. This flow is called the N-particle (𝜖2, 𝜖3)-interaction flow.

3Upon symmetrization, one could define the phase space without ordering the particles and obtain a symmetrized version of
ternary operator (see [2] for more details). For simplicity, we opt to work upon ordering the particles.

4Any other permutation of the particle 𝑖, 𝑗 , 𝑘 cannot form an interaction since 𝑖 < 𝑗 < 𝑘. In case one does not order the
particles, a subsequent ( 𝑗; 𝑖, 𝑘) interaction, for instance, could possibly happen.
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The global measure-preserving interaction flow yields the Liouville equation5 for the evolution 𝑓𝑁
of an initial N-particle probability density 𝑓𝑁 ,0.

𝜕𝑡 𝑓𝑁 +
𝑁∑
𝑖=1

𝑣𝑖∇𝑥𝑖 𝑓𝑁 = 0, (𝑡, 𝑍𝑁 ) ∈ (0,∞) × �̊�𝑁 ,𝜖2 , 𝜖3 ,

𝑓𝑁 (𝑡, 𝑍 ′
𝑁 ) = 𝑓 (𝑡, 𝑍𝑁 ), 𝑡 ∈ [0,∞), 𝑍𝑁 is a simple binary interaction6,

𝑓𝑁 (𝑡, 𝑍∗
𝑁 ) = 𝑓 (𝑡, 𝑍𝑁 ), 𝑡 ∈ [0,∞), 𝑍𝑁 is a simple ternary interaction7,

𝑓𝑁 (0, 𝑍𝑁 ) = 𝑓𝑁 ,0(𝑍𝑁 ), 𝑍𝑁 ∈ �̊�𝑁 ,𝜖2 , 𝜖3 .

(1.15)

The Liouville equation provides a complete deterministic description of the system of N-particles.
Although Liouville’s equation is a linear transport equation, efficiently solving it is almost impossible
in the case where the particle number N is very large. This is why an accurate kinetic description is
welcome, and to obtain it, one wants to understand the limiting behavior of it as 𝑁 → ∞ and 𝜖2, 𝜖3 → 0+,
with the hope that qualitative properties will be revealed for a large but finite N.

1.4. The binary-ternary Botzmann equation

To obtain such a kinetic description, we let the number of particles 𝑁 → ∞ and the diameter and
interaction zone of the particles 𝜖2, 𝜖3 → 0+ in the common scaling (1.4):

𝑁𝜖𝑑−1
2 � 𝑁𝜖

𝑑− 1
2

3 � 1,

which will lead the binary-ternary Boltzmann equation{
𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = 𝑄2 ( 𝑓 , 𝑓 ) +𝑄3 ( 𝑓 , 𝑓 , 𝑓 ), (𝑡, 𝑥, 𝑣) ∈ (0,∞) × R𝑑 × R𝑑 ,
𝑓 (𝑡 = 0) = 𝑓0(𝑥, 𝑣), (𝑥, 𝑣) ∈ R𝑑 × R𝑑 .

(1.16)

The operator 𝑄2 ( 𝑓 , 𝑓 ) (see, for example, [13]) is the classical hard sphere binary collisional operator
given by

𝑄2 ( 𝑓 , 𝑓 ) =
∫
S
𝑑−1
1 ×R𝑑

𝑏+2
(
𝑓 ′ 𝑓 ′1 − 𝑓 𝑓1

)
𝑑𝜔1 𝑑𝑣1, (1.17)

where

𝑏2 = 〈𝜔1, 𝑣1 − 𝑣〉, 𝑏+2 = max{𝑏2, 0},
𝑓 ′ = 𝑓 (𝑡, 𝑥, 𝑣′), 𝑓 = 𝑓 (𝑥, 𝑡, 𝑣), 𝑓 ′1 = 𝑓1(𝑡, 𝑥, 𝑣′1), 𝑓1 = 𝑓 (𝑡, 𝑥, 𝑣1).

The operator 𝑄3 ( 𝑓 , 𝑓 , 𝑓 ), introduced for the first time in [5], is the ternary hard interaction zone
operator given by

𝑄3 ( 𝑓 , 𝑓 , 𝑓 ) =
∫
S

2𝑑−1
1 ×R2𝑑

𝑏+3
(
𝑓 ∗ 𝑓 ∗1 𝑓 ∗2 − 𝑓 𝑓1 𝑓2

)
𝑑𝜔1 𝑑𝜔2 𝑑𝑣1 𝑑𝑣2, (1.18)

where
𝑏3(𝜔1, 𝜔2, 𝑣1 − 𝑣, 𝑣2 − 𝑣) := 〈𝜔1, 𝑣1 − 𝑣〉 + 〈𝜔2, 𝑣2 − 𝑣〉, 𝑏+3 = max{𝑏3, 0},

𝑓 ∗ = 𝑓 (𝑡, 𝑥, 𝑣∗), 𝑓 = 𝑓 (𝑥, 𝑡, 𝑣), 𝑓 ∗𝑖 = 𝑓 ∗𝑖 (𝑡, 𝑥, 𝑣∗𝑖 ), 𝑓𝑖 = 𝑓 (𝑡, 𝑥, 𝑣𝑖), 𝑖 ∈ {1, 2}.
(1.19)

5In case 𝑁 = 2, the ternary boundary condition is not present in (1.15), while if 𝑁 = 1, equation (1.15) is just the transport
equation.

6By simple binary interaction, we mean the only interaction happening is an (𝑖, 𝑗) interaction. In this case, we write 𝑍 ′
𝑁 =

(𝑋𝑁 , 𝑉
′
𝑁 ) , where 𝑉 ′

𝑁 = (𝑣1 , ..., 𝑣𝑖−1 , 𝑣
′
𝑖 , 𝑣𝑖+1 , ..., 𝑣𝑗−1 , 𝑣

′
𝑗 , 𝑣𝑗+1 , ..., 𝑣𝑁 ) .

7By simple ternary interaction, we mean the only interaction happening is an (𝑖; 𝑗 , 𝑘) interaction. In this case, we write
𝑍 ∗
𝑁 = (𝑋𝑁 , 𝑉

∗
𝑁 ) , where 𝑉 ∗

𝑁 = (𝑣1 , ..., 𝑣𝑖−1 , 𝑣
∗
𝑖 , 𝑣𝑖+1 , ..., 𝑣𝑗−1 , 𝑣

∗
𝑗 , 𝑣𝑗+1 , ..., 𝑣𝑘−1 , 𝑣

∗
𝑘 , 𝑣𝑘+1 , ..., 𝑣𝑁 ) .
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We should mention that in [3], global well-posedness near vacuum has been shown for (1.16) for
potentials ranging from moderately soft to hard in spaces of functions bounded by Maxwellian. In fact,
in [3], it is seen that the ternary collisional operator allows consideration of softer potentials that the
binary operator. In other words, the ternary correction to the Boltzmann equation does not behave worse
than the classical Boltzmann equation.

It is important to point out that, upon symmetrization of the ternary collisional operator (see [2], [4]),
the corresponding binary-ternary Boltzmann equation enjoys similar statistical and entropy production
properties, as well as conservation laws, as the classical Boltzmann equation. Inspired by this fact, in
collaboration with Gamba, Tasković [4], we studied the generation and propagation of polynomial and
exponential moments, as well as the global well-posedness, of the space homogeneous binary-ternary
Boltzmann equation. Interestingly, the results of [4] show that the co-existence of binary and ternary
collisions yields better generation properties and time decay than when only binary or ternary collisions
are considered. This suggests that such a model could potentially serve as a correction of the classical
Boltzmann equation.

Recently, in collaboration with Warner [6], based on ideas introduced in the current paper, we
were able to derive an equation of the type (1.1) for arbitrary order collisions based on a symmetric
distance/collisional law among the particles. In other words, unlike the asymmetry present in the
definition of the ternary distance (1.7), in [6] particles are fully interchangeable.

1.5. Strategy of the derivation and statement of the main result

In order to pass from the N-particle system dynamics to the kinetic equation (1.16), we implement the
program of constructing linear finite and infinite hierarchies of equations, pioneered by Lanford [26]
and refined by Gallagher, Saint-Raymond, Texier [18], and connecting them to the new binary-ternary
Boltzmann equation. In [5], we extended this program to include ternary interactions, which led to the
rigorous derivation of a purely ternary kinetic equation for particles with hard interaction zone in the
scaling (1.3). However, rigorous derivation of (1.16) does not follow from [26, 18] or the ternary work
[5]. As mentioned in Subsection 1.2, the first difficulty is the apparent incompatibility of scalings (1.2)-
(1.3), which we overcome by introducing the common scaling (1.4). The most challenging task is to
make the argument rigorous, though, is the analysis of all the possible recollisions8 of the backwards
(𝜖2, 𝜖3)-flow. In contrast to the binary or the ternary case where each binary or ternary interaction is
succeeded by a binary or ternary interaction, respectively, here we can have any possible interaction
sequence of binary or ternary interactions. We keep track of this combinatorics using the set

𝑆𝑘 = {𝜎 = (𝜎1, ..., 𝜎𝑘 ) : 𝜎𝑖 ∈ {1, 2}, ∀𝑖 = 1, ..., 𝑘}. (1.20)

In addition to more involved combinatorics, careful analysis of all the possible interaction sequences
requires development of novel geometric and algebraic tools, which we discuss in details in Subsec-
tion 1.6. For now, we continue to discuss the process of derivation.

More specifically, we first derive a finite, linear, coupled hierarchy of equations for the marginal
densities

𝑓 (𝑠)𝑁 (𝑍𝑠) =
∫
R2𝑑 (𝑁−𝑠)

𝑓𝑁 (𝑍𝑁 )1D𝑁,𝜖2 , 𝜖3
(𝑍𝑁 ) 𝑑𝑥𝑠+1... 𝑑𝑥𝑁 𝑑𝑣𝑠+1... 𝑑𝑣𝑁 , 𝑠 ∈ {1, ..., 𝑁 − 1}

of the solution 𝑓𝑁 to the Liouville equation, which we call the BBGKY.9 This hierarchy is given by

𝜕𝑡 𝑓
(𝑠)
𝑁 +

𝑠∑
𝑖=1

𝑣𝑖 · ∇𝑥𝑖 𝑓
(𝑠)
𝑁 = C𝑁𝑠,𝑠+1 𝑓

(𝑠+1)
𝑁 + C𝑁𝑠,𝑠+2 𝑓

(𝑠+2)
𝑁 , 𝑠 ∈ {1, ..., 𝑁 − 1}. (1.21)

8By recollisions we mean the possible divergence of the backwards (𝜖2, 𝜖3)-interaction flow from the backwards free flow.
9Bogoliubov, Born, Green, Kirkwood, Yvon
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For the precise form of the operators C𝑁𝑠,𝑠+1, C𝑁𝑠,𝑠+2, see (4.15)–(4.16). Duhamel’s Formula yields that
the BBGKY hierarchy can be written in mild form as follows:

𝑓 (𝑠)𝑁 (𝑡, 𝑍𝑠) = 𝑇 𝑡𝑠 𝑓𝑁 ,0(𝑍𝑠) +
∫ 𝑡

0
𝑇 𝑡−𝜏𝑠 (C𝑁𝑠,𝑠+1 𝑓

(𝑠+1)
𝑁 + C𝑁𝑠,𝑠+2 𝑓

(𝑠+2)
𝑁 ) (𝜏, 𝑍𝑠) 𝑑𝜏, 𝑠 ∈ N,

(1.22)

where for any continuous function 𝑔𝑠 : D𝑠, 𝜖2 , 𝜖3 → R, we write 𝑇 𝑡𝑠 𝑔𝑠 (𝑍𝑠) := 𝑔𝑠 (Ψ−𝑡
𝑠 𝑍𝑠), and Ψ𝑡

𝑠 is the
(𝜖2, 𝜖3)-interaction zone flow of s-particles.

We then formally let 𝑁 → ∞ and 𝜖2, 𝜖3 → 0+ in the scaling (1.4) to obtain an infinite, linear, coupled
hierarchy of equations, which we call the Boltzmann hierarchy. This hierarchy is given by

𝜕𝑡 𝑓
(𝑠) +

𝑠∑
𝑖=1

𝑣𝑖 · ∇𝑥𝑖 𝑓 (𝑠) = C∞
𝑠,𝑠+1 𝑓

(𝑠+1) + C∞
𝑠,𝑠+2 𝑓

(𝑠+2) , 𝑠 ∈ N. (1.23)

For the precise form of the operators C∞
𝑠,𝑠+1, C∞

𝑠,𝑠+2, see (4.28), (4.32), respectively. Duhamel’s Formula
yields that the Boltzmann hierarchy can be written in mild form as follows:

𝑓 (𝑠) (𝑡, 𝑍𝑠) = 𝑆𝑡𝑠 𝑓0(𝑍𝑠) +
∫ 𝑡

0
𝑆𝑡−𝜏𝑠 (C∞

𝑠,𝑠+1 𝑓
(𝑠+1) + C∞

𝑠,𝑠+2 𝑓
(𝑠+2) ) (𝜏, 𝑍𝑠) 𝑑𝜏, 𝑠 ∈ N, (1.24)

where for any continuous function 𝑔𝑠 : R2𝑑𝑠 → R, we write 𝑆𝑡𝑠𝑔𝑠 (𝑍𝑠) := 𝑔𝑠 (Φ−𝑡
𝑠 𝑍𝑠), and Φ𝑡

𝑠 is the
s-particle free flow of s-particles defined by 𝑆𝑡𝑠𝑍𝑠 = 𝑆𝑡𝑠 (𝑋𝑠 , 𝑉𝑠) = (𝑋𝑠 − 𝑡𝑉𝑠, 𝑉𝑠).

It can be observed that for factorized initial data and assuming that the solution remains factorized
in time,10 the Boltzmann hierarchy reduces to the binary-ternary Boltzmann equation (1.16). This
observation connects the Boltzmann hierarchy with the binary-ternary Boltzmann equation (1.16).

To make this argument rigorous, we first show that the BBGKY and Boltzmann hierarchy are well-
posed in the scaling (1.4), at least for short times, and then that the convergence of the BBGKY hierarchy
initial data to the Boltzmann hierarchy initial data propagates in the time interval of existence of the
solutions. Showing convergence is a very challenging task, and is the heart of our contribution. We
describe details in Subsection 1.6.

Now, we informally state our main result. For a rigorous statement, see Theorem 6.8 and Corol-
lary 6.10.

Statement of the main result: Let 𝐹0 be initial data for the Boltzmann hierarchy (1.23), and 𝐹𝑁 ,0
be some BBGKY hierarchy (1.23) initial data which ‘approximate’11 𝐹0 as 𝑁 → ∞, 𝜖 → 0+ under the
scaling (1.4). Let FN be the mild solution to the BBGKY hierarchy (1.21) with initial data 𝐹𝑁 ,0, and F
the mild solution to the Boltzmann hierarchy (1.23), with initial data 𝐹0, up to short time 𝑇 > 0. Then
FN converges in observables12 to F in [0, 𝑇] as 𝑁 → ∞, 𝜖 → 0+, under the scaling (1.4). In the case of
Hölder continuous 𝐶0,𝛾 , 𝛾 ∈ (0, 1] tensorized Boltzmann hierarchy initial data and approximation by
conditioned BBGKY hierarchy initial data, we obtain convergence to the solution of the binary-ternary
Boltzmann equation (1.16) with a rate 𝑂 (𝜖𝑟 ) for any 0 < 𝑟 < min{1/2, 𝛾}.

1.6. Difficulties faced in the proof of the main result

The main idea to obtain convergence (Theorem 6.8) is to inductively use mild forms (1.22), (1.24) of
the BBGKY hierarchy and Boltzmann hierarchy, respectively, to formally obtain series expansions with

10This is typically called propagation of chaos assumption.
11See Section 6 for details.
12For a precise definition of convergence in observables, see Subsection 6.2.
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respect to the initial data:

𝑓 (𝑠)𝑁 (𝑡, 𝑍𝑠) = 𝑇 𝑡𝑠 𝑓
(𝑠)
𝑁 ,0(𝑍𝑠)+

∞∑
𝑘=1

∑
𝜎∈𝑆𝑘

∫ 𝑡

0

∫ 𝑡1

0
...

∫ 𝑡𝑘−1

0
𝑇 𝑡−𝑡1𝑠 C𝑁𝑠,𝑠+�̃�1

𝑇 𝑡1−𝑡2
𝑠+�̃�1

...C𝑁𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘
𝑇 𝑡𝑘
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
𝑁 ,0 (𝑍𝑠) 𝑑𝑡𝑘 ... 𝑑𝑡1,

(1.25)

𝑓 (𝑠) (𝑡, 𝑍𝑠) = 𝑆𝑡𝑠 𝑓
(𝑠)

0 (𝑍𝑠)+
∞∑
𝑘=1

∑
𝜎∈𝑆𝑘

∫ 𝑡

0

∫ 𝑡1

0
...

∫ 𝑡𝑘−1

0
𝑆𝑡−𝑡1𝑠 C∞

𝑠,𝑠+�̃�1
𝑆𝑡1−𝑡2
𝑠+�̃�1

...C∞
𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘

𝑆𝑡𝑘
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑠) 𝑑𝑡𝑘 ... 𝑑𝑡1,

(1.26)

where 𝑆𝑘 is defined in (1.20), and given 𝜎 ∈ 𝑆𝑘 , ℓ = 1, ..., 𝑘 , we write �̃�ℓ :=
∑ℓ
𝑖=1 𝜎𝑖 . We note that

the summation over 𝑆𝑘 in (1.25)-(1.26) allows us to keep track of the possible interaction sequences
occurring by ‘adding’ one or two particles in each time step. For more details, see Section 7.

Comparing expressions (1.25)-(1.26), we expect to obtain the required convergence under the scaling
(1.4) as long as 𝑓 (𝑠)𝑁 ,0 ‘approximates’ 𝑓 (𝑠)0 under the same scaling. However it is not possible to directly
compare (1.25)-(1.26) because of the possible divergence of the backwards interaction flow from the
free flow, which we call recollisions. Although recollisions were also faced in [18] and [5], the mixed
case, where both binary and ternary interactions are considered, requires different conceptual treatment
in many instances and is not implied by the results of these works. The reason for that is that a binary
interaction can be succeeded by a ternary interaction and vice versa, a situation which was not addressed
in [18, 5]. The key to overcome these difficulties is that the diameter of the particles is much smaller
than the interaction zone, as implied by the common scaling (1.4). This fact allows us to develop certain
delicate algebraic and geometric arguments to extract a small measure set of pathological initial data
which lead to recollisions. On the complement of this set, expansions (1.25)-(1.26) are comparable and
the required convergence is obtained.

The main idea for eliminating recollisions is an inductive application in each time step of Proposi-
tion 9.2 and Proposition 9.4, which treat the binary adjunction, or Proposition 9.6 and Proposition 9.7,
which treat the ternary adjunction. More precisely, we face the following different cases:

1. Binary adjunction: One particle is added forming a binary interaction with one of the existing par-
ticles. The pathological situations that might arise under backwards time evolution are the following:
◦ The newly formed binary collisional configuration runs to a binary interaction under time evolution.

This pathological situation is eliminated using arguments inspired by [18]. This is actually the
only case which is similar to the cases covered in [18].

◦ The newly formed binary collisional configuration runs to a ternary interaction under time evolu-
tion. This pathological situation did not appear in any of the previous works since merely binary
or ternary interactions were studied. However, due to the fact that 𝜖2 << 𝜖3, which comes from
the scaling (1.4), this pathological situation can be treated using techniques inspired by [5] and
adapting them to the binary case.
Proposition 9.2 and Proposition 9.4 are the relevant results controlling recollisions after a binary

adjunction.
2. Ternary adjunction: Two particles are added forming a ternary interaction with one of the exist-

ing particles. The pathological situations that might arise under backwards time evolution are the
following:
◦ The newly formed ternary collisional configuration runs to a ternary interaction under time

evolution. This case was studied in depth in [5]. We eliminate this pathological situation using
Proposition 9.5. For its proof, we refer to [5].

◦ The newly formed ternary collisional configuration runs to a binary interaction under time evo-
lution. This is the most challenging case to treat and is the heart of the technical contribution
because the scaling (1.4) does not directly help as in the case of the binary adjunction where
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one of the collisional particles enters an interaction zone. To treat this case, we need to use new
algebraic tools (see Proposition 9.6) to exclude sets of initial data which lead to these pathologi-
cal trajectories and develop elaborate geometric estimates to control its measure. The geometric
estimates needed are thoroughly presented in Section 8. In particular, Subsection 8.2 is devoted
to developing novel tools which rely on an appropriate representation of (2𝑑 − 1)-spheres (see
(8.1)). More specifically, in 8.2.1, we perform some initial truncations to the impact directions,
while in 8.2.2, we establish certain spherical cap and conic region estimates needed to control the
precollisional case, while 8.2.3 focuses on developing the necessary annuli estimates enabling us
to control the postcollisional case using precollisional arguments. After establishing the necessary
geometric tools, we employ them in Proposition 9.7 to show that the corresponding set constructed
in Proposition 9.6 is negligible.

1.7. Notation

For convenience, we introduce some basic notation which will be frequently used throughout the
manuscript:

◦ 𝑑 ∈ N will be a fixed dimension with 𝑑 ≥ 2.
◦ Given 𝑥, 𝑦 ∈ R, we write 𝑥 � 𝑦 if there is a constant 𝐶𝑑 > 0 such that 𝑥 ≤ 𝐶𝑑𝑦. Similarly, we write
𝑥 � 𝑦 if there is a constant 𝐶𝑑 > 0 such that 𝑥 = 𝐶𝑑𝑦.

◦ Given 𝑛 ∈ N, 𝜌 > 0 and 𝑤 ∈ R𝑛, we write 𝐵𝑛𝜌 (𝑤) for the n-closed ball of radius 𝜌 > 0, centered at
𝑤 ∈ R𝑛. In particular, we write 𝐵𝑛𝜌 := 𝐵𝑛𝜌 (0) for the 𝜌-ball centered at the origin.

◦ Given 𝑛 ∈ N and 𝜌 > 0, we write S𝑛−1
𝜌 for the (𝑛 − 1)-sphere of radius 𝜌 > 0.

◦ When we write 𝑥 << 𝑦, we mean that there is a small enough constant 0 < 𝑐 < 1 such that 𝑥 < 𝑐𝑦.

2. Collisional transformations

In this section, we define the collisional transformations of two and three interacting particles, respec-
tively. In the two-particle case, particles will interact as regular hard spheres, while in the three-particle
case, particles will interact as triplets of particles with an interaction zone.

2.1. Binary interaction

Here, we define the binary collisional tranformation of two interacting hard spheres, induced by an
impact direction 𝜔1 ∈ S𝑑−1

1 . This will be the law under which the velocities (𝑣1, 𝑣2) of two interacting
hard spheres, with impact direction 𝜔1 ∈ S𝑑−1

1 , instanteously transform. The impact direction will
represent the scaled relative position of the colliding hard spheres.

Definition 2.1. Consider a binary impact direction 𝜔1 ∈ S𝑑−1
1 . We define the binary collisional trans-

formation induced by 𝜔1 ∈ S𝑑−1
1 as the map 𝑇𝜔1 : (𝑣1, 𝑣2) ∈ R2𝑑 → (𝑣′1, 𝑣

′
2) ∈ R

2𝑑 , where

𝑣′1 = 𝑣1 + 〈𝜔1, 𝑣2 − 𝑣1〉𝜔1,

𝑣′2 = 𝑣2 − 〈𝜔1, 𝑣2 − 𝑣1〉𝜔1.
(2.1)

Let us introduce some notation we will be constantly using. We define the binary cross-section

𝑏2 (𝜔1, 𝜈1) := 〈𝜔1, 𝜈1〉, (𝜔1, 𝜈1) ∈ S𝑑−1
1 × R𝑑 . (2.2)

One can verify that the binary momentum-energy conservation system

𝑣′1 + 𝑣′2 = 𝑣1 + 𝑣2,

|𝑣′1 |
2 + |𝑣2 |2 = |𝑣1 |2 + |𝑣2 |2

(2.3)
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is satisfied. Given a binary impact direction 𝜔1 ∈ S𝑑−1
1 , the binary collisional transformation 𝑇𝜔1

satisfies the following properties (see, for example, [13]).

Proposition 2.2. Consider a binary impact direction 𝜔1 ∈ S𝑑−1
1 . The induced binary collisional trans-

formation 𝑇𝜔1 has the following properties:

1. Conservation of momentum

𝑣′1 + 𝑣′2 = 𝑣1 + 𝑣2. (2.4)

2. Conservation of energy

|𝑣′1 |
2 + |𝑣′2 |

2 = |𝑣1 |2 + |𝑣2 |2. (2.5)

3. Conservation of relative velocities magnitude

|𝑣′1 − 𝑣′2 | = |𝑣1 − 𝑣2 |. (2.6)

4. Micro-reversibility of the binary cross-section

𝑏2 (𝜔1, 𝑣
′
2 − 𝑣′1) = −𝑏2(𝜔1, 𝑣2 − 𝑣1). (2.7)

5. 𝑇𝜔1 is a linear involutio (i.e., 𝑇𝜔1 is linear and 𝑇−1
𝜔1 = 𝑇𝜔1 ). In particular, | det𝑇𝜔1 | = 1, so 𝑇𝜔1 is

measure-preserving.

2.2. Ternary interaction

Now we define the ternary collisional tranformation, induced by a given pair of impact directions, and
investigate its properties. The interaction considered will be an instantaneous interaction of three parti-
cles with an interaction zone (for more details, see [5]). This will be the law under which the velocities
(𝑣1, 𝑣2, 𝑣3) of three interacting particles, with impact directions (𝜔1, 𝜔2) ∈ S2𝑑−1

1 , instanteously trans-
form. The impact directions will represent the scaled relative positions of the three particles in the
interaction zone setting.

Definition 2.3. Consider a pair of impact directions (𝜔1, 𝜔2) ∈ S2𝑑−1
1 . We define the ternary collisional

transformation induced by (𝜔1, 𝜔2) ∈ S2𝑑−1
1 as the map 𝑇𝜔1 ,𝜔2 : (𝑣1, 𝑣2, 𝑣3) ∈ R3𝑑 −→ (𝑣∗1, 𝑣

∗
2, 𝑣

∗
3) ∈

R
3𝑑 , where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑣∗1 = 𝑣1 +
〈𝜔1, 𝑣2 − 𝑣1〉 + 〈𝜔2, 𝑣3 − 𝑣1〉

1 + 〈𝜔1, 𝜔2〉
(𝜔1 + 𝜔2),

𝑣∗2 = 𝑣2 −
〈𝜔1, 𝑣2 − 𝑣1〉 + 〈𝜔2, 𝑣3 − 𝑣1〉

1 + 〈𝜔1, 𝜔2〉
𝜔1,

𝑣∗3 = 𝑣3 −
〈𝜔1, 𝑣2 − 𝑣1〉 + 〈𝜔2, 𝑣3 − 𝑣1〉

1 + 〈𝜔1, 𝜔2〉
𝜔2.

(2.8)

We also define the ternary cross-section as

𝑏3(𝜔1, 𝜔2, 𝜈1, 𝜈2) := 〈𝜔1, 𝜈1〉 + 〈𝜔2, 𝜈2〉, (𝜔1, 𝜔2) ∈ S2𝑑−1
1 , (𝜈1, 𝜈2) ∈ R2𝑑 . (2.9)

Remark 2.4. Cauchy-Schwartz inequality and the fact that (𝜔1, 𝜔2) ∈ S2𝑑−1
1 yield

2
3
≤ 1

1 + 〈𝜔1, 𝜔2〉
≤ 2. (2.10)
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One can verify that the ternary momentum-energy conservation system

𝑣∗1 + 𝑣∗2 + 𝑣∗3 = 𝑣1 + 𝑣2 + 𝑣3,

|𝑣∗1 |
2 + |𝑣∗2 |

2 + |𝑣∗3 |
2 = |𝑣1 |2 + |𝑣2 |2 + |𝑣3 |2,

(2.11)

is satisfied. The main properties of the ternary collisional tranformation are summarized in the following
Proposition. For the proof, see Proposition 2.3. from [5].

Proposition 2.5. Consider a pair of impact directions (𝜔1, 𝜔2) ∈ S2𝑑−1
1 . The induced collisional

transformation 𝑇𝜔1 ,𝜔2 has the following properties:

1. Conservation of momentum

𝑣∗1 + 𝑣∗2 + 𝑣∗3 = 𝑣1 + 𝑣2 + 𝑣3. (2.12)

2. Conservation of energy

|𝑣∗1 |
2 + |𝑣∗2 |

2 + |𝑣∗3 |
2 = |𝑣1 |2 + |𝑣2 |2 + |𝑣3 |2. (2.13)

3. Conservation of relative velocities magnitude

|𝑣∗1 − 𝑣∗2 |
2 + |𝑣∗1 − 𝑣∗3 |

2 + |𝑣∗2 − 𝑣∗3 |
2 = |𝑣1 − 𝑣2 |2 + |𝑣1 − 𝑣3 |2 + |𝑣2 − 𝑣3 |2. (2.14)

4. Micro-reversibility of the ternary cross-section

𝑏3(𝜔1, 𝜔2, 𝑣
∗
2 − 𝑣∗1, 𝑣

∗
3 − 𝑣∗1) = −𝑏3(𝜔1, 𝜔2, 𝑣2 − 𝑣1, 𝑣3 − 𝑣1). (2.15)

5. 𝑇𝜔1 ,𝜔2 is a linear involution i.e.𝑇𝜔1 ,𝜔2 is linear and𝑇−1
𝜔1 ,𝜔2 = 𝑇𝜔1 ,𝜔2 . In particular, | det𝑇𝜔1 ,𝜔2 | = 1,

so 𝑇𝜔1 ,𝜔2 is measure-preserving.

3. Dynamics of m-particles

In this section, we rigorously define the dynamics of m hard spheres of diameter 𝜎2 and interaction zone
𝜎3, where 0 < 𝜎2 < 𝜎3 < 1. Heuristically speaking, particles perform rectilinear motion as long as
there is no interaction (binary or ternary) and they interact through the binary or ternary collision law
when a binary or ternary interaction occurs, respectively. However, it is far from obvious that a global
dynamics can be defined since the system might run into pathological configurations (e.g., more than
one type of interaction at a time, infinitely many interactions in finite time or interactions which graze
under time evolution). Although this problem was present is [1, 5] as well, here we need to decouple
binary and ternary interaction sequences since both types of interactions are allowed in each time step.
The goal of this section is to extract a set of measure zero such that on the complement a global in time,
measure-preserving flow can be defined.

Throughout this section, we consider 𝑚 ∈ N and 0 < 𝜎2 < 𝜎3 < 1.

3.1. Phase space definitions

For convenience, we define the following index sets:

For 𝑚 ≥ 2: I2
𝑚 =

{
(𝑖, 𝑗) ∈ {1, ..., 𝑚}2 : 𝑖 < 𝑗

}
. (3.1)

For 𝑚 ≥ 3: I3
𝑚 =

{
(𝑖, 𝑗 , 𝑘) ∈ {1, ..., 𝑚}3 : 𝑖 < 𝑗 < 𝑘

}
. (3.2)
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Given positions (𝑥1, 𝑥2) ∈ R2𝑑 , we define the binary distance:

𝑑2(𝑥1, 𝑥2) := |𝑥1 − 𝑥2 |, (3.3)

and given positions (𝑥1, 𝑥2, 𝑥3) ∈ R3𝑑 , we define the ternary distance:

𝑑3 (𝑥1; 𝑥2, 𝑥3) =
√
|𝑥1 − 𝑥2 |2 + |𝑥1 − 𝑥3 |2. (3.4)

For 𝑚 ≥ 3, we define the phase space of m-particles of diameter 𝜎2 > 0 and interaction zone 𝜎3 > 0,
with 𝜎2 < 𝜎3 < 1 as

D𝑚,𝜎2 ,𝜎3 =
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ R2𝑑𝑚 : 𝑑2(𝑥𝑖 , 𝑥 𝑗 ) ≥ 𝜎2, ∀(𝑖, 𝑗) ∈ I2

𝑚,

and 𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) ≥
√

2𝜎3, ∀(𝑖, 𝑗 , 𝑘) ∈ I3
𝑚

}
,

(3.5)

where 𝑋𝑚 = (𝑥1, ..., 𝑥𝑚) ∈ R𝑑𝑚 represents the positions of the m-particles, while 𝑉𝑚 = (𝑣1, ..., 𝑣𝑚) ∈
R
𝑑𝑚 represents the velocities of the m-particles. For convenience, we also define

D2,𝜎2 ,𝜎3 =
{
𝑍2 = (𝑋2, 𝑉2) ∈ R2𝑑 : |𝑥1 − 𝑥2 | ≥ 𝜎2

}
, D1,𝜎2 ,𝜎3 = R

2𝑑 . (3.6)

For 𝑚 ≥ 3, the phase space D𝑚,𝜎2 ,𝜎3 decomposes as D𝑚,𝜎2 ,𝜎3 = D̊𝑚,𝜎2 ,𝜎3 ∪ 𝜕D𝑚,𝜎2 ,𝜎3 , where the
interior is given by

D̊𝑚,𝜎2 ,𝜎3 =
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ R2𝑑𝑚 : 𝑑2(𝑥𝑖 , 𝑥 𝑗 ) > 𝜎2, ∀(𝑖, 𝑗) ∈ I2

𝑚,

and 𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) >
√

2𝜎3, ∀(𝑖, 𝑗 , 𝑘) ∈ I3
𝑚

}
,

(3.7)

and the boundary is given by

𝜕D𝑚,𝜎2 ,𝜎3 = 𝜕2D𝑚,𝜎2 ,𝜎3 ∪ 𝜕3D𝑚,𝜎2 ,𝜎3 , (3.8)

where 𝜕2D𝑚,𝜎2 ,𝜎3 is the binary boundary

𝜕2D𝑚,𝜎2 ,𝜎3 =
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ D𝑚,𝜎2 ,𝜎3 : ∃(𝑖, 𝑗) ∈ I2

𝑚 with 𝑑2(𝑥𝑖 , 𝑥 𝑗 ) = 𝜎2
}
, (3.9)

and 𝜕3D𝑚,𝜎2 ,𝜎3 is the ternary boundary

𝜕3D𝑚,𝜎2 ,𝜎3 =
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ D𝑚,𝜎2 ,𝜎3 : ∃(𝑖, 𝑗 , 𝑘) ∈ I3

𝑚 with 𝑑3 (𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) =
√

2𝜎3

}
. (3.10)

Elements of D𝑚,𝜎2 ,𝜎3 are called configurations, elements of D̊𝑚,𝜎2 ,𝜎3 are called noncollisional config-
urations, and elements of 𝜕2D𝑚,𝜎2 ,𝜎3 are called collisional configurations, or just collisions. Elements
of 𝜕D𝑚,𝜎2 ,𝜎3 are called binary collisions, while elements of 𝜕3D𝑚,𝜎2 ,𝜎3 are called ternary collisions.
When we refer to a collision, it will be either binary or ternary.

Clearly, the binary boundary can be written as 𝜕2D𝑚,𝜎2 ,𝜎3 =
⋃

(𝑖, 𝑗) ∈I2
𝑚
Σ2
𝑖 𝑗 , where Σ2

𝑖 𝑗 are the binary
collisional surfaces given by

Σ2
𝑖 𝑗 :=

{
𝑍𝑚 ∈ D𝑚,𝜎2 ,𝜎3 : 𝑑2(𝑥𝑖 , 𝑥 𝑗 ) = 𝜎2

}
. (3.11)

In the same spirit, the ternary boundary can be written as 𝜕3D𝑚,𝜎2 ,𝜎3 =
⋃

(𝑖, 𝑗 ,𝑘) ∈I3
𝑚
Σ3
𝑖 𝑗𝑘 , where Σ3

𝑖 𝑗𝑘
are the ternary collisional surfaces given by

Σ3
𝑖 𝑗𝑘 :=

{
𝑍𝑚 ∈ D𝑚,𝜎2 ,𝜎3 : 𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) =

√
2𝜎3

}
. (3.12)
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We now further decompose collisions to simple binary collisions, simple ternary collisions and
multiple collisions. In particular, we define simple binary collisions as

𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3 :=
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ D𝑚,𝜎2 ,𝜎3 : ∃(𝑖, 𝑗) ∈ I2

𝑚 with 𝑍𝑚 ∈ Σ2
𝑖 𝑗 ,

𝑍𝑚 ∉ Σ2
𝑖′ 𝑗′ , ∀(𝑖′, 𝑗 ′) ∈ I2

𝑚 \ {(𝑖, 𝑗)}, 𝑍𝑚 ∉ Σ3
𝑖′ 𝑗′𝑘′ , ∀(𝑖

′, 𝑗 ′, 𝑘 ′) ∈ I3
𝑚

}
.

(3.13)

We also define simple ternary collisions as

𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 :=
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ D𝑚,𝜎2 ,𝜎3 : ∃(𝑖, 𝑗 , 𝑘) ∈ I3

𝑚 with 𝑍𝑚 ∈ Σ3
𝑖 𝑗𝑘 ,

𝑍𝑚 ∉ Σ3
𝑖′ 𝑗′𝑘′ , ∀(𝑖

′, 𝑗 ′, 𝑘 ′) ∈ I3
𝑚 \ {(𝑖, 𝑗 , 𝑘)}, 𝑍𝑚 ∉ Σ2

𝑖′ 𝑗′ , ∀(𝑖′, 𝑗 ′) ∈ I2
𝑚

}
.

(3.14)

Remark 3.1. The assumption 𝜎2 < 𝜎3 made at the beginning of the section is necessary for
𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 to be nonempty. Indeed, let 𝜎2 ≥ 𝜎3 and assume that 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ≠ ∅. Consider
𝑍𝑚 ∈ 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 . Then, by (3.14), there is (𝑖, 𝑗 , 𝑘) ∈ I3

𝑚 such that

|𝑥𝑖 − 𝑥 𝑗 |2 + |𝑥𝑖 − 𝑥 𝑗 |2 = 2𝜖2
3 , (3.15)

and

|𝑥𝑖 − 𝑥 𝑗 | > 𝜖2, |𝑥𝑖 − 𝑥𝑘 | > 𝜖2. (3.16)

By (3.15), at least one of |𝑥𝑖 − 𝑥 𝑗 | or |𝑥𝑖 − 𝑥𝑘 | has to be smaller than or equal to 𝜖3. Assume, without
loss of generality, that |𝑥𝑖 − 𝑥 𝑗 | ≤ 𝜖3. Since 𝜖2 ≥ 𝜖3, we obtain |𝑥𝑖 − 𝑥 𝑗 | ≤ 𝜖2, which contradicts (3.16).
Therefore, if 𝜎2 ≥ 𝜎3, we have 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 = ∅.

A simple collision will be a binary or ternary simple collision; that is,

𝜕𝑠𝑐D𝑚,𝜎2 ,𝜎3 := 𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ∪ 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 . (3.17)

Multiple collisions are configurations which are not simple; that is,

𝜕𝑚𝑢D𝑚,𝜎2 ,𝜎3 := 𝜕D𝑚,𝜎2 ,𝜎3 \ 𝜕𝑠𝑐D𝑚,𝜎2 ,𝜎3 . (3.18)

Remark 3.2. For 𝑚 = 2, there is only binary boundary.
For the binary case, we give the following definitions:

Definition 3.3. Let 𝑚 ≥ 2 and 𝑍𝑚 ∈ 𝜕2,𝑠𝑐𝐷𝑚,𝜎2 ,𝜎3 . Then there is a unique (𝑖, 𝑗) ∈ I2
𝑚 such that

𝑍𝑚 ∈ Σ2
𝑖 𝑗 and 𝑍𝑚 ∉ Σ3

𝑖′ 𝑗′𝑘′ , for all (𝑖′, 𝑗 ′, 𝑘 ′) ∈ I3
𝑚. In this case, we will say 𝑍𝑚 is an (𝑖, 𝑗) collision,

and we will write

Σ2,𝑠𝑐
𝑖 𝑗 =

{
𝑍𝑚 ∈ D𝑚,𝜎1 ,𝜎2 : 𝑍𝑚 is (𝑖, 𝑗) collision

}
. (3.19)

Clearly, Σ2,𝑠𝑐
𝑖 𝑗 ∩ Σ2,𝑠𝑐

𝑖′ 𝑗′ = ∅, for all (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′) ∈ I2
𝑚, and 𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3 decomposes to

𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3 =
⋃

(𝑖, 𝑗) ∈I2
𝑚

Σ2,𝑠𝑐
𝑖 𝑗 . (3.20)

Remark 3.4. Let 𝑚 ≥ 2, (𝑖, 𝑗) ∈ I2
𝑚 and 𝑍𝑚 ∈ Σ2,𝑠𝑐

𝑖 𝑗 . Then

𝜔1 :=
𝑥 𝑗 − 𝑥𝑖

𝜎2
∈ S𝑑−1

1 . (3.21)

Therefore, each (𝑖, 𝑗) collision naturally induces a binary impact direction 𝜔1 ∈ S𝑑−1
1 and consequently

a binary collisional transformation 𝑇𝜔1 .
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Definition 3.5. Let 𝑚 ≥ 2, (𝑖, 𝑗) ∈ I2
𝑚 and 𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ Σ2,𝑠𝑐

𝑖 𝑗 . We write 𝑍 ′
𝑚 = (𝑋𝑚, 𝑉 ′

𝑚), where

𝑉 ′
𝑚 = (𝑣1, ..., 𝑣𝑖−1, 𝑣

′
𝑖 , 𝑣𝑖+1, ..., 𝑣 𝑗−1, 𝑣

′
𝑗 , 𝑣 𝑗+1, ..., 𝑣𝑚),

and (𝑣′𝑖 , 𝑣′𝑗 ) = 𝑇𝜔1 (𝑣𝑖 , 𝑣 𝑗 ), 𝜔1 ∈ S𝑑−1
1 is given by (3.21).

In the same spirit, for the ternary case, we give the following definitions:

Definition 3.6. Let 𝑚 ≥ 3 and 𝑍𝑚 ∈ 𝜕3,𝑠𝑐𝐷𝑚,𝜎2 ,𝜎3 . Then there is a unique (𝑖; 𝑗 , 𝑘) ∈ I3
𝑚 such that

𝑍𝑚 ∈ Σ3
𝑖 𝑗𝑘 and 𝑍𝑚 ∉ Σ2

𝑖′ 𝑗′ , for all (𝑖′, 𝑗 ′) ∈ I2
𝑚. In this case, we will say 𝑍𝑚 is an (𝑖; 𝑗 , 𝑘) collision, and

we will write

Σ3,𝑠𝑐
𝑖 𝑗𝑘 =

{
𝑍𝑚 ∈ D𝑚,𝜎2 ,𝜎3 : 𝑍𝑚 is (𝑖; 𝑗 , 𝑘) collision

}
. (3.22)

Clearly, Σ3,𝑠𝑐
𝑖 𝑗𝑘 ∩ Σ3,𝑠𝑐

𝑖′ 𝑗′𝑘′ = ∅, for all (𝑖, 𝑗 , 𝑘) ≠ (𝑖′, 𝑗 ′, 𝑘 ′) ∈ I3
𝑚 and 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 decomposes to

𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 =
⋃

(𝑖, 𝑗 ,𝑘) ∈I3
𝑚

Σ3,𝑠𝑐
𝑖 𝑗𝑘 . (3.23)

Remark 3.7. Let 𝑚 ≥ 3, (𝑖, 𝑗 , 𝑘) ∈ I3
𝑚 and 𝑍𝑚 ∈ Σ3,𝑠𝑐

𝑖 𝑗𝑘 . Then

(𝜔1, 𝜔2) :=
1

√
2𝜎3

(
𝑥 𝑗 − 𝑥𝑖 , 𝑥𝑘 − 𝑥𝑖

)
∈ S2𝑑−1

1 . (3.24)

Therefore, each (𝑖; 𝑗 , 𝑘) collision naturally induces ternary impact directions (𝜔1, 𝜔2) ∈ S2𝑑−1
1 and

consequently a collisional transformation 𝑇𝜔1 ,𝜔2 .

Definition 3.8. Let 𝑚 ≥ 3, (𝑖, 𝑗 , 𝑘) ∈ I3
𝑚 and 𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ Σ3,𝑠

𝑖 𝑗𝑘 . We write 𝑍∗
𝑚 = (𝑋𝑚, 𝑉∗

𝑚), where

𝑉∗
𝑚 = (𝑣1, ..., 𝑣𝑖−1, 𝑣

∗
𝑖 , 𝑣𝑖+1, ..., 𝑣 𝑗−1, 𝑣

∗
𝑗 , 𝑣 𝑗+1, ..., 𝑣𝑘−1, 𝑣

∗
𝑘 , 𝑣𝑘+1, ..., 𝑣𝑚),

and (𝑣∗𝑖 , 𝑣∗𝑗 , 𝑣∗𝑘 ) = 𝑇𝜔1 ,𝜔2 (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ), (𝜔1, 𝜔2) ∈ S2𝑑−1
1 are given by (3.24).

3.2. Classification of simple collisions

We will now classify simple collisions in order to eliminate collisions which graze in time. For this
purpose, we come across the following definitions for the binary and the ternary case, respectively.

For the binary case:

Definition 3.9. Let 𝑚 ≥ 2, (𝑖, 𝑗) ∈ I2
𝑚 and 𝑍𝑚 ∈ Σ2,𝑠

𝑖 𝑗 . The configuration 𝑍𝑚 is called

◦ binary precollisional when 𝑏2(𝜔1, 𝑣 𝑗 − 𝑣𝑖) < 0,
◦ binary postcollisional when 𝑏2 (𝜔1, 𝑣 𝑗 − 𝑣𝑖) > 0,
◦ binary grazing when 𝑏2(𝜔1, 𝑣 𝑗 − 𝑣𝑖) = 0,

where 𝜔1 ∈ S𝑑−1
1 is given by (3.21) and 𝑏2 is given by (2.2).

Remark 3.10. Let 𝑚 ≥ 2, (𝑖, 𝑗) ∈ I2
𝑚 and 𝑍𝑚 ∈ Σ2,𝑠

𝑖 𝑗 . Using (2.7), we obtain the following:

1. 𝑍𝑚 is binary precollisional iff 𝑍 ′
𝑚 is binary postcollisional.

2. 𝑍𝑚 is binary postcollisional iff 𝑍 ′
𝑚 is binary precollisional.

3. 𝑍𝑚 = 𝑍 ′
𝑚 iff 𝑍𝑚 is binary grazing.

https://doi.org/10.1017/fms.2025.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.11


Forum of Mathematics, Sigma 19

For the ternary case:

Definition 3.11. Let 𝑚 ≥ 3, (𝑖, 𝑗 , 𝑘) ∈ I3
𝑚 and 𝑍𝑚 ∈ Σ3,𝑠

𝑖 𝑗𝑘 . The configuration 𝑍𝑚 is called

◦ ternary precollisional when 𝑏3(𝜔1, 𝜔2, 𝑣 𝑗 − 𝑣𝑖 , 𝑣𝑘 − 𝑣𝑖) < 0,
◦ ternary postcollisional when 𝑏3(𝜔1, 𝜔2, 𝑣 𝑗 − 𝑣𝑖 , 𝑣𝑘 − 𝑣𝑖) > 0,
◦ ternary grazing when 𝑏3 (𝜔1, 𝜔2, 𝑣 𝑗 − 𝑣𝑖 , 𝑣𝑘 − 𝑣𝑖) = 0,

where (𝜔1, 𝜔2) ∈ S2𝑑−1
1 is given by (3.24) and b is given by (2.9).

Remark 3.12. Let 𝑚 ≥ 3, (𝑖, 𝑗 , 𝑘) ∈ I3
𝑚 and 𝑍𝑚 ∈ Σ3,𝑠

𝑖 𝑗𝑘 . Using (2.15), we obtain the following:

1. 𝑍𝑚 is ternary precollisional iff 𝑍∗
𝑚 is ternary postcollisional.

2. 𝑍𝑚 is ternary postcollisional iff 𝑍∗
𝑚 is ternary precollisional.

3. 𝑍𝑚 = 𝑍∗
𝑚 iff 𝑍𝑚 is ternary grazing.

We will just say precollisional, postcollisional or grazing configuration when it is implied whether a
simple collision is binary or ternary.

For 𝑚 ≥ 2, we refine the phase space defining

D∗
𝑚,𝜎2 ,𝜎3 := D̊𝑚,𝜎2 ,𝜎3 ∪ 𝜕𝑠𝑐,𝑛𝑔D𝑚,𝜎2 ,𝜎3 , (3.25)

where 𝜕𝑠𝑐,𝑛𝑔D𝑚,𝜎2 ,𝜎3 denotes the part of 𝜕D𝑚,𝜎2 ,𝜎3 consisting of simple, non-grazing collisions – that
is, defined as

𝜕𝑠𝑐,𝑛𝑔D𝑚,𝜎2 ,𝜎3 :=
{
𝑍𝑚 ∈ 𝜕𝑠𝑐D𝑚,𝜎2 ,𝜎3 : 𝑍𝑚 is non-grazing

}
. (3.26)

It is immediate that D∗
𝑚,𝜎2 ,𝜎3 is a full measure subset of D𝑚,𝜎2 ,𝜎3 and 𝜕𝑠𝑐,𝑛𝑔D𝑚,𝜎2 ,𝜎3 is a full surface

measure subset of 𝜕D𝑚,𝜎2 ,𝜎3 , since its complement constitutes of lower dimension submanifolds of
𝜕D𝑚,𝜎2 ,𝜎3 which have zero surface measure.

3.3. Construction of the local flow

The next Lemma shows that the flow can be locally defined for any initial configuration 𝑍𝑚 ∈ D∗
𝑚,𝜎2 ,𝜎3

up to the time of the first collision.

Lemma 3.13. Let 𝑚 ≥ 3 and 𝑍𝑚 ∈ D∗
𝑚,𝜎2 ,𝜎3 . Then there is a time 𝜏1

𝑍𝑚
∈ (0,∞] such that defining

𝑍𝑚 (·) : [0, 𝜏1
𝑍𝑚

] → R2𝑑𝑚 by

𝑍𝑚 (𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑋𝑚 + 𝑡𝑉𝑚, 𝑉𝑚) if 𝑍𝑚 is noncollisional or postcollisional,
(𝑋𝑚 + 𝑡𝑉 ′

𝑚, 𝑉
′
𝑚), if 𝑍𝑚 is binary precollisional,

(𝑋𝑚 + 𝑡𝑉∗
𝑚, 𝑉

∗
𝑚), if 𝑍𝑚 is ternary precollisional,

the following hold:

1. 𝑍𝑚 (𝑡) ∈ D̊𝑚,𝜎2 ,𝜎3 , ∀𝑡 ∈ (0, 𝜏1
𝑍𝑚

).
2. if 𝜏1

𝑍𝑚
< ∞, then 𝑍𝑚 (𝜏1

𝑍𝑚
) ∈ 𝜕D𝑚,𝜎2 ,𝜎3 .

3. If 𝑍𝑚 ∈ Σ2,𝑠𝑐
𝑖 𝑗 for some (𝑖, 𝑗) ∈ I2

𝑚, then 𝑍𝑚(𝜏1
𝑍𝑚

) ∉ Σ2
𝑖 𝑗 .

4. If 𝑍𝑚 ∈ Σ3,𝑠𝑐
𝑖 𝑗𝑘 for some (𝑖, 𝑗 , 𝑘) ∈ I3

𝑚, then 𝑍𝑚(𝜏1
𝑍𝑚

) ∉ Σ3
𝑖 𝑗𝑘 .

An analogous statement holds in the case 𝑚 = 2, where we just neglect the ternary terms.
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Proof. Let us make the convention inf ∅ = +∞. We define

𝜏1
𝑍𝑚

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf

{
𝑡 > 0 : 𝑋𝑚 + 𝑡𝑉𝑚 ∈ 𝜕D𝑚,𝜎2 ,𝜎3

}
, if 𝑍𝑚 is noncollisional or postcollisional,

inf
{
𝑡 > 0 : 𝑋𝑚 + 𝑡𝑉 ′

𝑚 ∈ 𝜕D𝑚,𝜎2 ,𝜎3

}
, if 𝑍𝑚 is binary precollisional,

inf
{
𝑡 > 0 : 𝑋𝑚 + 𝑡𝑉∗

𝑚 ∈ 𝜕D𝑚,𝜎2 ,𝜎3

}
, if 𝑍𝑚 is ternary precollisional.

Since D̊𝑚,𝜎2 ,𝜎3 is open, we get 𝜏1
𝑍𝑚

> 0, ∀𝑍𝑚 ∈ D̊𝑚,𝜎2 ,𝜎3 , and claims (i)–(ii) follow immediately for
𝑍𝑚 ∈ D̊𝑚,𝜎2 ,𝜎3 .

Assume 𝑍𝑚 ∈ 𝜕𝑠𝑐,𝑛𝑔D𝑚,𝜎2 ,𝜎3 which yields that 𝑍𝑚 is non-grazing. Therefore, we may distinguish
the following cases:

◦ 𝑍𝑚 is an (𝑖, 𝑗) binary postcollisional configuration: For any 𝑡 > 0, we have

|𝑥𝑖 − 𝑥 𝑗 + (𝑣𝑖 − 𝑣 𝑗 )𝑡 |2 = |𝑥𝑖 − 𝑥 𝑗 |2 + 𝑡2 |𝑣𝑖 − 𝑣 𝑗 |2 + 2𝑡〈𝑥𝑖 − 𝑥 𝑗 , 𝑣𝑖 − 𝑣 𝑗〉
≥ 𝜎2

2 + 2𝑡𝑏2(𝑥 𝑗 − 𝑥𝑖 , 𝑣 𝑗 − 𝑣𝑖)
> 𝜎2

2 ,

since 𝑏2(𝜔1, 𝑣 𝑗 − 𝑣𝑖) > 0. This inequality and the fact that 𝑍𝑚 is a simple binary collision imply that
𝜏1
𝑍𝑚

> 0 and claims (𝑖), (𝑖𝑖), (𝑖𝑖𝑖) as well.
◦ 𝑍𝑚 is (𝑖, 𝑗) binary precollisional configuration: We use the same argument for 𝑍 ′

𝑚 which is (𝑖, 𝑗)
binary postcollisional.

◦ 𝑍𝑚 is an (𝑖; 𝑗 , 𝑘) ternary postcollisional configuration: For any 𝑡 > 0, we have

|𝑥𝑖 − 𝑥 𝑗 + (𝑣𝑖 − 𝑣 𝑗 )𝑡 |2 + |𝑥𝑖 − 𝑥𝑘 + (𝑣𝑖 − 𝑣𝑘 )𝑡 |2

= |𝑥𝑖 − 𝑥 𝑗 |2 + |𝑥𝑖 − 𝑥𝑘 |2 + 𝑡2
(
|𝑣𝑖 − 𝑣 𝑗 |2 + |𝑣𝑖 − 𝑣𝑘 |2

)
+ 2𝑡

(
〈𝑥𝑖 − 𝑥 𝑗 , 𝑣𝑖 − 𝑣 𝑗〉 + 〈𝑥𝑖 − 𝑥𝑘 , 𝑣𝑖 − 𝑣𝑘〉

)
≥ 2𝜎2

3 + 2𝑡𝑏3 (𝑥 𝑗 − 𝑥𝑖 , 𝑥𝑘 − 𝑥𝑖 , 𝑣 𝑗 − 𝑣𝑖 , 𝑣𝑘 − 𝑣𝑖)
> 2𝜎2

3 ,

since 𝑏3(𝜔1, 𝜔2, 𝑣 𝑗 −𝑣𝑖 , 𝑣𝑘 −𝑣𝑖) > 0. This inequality and the fact that 𝑍𝑚 is a simple ternary collision
imply that 𝜏1

𝑍𝑚
> 0 and claims (𝑖), (𝑖𝑖), (𝑖𝑣) as well.

◦ 𝑍𝑚 is an (𝑖; 𝑗 , 𝑘) ternary precollisional configuration: We use the same argument for 𝑍∗
𝑚 which is

(𝑖; 𝑗 , 𝑘) ternary postcollisional.

�

Let us make an elementary but crucial remark.

Remark 3.14. Clearly, for configurations with 𝜏1
𝑍𝑚

= ∞, the flow is globally defined as the free flow.
In the case where 𝜏1

𝑍𝑚
< ∞ and 𝑍𝑚 (𝜏1

𝑍𝑚
) is a non-grazing (𝑖, 𝑗) collision or non-grazing (𝑖; 𝑗 , 𝑘)

collision, we may apply Lemma 3.13 once more and get a corresponding time 𝜏2
𝑍𝑚

with the property
that 𝑍𝑚 (𝜏2

𝑍𝑚
) ∉ Σ2

𝑖 𝑗 or 𝑍𝑚(𝜏2
𝑍𝑚

) ∉ Σ3
𝑖 𝑗𝑘 , respectively, if 𝜏2

𝑍𝑚
< ∞. Therefore, in this case, the flow can

be defined up to time 𝜏2
𝑍𝑚

.

Remark 3.15. Note that Lemma 3.13 implies that given a non-grazing (𝑖, 𝑗) collision, the next collision
(if it happens) will not be (𝑖, 𝑗). Similarly, given a non-grazing (𝑖; 𝑗 , 𝑘) collision, the next collision (if
it happens) will not be (𝑖; 𝑗 , 𝑘). However, Lemma 3.13 does not imply that the same particles are not
involved in a collision of a different type. For instance, one could have the sequence of collisions (𝑖, 𝑗)
and (𝑖; 𝑗 , 𝑘), or (𝑖; 𝑗 , 𝑘) and (𝑖, 𝑗), etc. All these cases will be taken into account when establishing a
global flow in Subsection 3.4.

Remark 3.16. Similar results hold for the case 𝑚 = 2 where there are no ternary interactions.
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3.4. Extension to a global flow

Now, we extract a zero measure set from D∗
𝑚,𝜎2 ,𝜎3 such that the flow is globally defined on the

complement. For this purpose, we will first truncate positions and velocities using two parameters
1 << 𝑅 < 𝜌 and then perform time truncation with a small parameter 𝛿 in the scaling:

0 < 𝛿𝑅 << 𝜎2 < 𝜎3 < 1 << 𝑅 < 𝜌. (3.27)

Throughout this subsection, we consider parameters satisfying the scaling (3.27).
Recall that given 𝑟 > 0, we denote the 𝑑𝑚-ball of radius 𝑟 > 0, centered at the origin as 𝐵𝑑𝑚𝑟 . We

first assume initial positions are in 𝐵𝑑𝑚𝜌 and initial velocities in 𝐵𝑑𝑚𝑅 .
For 𝑚 ≥ 2, we decompose 𝐷∗

𝑚,𝜎2 ,𝜎3 ∩ (𝐵𝑑𝑚𝜌 × 𝐵𝑑𝑚𝑅 ) in the following subsets:

𝐼 𝑓 𝑟𝑒𝑒 =
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ 𝐷∗

𝑚,𝜎2 ,𝜎3 ∩ (𝐵𝑑𝑚𝜌 × 𝐵𝑑𝑚𝑅 ) : 𝜏1
𝑍𝑚

> 𝛿
}
,

𝐼1
𝑠𝑐,𝑛𝑔 =

{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ 𝐷∗

𝑚,𝜎2 ,𝜎3 ∩ (𝐵𝑑𝑚𝜌 × 𝐵𝑑𝑚𝑅 ) : 𝜏1
𝑍𝑚

≤ 𝛿, 𝑍𝑚 (𝜏1
𝑍𝑚

) ∈ 𝜕𝑠𝑐,𝑛𝑔D𝑚,𝜎2 ,𝜎3 , 𝜏
2
𝑍𝑚

> 𝛿
}
,

𝐼1
𝑠𝑐,𝑔 =

{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ 𝐷∗

𝑚,𝜎2 ,𝜎3 ∩ (𝐵𝑑𝑚𝜌 × 𝐵𝑑𝑚𝑅 ) : 𝜏1
𝑍𝑚

≤ 𝛿, 𝑍𝑚 (𝜏1
𝑍𝑚

) ∈ 𝜕𝑠𝑐D𝑚,𝜎2 ,𝜎3 ,

and 𝑍𝑚 (𝜏1
𝑍𝑚

) is grazing
}
,

𝐼1
𝑚𝑢 =

{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ 𝐷∗

𝑚,𝜎2 ,𝜎3 ∩ (𝐵𝑑𝑚𝜌 × 𝐵𝑑𝑚𝑅 ) : 𝜏1
𝑍𝑚

≤ 𝛿, 𝑍𝑚 (𝜏1
𝑍𝑚

) ∈ 𝜕𝑚𝑢D𝑚,𝜎2 ,𝜎3

}
,

𝐼2
𝑠𝑐,𝑛𝑔 =

{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ 𝐷∗

𝑚,𝜎2 ,𝜎3 ∩ (𝐵𝑑𝑚𝜌 × 𝐵𝑑𝑚𝑅 ) : 𝜏1
𝑍𝑚

≤ 𝛿, 𝑍𝑚 (𝜏1
𝑍𝑚

) ∈ 𝜕𝑠𝑐,𝑛𝑔D𝑚,𝜎2 ,𝜎3 , 𝜏
2
𝑍𝑚

≤ 𝛿
}
.

We remark that there is a well-defined flow up to time 𝛿 for 𝑍𝑚 ∈ 𝐼 𝑓 𝑟𝑒𝑒 ∪ 𝐼1
𝑠𝑐,𝑛𝑔, since in such

cases, one has at most one simple non-grazing collision in [0, 𝛿]. We aim to estimate the measure of the
pathological set 𝐼1

𝑠𝑐,𝑔 ∪ 𝐼1
𝑚𝑢 ∪ 𝐼2

𝑠𝑐,𝑛𝑔, with respect to the truncation parameters.
Before proceeding to the next result, let us note that conservation of energy (2.5), (2.13) imply the

following elementary but useful remark:

Remark 3.17. The following hold:

◦ For 𝑚 ≥ 2: 𝑍𝑚 ∈ 𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ∩ (R𝑑𝑚 × 𝐵𝑑𝑚𝑅 ) ⇔ 𝑍 ′
𝑚 ∈ 𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ∩ (R𝑑𝑚 × 𝐵𝑑𝑚𝑅 ).

◦ For 𝑚 ≥ 3: 𝑍𝑚 ∈ 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ∩ (R𝑑𝑚 × 𝐵𝑑𝑚𝑅 ) ⇔ 𝑍∗
𝑚 ∈ 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ∩ (R𝑑𝑚 × 𝐵𝑑𝑚𝑅 ).

Lemma 3.18. For 𝑚 ≥ 3, the following inclusion holds:

𝐼1
𝑚𝑢 ∪ 𝐼2

𝑠𝑐,𝑛𝑔 ⊆ 𝑈22 ∪𝑈23 ∪𝑈32 ∪𝑈33, (3.28)

where

𝑈22 :=
⋃

(𝑖, 𝑗)≠(𝑖′, 𝑗′) ∈I2
𝑚

(𝑈2
𝑖 𝑗 ∩𝑈2

𝑖′ 𝑗′ ), (3.29)

𝑈23 :=
⋃

(𝑖, 𝑗) ∈I2
𝑚 , (𝑖′, 𝑗′,𝑘′) ∈I3

𝑚

(𝑈2
𝑖 𝑗 ∩𝑈3

𝑖′ 𝑗′𝑘′ ), (3.30)

𝑈32 :=
⋃

(𝑖, 𝑗 ,𝑘) ∈I3
𝑚 , (𝑖′, 𝑗′) ∈I2

𝑚

(𝑈3
𝑖 𝑗𝑘 ∩𝑈2

𝑖′ 𝑗′ ), (3.31)

𝑈33 :=
⋃

(𝑖, 𝑗 ,𝑘)≠(𝑖′, 𝑗′,𝑘′) ∈I3
𝑚

(𝑈3
𝑖 𝑗𝑘 ∩𝑈3

𝑖′ 𝑗′𝑘′ ), (3.32)
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and given (𝑖, 𝑗) ∈ I2
𝑚, (𝑖, 𝑗 , 𝑘) ∈ I3

𝑚, we denote

𝑈2
𝑖 𝑗 :=

{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ 𝐵𝑑𝑚𝜌 × 𝐵𝑑𝑚𝑅 : 𝜎2 ≤ 𝑑2(𝑥𝑖 , 𝑥 𝑗 ) ≤ 𝜎2 + 2𝛿𝑅

}
. (3.33)

𝑈3
𝑖 𝑗𝑘 :=

{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ 𝐵𝑑𝑚𝜌 × 𝐵𝑑𝑚𝑅 : 2𝜎2

3 ≤ 𝑑2
3 (𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) ≤ (

√
2𝜎3 + 4𝛿𝑅)2

}
. (3.34)

For 𝑚 = 2, we have 𝐼𝑚𝑢1 = 𝐼2
𝑠𝑐,𝑛𝑔 = ∅.

Proof. For 𝑚 = 2, we have that 𝜕𝑚𝑢D2,𝜎2 ,𝜎3 = ∅, and hence, 𝐼1
𝑚𝑢 = ∅. Also, since 𝑚 = 2, we trivially

obtain I2 = {(1, 2)}, and hence, Remark 3.14 implies that 𝜏2
𝑍𝑚

= ∞ (i.e., 𝐼2
𝑠𝑐,𝑛𝑔 = ∅).

Assume now that 𝑚 ≥ 3. We prove the inclusion only for 𝐼2
𝑠𝑐,𝑛𝑔; the inclusion for 𝐼1

𝑚𝑢 is similar but
simpler. We first assume that either 𝑍𝑚 ∈ D̊𝑚,𝜎2 ,𝜎3 or 𝑍𝑚 is postcollisional. Therefore, up to time 𝜏1

𝑍𝑚
,

we have free flow (i.e., 𝑍𝑚 (𝑡) = (𝑋𝑚 + 𝑡𝑉𝑚, 𝑉𝑚), for all 𝑡 ∈ [0, 𝜏1
𝑍𝑚

]). Remark 3.14 guarantees that{
𝑍𝑚(𝜏1

𝑍𝑚
) ∈ Σ2

𝑖 𝑗 ⇒ 𝑍𝑚(𝜏2
𝑍𝑚

) ∉ Σ2
𝑖 𝑗 ,

𝑍𝑚(𝜏1
𝑍𝑚

) ∈ Σ3
𝑖 𝑗𝑘 ⇒ 𝑍𝑚 (𝜏2

𝑍𝑚
) ∉ Σ3

𝑖 𝑗𝑘 .
(3.35)

We claim the following:

1. 𝑍𝑚 (𝜏1
𝑍𝑚

) ∈ Σ2
𝑖 𝑗 , 𝑍𝑚 (𝜏2

𝑍𝑚
) ∈ Σ2

𝑖′ 𝑗′ ⇒ 𝑍𝑚 ∈ 𝑈2
𝑖 𝑗 ∩𝑈2

𝑖′ 𝑗′ , ∀(𝑖, 𝑗), (𝑖′, 𝑗 ′) ∈ I2
𝑚.

2. 𝑍𝑚 (𝜏1
𝑍𝑚

) ∈ Σ2
𝑖 𝑗 , 𝑍𝑚 (𝜏2

𝑍𝑚
) ∈ Σ3

𝑖′ 𝑗′𝑘′ ⇒ 𝑍𝑚 ∈ 𝑈2
𝑖 𝑗 ∩𝑈3

𝑖′ 𝑗′𝑘′ , ∀(𝑖, 𝑗) ∈ I3
𝑚, ∀(𝑖′, 𝑗 , 𝑘 ′) ∈ I3

𝑚.
3. 𝑍𝑚 (𝜏1

𝑍𝑚
) ∈ Σ3

𝑖 𝑗𝑘 ,𝑍𝑚 (𝜏2
𝑍𝑚

) ∈ Σ2
𝑖′ 𝑗′ ⇒ 𝑍𝑚 ∈ 𝑈3

𝑖 𝑗𝑘 ∩𝑈2
𝑖′ 𝑗′ , ∀(𝑖, 𝑗 , 𝑘) ∈ I3

𝑚, ∀(𝑖′, 𝑗 ′) ∈ I2
𝑚.

4. 𝑍𝑚 (𝜏1
𝑍𝑚

) ∈ Σ3
𝑖 𝑗𝑘 ,𝑍𝑚 (𝜏2

𝑍𝑚
) ∈ Σ3

𝑖′ 𝑗′𝑘′ ⇒ 𝑍𝑚 ∈ 𝑈2
𝑖 𝑗 ∩𝑈3

𝑖′ 𝑗′𝑘′ , ∀(𝑖, 𝑗 , 𝑘), (𝑖′, 𝑗 ′, 𝑘 ′) ∈ I3
𝑚.

By (3.35), proving claims (I)–(IV) imply inclusion (3.28) for 𝐼2
𝑠𝑐,𝑛𝑔.

Without loss of generality, we prove claim (III). We have 𝑍𝑚(𝜏1
𝑍𝑚

) ∈ Σ3
𝑖 𝑗𝑘 ∩ Σ2

𝑖′ 𝑗′ ; therefore,

𝑑2
3

(
𝑥𝑖

(
𝜏1
𝑍𝑚

)
; 𝑥 𝑗

(
𝜏1
𝑍𝑚

)
, 𝑥𝑘

(
𝜏1
𝑍𝑚

))
= 2𝜎2

3 , 𝑑2

(
𝑥𝑖′

(
𝜏1
𝑍𝑚

)
, 𝑥 𝑗′

(
𝜏1
𝑍𝑚

))
= 𝜎2. (3.36)

Since there is free motion up to 𝜏1
𝑍𝑚

, triangle inequality implies

|𝑥𝑖 − 𝑥 𝑗 | ≤ |𝑥𝑖 (𝜏1
𝑍𝑚

) − 𝑥 𝑗 (𝜏1
𝑍𝑚

) | + 𝛿 |𝑣𝑖 − 𝑣 𝑗 | ≤ |𝑥𝑖 (𝜏1
𝑍𝑚

) − 𝑥 𝑗 (𝜏1
𝑍𝑚

) | + 2𝛿𝑅. (3.37)

Since there is an (𝑖; 𝑗 , 𝑘) ternary collision at 𝜏1
𝑍𝑚

, we have

|𝑥𝑖 (𝜏1
𝑍𝑚

) − 𝑥 𝑗 (𝜏1
𝑍𝑚

) |2 + |𝑥𝑖 (𝜏1
𝑍𝑚

) − 𝑥𝑘 (𝜏1
𝑍𝑚

) |2 = 2𝜎2
3 ⇒ |𝑥𝑖 (𝜏1

𝑍𝑚
) − 𝑥 𝑗 (𝜏1

𝑍𝑚
) | ≤

√
2𝜎3. (3.38)

Combining (3.37)–(3.38), we obtain

|𝑥𝑖 − 𝑥 𝑗 |2 ≤ |𝑥𝑖 (𝜏1
𝑍𝑚

) − 𝑥 𝑗 (𝜏1
𝑍𝑚

) |2 + 4
√

2𝜎3𝛿𝑅 + 4𝛿2𝑅2. (3.39)

Using the same argument for the pair (𝑖, 𝑘), adding and recalling the fact that there is (𝑖; 𝑗 , 𝑘) collision
at 𝜏1

𝑍𝑚
, we obtain

2𝜎2
3 ≤ 𝑑2

3 (𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) ≤ 2𝜎2
3 + 8

√
2𝜎3𝑅𝛿 + 8𝛿𝑅2 ≤ 2𝜎2

3 + 8
√

2𝜎3𝑅𝛿 + 16𝛿𝑅2 = (
√

2𝜎3 + 4𝛿𝑅)2,

where the lower inequality holds trivially since 𝑍𝑚 ∈ D𝑚,𝜎2 ,𝜎3 . Hence, 𝑍𝑚 ∈ 𝑈3
𝑖 𝑗𝑘 .

We wish to prove as well 𝑍𝑚 ∈ 𝑈2
𝑖′ 𝑗′ ; that is,

𝜎2 ≤ 𝑑2(𝑥𝑖′ , 𝑥 𝑗′ ) ≤ 𝜎2 + 2𝛿𝑅.
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The first inequality trivially holds because of the phase space. To prove the second inequality, we
distinguish the following cases:

1. 𝑖′, 𝑗 ′ ∉ {𝑖, 𝑗 , 𝑘}: Since particles (𝑖′, 𝑗 ′) perform free motion up to 𝜏2
𝑍𝑚

, triangle inequality and the
facts that 𝑍𝑚 (𝜏2

𝑍𝑚
) ∈ Σ2

𝑖′, 𝑗′ , 𝜏
2
𝑍𝑚

≤ 𝛿 imply

|𝑥𝑖′ − 𝑥 𝑗′ | ≤ |𝑥𝑖′ (𝜏2
𝑍𝑚

) − 𝑥𝑖′ (𝜏2
𝑍𝑚

) | + 2𝜏2
𝑍𝑚

𝑅 ≤ 𝜎2 + 2𝛿𝑅,

and thus, 𝑍𝑚 ∈ 𝑈𝑖′ 𝑗′ .
2. There is at least one recollision (i.e., at least one of 𝑖′, 𝑗 ′ belongs to {𝑖, 𝑗 , 𝑘}): The argument is similar

to (i), the only difference being that velocities of the recolliding particles transform at 𝜏1
𝑍𝑚

. Since the
argument is similar for all cases, let us provide a detailed proof only for one recollisional case – for
instance, (𝑖′, 𝑗 ′) = (𝑖, 𝑘). We have

𝑥𝑖 (𝜏2
𝑍𝑚

) = 𝑥𝑖 (𝜏1
𝑍𝑚

) + (𝜏2
𝑍𝑚

− 𝜏1
𝑍𝑚

)𝑣∗𝑖 = 𝑥𝑖 + 𝜏1
𝑍𝑚

𝑣𝑖 + (𝜏2
𝑍𝑚

− 𝜏1
𝑍𝑚

)𝑣∗𝑖 ,
𝑥𝑘 (𝜏2

𝑍𝑚
) = 𝑥𝑘 (𝜏1

𝑍𝑚
) + (𝜏2

𝑍𝑚
− 𝜏1

𝑍𝑚
)𝑣∗𝑘 = 𝑥𝑘 + 𝜏1

𝑍𝑚
𝑣𝑘 + (𝜏2

𝑍𝑚
− 𝜏1

𝑍𝑚
)𝑣∗𝑘 ,

so

𝑥𝑖 − 𝑥𝑘 = 𝑥𝑖 (𝜏2
𝑍𝑚

) − 𝑥𝑘 (𝜏2
𝑍𝑚

) − 𝜏1
𝑍𝑚

(𝑣𝑖 − 𝑣𝑘 ) − (𝜏2
𝑍𝑚

− 𝜏1
𝑍𝑚

) (𝑣∗𝑖 − 𝑣∗𝑘 ).

Therefore, triangle inequality, conservation of energy and the facts that 𝑍𝑚(𝜏2
𝑍𝑚

) ∈ Σ2
𝑖,𝑘 , 𝜏2

𝑍𝑚
≤ 𝛿

imply

|𝑥𝑖 − 𝑥𝑘 | ≤ |𝑥𝑖 (𝜏2
𝑍𝑚

) − 𝑥𝑘 (𝜏2
𝑍𝑚

) | + 𝜏1
𝑍𝑚

|𝑣𝑖 − 𝑣𝑘 | + (𝜏2
𝑍𝑚

− 𝜏1
𝑍𝑚

) |𝑣∗𝑖 − 𝑣∗𝑘 |
≤ |𝑥𝑖 (𝜏2

𝑍𝑚
) − 𝑥𝑘 (𝜏2

𝑍𝑚
) | + 2𝜏1

𝑍𝑚
𝑅 + 2(𝜏2

𝑍𝑚
− 𝜏1

𝑍𝑚
)𝑅

= |𝑥𝑖 (𝜏2
𝑍𝑚

) − 𝑥𝑘 (𝜏2
𝑍𝑚

) | + 2𝜏2
𝑍𝑚

𝑅

≤ 𝜎2 + 2𝛿𝑅,

and hence, 𝑍𝑚 ∈ 𝑈2
𝑖,𝑘 . All the other recollisional cases are proved similarly.

Therefore, 𝑍𝑚 ∈ 𝑈3
𝑖 𝑗𝑘 ∩ 𝑈2

𝑖′ 𝑗′ , and claim (III) follows. The rest of the claims are proved in the same
spirit. We conclude that

𝐼2
𝑠𝑐,𝑛𝑔 ⊆ 𝑈22 ∪𝑈23 ∪𝑈32 ∪𝑈33. (3.40)

Assume now that 𝑍𝑚 is precollisional. Therefore, we obtain

𝑍𝑚 (𝑡) =
{
(𝑋𝑚 + 𝑡𝑉 ′

𝑚, 𝑉
′
𝑚), ∀𝑡 ∈ [0, 𝜏1

𝑍𝑚
], if 𝑍𝑚 ∈ 𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3

(𝑋𝑚 + 𝑡𝑉∗
𝑚, 𝑉

∗
𝑚), ∀𝑡 ∈ [0, 𝜏1

𝑍𝑚
], if 𝑍𝑚 ∈ 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ,

where the collisional transformation is taken with respect to the initial collisional particles. The proof
follows the same lines, using Remark 3.17 for the initial collisional particles whenever needed. �

Now we wish to estimate the measure of 𝐼1
𝑠𝑐,𝑔 ∪ 𝐼1

𝑚𝑢 ∪ 𝐼2
𝑠𝑐,𝑛𝑔 in order to show that outside of a small

measure set, we have a well defined flow. Let us first introduce some notation.
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For 𝑚 ≥ 2, (𝑖, 𝑗) ∈ I2
𝑚, a permutation 𝜋 : {𝑖, 𝑗} → {𝑖, 𝑗} and 𝑥𝜋 𝑗 ∈ R𝑑 , we define the set

𝑆𝜋𝑖 (𝑥𝜋 𝑗 ) = {𝑥𝜋𝑖 ∈ R𝑑 : (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝑈2
𝑖 𝑗 }. (3.41)

For 𝑚 ≥ 3, (𝑖, 𝑗 , 𝑘) ∈ I3
𝑚, a permutation 𝜋 : {𝑖, 𝑗 , 𝑘} → {𝑖, 𝑗 , 𝑘} and (𝑥𝜋 𝑗 , 𝑥𝜋𝑘 ) ∈ R2𝑑 , we define the set

𝑆𝜋𝑖 (𝑥𝜋 𝑗 , 𝑥𝜋𝑘 ) = {𝑥𝜋𝑖 ∈ R𝑑 : (𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘 ) ∈ 𝑈3
𝑖 𝑗𝑘 }. (3.42)

Lemma 3.19. The following hold

1. Let 𝑚 ≥ 2, (𝑖, 𝑗 , 𝑘) ∈ I2
𝑚, a permutation 𝜋 : {𝑖, 𝑗} → {𝑖, 𝑗} and 𝑥𝜋 𝑗 ∈ R𝑑 . Then

|𝑆𝜋𝑖 (𝑥𝜋 𝑗 ) |𝑑 ≤ 𝐶𝑑,𝑅𝛿. (3.43)

2. Let 𝑚 ≥ 3, (𝑖, 𝑗 , 𝑘) ∈ I3
𝑚, a permutation 𝜋 : {𝑖, 𝑗 , 𝑘} → {𝑖, 𝑗 , 𝑘} and (𝑥𝜋 𝑗 , 𝑥𝜋𝑘 ) ∈ R2𝑑 . Then

|𝑆𝜋𝑖 (𝑥𝜋 𝑗 , 𝑥𝜋𝑘 ) |𝑑 ≤ 𝐶𝑑,𝑅𝛿. (3.44)

Proof. For proof of estimate (3.44), we refer to Lemma 3.10. in [5].
Let us prove (3.43). Consider (𝑖, 𝑗) ∈ I2

𝑚, and assume without loss of generality that 𝜋(𝑖, 𝑗) = (𝑖, 𝑗).
Let 𝑥 𝑗 ∈ R𝑑 . Recalling (3.41), we obtain

𝑆𝑖 (𝑥 𝑗 ) =
{
𝑥𝑖 ∈ R𝑑 : 𝜎2 ≤ |𝑥𝑖 − 𝑥 𝑗 | ≤ 𝜎2 + 2𝛿𝑅

}
,

and thus, 𝑆𝑖 (𝑥 𝑗 ) is a spherical shell in R𝑑 of inner radius 𝜎2 and outer radius 𝜎2 + 2𝛿𝑅. Therefore, by
scaling (3.27), we obtain

|𝑆𝑖 (𝑥 𝑗 ) |𝑑 � (𝜎2 + 2𝛿𝑅)𝑑 − 𝜎𝑑2 = 2𝛿𝑅
𝑑−1∑
ℓ=0

(𝜎2 + 2𝛿𝑅)𝑑−1−ℓ𝜎ℓ2 ≤ 𝐶𝑑,𝑅𝛿.

�

Remark 3.20. Estimates of Lemma 3.19 are not sufficient to generate a global flow because 𝛿 represents
the length of an elementary time step; therefore iterating, we cannot eliminate pathological sets. We
will derive a better estimate of order 𝛿2 to achieve this elimination.

Lemma 3.21. Let 𝑚 ≥ 2, 1 < 𝑅 < 𝜌 and 0 < 𝛿𝑅 < 𝜎2 < 𝜎3 < 1. Then the following estimate holds:

|𝐼1
𝑠𝑐,𝑔 ∪ 𝐼1

𝑚𝑢 ∪ 𝐼2
𝑠𝑐,𝑛𝑔 |2𝑑𝑚 ≤ 𝐶𝑚,𝑑,𝑅𝜌

𝑑 (𝑚−2)𝛿2. (3.45)

Proof. We first note that 𝐼𝑠𝑐,𝑔 is of zero measure since it is covered by lower codimension submanifolds
of the phase spase; therefore, it suffices to estimate the measure of 𝐼1

𝑚𝑢 ∪ 𝐼2
𝑠𝑐,𝑛𝑔. For 𝑚 = 2, the result

comes trivially from Lemma 3.18. For 𝑚 ≥ 3, we have

𝐼1
𝑚𝑢 ∪ 𝐼2

𝑠𝑐,𝑛𝑔 = 𝑈22 ∪𝑈23 ∪𝑈32 ∪𝑈33,

where 𝑈22,𝑈23,𝑈32,𝑈33 are given by (3.29)–(3.32). Therefore, it suffices to estimate the measure of
𝑈22,𝑈23,𝑈32,𝑈33. We will strongly rely on Lemma 3.19.

◦ Estimate of 𝑈22: By (3.29), we have

𝑈22 =
⋃

(𝑖, 𝑗)≠(𝑖′, 𝑗′) ∈I2
𝑚

(𝑈2
𝑖 𝑗 ∩𝑈2

𝑖′ 𝑗′ ).
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Consider (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′) ∈ I2
𝑚. We distinguish the following possible cases:

1. 𝑖′, 𝑗 ′ ∉ {𝑖, 𝑗}: By (3.33), followed by Fubini’s Theorem and part (i) of Lemma 3.19, we have

|𝑈2
𝑖 𝑗 ∩𝑈2

𝑖′ 𝑗′ |2𝑑𝑚 � 𝑅𝑑𝑚𝜌𝑑 (𝑚−4)
∫
𝐵4𝑑
𝜌

1𝑆2
𝑖 (𝑥 𝑗 )∩𝑆

2
𝑖′ (𝑥 𝑗′ )

𝑑𝑥𝑖 𝑑𝑥𝑖′ 𝑑𝑥 𝑗 𝑑𝑥 𝑗′

≤ 𝑅𝑑𝑚𝜌𝑑 (𝑚−4)

(∫
𝐵𝑑
𝜌

∫
R𝑑

1𝑆2
𝑖 (𝑥 𝑗 )

𝑑𝑥𝑖 𝑑𝑥 𝑗

) (∫
𝐵𝑑
𝜌

∫
R𝑑

1𝑆2
𝑖′ (𝑥 𝑗′ )

𝑑𝑥𝑖′ 𝑑𝑥 𝑗′

)
≤ 𝐶𝑑,𝑅𝜌

𝑑 (𝑚−2)𝛿2.

2. Exactly one of 𝑖′, 𝑗 ′ belongs to {𝑖, 𝑗}: Without loss of generality, we consider the case (𝑖′, 𝑗 ′) = ( 𝑗 , 𝑗 ′),
for some 𝑗 ′ > 𝑗 , and all other cases follow similarly. Fubini’s Theorem and part (i) of Lemma 3.19
imply

|𝑈2
𝑖 𝑗 ∩𝑈2

𝑗 𝑗′ |2𝑑𝑚 � 𝑅𝑑𝑚𝜌𝑑 (𝑚−3)
∫
𝐵3𝑑
𝜌

1𝑆2
𝑖 (𝑥 𝑗 )∩𝑆

2
𝑗 (𝑥 𝑗′ )

𝑑𝑥 𝑗 𝑑𝑥 𝑗′ 𝑑𝑥𝑖

≤ 𝑅𝑑𝑚𝜌𝑑 (𝑚−3)
∫
𝐵𝑑
𝜌

(∫
R𝑑

1𝑆2
𝑖 (𝑥 𝑗 )

𝑑𝑥𝑖

) (∫
R𝑑

1𝑆2
𝑗′ (𝑥 𝑗 )

𝑑𝑥 𝑗′

)
𝑑𝑥 𝑗

≤ 𝐶𝑑,𝑅𝜌
𝑑 (𝑚−2)𝛿2.

Combining cases (I)–(II), we obtain

|𝑈22 |2𝑑𝑚 ≤ 𝐶𝑚,𝑑,𝑅𝜌
𝑑 (𝑚−2)𝛿2. (3.46)

◦ Estimate of 𝑈23: By (3.30), we have

𝑈23 =
⋃

(𝑖, 𝑗) ∈I2
𝑚 , (𝑖′, 𝑗′,𝑘′) ∈I3

𝑚

(𝑈2
𝑖 𝑗 ∩𝑈3

𝑖′ 𝑗′𝑘′ ).

Consider (𝑖, 𝑗) ∈ I2
𝑚, (𝑖′, 𝑗 ′, 𝑘 ′) ∈ I3

𝑚. We distinguish the following possible cases:

1. 𝑖′, 𝑗 ′, 𝑘 ′ ∉ {𝑖, 𝑗}: By Fubini’s Theorem and parts (i)–(ii) of Lemma 3.19, we obtain

|𝑈2
𝑖 𝑗 ∩𝑈3

𝑖′ 𝑗′𝑘′ |2𝑑𝑚 � 𝑅𝑑𝑚𝜌𝑑 (𝑚−5)
∫
𝐵5𝑑
𝜌

1𝑆2
𝑗 (𝑥𝑖)∩𝑆

3
𝑘′ (𝑥𝑖′ ,𝑥 𝑗′ )

𝑑𝑥𝑖 𝑑𝑥 𝑗 𝑑𝑥𝑖′ 𝑑𝑥 𝑗′ 𝑑𝑥𝑘′

≤ 𝑅𝑑𝑚𝜌𝑑 (𝑚−5)

(∫
𝐵𝑑
𝜌

∫
R𝑑

1𝑆2
𝑗 (𝑥𝑖)

𝑑𝑥𝑖 𝑑𝑥 𝑗

) (∫
𝐵𝑑
𝜌×𝐵𝑑

𝜌

∫
R𝑑

1𝑆3
𝑘′ (𝑥𝑖′ ,𝑥 𝑗′ )

𝑑𝑥𝑖′ 𝑑𝑥 𝑗′ 𝑑𝑥𝑘′

)
≤ 𝐶𝑑,𝑅𝜌

𝑑 (𝑚−2)𝛿2.

2. Exactly one of 𝑖′, 𝑗 ′, 𝑘 ′ belongs in {𝑖, 𝑗}: Without loss of generality, we consider the case (𝑖′, 𝑗 ′, 𝑘 ′) :=
(𝑖′, 𝑖, 𝑘 ′), for some 𝑖′ < 𝑖 < 𝑘 ′, and all other cases follow similarly. Using Fubini’s Theorem and
parts (i)–(ii) of Lemma 3.19, we obtain

|𝑈2
𝑖 𝑗 ∩𝑈𝑖′𝑖𝑘′ |2𝑑𝑚 � 𝑅𝑑𝑚𝜌𝑑 (𝑚−4)

∫
𝐵4𝑑
𝜌

1𝑆2
𝑗 (𝑥𝑖 )∩𝑆

3
𝑖′ (𝑥𝑖 ,𝑥𝑘′ )

𝑑𝑥𝑖 𝑑𝑥 𝑗 𝑑𝑥𝑖′ 𝑑𝑥𝑘′

≤ 𝑅𝑑𝑚𝜌𝑑 (𝑚−4)
∫
𝐵𝑑
𝜌

(∫
R𝑑

1𝑆2
𝑗 (𝑥𝑖 )

𝑑𝑥 𝑗

) (∫
𝐵𝑑
𝜌

∫
R𝑑

1𝑆3
𝑖′ (𝑥𝑖 ,𝑥𝑘′ )

𝑑𝑥𝑖′ 𝑑𝑥𝑘′

)
𝑑𝑥𝑖

≤ 𝐶𝑑,𝑅𝜌
𝑑 (𝑚−2)𝛿2.
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3. Exactly two of 𝑖′, 𝑗 ′, 𝑘 ′ belongs in {𝑖, 𝑗}: Without loss of generality, we consider the case (𝑖′, 𝑗 ′, 𝑘 ′) =
(𝑖′, 𝑖, 𝑗), for some 𝑖′ < 𝑖, and all other cases follow similarly. Using Fubini’s Theorem and parts (i)–
(ii) of Lemma 3.19, we obtain

|𝑈2
𝑖 𝑗 ∩𝑈3

𝑖′𝑖 𝑗 |2𝑑𝑚 � 𝑅𝑑𝑚𝜌𝑑 (𝑚−3)
∫
𝐵3𝑑
𝜌

1𝑆2
𝑖 (𝑥 𝑗 )∩𝑆

3
𝑖′ (𝑥𝑖 ,𝑥 𝑗 )

𝑑𝑥𝑖 𝑑𝑥 𝑗 𝑑𝑥𝑖′

≤ 𝑅𝑑𝑚𝜌𝑑 (𝑚−3)
∫
𝐵𝑑
𝜌×𝐵𝑑

𝜌

(∫
R𝑑

1𝑆2
𝑖 (𝑥 𝑗 )

1𝑆3
𝑖′ (𝑥𝑖 ,𝑥 𝑗 )

𝑑𝑥𝑖′

)
𝑑𝑥𝑖 𝑑𝑥 𝑗

= 𝑅𝑑𝑚𝜌𝑑 (𝑚−3)
∫
𝐵𝑑
𝜌×𝐵𝑑

𝜌

1𝑆2
𝑖 (𝑥 𝑗 )

(
∫
R𝑑

1𝑆3
𝑖′ (𝑥𝑖 ,𝑥 𝑗 )

𝑑𝑥𝑖′ ) 𝑑𝑥𝑖 𝑑𝑥 𝑗

≤ 𝐶𝑑,𝑅𝜌
𝑑 (𝑚−3)𝛿

∫
𝐵𝑑
𝜌

∫
R𝑑

1𝑆𝑖 (𝑥 𝑗 ) 𝑑𝑥𝑖 𝑑𝑥 𝑗

≤ 𝐶𝑑,𝑅𝜌
𝑑 (𝑚−2)𝛿2.

Combining cases (I)–(III), we obtain

|𝑈23 |2𝑑𝑚 ≤ 𝐶𝑚,𝑑,𝑅𝜌
𝑑 (𝑚−2)𝛿2. (3.47)

◦ Estimate of 𝑈32: We use a similar argument to the estimate for 𝑈23 to obtain

|𝑈32 |2𝑑𝑚 ≤ 𝐶𝑚,𝑑,𝑅𝜌
𝑑 (𝑚−2)𝛿2. (3.48)

◦ Estimate of 𝑈33: We refer to Lemma 3.11 from [5] for a detailed proof. We obtain

|𝑈33 |2𝑑𝑚 ≤ 𝐶𝑚,𝑑,𝑅𝜌
𝑑 (𝑚−2)𝛿2. (3.49)

Combining (3.46)–(3.49), we obtain (3.45), and the proof is complete. �

We inductively use Lemma 3.21 to define a global flow which preserves energy for almost all
configuration. For this purpose, given 𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ R2𝑑𝑚, we define its kinetic energy as

𝐸𝑚 (𝑍𝑚) =
1
2

𝑚∑
𝑖=1

|𝑣𝑖 |2. (3.50)

For convenience, let us define the m-particle free flow:

Definition 3.22. Let 𝑚 ∈ N. We define the m-particle free flow as the family of measure-preserving
maps (Φ𝑡

𝑚)𝑡 ∈R : R2𝑑𝑚 → R2𝑑𝑚, given by

Φ𝑡
𝑚𝑍𝑚 = Φ𝑡

𝑚(𝑋𝑚, 𝑉𝑚) = (𝑋𝑚 + 𝑡𝑉𝑚, 𝑉𝑚). (3.51)

We are now in the position to state the Existence Theorem of the m-particle (𝜎2, 𝜎3)-flow.

Theorem 3.23. Let 𝑚 ∈ N and 0 < 𝜎2 < 𝜎3 < 1. There exists a full measure subset Γ𝑚,𝜎2 ,𝜎3 ⊆
D∗
𝑚,𝜎2 ,𝜎3 which is a countable intersection of dense open sets, and a measure-preserving family of dif-

feomorphisms (Ψ𝑡
𝑚)𝑡 ∈R : Γ𝑚,𝜎2 ,𝜎3 → Γ𝑚,𝜎2 ,𝜎3 such that

Ψ𝑡+𝑠
𝑚 𝑍𝑚 = (Ψ𝑡

𝑚 ◦ Ψ𝑠
𝑚) (𝑍𝑚) = (Ψ𝑠

𝑚 ◦ Ψ𝑡
𝑚) (𝑍𝑚), a.e. in Γ𝑚,𝜎2 ,𝜎3 , ∀𝑡, 𝑠 ∈ R, (3.52)

𝐸𝑚
(
Ψ𝑡
𝑚𝑍𝑚

)
= 𝐸𝑚(𝑍𝑚), a.e. in Γ𝑚,𝜎2 ,𝜎3 , ∀𝑡 ∈ R, where 𝐸𝑚 is given by (3.50). (3.53)
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Moreover, the flow is defined a.e. on Γ𝑚,𝜎 ∩ 𝜕𝑠𝑐,𝑛𝑔D𝑚,𝜎 with respect to the induced measure 𝑑𝜎
and preserves energy; that is,

Ψ𝑡
𝑚𝑍

′
𝑚 = Ψ𝑡

𝑚𝑍𝑚, 𝜎 − a.e. on Γ𝑚,𝜎2 ,𝜎3 ∩ 𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3 , ∀𝑡 ∈ R, (3.54)

Ψ𝑡
𝑚𝑍

∗
𝑚 = Ψ𝑡

𝑚𝑍𝑚, 𝜎 − a.e. on Γ𝑚,𝜎2 ,𝜎3 ∩ 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 , ∀𝑡 ∈ R, (3.55)

This family of maps is called the m-particle (𝜎2, 𝜎3)-flow. For 𝑚 = 1, the flow is just the free flow.

Proof. The proof follows the same steps as the proof of Theorem 4.9.1 in [2], using the corresponding
estimates. For an outline of the proof, see Theorem 3.14 in [5] as well. �

3.5. The Liouville equation

Here, we introduce the flow operators used throughout the paper and formally derive the Liouville
equation for 𝑚 ≥ 2.

Definition 3.24. For 𝑡 ∈ R, we define the 𝜎-interaction zone flow of m-particles operator 𝑇 𝑡𝑚 :
𝐿∞(D𝑚,𝜎) → 𝐿∞(D𝑚,𝜎) as

𝑇 𝑡𝑚𝑔𝑚 (𝑍𝑚) = 𝑔𝑚(Ψ−𝑡
𝑚 𝑍𝑚). (3.56)

Definition 3.25. For 𝑡 ∈ R and𝑚 ∈ N, we define the free flow of m-particles operator 𝑆𝑡𝑚 : 𝐿∞(R2𝑑𝑚) →
𝐿∞(R2𝑑𝑚) as

𝑆𝑡𝑚𝑔𝑚 (𝑍𝑚) = 𝑔𝑚(Φ−𝑡
𝑚 𝑍𝑚) = 𝑔𝑚 (𝑋𝑚 − 𝑡𝑉𝑚, 𝑉𝑚). (3.57)

Given a symmetric with respect to the particles initial probability density 𝑓𝑚,0 in D𝑚,𝜎2 ,𝜎3 , we define
its evolution as 𝑓𝑚(𝑡, 𝑍𝑚) := 𝑇 𝑡𝑚 𝑓𝑚,0. Clearly, 𝑓𝑚 is symmetric and by Theorem 3.23 it formally satisfies
the m-particle Liouville equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡 𝑓𝑚 +
𝑚∑
𝑖=1

𝑣𝑖 · ∇𝑥𝑖 𝑓𝑚 = 0, (𝑡, 𝑍𝑚) ∈ (0,∞) × D̊𝑚,𝜎2 ,𝜎3

𝑓𝑚(𝑡, 𝑍 ′
𝑚) = 𝑓𝑚(𝑡, 𝑍𝑚), (𝑡, 𝑍𝑚) ∈ [0,∞) × 𝜕2,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ,

𝑓𝑚(𝑡, 𝑍∗
𝑚) = 𝑓𝑚(𝑡, 𝑍𝑚), (𝑡, 𝑍𝑚) ∈ [0,∞) × 𝜕3,𝑠𝑐D𝑚,𝜎2 ,𝜎3 ,

𝑓𝑚(0, 𝑍𝑚) = 𝑓𝑚,0(𝑍𝑚), 𝑍𝑚 ∈ D̊𝑚,𝜎2 ,𝜎3 .

(3.58)

Let us note that in the case 𝑚 = 2, the equation has only binary boundary conditions.

4. BBGKY hierarchy, Boltzmann hierarchy and the binary-ternary Boltzmann equation

4.1. The BBGKY hierarchy

Consider N-particles of diameter 0 < 𝜖2 < 1 and interaction zone 0 < 𝜖3 < 1, where 𝑁 ≥ 3 and 𝜖2 < 𝜖3.
For 𝑠 ∈ N, we define the s-marginal of a symmetric probability density 𝑓𝑁 , supported in D𝑁 ,𝜖2 , 𝜖3 , as

𝑓 (𝑠)𝑁 (𝑍𝑠) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
R2𝑑 (𝑁−𝑠)

𝑓𝑁 (𝑍𝑁 ) 𝑑𝑥𝑠+1... 𝑑𝑥𝑁 𝑑𝑣𝑠+1... 𝑑𝑣𝑁 , 1 ≤ 𝑠 < 𝑁,

𝑓𝑁 , 𝑠 = 𝑁,

0, 𝑠 > 𝑁,

(4.1)
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where for 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ R2𝑑𝑠 , we write 𝑍𝑁 = (𝑋𝑠 , 𝑥𝑠+1, ..., 𝑥𝑁 , 𝑉𝑠 , 𝑣𝑠+1, ..., 𝑣𝑁 ). One can see, for all
1 ≤ 𝑠 ≤ 𝑁 , the marginals 𝑓 (𝑠)𝑁 are symmetric probability densities, supported in D𝑠, 𝜖2 , 𝜖3 and

𝑓 (𝑠)𝑁 (𝑍𝑠) =
∫
R2𝑑

𝑓 (𝑠+1)
𝑁 (𝑋𝑁 , 𝑉𝑁 ) 𝑑𝑥𝑠+1 𝑑𝑣𝑠+1, ∀1 ≤ 𝑠 ≤ 𝑁 − 1.

Assume now that 𝑓𝑁 is formally the solution to the N-particle Liouville equation (3.58) with initial
data 𝑓𝑁 ,0. We seek to formally find a hierarchy of equations satisfied by the marginals of 𝑓𝑁 . For 𝑠 ≥ 𝑁 ,
by definition, we have

𝑓 (𝑁 )
𝑁 = 𝑓𝑁 , and 𝑓 (𝑠)𝑁 = 0, for 𝑠 > 𝑁. (4.2)

We observe that 𝜕D𝑁 ,𝜖2 , 𝜖3 is equivalent up to surface measure zero to Σ𝑋 × R𝑑𝑁 where

Σ𝑋 :=
⋃

(𝑖, 𝑗) ∈I2
𝑁

Σ2,𝑠𝑐,𝑋
𝑖 𝑗 ∪

⋃
(𝑖, 𝑗 ,𝑘) ∈I3

𝑁

Σ3,𝑠𝑐,𝑋
𝑖 𝑗𝑘 , (4.3)

Σ2,𝑠𝑐,𝑋
𝑖 𝑗 :=

{
𝑋𝑁 ∈ R𝑑𝑁 :𝑑2(𝑥𝑖 , 𝑥 𝑗 ) = 𝜖2, 𝑑2(𝑥𝑖′ , 𝑥 𝑗′ ) > 𝜖2, ∀(𝑖′, 𝑗 ′) ∈ I2

𝑁 \ {(𝑖, 𝑗)}

and 𝑑3(𝑥𝑖′ ; , 𝑥 𝑗′ , 𝑥𝑘′ ) >
√

2𝜖3, ∀(𝑖′, 𝑗 ′, 𝑘 ′) ∈ I3
𝑁

}
,

Σ3,𝑠𝑐,𝑋
𝑖 𝑗𝑘 :=

{
𝑋𝑁 ∈ R𝑑𝑁 :𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) =

√
2𝜖3, 𝑑2(𝑥𝑖′ , 𝑥 𝑗′ ) > 𝜖2, ∀(𝑖′, 𝑗 ′) ∈ I2

𝑁

and 𝑑3(𝑥𝑖′ ; , 𝑥 𝑗′ , 𝑥𝑘′ ) >
√

2𝜖3, ∀(𝑖′, 𝑗 ′, 𝑘 ′) ∈ I3
𝑁 } \ {(𝑖, 𝑗 , 𝑘)}

}
.

Notice that (4.3) is a pairwise disjoint union.

Remark 4.1. The assumption 𝜖2 < 𝜖3 made at at the beginning of the section is necessary for the ternary
contribution to be visible. Indeed, if 𝜖2 ≥ 𝜖3, Remark 3.1 and (3.23) would imply that Σ3,𝑠𝑐,𝑋

𝑖 𝑗𝑘 = ∅ for
all (𝑖, 𝑗 , 𝑘) ∈ I3

𝑚, and therefore, there would not be a ternary collisional term.

The hierarchy for 𝑠 < 𝑁 will come after integrating by parts the Liouville equation (3.58). Consider
1 ≤ 𝑠 ≤ 𝑁 − 1. The boundary and initial conditions can be easily recovered integrating Liouville’s
equation boundary and initial conditions, respectively; that is,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓 (𝑠)𝑁 (𝑡, 𝑍 ′

𝑠) = 𝑓 (𝑠)𝑁 (𝑡, 𝑍𝑠), (𝑡, 𝑍𝑠) ∈ [0,∞) × 𝜕2,𝑠𝑐D𝑠, 𝜖2 , 𝜖3 , 𝑠 ≥ 2,
𝑓 (𝑠)𝑁 (𝑡, 𝑍∗

𝑠 ) = 𝑓 (𝑠)𝑁 (𝑡, 𝑍𝑠), (𝑡, 𝑍𝑠) ∈ [0,∞) × 𝜕3,𝑠𝑐D𝑠, 𝜖2 , 𝜖3 , 𝑠 ≥ 3,
𝑓 (𝑠)𝑁 (0, 𝑍𝑠) = 𝑓 (𝑠)𝑁 ,0(𝑍𝑠), 𝑍𝑠 ∈ D̊𝑠, 𝜖2 , 𝜖3 .

(4.4)

Notice that for 𝑠 = 2, there is no ternary boundary condition, while for 𝑠 = 1, there is no boundary
condition at all.

Consider now a smooth test function 𝜙𝑠 compactly supported in (0,∞) × D𝑠, 𝜖2 , 𝜖3 such that the
following hold:

◦ For any (𝑖, 𝑗) ∈ I2
𝑁 with 𝑗 ≤ 𝑠, we have

𝜙𝑠 (𝑡, 𝑝𝑠𝑍 ′
𝑁 ) = 𝜙𝑠 (𝑡, 𝑝𝑠𝑍𝑁 ) = 𝜙𝑠 (𝑡, 𝑍𝑠), ∀(𝑡, 𝑍𝑁 ) ∈ (0,∞) × Σ𝑠𝑐,2𝑖, 𝑗 , (4.5)

◦ For any (𝑖, 𝑗 , 𝑘) ∈ I3
𝑁 with 𝑗 ≤ 𝑠, we have

𝜙𝑠 (𝑡, 𝑝𝑠𝑍∗
𝑁 ) = 𝜙𝑠 (𝑡, 𝑝𝑠𝑍𝑁 ) = 𝜙𝑠 (𝑡, 𝑍𝑠), ∀(𝑡, 𝑍𝑁 ) ∈ (0,∞) × Σ𝑠𝑐,3𝑖, 𝑗 ,𝑘 , (4.6)

where 𝑝𝑠 : R2𝑑𝑁 → R2𝑑𝑠 denotes the natural projection in space and velocities, given by 𝑝𝑠 (𝑍𝑁 ) = 𝑍𝑠 .
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Multiplying the Liouville equation by 𝜙𝑠 and integrating, we obtain its weak form

∫
(0,∞)×D𝑁,𝜖2 , 𝜖3

(
𝜕𝑡 𝑓𝑁 (𝑡, 𝑍𝑁 ) +

𝑁∑
𝑖=1

𝑣𝑖∇𝑥𝑖 𝑓𝑁 (𝑡, 𝑍𝑁 )
)
𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑋𝑁 𝑑𝑉𝑁 𝑑𝑡 = 0. (4.7)

For the time derivative in (4.7), we use Fubini’s Theorem, integration by parts in time, the fact that 𝑓𝑁 is
supported in (0,∞) ×D𝑁 ,𝜖2 , 𝜖3 and the fact that 𝜙𝑠 is compactly supported in (0,∞) ×D𝑠, 𝜖2 , 𝜖3 to obtain∫

(0,∞)×D𝑁,𝜖2 , 𝜖3

𝜕𝑡 𝑓𝑁 (𝑡, 𝑍𝑁 )𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑋𝑁 𝑑𝑉𝑁 𝑑𝑡 =
∫
(0,∞)×D𝑠,𝜖2 , 𝜖3

𝜕𝑡 𝑓
(𝑠)
𝑁 (𝑡, 𝑍𝑠)𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑋𝑠 𝑑𝑉𝑠 𝑑𝑡.

(4.8)

For the material derivative term in (4.7), the Divergence Theorem implies that

∫
D𝑁,𝜖2 , 𝜖3

𝑁∑
𝑖=1

𝑣𝑖∇𝑥𝑖 𝑓𝑁 (𝑡, 𝑍𝑁 )𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑋𝑁 𝑑𝑉𝑁 =
∫
D𝑁,𝜖2 , 𝜖3

div𝑋𝑁 [ 𝑓𝑁 (𝑡, 𝑍𝑁 )𝑉𝑁 ]𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑋𝑁 𝑑𝑉𝑁

= −
∫
D𝑁,𝜖2 , 𝜖3

𝑉𝑁 · ∇𝑋𝑁 𝜙𝑠 (𝑡, 𝑍𝑠) 𝑓𝑁 (𝑡, 𝑍𝑁 ) 𝑑𝑋𝑁 𝑑𝑉𝑁+ (4.9)∫
Σ𝑋×R𝑑𝑁

�̂�(𝑋𝑁 ) · 𝑉𝑁 𝑓𝑁 (𝑡, 𝑍𝑁 )𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑉𝑁 𝑑𝜎,

where Σ𝑋 is given by (4.3), �̂�(𝑋𝑁 ) is the outwards normal vector on Σ𝑋 at 𝑋𝑁 ∈ Σ𝑋 and 𝑑𝜎 is the
surface measure on Σ𝑋 . Using the fact that 𝑓𝑁 is supported in D𝑁 ,𝜖2 , 𝜖3 , Divergence Theorem and the
fact that 𝜙𝑠 is compactly supported in (0,∞) ×D𝑠, 𝜖2 , 𝜖3 , we obtain∫

D𝑁,𝜖2 , 𝜖3

𝑉𝑁 · ∇𝑋𝑁 𝜙𝑠 (𝑡, 𝑍𝑠) 𝑓𝑁 (𝑡, 𝑍𝑁 ) 𝑑𝑋𝑁 𝑑𝑉𝑁 = −
∫
D𝑠,𝜖2 , 𝜖3

𝑠∑
𝑖=1

𝑣𝑖∇𝑥𝑖 𝑓
(𝑠)
𝑁 (𝑡, 𝑍𝑠)𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑋𝑠 𝑑𝑉𝑠 .

(4.10)

Combining (4.7)–(4.10), and recalling the space boundary decomposition (4.3), we obtain∫
(0,∞)×D𝑠,𝜖2 , 𝜖3

(
𝜕𝑡 𝑓

(𝑠)
𝑁 (𝑡, 𝑍𝑠) +

𝑠∑
𝑖=1

𝑣𝑖∇𝑥𝑖 𝑓
(𝑠)
𝑁 (𝑡, 𝑍𝑠)

)
𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑋𝑠 𝑑𝑉𝑠 𝑑𝑡

= −
∫
(0,∞)×Σ𝑋×R𝑑𝑁

�̂�(𝑋𝑁 ) · 𝑉𝑁 𝑓𝑁 (𝑡, 𝑍𝑁 )𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑉𝑁 𝑑𝜎 𝑑𝑡,

=:
∫ ∞

0

∑
(𝑖, 𝑗) ∈I2

𝑁

𝐶2
𝑖 𝑗 (𝑡) +

∑
(𝑖, 𝑗 ,𝑘) ∈I3

𝑁

𝐶3
𝑖 𝑗𝑘 (𝑡) 𝑑𝑡, (4.11)

where for (𝑖, 𝑗) ∈ I2
𝑁 , 𝑡 > 0, we denote

𝐶2
𝑖 𝑗 (𝑡) = −

∫
Σ2,𝑠𝑐,𝑋
𝑖, 𝑗 ×R𝑑𝑁

�̂�2
𝑖 𝑗 (𝑋𝑁 ) · 𝑉𝑁 𝑓𝑁 (𝑡, 𝑍𝑁 )𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑉𝑁 𝑑𝜎2

𝑖 𝑗 , (4.12)

for (𝑖, 𝑗 , 𝑘) ∈ I3
𝑁 , 𝑡 > 0, we denote

𝐶3
𝑖 𝑗𝑘 (𝑡) = −

∫
Σ3,𝑠𝑐,𝑋
𝑖, 𝑗,𝑘

×R𝑑𝑁
�̂�3
𝑖 𝑗𝑘 (𝑋𝑁 ) · 𝑉𝑁 𝑓𝑁 (𝑡, 𝑍𝑁 )𝜙𝑠 (𝑡, 𝑍𝑠) 𝑑𝑉𝑁 𝑑𝜎3

𝑖 𝑗𝑘 , (4.13)
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and �̂�2
𝑖 𝑗 (𝑋𝑁 ) is the outwards normal vector on Σ2,𝑠𝑐,𝑋

𝑖 𝑗 at 𝑋𝑁 ∈ Σ2,𝑠𝑐,𝑋
𝑖 𝑗 , 𝑑𝜎2

𝑖 𝑗 is the surface measure
on Σ2,𝑠𝑐,𝑋

𝑖 𝑗 , while �̂�3
𝑖 𝑗𝑘 (𝑋𝑁 ) is the outwards normal vector on Σ3,𝑠𝑐,𝑋

𝑖 𝑗𝑘 at 𝑋𝑁 ∈ Σ3,𝑠𝑐,𝑋
𝑖 𝑗𝑘 and 𝑑𝜎3

𝑖 𝑗𝑘 is the
surface measure on Σ3,𝑠𝑐,𝑋

𝑖 𝑗𝑘 .
Following similar calculations to [18] which treats the binary case, and [5] which treats the ternary

case, we formally obtain the BBGKY hierarchy:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡 𝑓
(𝑠)
𝑁 +

𝑠∑
𝑖=1

𝑣𝑖∇𝑥𝑖 𝑓
(𝑠)
𝑁 = C𝑁𝑠,𝑠+1 𝑓

(𝑠+1)
𝑁 + C𝑁𝑠,𝑠+2 𝑓

(𝑠+2)
𝑁 , (𝑡, 𝑍𝑠) ∈ (0,∞) × D̊𝑠, 𝜖2 , 𝜖3 ,

𝑓 (𝑠)𝑁 (𝑡, 𝑍 ′
𝑠) = 𝑓 (𝑠)𝑁 (𝑡, 𝑍𝑠), (𝑡, 𝑍𝑠) ∈ [0,∞) × 𝜕2,𝑠𝑐D𝑠, 𝜖2 , 𝜖3 , whenever 𝑠 ≥ 2,

𝑓 (𝑠)𝑁 (𝑡, 𝑍∗
𝑠 ) = 𝑓 (𝑠)𝑁 (𝑡, 𝑍𝑠), (𝑡, 𝑍𝑠) ∈ [0,∞) × 𝜕3,𝑠𝑐D𝑠, 𝜖2 , 𝜖3 , whenever 𝑠 ≥ 3,

𝑓 (𝑠)𝑁 (0, 𝑍𝑠) = 𝑓 (𝑠)𝑁 ,0 (𝑍𝑠), 𝑍𝑠 ∈ D̊𝑠, 𝜖2 , 𝜖3 ,

(4.14)

where

C𝑁𝑠,𝑠+1 = C𝑁 ,+𝑠,𝑠+1 − C𝑁 ,−𝑠,𝑠+1, (4.15)

C𝑁𝑠,𝑠+2 = C𝑁 ,+𝑠,𝑠+2 − C𝑁 ,−𝑠,𝑠+2, (4.16)

and we use the following notation:
◦ Binary notation: For 1 ≤ 𝑠 ≤ 𝑁 − 1, we denote

C𝑁 ,+𝑠,𝑠+1 𝑓
(𝑠+1)
𝑁 (𝑡, 𝑍𝑠) = 𝐴2

𝑁 ,𝜖2 ,𝑠

𝑠∑
𝑖=1

∫
S
𝑑−1
1 ×R𝑑

𝑏+2 (𝜔1, 𝑣𝑠+1 − 𝑣𝑖) 𝑓 (𝑠+1)
𝑁

(
𝑡, 𝑍 ′

𝑠+1, 𝜖2 ,𝑖

)
𝑑𝜔1 𝑑𝑣𝑠+1, (4.17)

C𝑁 ,−𝑠,𝑠+1 𝑓
(𝑠+2)
𝑁 (𝑡, 𝑍𝑠) = 𝐴2

𝑁 ,𝜖2 ,𝑠

𝑠∑
𝑖=1

∫
S
𝑑−1
1 ×R𝑑

𝑏+2 (𝜔1, 𝑣𝑠+1 − 𝑣𝑖) 𝑓 (𝑠+1)
𝑁

(
𝑡, 𝑍𝑠+1, 𝜖2 ,𝑖

)
𝑑𝜔1 𝑑𝑣𝑠+1, (4.18)

where

𝑏2(𝜔1, 𝑣𝑠+1 − 𝑣𝑖) = 〈𝜔1, 𝑣𝑠+1 − 𝑣𝑖〉,
𝑏+2 = max{𝑏2, 0},
𝐴2
𝑁 ,𝜖2 ,𝑠

= (𝑁 − 𝑠)𝜖𝑑−1
2 ,

𝑍𝑠+1, 𝜖2 ,𝑖 = (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑠 , 𝑥𝑖 − 𝜖2𝜔1, 𝑣1, ...𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖+1, ..., 𝑣𝑠 , 𝑣𝑠+1),
𝑍 ′
𝑠+1, 𝜖2 ,𝑖

= (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑠 , 𝑥𝑖 + 𝜖2𝜔1, 𝑣1, ...𝑣𝑖−1, 𝑣
′
𝑖 , 𝑣𝑖+1, ..., 𝑣𝑠 , 𝑣

′
𝑠+1).

(4.19)

For 𝑠 ≥ 𝑁 , we trivially define C𝑁𝑠,𝑠+1 ≡ 0.
◦ Ternary notation: For 1 ≤ 𝑠 ≤ 𝑁 − 2, we denote

C𝑁 ,+𝑠,𝑠+2 𝑓
(𝑠+2)
𝑁 (𝑡, 𝑍𝑠) = 𝐴3

𝑁 ,𝜖3 ,𝑠

𝑠∑
𝑖=1

∫
S

2𝑑−1
1 ×R2𝑑

𝑏+3 (𝜔1, 𝜔2, 𝑣𝑠+1 − 𝑣𝑖 , 𝑣𝑠+2 − 𝑣𝑖)√
1 + 〈𝜔1, 𝜔2〉

× 𝑓 (𝑠+2)
𝑁

(
𝑡, 𝑍∗

𝑠+2, 𝜖3 ,𝑖

)
𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑠+1 𝑑𝑣𝑠+2,

(4.20)

C𝑁 ,−𝑠,𝑠+2 𝑓
(𝑠+2)
𝑁 (𝑡, 𝑍𝑠) = 𝐴3

𝑁 ,𝜖3 ,𝑠

𝑠∑
𝑖=1

∫
S

2𝑑−1
1 ×R2𝑑

𝑏+3 (𝜔1, 𝜔2, 𝑣𝑠+1 − 𝑣𝑖 , 𝑣𝑠+2 − 𝑣𝑖)√
1 + 〈𝜔1, 𝜔2〉

× 𝑓 (𝑠+2)
𝑁

(
𝑡, 𝑍𝑠+2, 𝜖3 ,𝑖

)
𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑠+1 𝑑𝑣𝑠+2,

(4.21)
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where

𝐴3
𝑁 ,𝜖3 ,𝑠

= 2𝑑−2 (𝑁 − 𝑠) (𝑁 − 𝑠 − 1)𝜖2𝑑−1
3 ,

𝑏3(𝜔1, 𝜔2, 𝑣𝑠+1 − 𝑣𝑖 , 𝑣𝑠+2 − 𝑣𝑖) = 〈𝜔1, 𝑣𝑠+1 − 𝑣𝑖〉 + 〈𝜔2, 𝑣𝑠+2 − 𝑣𝑖〉,
𝑏+3 = max{𝑏3, 0},

𝑍𝑠+2, 𝜖3 ,𝑖 = (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑠 , 𝑥𝑖 −
√

2𝜖3𝜔1, 𝑥𝑖 −
√

2𝜖3𝜔2, 𝑣1, ...𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖+1, ..., 𝑣𝑠 , 𝑣𝑠+1, 𝑣𝑠+2),

𝑍∗
𝑠+2, 𝜖3 ,𝑖

= (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑠 , 𝑥𝑖 +
√

2𝜖3𝜔1, 𝑥𝑖 +
√

2𝜖3𝜔2, 𝑣1, ...𝑣𝑖−1, 𝑣
∗
𝑖 , 𝑣𝑖+1, ..., 𝑣𝑠 , 𝑣

∗
𝑠+1, 𝑣

∗
𝑠+2).

(4.22)

For 𝑠 ≥ 𝑁 − 1, we trivially define C𝑁𝑠,𝑠+2 ≡ 0.
Duhamel’s formula implies that the BBGKY hierarchy can be written in mild form as follows:

𝑓 (𝑠)𝑁 (𝑡, 𝑍𝑠) = 𝑇 𝑡𝑠 𝑓
(𝑠)
𝑁 ,0(𝑍𝑠) +

∫ 𝑡

0
𝑇 𝑡−𝜏𝑠

(
C𝑁𝑠,𝑠+1 𝑓

(𝑠+1)
𝑁 + C𝑁𝑠,𝑠+2 𝑓

(𝑠+2)
𝑁

)
(𝜏, 𝑍𝑠) 𝑑𝜏, 𝑠 ∈ N, (4.23)

where 𝑇 𝑡𝑠 is the s-particle (𝜖2, 𝜖3)-flow operator given in (3.56).

4.2. The Boltzmann hierarchy

We will now derive the Boltzmann hierarchy as the formal limit of the BBGKY hierarchy as 𝑁 → ∞
and 𝜖2, 𝜖3 → 0+ under the scaling

𝑁𝜖𝑑−1
2 � 𝑁𝜖𝑑−1/2

3 � 1. (4.24)

This scaling implies that 𝜖2,𝜖3 satisfy

𝜖𝑑−1
2 � 𝜖𝑑−1/2

3 . (4.25)

Remark 4.2. Using the scaling (4.24), we obtain

𝜖2 � 𝑁− 1
𝑑−1

𝑁→∞−→ 0, 𝜖3 � 𝑁− 2
2𝑑−1

𝑁→∞−→ 0, (4.26)

and thus,

𝜖2
𝜖3

� 𝑁− 1
(𝑑−1) (2𝑑−1)

𝑁→∞−→ 0. (4.27)

Therefore, for N large enough, we have 𝜖2 << 𝜖3.

Remark 4.3. The scaling (4.24) guarantees that for a fixed 𝑠 ∈ N, we have

𝐴2
𝑁 ,𝜖2 ,𝑠

= (𝑁 − 𝑠)𝜖𝑑−1
2 −→ 1, as 𝑁 → ∞,

𝐴3
𝑁 ,𝜖3 ,𝑠

= 2𝑑−2 (𝑁 − 𝑠) (𝑁 − 𝑠 − 1)𝜖2𝑑−1
3 −→ 1, as 𝑁 → ∞.

Formally taking the limit under the scaling imposed, we may define the following collisional opera-
tors:

◦ Binary Boltzmann operator:

C∞
𝑠,𝑠+1 = C∞,+

𝑠,𝑠+1 − C∞,−
𝑠,𝑠+1, (4.28)
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where

C∞,+
𝑠,𝑠+1 𝑓

(𝑠+1) (𝑡, 𝑍𝑠) =
𝑠∑
𝑖=1

∫
(S𝑑−1

1 ×R𝑑)
𝑏+2 (𝜔1, 𝑣𝑠+2 − 𝑣𝑖) 𝑓 (𝑠+1)

(
𝑡, 𝑍 ′

𝑠+1,𝑖

)
× 𝑑𝜔1 𝑑𝑣𝑠+1, (4.29)

C∞,−
𝑠,𝑠+1 𝑓

(𝑠+1) (𝑡, 𝑍𝑠) =
𝑠∑
𝑖=1

∫
(S𝑑−1

1 ×R𝑑)
𝑏+2 (𝜔1, 𝑣𝑠+2 − 𝑣𝑖) × 𝑓 (𝑠+1) (𝑡, 𝑍𝑠+1,𝑖

)
× 𝑑𝜔1 𝑑𝑣𝑠+1, (4.30)

𝑏2 (𝜔1, 𝑣𝑠+1 − 𝑣𝑖) = 〈𝜔1, 𝑣𝑠+1 − 𝑣𝑖〉,
𝑏2 = max{0, 𝑏2},
𝑍𝑠+1,𝑖 = (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑠 , 𝑥𝑖 , 𝑣1, ...𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖+1, ..., 𝑣𝑠 , 𝑣𝑠+1),
𝑍 ′
𝑠+1,𝑖 = (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑠 , 𝑥𝑖 , 𝑣1, ...𝑣𝑖−1, 𝑣

′
𝑖 , 𝑣𝑖+1, ..., 𝑣𝑠 , 𝑣

′
𝑠+1).

(4.31)

◦ Ternary Boltzmann operator:

C∞
𝑠,𝑠+2 = C∞,+

𝑠,𝑠+2 − C∞,−
𝑠,𝑠+2, (4.32)

where

C∞,+
𝑠,𝑠+2 𝑓

(𝑠+2) (𝑡, 𝑍𝑠) =
𝑠∑
𝑖=1

∫
(S2𝑑−1

1 ×R2𝑑)

𝑏+3 (𝜔1, 𝜔2, 𝑣𝑠+1 − 𝑣𝑖 , 𝑣𝑠+2 − 𝑣𝑖)√
1 + 〈𝜔1, 𝜔2〉

𝑓 (𝑠+2)
(
𝑡, 𝑍∗

𝑠+2,𝑖

)
× 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑠+1 𝑑𝑣𝑠+2,

(4.33)

C∞,−
𝑠,𝑠+2 𝑓

(𝑠+2) (𝑡, 𝑍𝑠) =
𝑠∑
𝑖=1

∫
(S2𝑑−1

1 ×R2𝑑)

𝑏+3 (𝜔1, 𝜔2, 𝑣𝑠+1 − 𝑣𝑖 , 𝑣𝑠+2 − 𝑣𝑖)√
1 + 〈𝜔1, 𝜔2〉

× 𝑓 (𝑠+2) (𝑡, 𝑍𝑠+2,𝑖
)

× 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑠+1 𝑑𝑣𝑠+2,

(4.34)

𝑏3 (𝜔1, 𝜔2, 𝑣𝑠+1 − 𝑣𝑖 , 𝑣𝑠+2 − 𝑣𝑖) = 〈𝜔1, 𝑣𝑠+1 − 𝑣𝑖〉 + 〈𝜔2, 𝑣𝑠+2 − 𝑣𝑖〉,
𝑏+3 = max{𝑏3, 0},
𝑍𝑠+2,𝑖 = (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑠 , 𝑥𝑖 , 𝑥𝑖 , 𝑣1, ...𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖+1, ..., 𝑣𝑠 , 𝑣𝑠+1, 𝑣𝑠+2),
𝑍∗
𝑠+2,𝑖 = (𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑠 , 𝑥𝑖 , 𝑥𝑖 , 𝑣1, ...𝑣𝑖−1, 𝑣

∗
𝑖 , 𝑣𝑖+1, ..., 𝑣𝑠 , 𝑣

∗
𝑠+1, 𝑣

∗
𝑠+2).

(4.35)

Now we are ready to introduce the Boltzmann hierarchy. More precisely, given an initial probability
density 𝑓0, the Boltzmann hierarchy for 𝑠 ∈ N is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡 𝑓

(𝑠) +
𝑠∑
𝑖=1

𝑣𝑖∇𝑥𝑖 𝑓 (𝑠) = C∞
𝑠,𝑠+1 𝑓

(𝑠+1) + C∞
𝑠,𝑠+2 𝑓

(𝑠+2) , (𝑡, 𝑍𝑠) ∈ (0,∞) × R2𝑑𝑠 ,

𝑓 (𝑠) (0, 𝑍𝑠) = 𝑓 (𝑠)0 (𝑍𝑠), ∀𝑍𝑠 ∈ R2𝑑𝑠 .

(4.36)

Duhamel’s formula implies that the Boltzmann hierarchy can be written in mild form as follows:

𝑓 (𝑠) (𝑡, 𝑍𝑠) = 𝑆𝑡𝑠 𝑓
(𝑠)

0 (𝑍𝑠) +
∫ 𝑡

0
𝑆𝑡−𝜏𝑠

(
C∞
𝑠,𝑠+1 𝑓

(𝑠+1) + C∞
𝑠,𝑠+2 𝑓

(𝑠+2)
)
(𝜏, 𝑍𝑠) 𝑑𝜏, 𝑠 ∈ N, (4.37)

where 𝑆𝑡𝑠 denotes the 𝑠−particle free flow operator given in (3.57).

5. Local well-posedness

In this section, we show that the BBGKY hierarchy, the Boltzmann hierarchy and the binary-ternary
Boltzmann equation are well-posed for short times in Maxwellian weighted 𝐿∞-spaces. To obtain these
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results, we combine the continuity estimates on the binary and ternary collisional operators, obtained
in [18] and [5], respectively.

5.1. LWP for the BBGKY hierarchy

Consider (𝑁, 𝜖2, 𝜖3) in the scaling (4.24), with 𝑁 ≥ 3.
For 𝛽 > 0, we define the Banach space

𝑋𝑁 ,𝛽,𝑠 :=
{
𝑔𝑁 ,𝑠 ∈ 𝐿∞(D𝑚,𝜖2 , 𝜖3) and |𝑔𝑁 ,𝑠 |𝑁 ,𝛽,𝑠 < ∞

}
,

with norm |𝑔𝑁 ,𝑠 |𝑁 ,𝛽,𝑠 = sup𝑍𝑠 ∈R2𝑑𝑠 |𝑔𝑁 ,𝑠 (𝑍𝑠) |𝑒𝛽𝐸𝑠 (𝑍𝑠) , where 𝐸𝑠 (𝑍𝑠) is the kinetic energy of the
s-particles given by (3.50). For 𝑠 > 𝑁 , we trivially define 𝑋𝑁 ,𝛽,𝑠 := {0}.

Remark 5.1. Given 𝑡 ∈ R and 𝑠 ∈ N, conservation of energy under the flow (3.53) implies that the
s-particle of (𝜖2, 𝜖3)-flow operator 𝑇 𝑡𝑠 : 𝑋𝑁 ,𝛽,𝑠 → 𝑋𝑁 ,𝛽,𝑠 , given in (3.56) is an isometry; that is,

|𝑇 𝑡𝑠 𝑔𝑁 ,𝑠 |𝑁 ,𝛽,𝑠 = |𝑔𝑁 ,𝑠 |𝑁 ,𝛽,𝑠 , ∀𝑔𝑁 ,𝑠 ∈ 𝑋𝑁 ,𝛽,𝑠 .

Proof. Let 𝑔𝑁 ,𝑠 ∈ 𝑋𝑁 ,𝛽,𝑠 and 𝑍𝑠 ∈ R2𝑑𝑠 . If 𝑍𝑠 ∉ D𝑠, 𝜖2 , 𝜖3 , the result is trivial since 𝑔𝑁 ,𝑠 is supported
in D𝑠, 𝜖2 , 𝜖3 . Assume 𝑍𝑠 ∈ D𝑠, 𝜖2 , 𝜖3 . Then Theorem 3.23 yields

𝑒𝛽𝐸𝑠 (𝑍𝑠) |𝑇 𝑡𝑠 𝑔𝑁 ,𝑠 | = 𝑒𝛽𝐸𝑠 (𝑍𝑠) | (𝑔𝑁 ,𝑠 ◦ Ψ−𝑡
𝑠 ) (𝑍𝑠) | = 𝑒𝛽𝐸𝑠 (Ψ−𝑡

𝑠 𝑍𝑠) |𝑔𝑁 ,𝑠 (Ψ−𝑡
𝑠 𝑍𝑠) | ≤ |𝑔𝑁 ,𝑠 |𝑁 ,𝑠,𝛽 ,

and hence, |𝑇 𝑡𝑠 𝑔𝑁 ,𝑠 |𝑁 ,𝑠,𝛽 ≤ |𝑔𝑁 ,𝑠 |𝑁 ,𝑠,𝛽 . The other side of the inequality comes similarly using the fact
that 𝑍𝑠 = Ψ−𝑡

𝑠 (Ψ𝑡
𝑠𝑍𝑠). �

Consider as well 𝜇 ∈ R. We define the Banach space

𝑋𝑁 ,𝛽,𝜇 :=
{
𝐺𝑁 = (𝑔𝑁 ,𝑠)𝑠∈N : ‖𝐺𝑁 ‖𝑁 ,𝛽,𝜇 < ∞

}
,

with norm ‖𝐺𝑁 ‖𝑁 ,𝛽,𝜇 = sup𝑠∈N 𝑒𝜇𝑠 |𝑔𝑁 ,𝑠 |𝑁 ,𝛽,𝑠 = max𝑠∈{1,...,𝑁 } 𝑒
𝜇𝑠 |𝑔𝑁 ,𝑠 |𝑁 ,𝛽,𝑠 .

Remark 5.2. Given 𝑡 ∈ R, Remark 5.1 implies that the map T 𝑡 : 𝑋𝑁 ,𝛽,𝜇 → 𝑋𝑁 ,𝛽,𝜇 given by

T 𝑡𝐺𝑁 :=
(
𝑇 𝑡𝑠 𝑔𝑁 ,𝑠

)
𝑠∈N (5.1)

is an isometry; that is, ‖T 𝑡𝐺𝑁 ‖𝑁 ,𝛽,𝜇 = ‖𝐺𝑁 ‖𝑁 ,𝛽,𝜇, for any 𝐺𝑁 ∈ 𝑋𝑁 ,𝛽,𝜇 .

Finally, given 𝑇 > 0, 𝛽0 > 0, 𝜇0 ∈ R and β,μ : [0, 𝑇] → R decreasing functions of time with
β(0) = 𝛽0, β(𝑇) > 0, μ(0) = 𝜇0, we define the Banach space

X𝑁 ,β,μ := 𝐶0 ([0, 𝑇], 𝑋𝑁 ,β (𝑡) ,μ(𝑡)
)
,

with norm | | |GN | | |𝑁 ,β,μ = sup𝑡 ∈[0,𝑇 ] ‖GN (𝑡)‖𝑁 ,β (𝑡) ,μ(𝑡) . Similarly as in Proposition 6.2. from [2],
one can obtain the following bounds:

Proposition 5.3. Let𝑇 > 0, 𝛽0 > 0, 𝜇0 ∈ R andβ,μ : [0, 𝑇] → R decreasing functions with 𝛽0 = β(0),
β(𝑇) > 0 𝜇0 = μ(0). Then for any 𝐺𝑁 =

(
𝑔𝑁 ,𝑠

)
𝑠∈N ∈ 𝑋𝑁 ,𝛽0 ,𝜇0 , the following estimates hold:

1. | | |𝐺𝑁 | | |𝑁 ,β,μ ≤ ‖𝐺𝑁 ‖𝑁 ,𝛽0 ,𝜇0 .

2.
������������∫ 𝑡

0
T 𝜏𝐺𝑁 𝑑𝜏

������������𝑁 ,β,μ ≤ 𝑇 ‖𝐺𝑁 ‖𝑁 ,𝛽0 ,𝜇0 .

From Proposition 5.3.1. in [18] and Lemma 5.1. in [5], we have the following continuity estimates
for the binary and ternary collisional operators, respectively:
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Lemma 5.4. Let 𝑚 ∈ N, 𝛽 > 0. For any 𝑍𝑚 ∈ D𝑚,𝜖2 , 𝜖3 and 𝑘 ∈ {1, 2}, the following estimate holds:

���C𝑁𝑚,𝑚+𝑘𝑔𝑁 ,𝑚+𝑘 (𝑍𝑚)
��� � 𝛽−𝑘𝑑/2

(
𝑚𝛽−1/2 +

𝑚∑
𝑖=1

|𝑣𝑖 |
)
𝑒−𝛽𝐸𝑚 (𝑍𝑚) |𝑔𝑁 ,𝑚+𝑘 |𝑁 ,𝛽,𝑚+𝑘 .

Let us now define mild solutions to the BBGKY hierarchy:

Definition 5.5. Consider 𝑇 > 0, 𝛽0 > 0, 𝜇0 ∈ R and the decreasing functions β,μ : [0, 𝑇] → R with
β(0) = 𝛽0, β(𝑇) > 0, μ(0) = 𝜇0. Consider also initial data 𝐺𝑁 ,0 =

(
𝑔𝑁 ,𝑠,0

)
∈ 𝑋𝑁 ,𝛽0 ,𝜇0 . A map

GN =
(
𝑔𝑁 ,𝑠

)
𝑠∈N ∈ X𝑁 ,β,μ is a mild solution of the BBGKY hierarchy in [0, 𝑇], with initial data

𝐺𝑁 ,0, if it satisfies

GN (𝑡) = T 𝑡𝐺𝑁 ,0 +
∫ 𝑡

0
T 𝑡−𝜏C𝑁GN (𝜏) 𝑑𝜏,

where, given 𝛽 > 0, 𝜇 ∈ R and 𝐺𝑁 = (𝑔𝑁 ,𝑠)𝑠∈N ∈ 𝑋𝑁 ,𝛽,𝜇, we write

C𝑁𝐺𝑁 := (C2
𝑁 + C3

𝑁 )𝐺𝑁 , C2
𝑁𝐺𝑁 :=

(
C𝑁𝑠,𝑠+1𝑔𝑁 ,𝑠+1

)
𝑠∈N

, C3
𝑁𝐺𝑁 :=

(
C𝑁𝑠,𝑠+2𝑔𝑁 ,𝑠+2

)
𝑠∈N

,

and T 𝑡 is given by (5.1).

Using Lemma 5.4, we obtain the following a-priori bounds:

Lemma 5.6. Let 𝛽0 > 0, 𝜇0 ∈ R, 𝑇 > 0 and 𝜆 ∈ (0, 𝛽0/𝑇). Consider the functions β𝜆,μ𝜆 : [0, 𝑇] → R
given by

β𝜆 (𝑡) = 𝛽0 − 𝜆𝑡, μ𝜆(𝑡) = 𝜇0 − 𝜆𝑡. (5.2)

Then for any F (𝑡) ⊆ [0, 𝑡] measurable, GN =
(
𝑔𝑁 ,𝑠

)
𝑠∈N ∈ X𝑁 ,β𝜆 ,μ𝜆 and 𝑘 ∈ {1, 2}, the following

bounds hold: ������������∫
F (𝑡)

T 𝑡−𝜏C𝑘+1
𝑁 GN (𝜏) 𝑑𝜏

������������𝑁 ,β𝜆 ,μ𝜆 ≤ 𝐶𝑘+1 | | |GN | | |𝑁 ,β𝜆 ,μ𝜆 , (5.3)

𝐶𝑘+1 = 𝐶𝑘+1(𝑑, 𝛽0, 𝜇0, 𝑇, 𝜆) = 𝐶𝑑𝜆
−1𝑒−𝑘μ𝜆 (𝑇 )β−𝑘𝑑/2

𝜆 (𝑇)
(
1 + β−1/2

𝜆 (𝑇)
)
. (5.4)

Proof. For the proof of (5.3) for 𝑘 = 1, see Lemma 5.3.1 from [18], and for the proof for 𝑘 = 2, see
Lemma 6.4 from [2]. �

Choosing 𝜆 = 𝛽0/2𝑇 , Lemma 5.6 implies well-posedness of the BBGKY hierarchy up to short time.
The proof follows similar steps to the proof of Theorem 6 from [18] and Theorem 6.4.1 from [2].

Theorem 5.7. Let 𝛽0 > 0 and 𝜇0 ∈ R. Then there is 𝑇 = 𝑇 (𝑑, 𝛽0, 𝜇0) > 0 such that for any initial
datum 𝐹𝑁 ,0 = ( 𝑓 (𝑠)𝑁 ,0)𝑠∈N ∈ 𝑋𝑁 ,𝛽0 ,𝜇0 , there is unique mild solution FN = ( 𝑓 (𝑠)𝑁 )𝑠∈N ∈ X𝑁 ,β,μ to the
BBGKY hierarchy in [0, 𝑇] for the functions β,μ : [0, 𝑇] → R given by

β(𝑡) = 𝛽0 −
𝛽0
2𝑇

𝑡, μ(𝑡) = 𝜇0 −
𝛽0
2𝑇

𝑡. (5.5)

The solution FN satisfies the bound

| | |FN | | |𝑁 ,β,μ ≤ 2‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 . (5.6)
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Moreover, for any F (𝑡) ⊆ [0, 𝑡] measurable and 𝑘 ∈ {1, 2}, the following bound holds:������������∫
F (𝑡)

T 𝑡−𝜏𝐶𝑘+1
𝑁 GN (𝜏) 𝑑𝜏

������������𝑁 ,β,μ ≤ 1
16

| | |𝐺𝑁 | | |𝑁 ,β,μ, ∀𝐺𝑁 ∈ X𝑁 ,β,μ. (5.7)

The time T is explicitly given by

𝑇 � 𝛽0

(
𝑒−𝜇0−

𝛽0
2 ( 𝛽0

2
)−𝑑/2 + 𝑒−2𝜇0−𝛽0 ( 𝛽0

2
)−𝑑

)−1 (
1 + ( 𝛽0

2
)−1/2

)−1
. (5.8)

5.2. LWP for the Boltzmann hierarchy

Similary to Subsection 5.1, here we establish a-priori bounds and local well-posedness for the Boltzmann
hierarchy. Without loss of generality, we will omit the proofs since they are identical to the BBGKY
hierarchy case. Given 𝑠 ∈ N and 𝛽 > 0, we define the Banach space

𝑋∞,𝛽,𝑠 :=
{
𝑔𝑠 ∈ 𝐿∞(R2𝑑𝑠) : |𝑔𝑠 |∞,𝛽,𝑠 < ∞

}
,

with norm |𝑔𝑠 |∞,𝛽,𝑠 = sup𝑍𝑠 ∈R2𝑑𝑠 |𝑔𝑠 (𝑍𝑠) |𝑒𝛽𝐸𝑠 (𝑍𝑠) , where 𝐸𝑠 (𝑍𝑠) is the kinetic energy of the s-particles
given by (3.50).

Remark 5.8. Given 𝑡 ∈ R and 𝑠 ∈ N, conservation of energy under the free flow implies that the
s-particle free flow operator 𝑆𝑡𝑠 : 𝑋∞,𝛽,𝑠 → 𝑋∞,𝛽,𝑠 , given in (3.57), is an isometry; that is,

|𝑆𝑡𝑠𝑔𝑠 |∞,𝛽,𝑠 = |𝑔𝑠 |∞,𝛽,𝑠 , ∀𝑔𝑠 ∈ 𝑋∞,𝛽,𝑠 .

Consider as well 𝜇 ∈ R. We define the Banach space

𝑋∞,𝛽,𝜇 :=
{
𝐺 = (𝑔𝑠)𝑠∈N : ‖𝐺‖∞,𝛽,𝜇 < ∞

}
,

with norm ‖𝐺‖∞,𝛽,𝜇 = sup𝑠∈N 𝑒𝜇𝑠 |𝑔𝑠 |∞,𝛽,𝑠 .

Remark 5.9. Given 𝑡 ∈ R, Remark 5.8 implies that the map S 𝑡 : 𝑋∞,𝛽,𝜇 → 𝑋∞,𝛽,𝜇 given by

S 𝑡𝐺 :=
(
𝑆𝑡𝑠𝑔𝑠

)
𝑠∈N, (5.9)

is an isometry; that is, ‖S 𝑡𝐺‖∞,𝛽,𝜇 = ‖𝐺‖∞,𝛽,𝜇, for any 𝐺 ∈ 𝑋∞,𝛽,𝜇 .

Finally, given 𝑇 > 0, 𝛽0 > 0, 𝜇0 ∈ R and β,μ : [0, 𝑇] → R decreasing functions of time with
β(0) = 𝛽0, β(𝑇) > 0, μ(0) = 𝜇0, we define the Banach space

X∞,β,μ := 𝐶0 ([0, 𝑇], 𝑋∞,β (𝑡) ,μ(𝑡)
)
,

with norm | | |G| | |∞,β,μ = sup𝑡 ∈[0,𝑇 ] ‖G(𝑡)‖∞,β (𝑡) ,μ(𝑡) .

Proposition 5.10. Let 𝑇 > 0, 𝛽0 > 0, 𝜇0 ∈ R and β,μ : [0, 𝑇] → R decreasing functions with
𝛽0 = β(0), β(𝑇) > 0 𝜇0 = μ(0). Then for any 𝐺 = (𝑔𝑠)𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0 , the following estimates hold:

1. | | |𝐺 | | |∞,β,μ ≤ ‖𝐺‖∞,𝛽0 ,𝜇0 .

2.
������������∫ 𝑡

0
S 𝜏𝐺 𝑑𝜏

������������∞,β,μ ≤ 𝑇 ‖𝐺‖∞,𝛽0 ,𝜇0 .

https://doi.org/10.1017/fms.2025.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.11


36 I. Ampatzoglou and N. Pavlović

Similarly to Lemma 5.4, we obtain the following:

Lemma 5.11. Let 𝑚 ∈ N and 𝛽 > 0. For any 𝑍𝑚 ∈ R2𝑑𝑚 and 𝑘 ∈ {1, 2}, the following continuity
estimate holds:

��C∞
𝑚,𝑚+𝑘𝑔𝑚+𝑘 (𝑍𝑚)

�� � 𝛽−𝑘𝑑/2

(
𝑚𝛽−1/2 +

𝑚∑
𝑖=1

|𝑣𝑖 |
)
𝑒−𝛽𝐸𝑚 (𝑍𝑚) |𝑔𝑚+𝑘 |∞,𝛽,𝑚+𝑘 . (5.10)

Let us now define mild solutions to the Boltzmann hierarchy:

Definition 5.12. Consider 𝑇 > 0, 𝛽0 > 0, 𝜇0 ∈ R and the decreasing functions β,μ : [0, 𝑇] → R

with β(0) = 𝛽0, β(𝑇) > 0, μ(0) = 𝜇0. Consider also initial data 𝐺0 =
(
𝑔𝑠,0

)
∈ 𝑋∞,𝛽0 ,𝜇0 . A map

G = (𝑔𝑠)𝑠∈N ∈ X∞,β,μ is a mild solution of the Boltzmann hierarchy in [0, 𝑇], with initial data 𝐺0, if
it satisfies

G(𝑡) = S 𝑡𝐺0 +
∫ 𝑡

0
S 𝑡−𝜏C∞G(𝜏) 𝑑𝜏,

where, given 𝛽 > 0, 𝜇 ∈ R and 𝐺 = (�̃�𝑠)𝑠∈N ∈ 𝑋∞,𝛽,𝜇, we write

C∞𝐺 := (C2
∞ + C3

∞)𝐺, C2
∞𝐺 :=

(
C∞
𝑠,𝑠+1𝑔𝑠+1

)
𝑠∈N

, C3
∞𝐺 :=

(
C∞
𝑠,𝑠+2𝑔𝑠+2

)
𝑠∈N

,

and S 𝑡 is given by (5.9).

Using Lemma 5.11, we obtain the following a-priori bounds:

Lemma 5.13. Let 𝛽0 > 0, 𝜇0 ∈ R,𝑇 > 0 and 𝜆 ∈ (0, 𝛽0/𝑇). Consider the functionsβ𝜆,μ𝜆 : [0, 𝑇] → R
given by (5.2). Then for any F (𝑡) ⊆ [0, 𝑡] measurable, G = (𝑔𝑠)𝑠∈N ∈ X∞,β𝜆 ,μ𝜆 and 𝑘 ∈ {1, 2}, the
following bound holds:������������∫

F (𝑡)
S 𝑡−𝜏C𝑘+1

∞ G(𝜏) 𝑑𝜏
������������∞,β𝜆 ,μ𝜆 ≤ 𝐶𝑘+1 | | |G| | |∞,β𝜆 ,μ𝜆 , (5.11)

where the constant 𝐶𝑘+1 = 𝐶𝑘+1(𝑑, 𝛽0, 𝜇0, 𝑇, 𝜆) is given by (5.4).

Choosing 𝜆 = 𝛽0/2𝑇 , Lemma 5.13 directly implies well-posedness of the Boltzmann hierarchy up
to short time.

Theorem 5.14. Let 𝛽0 > 0 and 𝜇0 ∈ R. Then there is𝑇 = 𝑇 (𝑑, 𝛽0, 𝜇0) > 0 such that for any initial datum
𝐹0 = ( 𝑓 (𝑠)0 )𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0 , there is unique mild solution F = ( 𝑓 (𝑠) )𝑠∈N ∈ X∞,β,μ to the Boltzmann
hierarchy in [0, 𝑇] for the functions β,μ : [0, 𝑇] → R given by (5.5). The solution F satisfies the bound

| | |F | | |∞,β,μ ≤ 2‖𝐹0‖∞,𝛽0 ,𝜇0 . (5.12)

Moreover, for any F (𝑡) ⊆ [0, 𝑡] measurable and 𝑘 ∈ {1, 2}, the following bound holds:������������∫
F (𝑡)

S 𝑡−𝜏𝐶𝑘+1
∞ G(𝜏) 𝑑𝜏

������������∞,β,μ ≤ 1
16

| | |𝐺 | | |∞,β,μ, ∀𝐺 ∈ X∞,β,μ, (5.13)

and the time T is explicitly given by (5.8).

5.3. LWP for the binary-ternary Boltzmann equation and propagation of chaos

Now, we show local well-posedness for the binary-ternary Boltzmann equation and that, for chaotic
initial data, their tensorized product produces the unique mild solution of the Boltzmann hierarchy.
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Therefore, uniqueness implies that the mild solution to the Boltzmann hierarchy remains factorized
under time evolution, and hence, chaos is propagated in time.

For 𝛽 > 0, let us define the Banach space

𝑋𝛽,𝜇 :=
{
𝑔 ∈ 𝐿∞(R2𝑑) : |𝑔 |𝛽,𝜇 < ∞

}
,

with norm |𝑔 |𝛽,𝜇 = sup(𝑥,𝑣) ∈R2𝑑 |𝑔(𝑥, 𝑣) |𝑒𝜇+
𝛽
2 |𝑣 |2 . Notice that for any 𝑡 ∈ [0, 𝑇], the map 𝑆𝑡1 : 𝑋𝛽,𝜇 →

𝑋𝛽,𝜇 is an isometry.
Consider 𝛽0 > 0, 𝜇0 ∈ R, 𝑇 > 0 and β,μ : [0, 𝑇] → R decreasing functions of time with β(0) = 𝛽0,

β(𝑇) > 0 and μ(0) = 𝜇0. We define the Banach space

Xβ,μ := 𝐶0 ([0, 𝑇], 𝑋β (𝑡) ,μ(𝑡)
)
,

with norm ‖g‖β,μ = sup𝑡 ∈[0,𝑇 ] |g(𝑡) |β (𝑡) ,μ(𝑡) . One can see that the following estimate holds:

Remark 5.15. Let 𝑇 > 0, 𝛽0 > 0, 𝜇0 ∈ R and β,μ : [0, 𝑇] → R decreasing functions with 𝛽0 = β(0),
β(𝑇) > 0 𝜇0 = μ(0). Then for any 𝑔 ∈ 𝑋𝛽0 ,𝜇0 , the following estimate holds:

‖𝑔‖β,μ ≤ |𝑔 |𝛽0 ,𝜇0 .

To prove LWP for the binary-ternary Boltzmann equation (1.16), we will need certain continuity
estimates on the binary and ternary collisional operators. The binary estimate we provide below is the
bilinear analogue of Proposition 5.3.2 in [18]. For the ternary operator, continuity estimates have been
derived in [2], Lemma 6.10. Combining these results, we derive continuity estimates for the binary-
ternary collisional operator 𝑄2 +𝑄3:

Lemma 5.16. Let 𝛽 > 0, 𝜇 ∈ R. Then for any 𝑔, ℎ ∈ 𝑋𝛽,𝜇 and (𝑥, 𝑣) ∈ R2𝑑 , the following nonlinear
continuity estimate holds:��[𝑄2 (𝑔, 𝑔) +𝑄3(𝑔, 𝑔, 𝑔)] (𝑥, 𝑣) − [𝑄2 (ℎ, ℎ) +𝑄3(ℎ, ℎ, ℎ)] (𝑥, 𝑣)

��
�

(
𝑒−2𝜇𝛽−𝑑/2 + 𝑒−3𝜇𝛽−𝑑

) (
𝛽−1/2 + |𝑣 |

)
𝑒−

𝛽
2 |𝑣 |2 (|𝑔 |𝛽,𝜇 + |ℎ|𝛽,𝜇

)
(1 + |𝑔 |𝛽,𝜇 + |ℎ|𝛽,𝜇) |𝑔 − ℎ|𝛽,𝜇 .

We define mild solutions to the binary-ternary Boltzmann equation (1.16) as follows:

Definition 5.17. Consider 𝑇 > 0, 𝛽0 > 0, 𝜇0 ∈ R and β,μ : [0, 𝑇] → R decreasing functions of time,
with β(0) = 𝛽0, β(𝑇) > 0, μ(0) = 𝜇0. Consider also initial data 𝑔0 ∈ 𝑋𝛽0 ,𝜇0 . A map g ∈ Xβ,μ is a
mild solution to the binary-ternary Boltzmann equation (1.16) in [0, 𝑇], with initial data 𝑔0 ∈ 𝑋𝛽0 ,𝜇0 , if
it satisfies

g(𝑡) = 𝑆𝑡1𝑔0 +
∫ 𝑡

0
𝑆𝑡−𝜏1 [𝑄2 (g, g) +𝑄3 (g, g, g)] (𝜏) 𝑑𝜏, (5.14)

where 𝑆𝑡1 denotes the free flow of one particle given in (3.57).

A similar proof to Lemma 5.6 gives the following:

Lemma 5.18. Let 𝛽0 > 0, 𝜇0 ∈ R,𝑇 > 0 and 𝜆 ∈ (0, 𝛽0/𝑇). Consider the functionsβ𝜆,μ𝜆 : [0, 𝑇] → R
given by (5.2). Then for any g,h ∈ Xβ𝜆 ,μ𝜆 , the following bounds hold:    ∫ 𝑡

0
𝑆𝑡−𝜏1 [𝑄2 (g − h, g − h) +𝑄3 (g − h, g − h, g − h)] (𝜏) 𝑑𝜏

    
β𝜆 ,μ𝜆

≤ 𝐶
(
|g |β𝜆 ,μ𝜆 + |h|β𝜆 ,μ𝜆

) (
1 + |g |β𝜆 ,μ𝜆 + |h|β𝜆 ,μ𝜆

)
|g − h|β𝜆 ,μ𝜆 ,

where 𝐶 = 𝐶 (𝑑, 𝛽0, 𝜇0, 𝑇, 𝜆) = 𝐶2 + 𝐶3 and 𝐶2, 𝐶3 are given by (5.4) for 𝑘 = 1, 2, respectively.
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Choosing 𝜆 = 𝛽0/2𝑇 , this estimate implies local well-posedness of the binary-ternary Boltzmann
equation up to short times. Let us write 𝐵Xβ,μ for the unit ball of Xβ,μ.

Theorem 5.19 (LWP for the binary-ternary Boltzmann equation). Let 𝛽0 > 0 and 𝜇0 ∈ R. Then there
is 𝑇 = 𝑇 (𝑑, 𝛽0, 𝜇0) > 0 such that for any initial data 𝑓0 ∈ 𝑋𝛽0 ,𝜇0 , with | 𝑓0 |𝛽0 ,𝜇0 ≤ 1/2, there is a unique
mild solution f ∈ 𝐵Xβ,μ to the binary-ternary Boltzmann equation in [0, 𝑇] with initial data 𝑓0, where
β,μ : [0, 𝑇] → R are the functions given by (5.5). The solution f satisfies the bound

‖f ‖β,μ ≤ 4| 𝑓0 |𝛽0 ,𝜇0 . (5.15)

Moreover, for any g, h ∈ Xβ,μ, the following estimates hold:    ∫ 𝑡

0
𝑆𝑡−𝜏1 [𝑄2 (g − h, g − h) +𝑄3 (g − h, g − h, g − h)] (𝜏) 𝑑𝜏

    
β,μ

≤ 1
8
(
‖g‖β,μ + ‖h‖β,μ

) (
1 + |g |β,μ + |h|β,μ

)
‖g − h‖β,μ. (5.16)

The time T is explicitly given by (5.8).

Proof. Choosing T as in (5.8), we obtain 𝐶 (𝑑, 𝛽0, 𝜇0, 𝑇, 𝛽0/2𝑇) = 1/8. Thus, Lemma 5.18 implies
estimate (5.16). Therefore, for any 𝑔 ∈ 𝐵Xβ,μ , using (5.16) for h = 0, we obtain    ∫ 𝑡

0
𝑆𝑡−𝜏1 [𝑄2 (g, g) +𝑄3 (g, g, g)] (𝜏) 𝑑𝜏

    
β𝜆 ,μ𝜆

≤ 1
8
(1 + ‖g‖β,μ)‖g‖2

β,μ ≤ 1
4
‖g‖β,μ. (5.17)

Let us define the nonlinear operator L : Xβ,μ → Xβ,μ by

Lg(𝑡) = 𝑆𝑡1 𝑓0 +
∫ 𝑡

0
𝑆𝑡−𝜏1 𝑄(g, g, g) (𝜏) 𝑑𝜏.

By triangle inequality, the fact that the free flow is isometric, Remark 5.15, bound (5.17) and the
assumption | 𝑓0 |𝛽0 ,𝜇0 ≤ 1/2, for any g ∈ 𝐵Xβ,μ and 𝑡 ∈ [0, 𝑇], we have

|Lg |β (𝑡) ,μ(𝑡) ≤ |𝑆𝑡1 𝑓0 |β (𝑡) ,μ(𝑡) +
1
4
‖g‖β,μ = | 𝑓0 |β (𝑡) ,μ(𝑡) +

1
4
‖g‖β,μ ≤ | 𝑓0 |𝛽0 ,𝜇0 +

1
4
‖g‖β,μ ≤ 1

2
+ 1

4
=

3
4
.

Thus, L : 𝐵Xβ,μ → 𝐵Xβ,μ . Moreover, for any g,h ∈ 𝐵Xβ,μ , using (5.16), we obtain

‖Lg − Lh‖β,μ ≤ 1
8
(
‖g‖β,μ + ‖h‖β,μ

) (
1 + ‖g‖β,μ + ‖h‖β,μ

)
‖g − h‖β,μ ≤ 3

4
‖g − h‖β,μ.

(5.18)

Therefore, the operator L : 𝐵Xβ,μ → 𝐵Xβ,μ is a contraction, so it has a unique fixed point f ∈ 𝐵Xβ,μ

which is clearly the unique mild solution of the binary-ternary Boltzmann equation in [0, 𝑇] with initial
data 𝑓0.

To prove (5.15), we use the fact that f = Lf . Then for any 𝑡 ∈ [0, 𝑇], triangle inequality, definition
of L, estimate (5.18) (for g = f and g = 0), free flow being isometric, and Remark 5.15 yield

|f |β (𝑡) ,μ(𝑡) = |Lf |β (𝑡) ,μ(𝑡) ≤ |L0|β (𝑡) ,μ(𝑡) + |Lf − L0|β (𝑡) ,μ(𝑡) ≤ |𝑆𝑡1 𝑓0 |β (𝑡) ,μ(𝑡) +
3
4
‖f ‖β,μ

= | 𝑓0 |β (𝑡) ,μ(𝑡) +
3
4
‖f ‖β,μ ≤ | 𝑓0 |𝛽0 ,𝜇0 +

3
4
‖f ‖β,μ,

and thus, ‖f ‖β,μ ≤ | 𝑓0 |𝛽0 ,𝜇0 +
3
4
‖f ‖β,μ, and (5.15) follows. �
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We can now prove that chaos is propagated by the Boltzmann hierarchy.

Theorem 5.20 (Propagation of chaos). Let 𝛽0 > 0, 𝜇0 ∈ R, 𝑇 > 0 be the time given in (5.8), and
β,μ : [0, 𝑇] → R the functions defined by (5.5). Consider 𝑓0 ∈ 𝑋𝛽0 ,𝜇0 with | 𝑓0 |𝛽0 ,𝜇0 ≤ 1/2. Assume
f ∈ 𝐵Xβ,μ is the corresponding mild solution of the binary-ternary Boltzmann equation in [0, 𝑇], with
initial data 𝑓0 given by Theorem 5.19. Then the following hold:

1. 𝐹0 = ( 𝑓 ⊗𝑠0 )𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0 .
2. F = (f ⊗𝑠)𝑠∈N ∈ X∞,β,μ.
3. F is the unique mild solution of the Boltzmann hierarchy in [0, 𝑇], with initial data 𝐹0.

Proof. (i) is trivially verified by the bound on the initial data (5.15) and the definition of the norms. By
the same bound again, we may apply Theorem 5.19 to obtain the unique mild solution f ∈ 𝐵Xβ,μ of
the corresponding binary-ternary Boltzmann equation. Since ‖f ‖β,μ ≤ 1, the definition of the norms
directly implies (ii). It is also straightforward to verify that F is a mild solution of the Boltzmann
hierarchy in [0, 𝑇], with initial data 𝐹0. Uniqueness of the mild solution to the Boltzmann hierarchy,
obtained by Theorem 5.14, implies that F is the unique mild solution. �

6. Convergence Statement

In this section, we define an appropriate notion of convergence – namely, convergence in observables
– and we state the main result of this paper. While our convergence result is valid for a general type of
Boltzmann initial data and approximation by BBGKY hierarchy initial data (see Definition 6.1), we also
provide a rate of convergence in the case of chaotic Boltzmann initial data and initial approximation by
conditioned BBGKY hierarchy initial data (introduced in Definition 6.4).

Throughout this section, we consider (𝑁, 𝜖2, 𝜖3) in the scaling (4.24). We will also use the phase
space D𝑚,𝜖2 , 𝜖3 of m-particles of radius 𝜖2 and of interaction zone 𝜖 given by (3.5) and the functional
spaces of Section 5.

6.1. Approximation of Boltzmann initial data

This subsection focuses on introducing relevant types of initial data. First, we define the general
notion of BBGKY hierarchy sequences approximating Boltzmann hierarchy initial data. Then we show
that chaotic initial data produced by tensorized probability densities are approximated by conditioned
BBGKY hierarchy sequences in the scaling (4.24).

Definition 6.1. Let 𝛽0 > 0, 𝜇0 ∈ R and 𝐺0 = (𝑔𝑠,0)𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0 . A sequence 𝐺𝑁 ,0 = (𝑔𝑁 ,𝑠,0)𝑠∈N ∈
𝑋𝑁 ,𝛽0 ,𝜇0 is called a BBGKY hierarchy sequence approximating 𝐺0 if the following conditions hold:

1. sup
𝑁 ∈N

‖𝐺𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 < ∞.

2. For any 𝑠 ∈ N, there holds lim
𝑁→∞

‖𝑔𝑁 ,𝑠,0 − 𝑔𝑠,0‖𝐿∞ (D𝑠,𝜖2 , 𝜖3 ) = 0.

Remark 6.2. Every 𝐺0 = (𝑔𝑠,0)𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0 has a BBGKY hierarchy approximating sequence. In-
deed, it is straightforward to verify that the sequence 𝐺𝑁 ,0 = (𝑔𝑁 ,𝑠,0)𝑠∈N given by 𝑔𝑁 ,𝑠,0 = 1D𝑠,𝜖2 , 𝜖3

𝑔𝑠,0
satisfies the properties stated above in the scaling (4.24).

Especially meaningful initial data, corresponding to initial independence between particles, are given
below:

Remark 6.3. Let 𝑔0 ∈ 𝑋𝛽0 ,𝜇0+1 be a positive probability density, that is, 𝑔0 > 0 a.e. and∫
R2𝑑 𝑔0 (𝑥, 𝑣) 𝑑𝑥 𝑑𝑣 = 1 and assume that ‖𝑔0‖𝛽0 ,𝜇0+1 ≤ 1. Then one can easily see that the chaotic

configuration 𝐺0 = (𝑔⊗𝑠
0 )𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0+1 ⊆ 𝑋∞,𝛽0 ,𝜇0 . This type of initial data, corresponding to ten-

sorized initial measures, will lead to the binary-ternary Boltzmann equation (1.16). In fact, we will see
that one can approximate tensorized initial data in the scaling (4.24) by conditioned BBGKY hierarchy
initial data which are defined below.
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Definition 6.4. Let 𝑔0 ∈ 𝑋𝛽0 ,𝜇0+1 be a positive probability density and denote 𝐺0 = (𝑔⊗𝑠
0 )𝑠∈N ∈

𝑋∞,𝛽0 ,𝜇0+1. We define the conditioned BBGKY hierarchy sequence 𝐺𝑁 ,0 = (𝑔 (𝑠)
𝑁 ,0)𝑠∈N of 𝐺0 as

𝑔 (𝑠)
𝑁 ,0 (𝑋𝑠 , 𝑉𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z−1
𝑁

∫
R2𝑑 (𝑁−𝑠)

1D𝑁,𝜖2 , 𝜖3
𝑔⊗𝑁

0 (𝑋𝑠 , 𝑥𝑠+1, ..., 𝑥𝑁 , 𝑉𝑠 , 𝑣𝑠+1, ..., 𝑣𝑁 )

𝑑𝑥𝑠+1 𝑑𝑣𝑠+1... 𝑑𝑥𝑁 𝑑𝑣𝑁 , 1 ≤ 𝑠 < 𝑁

Z−1
𝑁 1D𝑁,𝜖2 , 𝜖3

𝑔⊗𝑁
0 (𝑍𝑁 ), 𝑠 = 𝑁,

0, 𝑠 > 𝑁.

(6.1)

where the normalization is preserved by the introduction of the partition function

Z𝑚 =
∫
R2𝑑𝑚

1D𝑚,𝜖2 , 𝜖3
𝑔⊗𝑚

0 (𝑋𝑚, 𝑉𝑚) 𝑑𝑋𝑚 𝑑𝑉𝑚, 𝑚 ∈ N.

Notice that since 𝑔0 is a.e. positive and integrates to 1, we have 0 < 𝑍𝑚 < 1 for all 𝑚 ∈ N.

In fact, for tensorized initial data, the conditioned BBGKY hierarchy sequence is an approximating
sequence (according to Definition 6.1). This will be important to obtain a rate of convergence to the
solution of the binary-ternary Boltzmann equation (1.16) (see Corollary 6.10 for more details). For the
binary Boltzmann equation, such a result was proved in, for example, [18], obtaining an 𝑂 (𝜖2) rate of
convergence, where 𝜖2 is the radius of the hard spheres. In [5], a similar result with rate of convergence
𝑂 (𝜖1/2

3 ) was proved when merely ternary interactions of interaction zone 𝜖3 were taken into account.
We note that the slower convergence rate of the ternary model is due to the scaling 𝑁𝜖𝑑−

1
2 � 1 which is

different that the Boltzmann-Grad scaling 𝑁𝜖𝑑−1
2 � 1 of the hard spheres. In this paper, where binary and

ternary interactions coexist in the scaling (4.24), we are able to deduce the slower rate of convergence
𝑂 (𝜖1/2

3 ). The absence of 𝜖2 in the estimates is due to the fact 𝜖2 << 𝜖3.

Proposition 6.5. Let 𝑔0 ∈ 𝑋𝛽0 ,𝜇0+1 be a positive probability density with |𝑔0 |𝛽0 ,𝜇0+1 ≤ 1 and 𝐺0 =

(𝑔⊗𝑠
0 )𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0+1 ⊆ 𝑋∞,𝛽0 ,𝜇0 . Let 𝐺𝑁 ,0 = (𝑔 (𝑠)

𝑁 ,0)𝑠∈N be the conditioned BBGKY hierarchy
sequence of the tensorized initial data 𝐺0 given in Definition 6.4. Then 𝐺𝑁 ,0 is a BBGKY hierarchy
sequence approximating 𝐺0 (in the sense of Definition 6.1) in the scaling (4.24). In particular, for
all (𝑁, 𝜖) in the scaling (4.24) with N large enough (or equivalently 𝜖 small enough), there holds the
estimate

‖𝑔 (𝑠)
𝑁 ,0 − 𝑔⊗𝑠

0 ‖𝐿∞ (D𝑠,𝜖2 , 𝜖3 ) ≤ 𝐶𝑑,𝑠,𝛽0 ,𝜇0𝜖
1/2
3 ‖𝐺0‖∞,𝛽0 ,𝜇0 . (6.2)

Proof. The proof comes by following a similar argument as in Section 6 of [5] to estimate first the
partition functions and then the rate of convergence. The only difference is that one has to incorporate
binary interactions in the phase space, which is achieved by decomposing the phase space as

1D𝑁,𝜖2 , 𝜖3
(𝑍𝑁 ) =1D𝑠,𝜖2 , 𝜖3

(𝑍𝑠)
∏

1≤𝑖≤𝑠< 𝑗≤𝑁
1 |𝑥𝑖−𝑥 𝑗 |>𝜖2 (𝑥𝑖 , 𝑥 𝑗 )

∏
1≤𝑖< 𝑗≤𝑠<𝑘≤𝑁

1 |𝑥𝑖−𝑥 𝑗 |2+|𝑥𝑖−𝑥𝑘 |2>2𝜖 2
3
(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘 )∏

1≤𝑖≤𝑠< 𝑗<𝑘≤𝑁
1 |𝑥𝑖−𝑥 𝑗 |2+|𝑥𝑖−𝑥𝑘 |2>2𝜖 2

3
(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘 )

∏
𝑠+1≤𝑖< 𝑗<𝑘≤𝑁

1 |𝑥𝑖−𝑥 𝑗 |2+|𝑥𝑖−𝑥𝑘 |2>2𝜖 2
3
(𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘 ),

and using scaling (4.24). �

6.2. Convergence in observables

Now, we define the convergence in observables. Given 𝑠 ∈ N, we use the space of test continuous and
compactly supported functions in velocities 𝐶𝑐 (R𝑑𝑠).
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Definition 6.6. Consider 𝑇 > 0, 𝑠 ∈ N and 𝑔𝑠 ∈ 𝐶0 ([0, 𝑇], 𝐿∞ (
R

2𝑑𝑠 ) ) . Given a test function 𝜙𝑠 ∈

𝐶𝑐 (R𝑑𝑠), we define the s-observable functional as 𝐼𝜙𝑠𝑔𝑠 (𝑡) (𝑋𝑠) =
∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠)𝑔𝑠 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 .

Before giving the definition of convergence in observables, we start with some definitions on the
configurations we are using. Given 𝑚 ∈ N and 𝜎 > 0, we define the set of well-separated spatial
configurations

Δ𝑋𝑚(𝜎) = {𝑋𝑚 ∈ R𝑑𝑚 : |�̃�𝑖 − �̃� 𝑗 | > 𝜎, ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑚}, 𝑚 ≥ 2, Δ𝑋1 (𝜎) = R2𝑑 , (6.3)

and the set of well separated configurations

Δ𝑚 (𝜎) = Δ𝑋𝑚(𝜎) × R𝑑𝑚. (6.4)

Definition 6.7. Let 𝑇 > 0. For each 𝑁 ∈ N, consider GN = (𝑔𝑁 ,𝑠)𝑠∈N ∈
∏∞
𝑠=1 𝐶

0 ([0, 𝑇], 𝐿∞ (
R

2𝑑𝑠 ) )
and G = (𝑔𝑠)𝑠∈N ∈

∏∞
𝑠=1 𝐶

0 ([0, 𝑇], 𝐿∞ (
R

2𝑑𝑠 ) ) . We say that the sequence (GN )𝑁 ∈N converges in
observables to G, and write

GN
∼−→ G,

if for any 𝜎 > 0, 𝑠 ∈ N, and 𝜙𝑠 ∈ 𝐶𝑐 (R𝑑𝑠), we have

lim
𝑁→∞

‖𝐼𝜙𝑠𝑔𝑁 ,𝑠 (𝑡) − 𝐼𝜙𝑠𝑔𝑠 (𝑡)‖𝐿∞ (Δ𝑋
𝑠 (𝜎)) = 0, uniformly in [0, 𝑇] .

6.3. Statement of the main result

We are now in the position to state our main result.

Theorem 6.8 (Convergence). Let 𝛽0 > 0, 𝜇0 ∈ R and T be given by (5.8). Consider the Boltzmann
hierarchy initial data 𝐹0 = ( 𝑓 (𝑠)0 )𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0 , and let

(
𝐹𝑁 ,0

)
𝑁 ∈N be a BBGKY hierarchy sequence

approximating 𝐹0. Assume that
◦ For each N, FN ∈ X𝑁 ,β,μ is the mild solution of the BBGKY hierarchy (4.14) with initial data

𝐹𝑁 ,0 in [0, 𝑇].
◦ F ∈ X∞,β,μ is the mild solution of the Boltzmann hierarchy (4.36) with initial data 𝐹0 in [0, 𝑇].
◦ 𝐹0 satisfies the following uniform continuity condition: There exists 𝐶 > 0 such that, for any 𝜁 > 0,

there is 𝑞 = 𝑞(𝜁) > 0 such that for all 𝑠 ∈ N, and for all 𝑍𝑠 , 𝑍 ′
𝑠 ∈ R2𝑑𝑠 with |𝑍𝑠 − 𝑍 ′

𝑠 | < 𝑞, we have

| 𝑓 (𝑠)0 (𝑍𝑠) − 𝑓 (𝑠)0 (𝑍 ′
𝑠) | < 𝐶𝑠−1𝜁 . (6.5)

Then FN
∼−→ F .

Remark 6.9. To prove Theorem 6.8, it suffices to prove

‖𝐼𝑁𝑠 (𝑡) − 𝐼∞𝑠 (𝑡)‖𝐿∞ (Δ𝑋
𝑠 (𝜎))

𝑁→∞−→ 0, uniformly in [0, 𝑇],

for any 𝑠 ∈ N, 𝜙𝑠 ∈ 𝐶𝑐 (R𝑑𝑠) and 𝜎 > 0, where

𝐼𝑁𝑠 (𝑡) (𝑋𝑠) := 𝐼𝜙𝑠 𝑓
(𝑠)
𝑁 (𝑡) (𝑋𝑠) =

∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠)𝑁 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠, (6.6)

𝐼∞𝑠 (𝑡) (𝑋𝑠) := 𝐼𝜙𝑠 𝑓
(𝑠) (𝑡) (𝑋𝑠) =

∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠) (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 . (6.7)

The following Corollary of Theorem 6.8 justifies the derivation of the binary-ternary Boltzmann
equation from finitely many particle systems.
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Corollary 6.10. Let 𝛽0 > 0, 𝜇0 ∈ R, and T be given by (5.8). Let 𝑓0 ∈ 𝑋𝛽0 ,𝜇0+1 be a Hölder continuous
𝐶0,𝛾 , 𝛾 ∈ (0, 1] probability density with | 𝑓0 |𝛽0 ,𝜇0+1 ≤ 1/2. Let us write 𝐹0 = ( 𝑓 ⊗𝑠0 )𝑠∈N ∈ 𝑋∞,𝛽0 ,𝜇0+1

and let 𝐹𝑁 ,0 = ( 𝑓 (𝑠)𝑁 ,0)𝑠∈N be the conditioned BBGKY hierarchy sequence given in Definition 6.4
approximating the tensorized data 𝐹0. Then for any 𝜎 > 0, 𝑠 ∈ N and 𝜙𝑠 ∈ 𝐶𝑐 (R𝑑𝑠), we have the rate
of convergence

‖𝐼𝜙𝑠 𝑓
(𝑠)
𝑁 (𝑡) − 𝐼𝜙𝑠 𝑓

⊗𝑠 (𝑡)‖𝐿∞ (Δ𝑋
𝑠 (𝜎)) = 𝑂 (𝜖𝑟 ), uniformly in [0, 𝑇], (6.8)

for any 0 < 𝑟 < min{1/2, 𝛾}, where FN = ( 𝑓 (𝑠)𝑁 )𝑠∈N ∈ X𝑵,𝜷,𝝁 is the mild solution of the BBGKY
hierarchy (4.14) in [0, 𝑇] with initial data 𝐹𝑁 ,0 and f is the mild solution to the ternary Boltzmann
equation (1.16) in [0, 𝑇], with initial data 𝑓0.

7. Reduction to term by term convergence

In this section, we reduce the proof of Theorem 6.8 to term by term convergence after truncating the
observables. After introducing the necessary combinatorial notation to take care of all the possible
collision sequences occurring, the idea of the truncation is essentially the same as in [18, 2], and it relies
on the local estimates developed in Section 5. For this reason, we illustrate the similarities by providing
the proof of the first estimate and omit the proofs of the rest of the estimates.

Throughout this section, we consider 𝛽0 > 0, 𝜇0 ∈ R, the functions β,μ : [0, 𝑇] → R defined
by (5.5), (𝑁, 𝜖2, 𝜖3) in the scaling (4.24) and initial data 𝐹𝑁 ,0 ∈ 𝑋𝑁 ,𝛽0 ,𝜇0 , 𝐹0 ∈ 𝑋∞,𝛽0 ,𝜇0 . Let FN =

( 𝑓 (𝑠)𝑁 )𝑠∈N ∈ X𝑁 ,β,μ, F = ( 𝑓 (𝑠) )𝑠∈N ∈ X∞,β,μ be the mild solutions of the corresponding BBGKY
and Boltzmann hierarchies, respectively, in [0, 𝑇], given by Theorems 5.7 and Theorem 5.14. Let us
note that by (5.5), we obtain

β(𝑇) = 𝛽0
2
, μ(𝑇) = 𝜇0 −

𝛽0
2
, (7.1)

and thus, β(𝑇),μ(𝑇) do not depend on T.
For convenience, we introduce the following notation. Given 𝑘 ∈ N and 𝑡 ≥ 0, we denote

T𝑘 (𝑡) :=
{
(𝑡1, ..., 𝑡𝑘 ) ∈ R𝑘 : 0 ≤ 𝑡𝑘 < ... ≤ 𝑡1 ≤ 𝑡

}
. (7.2)

Since the collisions happening can be either binary or ternary, we will introduce some additional notation
to keep track of the collision sequences. In particular, given 𝑘 ≥ 1, we denote

𝑆𝑘 := {𝜎 = (𝜎1, ..., 𝜎𝑘 ) : 𝜎𝑖 ∈ {1, 2}, ∀𝑖 = 1, ..., 𝑘}. (7.3)

Notice that the cardinality of 𝑆𝑘 is given by

|𝑆𝑘 | = 2𝑘 , ∀𝑘 ≥ 1. (7.4)

Given 𝑘 ∈ N and 𝜎 ∈ 𝑆𝑘 , for any 1 ≤ ℓ ≤ 𝑘 , we write

�̃�ℓ =
ℓ∑
𝑖=1

𝜎𝑖 . (7.5)

We also write �̃�0 := 0. Notice that

𝑘 ≤ �̃�𝑘 ≤ 2𝑘, ∀𝑘 ∈ N. (7.6)
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7.1. Series expansion

Now, we make a series expansion for the mild solution FN = ( 𝑓 (𝑠)𝑁 )𝑠∈N of the BBGKY hierarchy with
respect to the initial data 𝐹𝑁 ,0. By Definition 5.5, for any ∈ N, we have Duhamel’s formula:

𝑓 (𝑠)𝑁 (𝑡) = 𝑇 𝑡𝑠 𝑓
(𝑠)
𝑁 ,0 +

∫ 𝑡

0
𝑇 𝑡−𝑡1𝑠

[
C𝑁𝑠,𝑠+1 𝑓

(𝑠+1)
𝑁 + C𝑁𝑠,𝑠+2 𝑓

(𝑠+2)
𝑁

]
(𝑡1) 𝑑𝑡1.

Let 𝑛 ∈ N. Iterating n-times Duhamel’s formula, we obtain

𝑓 (𝑠)𝑁 (𝑡) =
𝑛∑
𝑘=0

𝑓 (𝑠,𝑘)𝑁 (𝑡) + 𝑅 (𝑠,𝑛+1)
𝑁 (𝑡), (7.7)

where we use the notation

𝑓 (𝑠,𝑘)𝑁 (𝑡) :=
∑
𝜎∈𝑆𝑘

𝑓 (𝑠,𝑘,𝜎)
𝑁 (𝑡), for 1 ≤ 𝑘 ≤ 𝑛, 𝑓 (𝑠,0)𝑁 (𝑡) := 𝑇 𝑡𝑠 𝑓

(𝑠)
𝑁 ,0. (7.8)

𝑓 (𝑠,𝑘,𝜎)
𝑁 (𝑡) =

∫
T𝑘 (𝑡)

𝑇 𝑡−𝑡1𝑠 C𝑁𝑠,𝑠+�̃�1
𝑇 𝑡1−𝑡2
𝑠+�̃�1

C𝑁𝑠+�̃�1 ,𝑠+�̃�2
𝑇 𝑡2−𝑡3
𝑠+�̃�2

...𝑇 𝑡𝑘−1−𝑡𝑘
𝑠+�̃�𝑘−1

C𝑁𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘
𝑇 𝑡𝑘
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
𝑁 ,0 𝑑𝑡𝑘 ... 𝑑𝑡1,

(7.9)

𝑅 (𝑠,𝑛+1)
𝑁 (𝑡) :=

∑
𝜎∈𝑆𝑛+1

𝑅 (𝑠,𝑛+1,𝜎)
𝑁 (𝑡), (7.10)

𝑅 (𝑠,𝑛+1,𝜎)
𝑁 (𝑡) :=

∫
T𝑛+1 (𝑡)

𝑇 𝑡−𝑡1𝑠 C𝑁𝑠,𝑠+�̃�1
𝑇 𝑡1−𝑡2
𝑠+�̃�1

C𝑁𝑠+�̃�1 ,𝑠+�̃�2
𝑇 𝑡2−𝑡3
𝑠+�̃�2

...

𝑇 𝑡𝑛−1−𝑡𝑛
𝑠+�̃�𝑛−1

C𝑁𝑠+�̃�𝑛−1 ,𝑠+�̃�𝑛
𝑇 𝑡𝑛−𝑡𝑛+1
𝑠+�̃�𝑛

C𝑁𝑠+�̃�𝑛 ,𝑠+�̃�𝑛+1
𝑓 (𝑠+�̃�𝑛+1)
𝑁 (𝑡𝑛+1) 𝑑𝑡𝑛+1 𝑑𝑡𝑛... 𝑑𝑡1.

(7.11)

One can make a similar series expansion for the Boltzmann hierarchy. By Definition 5.5, for any ∈ N,
we have Duhamel’s formula:

𝑓 (𝑠) (𝑡) = 𝑆𝑡𝑠 𝑓
(𝑠)

0 +
∫ 𝑡

0
𝑆𝑡−𝑡1𝑠

[
C∞
𝑠,𝑠+1 𝑓

(𝑠+1) + C∞
𝑠,𝑠+2 𝑓

(𝑠+2)
]
(𝑡1) 𝑑𝑡1.

Iterating n-times Duhamel’s formula, we obtain

𝑓 (𝑠) (𝑡) =
𝑛∑
𝑘=0

𝑓 (𝑠,𝑘) (𝑡) + 𝑅 (𝑠,𝑛+1) (𝑡), (7.12)

where we use the notation

𝑓 (𝑠,𝑘) (𝑡) :=
∑
𝜎∈𝑆𝑘

𝑓 (𝑠,𝑘,𝜎) (𝑡), for 1 ≤ 𝑘 ≤ 𝑛, 𝑓 (𝑠,0) (𝑡) := 𝑆𝑡𝑠 𝑓
(𝑠)

0 . (7.13)

𝑓 (𝑠,𝑘,𝜎) (𝑡) :=
∫
T𝑘 (𝑡)

𝑆𝑡−𝑡1𝑠 C∞
𝑠,𝑠+�̃�1

𝑆𝑡1−𝑡2
𝑠+�̃�1

C∞
𝑠+�̃�1 ,𝑠+�̃�2

𝑆𝑡2−𝑡3
𝑠+�̃�2

...𝑆𝑡𝑘−1−𝑡𝑘
𝑠+�̃�𝑘−1

C∞
𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘

𝑆𝑡𝑘
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
0 𝑑𝑡𝑘 ... 𝑑𝑡1,

(7.14)

𝑅 (𝑠,𝑛+1) (𝑡) :=
∑

𝜎∈𝑆𝑛+1

𝑅 (𝑠,𝑛+1,𝜎) (𝑡), (7.15)
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𝑅 (𝑠,𝑛+1,𝜎) (𝑡) :=
∫
T𝑛+1 (𝑡)

𝑆𝑡−𝑡1𝑠 C∞
𝑠,𝑠+�̃�1

𝑆𝑡1−𝑡2
𝑠+�̃�1

C∞
𝑠+�̃�1 ,𝑠+�̃�2

𝑆𝑡2−𝑡3
𝑠+�̃�2

...

𝑆𝑡𝑛−1−𝑡𝑛
𝑠+�̃�𝑛−1

C∞
𝑠+�̃�𝑛−1 ,𝑠+�̃�𝑛

𝑆𝑡𝑛−𝑡𝑛+1
𝑠+�̃�𝑛

C∞
𝑠+�̃�𝑛 ,𝑠+�̃�𝑛+1

𝑓 (𝑠+�̃�𝑛+1) (𝑡𝑛+1) 𝑑𝑡𝑛+1 𝑑𝑡𝑛... 𝑑𝑡1.

(7.16)

Given 𝜙𝑠 ∈ 𝐶𝑐 (R𝑑𝑠) and 𝑘 ∈ N, let us denote

𝐼𝑁𝑠,𝑘 (𝑡) (𝑋𝑠) :=
∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑁 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 , (7.17)

𝐼∞𝑠,𝑘 (𝑡) (𝑋𝑠) :=
∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘) (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 . (7.18)

We obtain the following estimates:

Lemma 7.1. For any 𝑠, 𝑛 ∈ N and 𝑡 ∈ [0, 𝑇], the following estimates hold:

‖𝐼𝑁𝑠 (𝑡) −
𝑛∑
𝑘=0

𝐼𝑁𝑠,𝑘 (𝑡)‖𝐿∞
𝑋𝑠

≤ 𝐶𝑠,𝛽0 ,𝜇0 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠

4−𝑛‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 ,

‖𝐼∞𝑠 (𝑡) −
𝑛∑
𝑘=0

𝐼∞𝑠,𝑘 (𝑡)‖𝐿∞
𝑋𝑠

≤ 𝐶𝑠,𝛽0 ,𝜇0 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠

4−𝑛‖𝐹0‖∞,𝛽0 ,𝜇0 ,

where the observables 𝐼𝑁𝑠 , 𝐼∞𝑠 are defined in (6.6)–(6.7).

Proof. Fix 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ R2𝑑𝑠 , 𝑡 ∈ [0, 𝑇] and 𝜎 ∈ 𝑆𝑛+1. We repeatedly use estimate (5.7) of
Theorem 5.7, for 𝑘 = 1 if 𝜎𝑖 = 1 or for 𝑘 = 2 if 𝜎𝑖 = 2, to obtain

𝑒β (𝑡)𝐸𝑠 (𝑍𝑠)+𝑠μ(𝑡) |𝑅 (𝑠,𝑛+1,𝜎)
𝑁 (𝑡, 𝑋𝑠 , 𝑉𝑠) | ≤ 8−(𝑛+1) | | |FN | | |𝑁 ,β,μ,

so adding for all 𝜎 ∈ 𝑆𝑛+1, using (7.4), (5.6) and the definition of the norms, we take

|𝜙𝑠 (𝑉𝑠)𝑅 (𝑠,𝑛+1)
𝑁 (𝑡, 𝑋𝑠 , 𝑉𝑠) | � 4−(𝑛+1)𝑒−𝑠μ(𝑡) ‖𝜙𝑠 ‖𝐿∞

𝑉𝑠
| | |FN | | |𝑁 ,β,μ𝑒−β (𝑡)𝐸𝑠 (𝑍𝑠)

≤ 4−𝑛𝑒−𝑠μ(𝑇 ) ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0𝑒

−β (𝑇 )𝐸𝑠 (𝑍𝑠) .

Thus, integrating with respect to velocities and recalling (7.7), (7.17), (7.1), we obtain

|𝐼𝑁𝑠 (𝑡) (𝑋𝑠) −
𝑛∑
𝑘=0

𝐼𝑁𝑠,𝑘 (𝑡) (𝑋𝑠) | ≤ 𝐶𝑠,𝜇0 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠

4−𝑛‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0

∫
R𝑑𝑠

𝑒−β (𝑇 )𝐸𝑠 (𝑍𝑠) 𝑑𝑉𝑠

≤ 𝐶𝑠,𝛽0 ,𝜇0 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠

4−𝑛‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 .

For the Boltzmann hierarchy, we follow a similar argument using estimates (5.13) and (5.12) instead. �

7.2. High energy truncation

We will now truncate energies, so that we can focus on bounded energy domains. Let us fix 𝑠, 𝑛 ∈ N
and 𝑅 > 1. As usual, we denote 𝐵2𝑑

𝑅 to be the 2𝑑-ball of radius R centered at the origin.
We first define the truncated BBGKY hierarchy and Boltzmann hierarchy collisional operators. For

ℓ ∈ N, we define

C𝑁 ,𝑅ℓ,ℓ+1𝑔𝑙+1 := C𝑁ℓ,ℓ+1 (𝑔𝑙+11[𝐸ℓ+1≤𝑅2 ] ), C𝑁 ,𝑅ℓ,ℓ+2𝑔𝑙+2 := C𝑁ℓ,ℓ+2(𝑔𝑙+21[𝐸ℓ+2≤𝑅2 ] ),

C∞,𝑅
ℓ,ℓ+1𝑔𝑙+1 := C∞

ℓ,ℓ+1 (𝑔𝑙+11[𝐸ℓ+1≤𝑅2 ] ), C∞,𝑅
ℓ,ℓ+2𝑔𝑙+2 := C∞

ℓ,ℓ+2 (𝑔𝑙+21[𝐸ℓ+2≤𝑅2 ] ).
(7.19)
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For the BBGKY hierarchy, we define

𝑓 (𝑠,𝑘)𝑁 ,𝑅 (𝑡, 𝑍𝑠) :=
∑
𝜎∈𝑆𝑘

𝑓 (𝑠,𝑘,𝜎)
𝑁 ,𝑅 (𝑡, 𝑍𝑠), for 1 ≤ 𝑘 ≤ 𝑛, 𝑓 (𝑠,0)𝑁 ,𝑅 (𝑡, 𝑍𝑠) := 𝑇 𝑡𝑠 ( 𝑓𝑁 ,01[𝐸𝑠≤𝑅2 ] ) (𝑍𝑠),

where given 𝑘 ≥ 1 and 𝜎 ∈ 𝑆𝑘 , we denote

𝑓 (𝑠,𝑘,𝜎)
𝑁 ,𝑅 (𝑡, 𝑍𝑠) :=

∫
T𝑘 (𝑡)

𝑇 𝑡−𝑡1𝑠 C𝑁 ,𝑅
𝑠,𝑠+�̃�1

𝑇 𝑡1−𝑡2
𝑠+�̃�1

...C𝑁 ,𝑅
𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘

𝑇 𝑡𝑘
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
𝑁 ,0 (𝑍𝑠) 𝑑𝑡𝑘 ... 𝑑𝑡1.

For the Boltzmann hierarchy, we define

𝑓 (𝑠,𝑘)𝑅 (𝑡, 𝑍𝑠) :=
∑
𝜎∈𝑆𝑘

𝑓 (𝑠,𝑘,𝜎)
𝑅 (𝑡, 𝑍𝑠), for 1 ≤ 𝑘 ≤ 𝑛, 𝑓 (𝑠,0)𝑅 (𝑡, 𝑍𝑠) := 𝑆𝑡𝑠 ( 𝑓01[𝐸𝑠≤𝑅2 ] ) (𝑍𝑠),

where given 𝑘 ≥ 1 and 𝜎 ∈ 𝑆𝑘 , we denote

𝑓 (𝑠,𝑘,𝜎)
𝑅 (𝑡, 𝑍𝑠) :=

∫
T𝑘 (𝑡)

𝑆𝑡−𝑡1𝑠 C∞,𝑅
𝑠,𝑠+�̃�1

𝑆𝑡1−𝑡2
𝑠+�̃�1

...C∞,𝑅
𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘

𝑆𝑡𝑘
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑠) 𝑑𝑡𝑘 ... 𝑑𝑡1.

Given 𝜙𝑠 ∈ 𝐶𝑐 (R𝑑𝑠) and 𝑘 ∈ N, let us denote

𝐼𝑁𝑠,𝑘,𝑅 (𝑡) (𝑋𝑠) :=
∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑁 ,𝑅 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 =
∫
𝐵𝑑𝑠
𝑅

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑁 ,𝑅 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 , (7.20)

𝐼∞𝑠,𝑘,𝑅 (𝑡) (𝑋𝑠) :=
∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑅 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 =
∫
𝐵𝑑𝑠
𝑅

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑅 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 . (7.21)

Recalling the observables 𝐼𝑁𝑠,𝑘 , 𝐼∞𝑠,𝑘 , defined in (7.17)–(7.18), we obtain the following estimates:

Lemma 7.2. For any 𝑠, 𝑛 ∈ N, 𝑅 > 1 and 𝑡 ∈ [0, 𝑇], the following estimates hold:

𝑛∑
𝑘=0

‖𝐼𝑁𝑠,𝑘,𝑅 (𝑡) − 𝐼𝑁𝑠,𝑘 (𝑡)‖𝐿∞
𝑋𝑠

≤ 𝐶𝑠,𝛽0 ,𝜇0 ,𝑇 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑒−

𝛽0
3 𝑅

2 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 ,

𝑛∑
𝑘=0

‖𝐼∞𝑠,𝑘,𝑅 (𝑡) − 𝐼∞𝑠,𝑘 (𝑡)‖𝐿∞
𝑋𝑠

≤ 𝐶𝑠,𝛽0 ,𝜇0 ,𝑇 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑒−

𝛽0
3 𝑅

2 ‖𝐹0‖∞,𝛽0 ,𝜇0 .

Proof. For the proof, we use the same ideas as in Lemma 8.4. from [2], and we also use (7.4) to sum
over all possible collision sequences. �

7.3. Separation of collision times

We will now separate the time intervals we are integrating at, so that collisions occuring are separated
in time. For this purpose, consider a small time parameter 𝛿 > 0.

For convenience, given 𝑡 ≥ 0 and 𝑘 ∈ N, we define

T𝑘, 𝛿 (𝑡) := {(𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘 (𝑡) : 0 ≤ 𝑡𝑖+1 ≤ 𝑡𝑖 − 𝛿, ∀𝑖 ∈ [0, 𝑘]}, (7.22)

where we denote 𝑡𝑘+1 = 0, 𝑡0 = 𝑡.
For the BBGKY hierarchy, we define

𝑓 (𝑠,𝑘)𝑁 ,𝑅, 𝛿 (𝑡, 𝑍𝑠) :=
∑
𝜎∈𝑆𝑘

𝑓 (𝑠,𝑘,𝜎)
𝑁 ,𝑅, 𝛿 (𝑡, 𝑍𝑠), for 1 ≤ 𝑘 ≤ 𝑛, 𝑓 (𝑠,0)𝑁 ,𝑅, 𝛿 (𝑡, 𝑍𝑠) := 𝑇 𝑡𝑠 ( 𝑓𝑁 ,01[𝐸𝑠≤𝑅2 ] ) (𝑍𝑠),
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where, given 𝑘 ≥ 1 and 𝜎 ∈ 𝑆𝑘 , we denote

𝑓 (𝑠,𝑘,𝜎)
𝑁 ,𝑅, 𝛿 (𝑡, 𝑍𝑠) :=

∫
T𝑘,𝛿 (𝑡)

𝑇 𝑡−𝑡1𝑠 C𝑁 ,𝑅
𝑠,𝑠+�̃�1

𝑇 𝑡1−𝑡2
𝑠+�̃�1

...C𝑁 ,𝑅
𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘

𝑇 𝑡𝑘
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
𝑁 ,0 (𝑍𝑠) 𝑑𝑡𝑘 , ... 𝑑𝑡1.

In the same spirit, for the Boltzmann hierarchy, we define

𝑓 (𝑠,𝑘)𝑁 ,𝑅, 𝛿 (𝑡, 𝑍𝑠) :=
∑
𝜎∈𝑆𝑘

𝑓 (𝑠,𝑘,𝜎)
𝑁 ,𝑅, 𝛿 (𝑡, 𝑍𝑠), for 1 ≤ 𝑘 ≤ 𝑛, 𝑓 (𝑠,0)𝑅,𝛿 (𝑡, 𝑍𝑠) := 𝑆𝑡𝑠 ( 𝑓01[𝐸𝑠≤𝑅2 ] ) (𝑍𝑠),

where, given 𝑘 ≥ 1 and 𝜎 ∈ 𝑆𝑘 , we denote

𝑓 (𝑠,𝑘,𝜎)
𝑅,𝛿 (𝑡, 𝑍𝑠) :=

∫
T𝑘,𝛿 (𝑡)

𝑆𝑡−𝑡1𝑠 C∞,𝑅
𝑠,𝑠+�̃�1

𝑆𝑡1−𝑡2
𝑠+�̃�1

...C∞,𝑅
𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘

𝑆𝑡𝑚
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑠) 𝑑𝑡𝑘 , ... 𝑑𝑡1.

Given 𝜙𝑠 ∈ 𝐶𝑐 (R𝑑𝑠) and 𝑘 ∈ N, we define

𝐼𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) (𝑋𝑠) :=
∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑁 ,𝑅, 𝛿 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 =
∫
𝐵𝑑𝑠
𝑅

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑁 ,𝑅, 𝛿 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠, (7.23)

𝐼∞𝑠,𝑘,𝑅, 𝛿 (𝑡) (𝑋𝑠) :=
∫
R𝑑𝑠

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑅,𝛿 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 =
∫
𝐵𝑑𝑠
𝑅

𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑅,𝛿 (𝑡, 𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 . (7.24)

Remark 7.3. For 0 ≤ 𝑡 ≤ 𝛿, we trivially obtain T𝑘, 𝛿 (𝑡) = ∅. In this case, the functionals
𝐼𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡), 𝐼

∞
𝑠,𝑘,𝑅, 𝛿 (𝑡) are identically zero.

Recalling the observables 𝐼𝑁𝑠,𝑘,𝑅, 𝐼∞𝑠,𝑘,𝑅 defined in (7.20)–(7.21), we obtain the following estimates:

Lemma 7.4. For any 𝑠, 𝑛 ∈ N, 𝑅 > 0, 𝛿 > 0 and 𝑡 ∈ [0, 𝑇], the following estimates hold:

𝑛∑
𝑘=0

‖𝐼𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) − 𝐼𝑁𝑠,𝑘,𝑅 (𝑡)‖𝐿∞
𝑋𝑠

≤ 𝛿‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝐶𝑛𝑑,𝑠,𝛽0 ,𝜇0 ,𝑇

‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 ,

𝑛∑
𝑘=0

‖𝐼∞𝑠,𝑘,𝑅, 𝛿 (𝑡) − 𝐼∞𝑠,𝑘,𝑅 (𝑡)‖𝐿∞
𝑋𝑠

≤ 𝛿‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝐶𝑛𝑑,𝑠,𝛽0 ,𝜇0 ,𝑇

‖𝐹0‖∞,𝛽0 ,𝜇0 .

Proof. For the proof, we follow similar ideas as in Lemma 8.7. from [2], and we also use bound (7.6)
to control the combinatorics occurring. �

Combining Lemma 7.1, Lemma 7.2 and Lemma 7.4, we obtain the following:

Proposition 7.5. For any 𝑠, 𝑛 ∈ N, 𝑅 > 1, 𝛿 > 0 and 𝑡 ∈ [0, 𝑇], the following estimates hold:

‖𝐼𝑁𝑠 (𝑡) −
𝑛∑
𝑘=1

𝐼𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡)‖𝐿∞
𝑋𝑠

≤ 𝐶𝑠,𝛽0 ,𝜇0 ,𝑇 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠

(
2−𝑛 + 𝑒−

𝛽0
3 𝑅

2 + 𝛿𝐶𝑛𝑑,𝑠,𝛽0 ,𝜇0 ,𝑇

)
‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 ,

‖𝐼∞𝑠 (𝑡) −
𝑛∑
𝑘=1

𝐼∞𝑠,𝑘,𝑅, 𝛿 (𝑡)‖𝐿∞
𝑋𝑠

≤ 𝐶𝑠,𝛽0 ,𝜇0 ,𝑇 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠

(
2−𝑛 + 𝑒−

𝛽0
3 𝑅

2 + 𝛿𝐶𝑛𝑑,𝑠,𝛽0 ,𝜇0 ,𝑇

)
‖𝐹0‖∞,𝛽0 ,𝜇0 .

Proposition 7.5 implies that, given 0 ≤ 𝑘 ≤ 𝑛, 𝑅 > 1, 𝛿 > 0, the convergence proof reduces to
controlling the differences 𝐼𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) − 𝐼∞𝑠,𝑘,𝑅, 𝛿 (𝑡), where the observables 𝐼𝑁𝑠,𝑘,𝑅, 𝛿 , 𝐼∞𝑠,𝑘,𝑅, 𝛿 are given by
(7.23)–(7.24). However, this is not immediate since the backwards (𝜖2, 𝜖3)-flow and the backwards free
flow do not coincide in general. The goal is to eliminate some small measure set of initial data, negligible
in the limit, such that the backwards (𝜖2, 𝜖3)-flow and the backwards free flow are comparable.
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8. Geometric estimates

In this section, we present some geometric results which will be essential for estimating the measure
of the pathological sets leading to recollisions of the backwards (𝜖2, 𝜖3) flow (see Section 9). First, we
review some of the results we used in [5] which are useful here as well. We then present certain novel
results – namely, Lemma 8.3, Lemma 8.6, Lemma 8.7 and, most importantly, Lemma 8.8 – which
crucially rely on the following symmetric representation of the (2𝑑 − 1) sphere of radius 𝑟 > 0:

S
2𝑑−1
𝑟 =

{
(𝜔1, 𝜔2) ∈ 𝐵𝑑𝑟 × 𝐵𝑑𝑟 : 𝜔2 ∈ S𝑑−1√

𝑟2−|𝜔1 |2

}
=

{
(𝜔1, 𝜔2) ∈ 𝐵𝑑𝑟 × 𝐵𝑑𝑟 : 𝜔1 ∈ S𝑑−1√

𝑟2−|𝜔2 |2

}
(8.1)

Representation (8.1) is very useful when one wants to estimate the intersection of S2𝑑−1
𝑟 with sets of the

form 𝑆 × R𝑑 or R𝑑 × 𝑆, where 𝑆 ⊆ R𝑑 is of small measure.

8.1. Cylinder-Sphere estimates

Here, we present certain estimates based on the intersection of a sphere with a given solid cylinder.
These estimates were used in [5] as well. Similar estimates can be found in [14, 18].

Lemma 8.1. Let 𝜌, 𝑟 > 0 and 𝐾𝑑𝜌 ⊆ R𝑑 be a solid cylinder. Then the following estimate holds for the
(𝑑 − 1)-spherical measure: ∫

S
𝑑−1
𝑟

1𝐾 𝑑
𝜌
𝑑𝜔 � 𝑟𝑑−1 min

{
1,

( 𝜌
𝑟

) 𝑑−1
2
}
.

Proof. After re-scaling, we may clearly assume that 𝑟 = 1. Then, we refer to the work of R. Denlinger
[14], p.30, for the rest of the proof. �

Applying Lemma 8.1, we obtain the following geometric estimate, which will be crucially used in
Section 9.

Corollary 8.2. Given 0 < 𝜌 ≤ 1 ≤ 𝑅, the following estimate holds:

|𝐵𝑑𝑅 ∩ 𝐾𝑑𝜌 |𝑑 � 𝑅𝑑𝜌
𝑑−1

2 .

Proof. The co-area formula and Lemma 8.1 imply

|𝐵𝑑𝑅 ∩ 𝐾𝑑𝜌 |𝑑 =
∫ 𝑅

0

∫
S
𝑑−1
𝑟

1𝐾 𝑑
𝜌
𝑑𝜔 𝑑𝑟

�
∫ 𝑅

0
𝑟𝑑−1 min

{
1, ( 𝜌

𝑟
)
𝑑−1

2

}
𝑑𝑟

≤
∫ 𝜌

0
𝑟𝑑−1 𝑑𝑟 + 𝜌

𝑑−1
2

∫ 𝑅

0
𝑟

𝑑−1
2 𝑑𝑟

� 𝜌𝑑 + 𝜌
𝑑−1

2 𝑅
𝑑+1

2 , since 𝑑 ≥ 2

� 𝑅𝑑𝜌
𝑑−1

2 , since 0 < 𝜌 ≤ 1 ≤ 𝑅.

(8.2)

�

8.2. Estimates relying on the (2𝑑 − 1)-sphere representation

Here, we present certain geometric estimates relying on the representation (8.1). In particular, up to our
knowledge, Lemma 8.3, Lemma 8.6, Lemma 8.7 and, most importantly, Lemma 8.8 are novel results.
Lemma 8.4 is a special case of a result proved in [5].
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8.2.1. Truncation of impact directions
We first estimate the intersection of S2𝑑−1

1 with sets of the form 𝐵𝑑𝜌 × R𝑑 or R𝑑 × 𝐵𝑑𝜌 .

Lemma 8.3. Consider 𝜌 > 0. We define the sets

𝑀1 (𝜌) = 𝐵𝑑𝜌 × R𝑑 =
{
(𝜔1, 𝜔2) ∈ R2𝑑 : |𝜔1 | ≤ 𝜌

}
, (8.3)

𝑀2 (𝜌) = R𝑑 × 𝐵𝑑𝜌 =
{
(𝜔1, 𝜔2) ∈ R2𝑑 : |𝜔2 | ≤ 𝜌

}
. (8.4)

Then, the following holds:∫
S

2𝑑−1
1

1𝑀1 (𝜌) 𝑑𝜔1 𝑑𝜔2 =
∫
S

2𝑑−1
1

1𝑀2 (𝜌) 𝑑𝜔1 𝑑𝜔2 � min{1, 𝜌𝑑}.

Proof. By symmetry, it suffices to estimate the first term. Using (8.3) and representation (8.1), we obtain∫
S

2𝑑−1
1

1𝑀1 (𝜌) 𝑑𝜔1 𝑑𝜔2 =
∫
S

2𝑑−1
1

1𝐵𝑑
𝜌×R𝑑 𝑑𝜔1 𝑑𝜔2 �

∫
𝐵𝑑
𝜌∩𝐵𝑑

1

∫
S
𝑑−1√

1−|𝜔1 |2

𝑑𝜔2 𝑑𝜔1 � min{1, 𝜌𝑑}.

�

The following result is a special case of Lemma 8.4. from [5]. For the proof, see Lemma 9.5. in [2].

Lemma 8.4. Consider 𝜌 > 0. Let us define the strip

𝑊2𝑑
𝜌 = {(𝜔1, 𝜔2) ∈ R2𝑑 : |𝜔1 − 𝜔2 | ≤ 𝜌}. (8.5)

Then, the following estimate holds:∫
S

2𝑑−1
1

1𝑊 2𝑑
𝜌

𝑑𝜔1 𝑑𝜔2 � min
{
1, 𝜌

𝑑−1
2

}
.

Proof. For the proof, see Lemma 9.5. in [2]. The main idea is to first use representation (8.1) and then
apply Lemma 8.1. �

8.2.2. Conic estimates
Now we establish estimates related to conic regions. We first present a well-known spherical cap estimate.

Lemma 8.5. Consider 0 ≤ 𝛼 ≤ 1 and 𝜈 ∈ R𝑑 \ {0}. Let us define

𝑆(𝛼, 𝜈) =
{
𝜔 ∈ R𝑑 : |〈𝜔, 𝜈〉| ≥ 𝛼 |𝜔| |𝜈 |

}
. (8.6)

Then, for 𝜌 > 0, the following estimate holds:∫
S
𝑑−1
𝑟

1𝑆 (𝛼,𝜈) 𝑑𝜔 = 𝑟𝑑−1 |S𝑑−2
1 |

∫ 2 arccos 𝛼

0
sin𝑑−2 (𝜃) 𝑑𝜃 � 𝑟𝑑−1 arccos𝛼.

Proof. After re-scaling, it suffices to prove the result for 𝑟 = 1. Notice that S𝑑−1
1 ∩ 𝑆(𝛼, 𝜈) is a spherical

cap of angle 2 arccos𝛼 and direction 𝜈 ≠ 0 on the unit sphere. Therefore, integrating in spherical
coordinates, we obtain∫

S
𝑑−1
1

1𝑆 (𝛼,𝜈) 𝑑𝜔 = |S𝑑−2
1 |

∫ 2 arccos 𝛼

0
sin𝑑−2 𝜃 𝑑𝜃 � arccos𝛼.

�
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We apply Lemma 8.5 to obtain the following result:

Lemma 8.6. Consider 0 ≤ 𝛼 ≤ 1 and 𝜈 ∈ R𝑑 \ {0}. Let us define

𝑁 (𝛼, 𝜈) =
{
(𝜔1, 𝜔2) ∈ R2𝑑 : 〈𝜔1 − 𝜔2, 𝜈〉 ≥ 𝛼 |𝜔1 − 𝜔2 | |𝜈 |

}
. (8.7)

Then, we have the estimate ∫
S

2𝑑−1
1

1𝑁 (𝛼,𝜈) 𝑑𝜔1 𝑑𝜔2 � arccos𝛼.

Proof. Recalling (8.6)–(8.7), we have

𝑁 (𝛼, 𝜈) = {(𝜔1, 𝜔2) ∈ R2𝑑 : 𝜔1 − 𝜔2 ∈ 𝑆(𝛼, 𝜈)}. (8.8)

Let us define the linear map 𝑇 : R2𝑑 → R2𝑑 by

(𝑢1, 𝑢2) = 𝑇 (𝜔1, 𝜔2) := (𝜔1 + 𝜔2, 𝜔1 − 𝜔2).

Clearly,

|𝑢1 |2 + |𝑢2 |2 = |𝜔1 + 𝜔2 |2 + |𝜔1 − 𝜔2 |2 = 2|𝜔1 |2 + 2|𝜔2 |2 = 2, ∀(𝜔1, 𝜔2) ∈ S2𝑑−1
1 ,

and hence, 𝑇 : S2𝑑−1
1 → S2𝑑−1√

2
. Therefore, using (8.8) and changing variables under T, we have∫

S
2𝑑−1
1

1𝑁 (𝛼,𝜈) (𝜔1, 𝜔2) 𝑑𝜔1 𝑑𝜔2 =
∫
S

2𝑑−1
1

1𝑆 (𝛼,𝜈) (𝜔1 − 𝜔2) 𝑑𝜔1 𝑑𝜔2

�
∫
S

2𝑑−1
2

1𝑆 (𝛼,𝜈) (𝑢2) 𝑑𝑢1 𝑑𝑢2

=
∫
𝐵𝑑√

2

∫
S
𝑑−1√

2−|𝑢1 |2

1𝑆 (𝛼,𝜈) (𝑢2) 𝑑𝑢2 𝑑𝑢1 (8.9)

� arccos𝛼, (8.10)

where to obtain (8.9), we use the representation of the sphere (8.1), and to obtain (8.10), we use
Lemma 8.5. �

8.2.3. Annuli estimates
We present some estimates based on the intersection of the unit sphere with appropriate annuli.

Lemma 8.7. Let 0 < 𝛽 < 1/2, and consider the sets

𝐼1 =
{
(𝜔1, 𝜔2) ∈ R2𝑑 :

��1 − 2|𝜔1 |2
�� ≤ 2𝛽

}
, (8.11)

𝐼2 =
{
(𝜔1, 𝜔2) ∈ R2𝑑 :

��1 − 2|𝜔2 |2
�� ≤ 2𝛽

}
. (8.12)

There hold the estimates ∫
S

2𝑑−1
1

1𝐼1 𝑑𝜔1 𝑑𝜔2 =
∫
S

2𝑑−1
1

1𝐼2 𝑑𝜔1 𝑑𝜔2 � 𝛽.
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Proof. By symmetry, it suffices to prove the estimate for 𝐼1. Since 0 < 𝛽 < 1/2, we may write

𝐼1 =

{
(𝜔1, 𝜔2) ∈ S2𝑑−1

1 :
√

1
2
− 𝛽 ≤ |𝜔1 | ≤

√
1
2
+ 𝛽

}
.

Using the representation (8.1) of the (2𝑑 − 1)-unit sphere, we obtain∫
S

2𝑑−1
1

1𝐼1 𝑑𝜔1 𝑑𝜔2 ≤
∫
√

1
2−𝛽≤ |𝜔1 | ≤

√
1
2+𝛽

∫
S
𝑑−1√

1−|𝜔1 |2

𝑑𝜔2 𝑑𝜔1

�
(

1
2
+ 𝛽

)𝑑/2
−

(
1
2
− 𝛽

)𝑑/2

𝑑≥2
=

(√
1
2
+ 𝛽 −

√
1
2
− 𝛽

)
𝑑−1∑
𝑗=0

(
1
2
+ 𝛽

) 𝑗/2 (1
2
− 𝛽

) 𝑑−1− 𝑗
2

=
2𝛽√

1
2 + 𝛽 +

√
1
2 − 𝛽

𝑑−1∑
𝑗=0

(
1
2
+ 𝛽

) 𝑗/2 (1
2
− 𝛽

) 𝑑−1− 𝑗
2

≤ 2
√

2𝛽
𝑑−1∑
𝑗=0

(
1
2
+ 𝛽

) 𝑗/2 (1
2
− 𝛽

) 𝑑−1− 𝑗
2

� 𝛽,

since 0 < 𝛽 < 1/2. The proof is complete. �

Lemma 8.8. Consider 0 < 𝛽 < 1/4. Let us define the hemispheres

S1,2 = {(𝜔1, 𝜔2) ∈ S2𝑑−1
1 : |𝜔1 | < |𝜔2 |}, (8.13)

S2,1 = {(𝜔1, 𝜔2) ∈ S2𝑑−1
1 : |𝜔2 | < |𝜔1 |}, (8.14)

and the annuli

𝐼1,2 = {(𝜔1, 𝜔2) ∈ R2𝑑 :
��|𝜔1 |2 + 2〈𝜔1, 𝜔2〉

�� ≤ 𝛽}, (8.15)

𝐼2,1 = {(𝜔1, 𝜔2) ∈ R2𝑑 :
��|𝜔2 |2 + 2〈𝜔1, 𝜔2〉

�� ≤ 𝛽}. (8.16)

Then, there holds ∫
S1,2

1𝐼1,2 𝑑𝜔1 𝑑𝜔2 =
∫
S2,1

1𝐼2,1 𝑑𝜔1 𝑑𝜔2 � 𝛽.

Proof. By symmetry, it suffices to prove∫
S2,1

1𝐼2,1 𝑑𝜔1 𝑑𝜔2 � 𝛽. (8.17)

Recalling notation from (8.3)–(8.4), let us define

𝑈𝛽 = 𝑀𝑐
1 (2

√
𝛽) ∩ 𝑀𝑐

2 (2
√
𝛽) = {(𝜔1, 𝜔2) ∈ R2𝑑 : |𝜔1 | > 2

√
𝛽 and |𝜔2 | > 2

√
𝛽}.
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Clearly, 𝑈𝑐
𝛽 = 𝑀1 (2

√
𝛽) ∪ 𝑀2 (2

√
𝛽). Writing 𝐴 := 𝐼2,1 ∩𝑈𝛽 , we have∫

S2,1

1𝐼2,1 𝑑𝜔1 𝑑𝜔2 ≤
∫
S2,1

1𝑈𝑐
𝛽
𝑑𝜔1 𝑑𝜔2 +

∫
S2,1

1𝐴 𝑑𝜔1 𝑑𝜔2 � 𝛽𝑑/2 +
∫
S2,1

1𝐴 𝑑𝜔1 𝑑𝜔2, (8.18)

where to obtain (8.18), we used Lemma 8.3. Notice that we may write

𝐴 = {(𝜔1, 𝜔2) ∈ R2𝑑 : |𝜔1 | > 2
√
𝛽, |𝜔2 | > 2

√
𝛽 and

√
|𝜔1 |2 − 𝛽 ≤ |𝜔1 + 𝜔2 | ≤

√
|𝜔1 |2 + 𝛽}.

(8.19)

By (8.18), the representation of the sphere (8.1) and (8.19), we have∫
S2,1

1𝐼2,1 𝜔1 𝑑𝜔2 � 𝛽𝑑/2 +
∫

2
√
𝛽< |𝜔1 | ≤1

∫
S2,1,𝜔1

1𝐴𝜔1
(𝜔2) 𝑑𝜔2 𝑑𝜔1, (8.20)

where given 2
√
𝛽 < |𝜔1 | ≤ 1, we denote

S2,1,𝜔1 = {𝜔2 ∈ S𝑑−1√
1−|𝜔1 |2

: |𝜔2 | < |𝜔1 |}, (8.21)

𝐴𝜔1 = {𝜔2 ∈ R𝑑 : (𝜔1, 𝜔2) ∈ 𝐴} (8.22)

= {𝜔2 ∈ R𝑑 : |𝜔2 | > 2
√
𝛽 and

√
|𝜔1 |2 − 𝛽 ≤ |𝜔1 + 𝜔2 | ≤

√
|𝜔1 |2 + 𝛽}.

Since 𝛽 < 1/4, it suffices to control the term:

𝐼 ′ =
∫

2
√
𝛽< |𝜔1 | ≤1

∫
S2,1,𝜔1

1𝐴𝜔1
(𝜔2) 𝑑𝜔2 𝑑𝜔1. (8.23)

Now we shall prove that, in fact,

𝐼 ′ =
∫

2
√
𝛽<
√

1−|𝜔1 |2< |𝜔1 | ≤1

∫
S
𝑑−1√

1−|𝜔1 |2

1𝐴𝜔1
(𝜔2) 𝑑𝜔2 𝑑𝜔1. (8.24)

Indeed, assume 𝜔1 does not satisfy

2
√
𝛽 <

√
1 − |𝜔1 |2 < |𝜔1 |. (8.25)

Since we are integrating in the region 2
√
𝛽 < |𝜔1 | ≤ 1, exactly one of the following holds:

|𝜔1 | ≤
√

1 − |𝜔1 |2, (8.26)√
1 − |𝜔1 |2 ≤ 2

√
𝛽. (8.27)

Recalling (8.21), condition (8.26) implies that S2,1,𝜔1 = ∅, while recalling (8.22), condition (8.27)
implies S2,1,𝜔1 ∩ 𝐴𝜔1 = ∅. Therefore,

𝐼 ′ =
∫

2
√
𝛽<
√

1−|𝜔1 |2< |𝜔1 | ≤1

∫
S2,1,𝜔1

1𝐴𝜔1
(𝜔2) 𝑑𝜔2 𝑑𝜔1,

and (8.24) follows from (8.21).
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Figure 5.

Fix any 𝜔1 satisfying (8.25). We first estimate the inner integral:∫
S
𝑑−1√

1−|𝜔1 |2

1𝐴𝜔1
(𝜔2) 𝑑𝜔2. (8.28)

Notice that (8.25) also yields

|𝜔1 | −
√
|𝜔1 |2 − 𝛽 =

𝛽

|𝜔1 | +
√
|𝜔1 |2 − 𝛽

<
𝛽

|𝜔1 |
≤ 1

2
√
𝛽 ≤ 1

4
√

1 − |𝜔1 |2. (8.29)

Condition (8.25) guarantees that the vector13 −𝜔1 lays outside of the sphere S𝑑−1√
1−|𝜔1 |2

, while con-

dition (8.29) guarantees that the sphere is not contained in the annulus 𝐴𝜔1 . Therefore, the projec-
tion of S𝑑−1√

1−|𝜔1 |2
∩ 𝐴𝜔1 on any plane containing the origin and the vector −𝜔1 can be visualized as

follows:
We conclude that

S
𝑑−1√

1−|𝜔 |2
∩ 𝐴𝜔1 = S

𝑑−1√
1−|𝜔1 |2

∩ (𝑆(cos 𝜃1,−𝜔1) \ 𝑆(cos 𝜃2,−𝜔1)), (8.30)

where recalling the notation introduced in (8.6),

S
𝑑−1√

1−|𝜔1 |2
∩ 𝑆(cos 𝜃1,−𝜔1), S

𝑑−1√
1−|𝜔1 |2

∩ 𝑆(cos 𝜃2,−𝜔1),

are the spherical shells on S𝑑−1√
1−|𝜔1 |2

, of direction −𝜔1 and angles 2𝜃1, 2𝜃2 respectively, where

𝜃1 = *𝐴𝑂𝐶, 𝜃2 = *𝐵𝑂𝐶.

13Understood as a point in R𝑑 .
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Therefore, by (8.30), we have∫
S
𝑑−1√

1−|𝜔1 |2

1𝐴𝜔1
(𝜔2) 𝑑𝜔2 =

∫
S
𝑑−1√

1−|𝜔1 |2

1𝑆 (cos 𝜃1 ,−𝜔1)\𝑆 (cos 𝜃2 ,−𝜔1) (𝜔2) 𝑑𝜔2

= (1 − |𝜔1 |2)
𝑑−1

2 |S𝑑−2
1 |

∫ 2𝜃1

2𝜃2

sin𝑑−2 𝜃 𝑑𝜃 (8.31)

� 𝜃1 − 𝜃2, (8.32)

where to obtain (8.31), we use Lemma 8.5, and to obtain (8.32), we use the fact that 𝑑 ≥ 2.
Let us calculate 𝛼1 = cos 𝜃1, 𝛼2 = cos 𝜃2. By the cosine law on the triangle 𝐴𝑂𝐶, we obtain

𝛼1 = cos 𝜃1 =
(𝑂𝐴)2 + (𝑂𝐶)2 − (𝐴𝐶)2

2(𝑂𝐴) (𝑂𝐶) =
1 − |𝜔1 |2 − 𝛽

2|𝜔1 |
√

1 − |𝜔1 |2
, (8.33)

and by the cosine law on the triangle 𝐵𝑂𝐶, we obtain

𝛼2 = cos 𝜃2 =
(𝑂𝐵)2 + (𝑂𝐶)2 − (𝐶𝐵)2

2(𝑂𝐵) (𝑂𝐶) =
1 − |𝜔1 |2 + 𝛽

2|𝜔1 |
√

1 − |𝜔1 |2
. (8.34)

Then, expression (8.33) implies

|𝛼1 | ≤
√

1 − |𝜔1 |2
2|𝜔1 |

+ 𝛽

2|𝜔1 |
√

1 − |𝜔1 |2
<

5
8
, (8.35)

since by (8.25) we have |𝜔1 | >
√

1 − |𝜔1 |2 > 2
√
𝛽. In the same spirit, expression (8.34) yields

|𝛼2 | <
5
8
. (8.36)

The inverse cosine is smooth in (−1, 1), so it is Lipschitz in [− 5
8 ,

5
8 ]; thus, by (8.35)–(8.36) and (8.25),

we have

| arccos𝛼1 − arccos𝛼2 | � |𝛼1 − 𝛼2 | =
𝛽

|𝜔1 |
√

1 − |𝜔1 |2
.

Therefore, (8.32) implies∫
S
𝑑−1√

1−|𝜔1 |2

1𝐴𝜔1
(𝜔2) 𝑑𝜔2 � 𝜃1 − 𝜃2 = arccos𝛼1 − arccos𝛼2 �

𝛽

|𝜔1 |
√

1 − |𝜔1 |2
. (8.37)

Using (8.37), and recalling (8.24), we have

𝐼 ′ =
∫

2
√
𝛽<
√

1−|𝜔1 |2 |𝜔1 |<1

∫
S
𝑑−1√

1−|𝜔1 |2

1𝐴𝜔1
(𝜔2) 𝑑𝜔2 𝑑𝜔1

� 𝛽

∫
𝐵𝑑

1

1
|𝜔1 |

√
1 − |𝜔1 |2

𝑑𝜔1

� 𝛽

∫ 1

0

𝑟𝑑−2
√

1 − 𝑟2
𝑑𝑟 (8.38)

https://doi.org/10.1017/fms.2025.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.11


54 I. Ampatzoglou and N. Pavlović

≤ 𝛽

∫ 1

0

1
√

1 − 𝑟2
𝑑𝑟 (8.39)

=
𝜋

2
𝛽, (8.40)

where to obtain (8.38), we use integration in polar coordinates, and to obtain (8.39), we use the fact that
𝑑 ≥ 2. Using (8.20) and (8.40), we obtain∫

S2,1

1𝐼2,1 𝑑𝜔1 𝑑𝜔2 � 𝛽𝑑/2 + 𝛽 � 𝛽,

since 𝛽 < 1/4. The proof is complete. �

9. Good configurations and stability

9.1. Adjunction of new particles

In this section, we investigate stability of good configurations under adjunctions of collisional particles.
Subsection 9.2 investigates binary adjunctions, while Subsection 9.3 investigates ternary adjunctions.
To perform the measure estimates needed, we will strongly rely on the results of Section 8.

We start with some definitions on the configurations we are using. Consider 𝑚 ∈ N and 𝜃 > 0, and
recall from (6.3)-(6.4) the set of well-separated configurations

Δ𝑚 (𝜃) = {𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ R2𝑑𝑚 : |�̃�𝑖 − �̃� 𝑗 | > 𝜃, ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑚}, 𝑚 ≥ 2, Δ1 (𝜃) = R2𝑑 .

Roughly speaking, a good configuration is a configuration which remains well-separated under back-
wards time evolution. More precisely, given 𝜃 > 0, 𝑡0 > 0, we define the set of good configurations as

𝐺𝑚 (𝜃, 𝑡0) =
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ R2𝑑𝑚 : 𝑍𝑚(𝑡) ∈ Δ𝑚(𝜃), ∀𝑡 ≥ 𝑡0

}
, (9.1)

where 𝑍𝑚 (𝑡) denotes the backwards in time free flow of 𝑍𝑚 = (𝑋𝑚, 𝑉𝑚), given by

𝑍𝑚(𝑡) = ((𝑋𝑚 (𝑡), 𝑉𝑚(𝑡)) := (𝑋𝑚 − 𝑡𝑉𝑚, 𝑉𝑚), 𝑡 ≥ 0. (9.2)

Notice that 𝑍𝑚 is the initial point of the trajectory (i.e., 𝑍𝑚(0) = 𝑍𝑚). In other words for 𝑚 ≥ 2, we have

𝐺𝑚(𝜃, 𝑡0) =
{
𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ R2𝑑𝑚 : |𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | > 𝜃, ∀𝑡 ≥ 𝑡0, ∀𝑖 < 𝑗 ∈ {1, ..., 𝑚}

}
. (9.3)

From now on, we consider parameters 𝑅 >> 1 and 0 < 𝛿, 𝜂, 𝜖0, 𝛼 << 1 satisfying

𝛼 << 𝜖0 << 𝜂𝛿, 𝑅𝛼 << 𝜂𝜖0. (9.4)

For convenience, we choose the parameters in (9.4) in the very end of the paper; see (11.23), (11.24).
Throughout this section, we will write 𝐾𝑑𝜂 for a cylinder of radius 𝜂 in R𝑑 .

The following Lemma is useful for the adjunction of particles to a given configuration. For the proof,
see Lemma 12.2.1 from [18] or Lemma 10.2. from [2].

Lemma 9.1. Consider parameters 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 as in (9.4) and 𝜖3 << 𝛼. Let �̄�1, �̄�2 ∈ R𝑑 , with | �̄�1− �̄�2 | >
𝜖0 and 𝑣1 ∈ 𝐵𝑑𝑅. Then there is a d-cylinder 𝐾𝑑𝜂 ⊆ R𝑑 such that for any 𝑦1 ∈ 𝐵𝑑𝛼 ( �̄�1), 𝑦2 ∈ 𝐵𝑑𝛼 ( �̄�2) and
𝑣2 ∈ 𝐵𝑑𝑅 \ 𝐾𝑑𝜂 , we have

1. (𝑦1, 𝑦2, 𝑣1, 𝑣2) ∈ 𝐺2 (
√

2𝜖3, 0),
2. (𝑦1, 𝑦2, 𝑣1, 𝑣2) ∈ 𝐺2 (𝜖0, 𝛿).
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9.2. Stability under binary adjunction

The main results of this subsection are stated in Proposition 9.2, which will be the inductive step of
adding a colliding particle, and Proposition 9.4, which presents the measure estimate of the bad set that
appears in this process. The proofs of the Propositions presented below are in part inspired by arguments
in [18] and [5] with a caveat that the new scenario needs to be addressed, in the case when the binary
collisional configuration formed runs to a ternary interaction under time evolution.

9.2.1. Binary adjunction
For convenience, given 𝑣 ∈ R𝑑 , let us denote(

S
𝑑−1
1 × 𝐵𝑑𝑅

)+
(𝑣) =

{
(𝜔1, 𝑣1) ∈ S𝑑−1

1 × 𝐵𝑑𝑅 : 𝑏2(𝜔1, 𝑣1 − 𝑣) > 0
}
, (9.5)

where 𝑏2(𝜔)1, 𝑣1 − 𝑣) = 〈𝜔1, 𝑣1 − 𝑣〉. Recall from (9.2) that given 𝑚 ∈ N and 𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ R2𝑑𝑚,
we denote the backwards in time free flow as 𝑍𝑚 (𝑡) = (𝑋𝑚 − 𝑡𝑉𝑚, 𝑉𝑚), 𝑡 ≥ 0. Recall also the notation
from (3.7)

D̊𝑚+1, 𝜖2 , 𝜖3 =
{
𝑍𝑚+1 = (𝑋𝑚+1, 𝑉𝑚+1) ∈ R2𝑑 (𝑚+1) : 𝑑2(𝑥𝑖 , 𝑥 𝑗 ) > 𝜖2, ∀(𝑖, 𝑗) ∈ I2

𝑚+1,

and 𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) >
√

2𝜖3, ∀(𝑖, 𝑗 , 𝑘) ∈ I3
𝑚+1

}
,

where I2
𝑚+1, I3

𝑚+1 are given by (3.1)–(3.2), respectively.

Proposition 9.2. Consider parameters 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 as in (9.4) and 𝜖2 << 𝜖3 << 𝛼. Let 𝑚 ∈ N,
�̄�𝑚 = ( �̄�𝑚, �̄�𝑚) ∈ 𝐺𝑚(𝜖0, 0), ℓ ∈ {1, ..., 𝑚}, �̄�𝑚 ∈ 𝐵𝑑𝑚𝑅 and 𝑋𝑚 ∈ 𝐵𝑑𝑚

𝛼/2( �̄�𝑚). Then there is a subset
B2
ℓ (�̄�𝑚) ⊆ (S𝑑−1

1 × 𝐵𝑑𝑅)
+(�̄�ℓ) such that

1. For any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅)

+(�̄�ℓ) \ B2
ℓ (�̄�𝑚), one has

𝑍𝑚+1(𝑡) ∈ D̊𝑚+1, 𝜖2 , 𝜖3 , ∀𝑡 ≥ 0, (9.6)

𝑍𝑚+1 ∈ 𝐺𝑚+1(𝜖0/2, 𝛿), (9.7)

�̄�𝑚+1 ∈ 𝐺𝑚+1 (𝜖0, 𝛿). (9.8)

where

𝑍𝑚+1 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚+1, �̄�1, ..., �̄�ℓ , ..., �̄�𝑚, 𝑣𝑚+1),
𝑥𝑚+1 = 𝑥ℓ − 𝜖2𝜔1,

�̄�𝑚+1 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚, �̄�1, ..., �̄�ℓ , ..., �̄�𝑚, 𝑣𝑚+1),
(9.9)

2. For any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅)

+(�̄�ℓ) \ B2
ℓ (�̄�𝑚), one has

𝑍 ′
𝑚+1(𝑡) ∈ D̊𝑚+1, 𝜖2 , 𝜖3 , ∀𝑡 ≥ 0, (9.10)

𝑍 ′
𝑚+1 ∈ 𝐺𝑚+1(𝜖0/2, 𝛿), (9.11)

�̄� ′
𝑚+1 ∈ 𝐺𝑚+1(𝜖0, 𝛿), (9.12)
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where

𝑍 ′
𝑚+1 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚+1, �̄�1, ..., �̄�

′
ℓ , ..., �̄�𝑚, 𝑣

′
𝑚+1),

𝑥𝑚+1 = 𝑥ℓ + 𝜖2𝜔1,

�̄� ′
𝑚+1 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚, �̄�1, ..., �̄�

′
ℓ , ..., �̄�𝑚, 𝑣

′
𝑚+1),

(�̄�′ℓ , 𝑣
′
𝑚+1) = 𝑇𝜔1 (�̄�ℓ , 𝑣𝑚+1).

(9.13)

Proof. By symmetry, we may assume that ℓ = 𝑚. For convenience, let us define the set

F𝑚+1 = {(𝑖, 𝑗) ∈ {1, ..., 𝑚 + 1} × {1, ..., 𝑚 + 1} : 𝑖 < min{ 𝑗 , 𝑚}}.

Proof of (i): Here, we use notation from (9.9). We start by formulating the following claim, which will
imply (9.6).

Lemma 9.3. Under the assumptions of Proposition 9.2, there is a subset B2,0,−
𝑚 (�̄�𝑚) ⊆ S𝑑−1

1 × 𝐵𝑑𝑅 such
that for any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1

1 × 𝐵𝑑𝑅)
+(�̄�𝑚) \ B2,0,−

𝑚 (�̄�𝑚), there holds

𝑑2
(
𝑥𝑖 (𝑡), 𝑥 𝑗 (𝑡)

)
>
√

2𝜖3, ∀𝑡 ≥ 0, ∀(𝑖, 𝑗) ∈ F𝑚+1, (9.14)

𝑑2(𝑥𝑚 (𝑡), 𝑥𝑚+1 (𝑡)) > 𝜖2, ∀𝑡 ≥ 0. (9.15)

Notice that (9.14)–(9.15) trivially imply (9.6), since 𝜖2 << 𝜖3.

Proof of Lemma 9.3
Step 1: The proof of (9.14): We distinguish the following cases:
◦ 𝑗 ≤ 𝑚: Since �̄�𝑚 ∈ 𝐺𝑚(𝜖0, 0) and 𝑗 ≤ 𝑚, we have |𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | > 𝜖0, for all 𝑡 ≥ 0. Therefore,

triangle inequality implies that

|𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | = |𝑥𝑖 − 𝑥 𝑗 − 𝑡 (�̄�𝑖 − �̄� 𝑗 ) | ≥ |𝑥𝑖 − 𝑥 𝑗 − 𝑡 (�̄�𝑖 − �̄� 𝑗 ) | − 𝛼 ≥ 𝜖0 − 𝛼 >
𝜖0
2

>
√

2𝜖3, (9.16)

since 𝜖3 << 𝛼 << 𝜖0.
◦ 𝑗 = 𝑚+1: Since (𝑖, 𝑚+1) ∈ F𝑚+1, we have 𝑖 ≤ 𝑚−1. Since �̄�𝑚 ∈ 𝐺𝑚 (𝜖0, 0) and 𝑋𝑚 ∈ 𝐵𝑑𝑚

𝛼/2( �̄�𝑚),
we conclude

|𝑥𝑖 − 𝑥𝑚 | > 𝜖0, |𝑥𝑖 − 𝑥𝑖 | ≤
𝛼

2
< 𝛼, |𝑥𝑚+1 − 𝑥𝑚 | ≤ |𝑥𝑚 − 𝑥𝑚 | + 𝜖2 |𝜔1 | ≤

𝛼

2
+ 𝜖2 < 𝛼,

since 𝜖2 << 𝛼. Applying part (i) of Lemma 9.1 for �̄�1 = 𝑥𝑖 , �̄�2 = 𝑥𝑚, 𝑦1 = 𝑥𝑖 , 𝑦2 = 𝑥𝑚+1, we may find
a cylinder 𝐾𝑑,𝑖𝜂 such that for any 𝑣𝑚+1 ∈ 𝐵𝑑𝑅 \ 𝐾𝑑,𝑖𝜂 , we have |𝑥𝑖 (𝑡) − 𝑥𝑚+1 (𝑡) | >

√
2𝜖3, for all 𝑡 ≥ 0.

Hence, the inequality in (9.14) holds for any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅)

+(�̄�𝑚) \𝑉 𝑖𝑚+1, where

𝑉 𝑖𝑚+1 = S𝑑−1
1 × 𝐾𝑑,𝑖𝜂 . (9.17)

We conclude that (9.14) holds for any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅) \

⋃𝑚−1
𝑖=1 𝑉 𝑖𝑚+1.

Step 2: The proof of (9.15): We recall notation from (9.9). Considering 𝑡 ≥ 0 and (𝜔1, 𝑣𝑚+1) ∈
(S𝑑−1

1 × 𝐵𝑑𝑅)
+(�̄�𝑚). Using the fact that (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1

1 × 𝐵𝑑𝑅)
+(�̄�𝑚), we obtain

|𝑥𝑚 (𝑡) − 𝑥𝑚+1 (𝑡) |2 = |𝜖2𝜔1 − 𝑡 (�̄�𝑚 − 𝑣𝑚+1) |2 ≥ 𝜖2
2 |𝜔1 |2 + 2𝜖2𝑡𝑏2(𝜔1, 𝑣𝑚+1 − �̄�𝑚) > 𝜖2

2 . (9.18)

Therefore, (9.15) holds for any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅)

+(�̄�𝑚).
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Defining

B2,0,−
𝑚 (�̄�𝑚) =

𝑚−1⋃
𝑖=1

𝑉 𝑖𝑚+1, (9.19)

the claim of Lemma 9.3 follows.
Now we go back to the proof of part (i) of Proposition 9.2. We will find a set B2, 𝛿,−

𝑚 (�̄�𝑚) ⊆ S𝑑−1
1 ×𝐵𝑑𝑅

such that (9.7) holds for any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅) \ B

2, 𝛿,−
𝑚 (�̄�𝑚).

Let us fix 𝑖, 𝑗 ∈ {1, ..., 𝑚 + 1} with 𝑖 < 𝑗 . We distinguish the following cases:
◦ 𝑗 ≤ 𝑚: We use the same argument as in (9.16), to obtain |𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | > 𝜖0

2 , for all 𝑡 ≥ 0.
◦ (𝑖, 𝑗) ∈ F𝑚+1, 𝑗 = 𝑚 + 1: Since (𝑖, 𝑚 + 1) ∈ F𝑚+1, we have 𝑖 ≤ 𝑚 − 1. Applying a similar argument

to the corresponding case in the proof of (9.14), using part (ii) of Lemma 9.1 instead, we obtain that the
inequality |𝑥𝑖 (𝑡) − 𝑥𝑚+1(𝑡) | > 𝜖0, for all 𝑡 ≥ 𝛿, holds for any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1

1 × 𝐵𝑑𝑅) \ 𝑉
𝑖
𝑚+1, where

𝑉 𝑖𝑚+1 is given by (9.17). Notice that the lower bound is in fact 𝜖0.
◦ 𝑖 = 𝑚, 𝑗 = 𝑚 + 1: Triangle inequality and the fact that 𝜖2 << 𝜖0 << 𝜂𝛿 imply that for any 𝑡 ≥ 𝛿

and (𝜔1, 𝑣𝑚+1) ∈ S𝑑−1
1 × 𝐵𝑑𝑅 with |𝑣𝑚+1 − �̄�𝑚 | > 𝜂, we have

|𝑥𝑚 (𝑡) − 𝑥𝑚+1 (𝑡) | = |𝜖2𝜔1 − 𝑡 (�̄�𝑚 − 𝑣𝑚+1) | ≥ |�̄�𝑚 − 𝑣𝑚+1 |𝛿 − 𝜖2 > 𝜂𝛿 − 𝜖2 > 𝜖0.

Therefore, the inequality |𝑥𝑚 (𝑡) − 𝑥𝑚+1 (𝑡) | > 𝜖0, for all 𝑡 ≥ 𝛿, holds for any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅) \

𝑉𝑚,𝑚+1, where

𝑉𝑚,𝑚+1 = S𝑑−1
1 × 𝐵𝑑𝜂 (�̄�𝑚). (9.20)

Notice that the lower bound is 𝜖0 again.
Defining

B2, 𝛿,−
𝑚 (�̄�𝑚) = B2,0,−

𝑚 (�̄�𝑚) ∪𝑉𝑚,𝑚+1, (9.21)

we conclude that (9.7) holds for any (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅) \ B

2, 𝛿,−
𝑚 (�̄�𝑚).

Let us note that the only case which prevents us from having 𝑍𝑚+1 ∈ 𝐺𝑚+1(𝜖0, 𝛿) is the case
1 ≤ 𝑖 < 𝑗 ≤ 𝑚, where we obtain a lower bound of 𝜖0/2. In all other cases, we can obtain lower bound 𝜖0.

More precisely, for (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅) \ B

2, 𝛿,−
𝑚 (�̄�𝑚), the inequality |𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | > 𝜖0, for

all 𝑡 ≥ 𝛿, holds for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 + 1 except the case 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. However, in this case, for any
1 ≤ 𝑖 < 𝑗 ≤ 𝑚, we have |𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | > 𝜖0, for all 𝑡 > 0, since �̄�𝑚 ∈ 𝐺𝑚(𝜖0, 0). Therefore, (9.8) holds
for (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1

1 × 𝐵𝑑𝑅) \ B
2, 𝛿,−
𝑚 (�̄�𝑚).

We conclude that the set

B2,−
𝑚 (�̄�𝑚) = (S𝑑−1

1 × 𝐵𝑑𝑅)
+(�̄�𝑚) ∩

(
B2,0,−
𝑚

(
�̄�𝑚

)
∪ B2, 𝛿,−

𝑚

(
�̄�𝑚

) )
(9.22)

is the set we need for the precollisional case.
Proof of (ii): Here, we use the notation from (9.13). The proof follows the steps of the precollisional

case, but we replace the velocities (�̄�𝑚, 𝑣𝑚+1) by the transformed velocities (�̄�′𝑚, 𝑣′𝑚+1) and then pull-
back. It is worth mentioning that the m-th particle needs special treatment since its velocity is transformed
to �̄�′𝑚. Following similar arguments to the precollisional case, we conclude that the appropriate set for
the postcollisional case is given by

B2,+
𝑚 (�̄�𝑚) := (S𝑑−1

1 × 𝐵𝑑𝑅)
+(�̄�𝑚) ∩

[
𝑉𝑚,𝑚+1 ∪

𝑚−1⋃
𝑖=1

(
𝑉 𝑖

′
𝑚 ∪𝑉 𝑖

′

𝑚+1

)]
, (9.23)
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where

𝑉 𝑖
′
𝑚 =

{
(𝜔1, 𝑣𝑚+1) ∈ S𝑑−1

1 × 𝐵𝑑𝑅 : �̄�′𝑚 ∈ 𝐾𝑑,𝑖𝜂
}
, (9.24)

𝑉 𝑖
′

𝑚+1 =
{
(𝜔1, 𝑣𝑚+1) ∈ S𝑑−1

1 × 𝐵𝑑𝑅 : 𝑣′𝑚+1 ∈ 𝐾𝑑,𝑖𝜂
}
, (9.25)

𝑉𝑚,𝑚+1 = S𝑑−1
1 × 𝐵𝑑𝜂 (�̄�𝑚). (9.26)

The set

B2
𝑚(�̄�𝑚) = B2,−

𝑚 (�̄�𝑚) ∪ B2,+
𝑚 (�̄�𝑚) (9.27)

is the one we need to conclude the proof. �

9.2.2. Measure estimate for binary adjunction
We now estimate the measure of the pathological set B2

ℓ (�̄�𝑚) appearing in Proposition 9.2. To control
postcollisional configurations, we will strongly rely on the binary transition map introduced in the
Appendix (see Proposition 12.2).

Proposition 9.4. Consider parameters 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 as in (9.4) and 𝜖2 << 𝜖3 << 𝛼. Let 𝑚 ∈ N,
�̄�𝑚 ∈ 𝐺𝑚 (𝜖0, 0), ℓ ∈ {1, ..., 𝑚} and B2

ℓ (�̄�𝑚) the set given in the statement of Proposition 9.2. Then the
following measure estimate holds: ��B2

ℓ (�̄�𝑚)
�� � 𝑚𝑅𝑑𝜂

𝑑−1
2𝑑+2 ,

where | · | denotes the product measure on S𝑑−1
1 × 𝐵𝑑𝑅.

Proof. Without loss of generality, we may assume that ℓ = 𝑚. By (9.27), it suffices to estimate the
measure of B2,−

𝑚 (�̄�𝑚) and B2,+
𝑚 (�̄�𝑚).

Estimate of B2,−
𝑚 (�̄�𝑚): Recalling (9.5), (9.22), (9.21), (9.19), we have

B2,−
𝑚 (�̄�𝑚) = (S𝑑−1

1 × 𝐵𝑑𝑅)
+(�̄�𝑚) ∩

[
𝑉𝑚,𝑚+1 ∪

𝑚−1⋃
𝑖=1

𝑉 𝑖𝑚+1

]
, (9.28)

where 𝑉𝑚,𝑚+1 is given by (9.20) and 𝑉 𝑖𝑚+1 are given by (9.17). By sub-additivity, it suffices to estimate
the measure of each term in (9.28).
◦ Estimate of the term corresponding to 𝑉𝑚,𝑚+1: By (9.20), we have 𝑉𝑚,𝑚+1 = S𝑑−1

1 × 𝐵𝑑𝜂 (�̄�𝑚), and
therefore,

| (S𝑑−1
1 × 𝐵𝑑𝑅)

+(�̄�𝑚) ∩𝑉𝑚,𝑚+1 | ≤ |S𝑑−1
1 × (𝐵𝑑𝑅 ∩ 𝐵𝑑𝜂 (�̄�𝑚)) | ≤ |S𝑑−1

1 |
S
𝑑−1
1

|𝐵𝑑𝜂 (�̄�𝑚) |𝑑 � 𝜂𝑑 . (9.29)

◦ Estimate of the term corresponding to 𝑉 𝑖𝑚+1: By (9.17), we have 𝑉 𝑖𝑚+1 = S𝑑−1
1 × 𝐾𝑑,𝑖𝜂 ; therefore, by

Corollary 8.2, we obtain

| (S𝑑−1
1 × 𝐵𝑑𝑅)

+(�̄�𝑚) ×𝑉 𝑖𝑚+1 | ≤ |S𝑑−1
1 × (𝐵𝑑𝑅 ∩ 𝐾𝑑,𝑖𝜂 ) | � |S𝑑−1

1 |
S
𝑑−1
1

|𝐵𝑑𝑅 ∩ 𝐾𝑑,𝑖𝜂 |𝑑 � 𝑅𝑑𝜂
𝑑−1

2 . (9.30)

Using (9.28)–(9.30), subadditivity, and the fact that 𝜂 << 1, 𝑚 ≥ 1, we obtain

|B2,−
𝑚 (�̄�𝑚) | � 𝑚𝑅𝑑𝜂

𝑑−1
2 . (9.31)
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Estimate of B2,+
𝑚 (�̄�𝑚): Recalling (9.23), we have

B2,+
𝑚 (�̄�𝑚) = (S𝑑−1

1 × 𝐵𝑑𝑅)
+(�̄�𝑚) ∩

[
𝑉𝑚,𝑚+1 ∪

𝑚−1⋃
𝑖=1

(
𝑉 𝑖

′
𝑚 ∪𝑉 𝑖

′

𝑚+1

)]
, (9.32)

where 𝑉𝑚,𝑚+1 is given by (9.20) and 𝑉 𝑖
′
𝑚, 𝑉 𝑖′𝑚+1 are given by (9.24)–(9.25). By subadditivity, it suffices

to estimate the measure of each term in (9.32). The term corresponding to 𝑉𝑚,𝑚+1 has already been
estimated in (9.29). We have

| (S𝑑−1
1 × 𝐵𝑑𝑅)

+(�̄�𝑚) ∩𝑉𝑚,𝑚+1 | � 𝜂𝑑 . (9.33)

To estimate the measure of the remaining terms, we will strongly rely on the properties of the binary
transition map defined in Proposition 12.2. We first introduce some notation. Given 0 < 𝑟 ≤ 2𝑅, let us
define the r-sphere, centered at �̄�𝑚:

𝑆𝑑−1
𝑟 (�̄�𝑚) =

{
𝑣𝑚+1 ∈ R𝑑 : |�̄�𝑚 − 𝑣𝑚+1 | = 𝑟

}
.

Also, given 𝑣𝑚+1 ∈ R𝑑 , we define the set

S+
�̄�𝑚 ,𝑣𝑚+1

=
{
𝜔1 ∈ S𝑑−1

1 : 𝑏2(𝜔1, 𝑣𝑚+1 − �̄�𝑚) > 0
}
=

{
𝜔1 ∈ S𝑑−1

1 : (𝜔1, 𝑣𝑚+1) ∈ (S𝑑−1
1 × 𝐵𝑑𝑅)

+(�̄�𝑚)
}
.

(9.34)

Since �̄�𝑚 ∈ 𝐵𝑑𝑅, triangle inequality implies 𝐵𝑑𝑅 ⊆ 𝐵𝑑2𝑅 (�̄�𝑚). Under this notation, Fubini’s Theorem, the
co-area formula, and relations (9.32)–(9.33) yield

|B2+
𝑚 (�̄�𝑚) | =

∫
(S𝑑−1

1 ×𝐵𝑑
𝑅)+ ( �̄�𝑚)

1B2+
𝑚 (�̄�𝑚) 𝑑𝜔1 𝑑𝑣𝑚+1

=
∫
𝐵𝑑
𝑅

∫
S+
�̄�𝑚,𝑣𝑚+1

1B2+
𝑚 (�̄�𝑚) 𝑑𝜔1 𝑑𝑣𝑚+1

� 𝜂𝑑 +
∫ 2𝑅

0

∫
𝑆𝑑−1
𝑟 ( �̄�𝑚)

∫
S+
�̄�𝑚,𝑣𝑚+1

1⋃𝑚−1
𝑖=1 (𝑉 𝑖′

𝑚∪𝑉 𝑖′
𝑚+1)

(𝜔1) 𝑑𝜔1 𝑑𝑣𝑚+1 𝑑𝑟.

(9.35)

Let us estimate the integral ∫
S+
�̄�𝑚,𝑣𝑚+1

1⋃𝑚−1
𝑖=1 (𝑉 𝑖,′

𝑚 ∪𝑉 𝑖,′
𝑚+1)

(𝜔1) 𝑑𝜔1,

for fixed 0 < 𝑟 ≤ 2𝑅 and 𝑣𝑚+1 ∈ 𝑆𝑑−1
𝑟 (�̄�𝑚). We introduce a parameter 0 < 𝛽 << 1, which will be

chosen later in terms of 𝜂, and decompose S+
�̄�𝑚 ,𝑣𝑚+1

as follows:

S+
�̄�𝑚 ,𝑣𝑚+1

= S1,+
�̄�𝑚 ,𝑣𝑚+1

∪ S2,+
�̄�𝑚 ,𝑣𝑚+1

, (9.36)

where

S1,+
�̄�𝑚 ,𝑣𝑚+1

=
{
𝜔1 ∈ S+

�̄�𝑚 ,𝑣𝑚+1
: 𝑏2 (𝜔1, 𝑣𝑚+1 − �̄�𝑚) > 𝛽 |𝑣𝑚+1 − �̄�𝑚 |

}
, (9.37)

and

S2,+
�̄�𝑚 ,𝑣𝑚+1

=
{
𝜔1 ∈ S+

�̄�𝑚 ,𝑣𝑚+1
: 𝑏2 (𝜔1, 𝑣𝑚+1 − �̄�𝑚) ≤ 𝛽 |𝑣𝑚+1 − �̄�𝑚 |

}
. (9.38)
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Notice that S2,+
�̄�𝑚 ,𝑣𝑚+1

is the union of two unit (𝑑 − 1)-spherical caps of angle 𝜋/2 − arccos 𝛽. Thus,
integrating in spherical coordinates, we may estimate its measure as follows:∫

S
𝑑−1
1

1S2,+
�̄�𝑚,𝑣𝑚+1

(𝜔1) 𝑑𝜔1 �
∫ 𝜋/2

arccos 𝛽
sin𝑑−2 (𝜃) 𝑑𝜃 ≤ 𝜋

2
− arccos 𝛽 = arcsin 𝛽.

Thus, ∫
S2,+
�̄�𝑚,𝑣𝑚+1

1⋃𝑚−1
𝑖=1 (𝑉 𝑖′

𝑚∪𝑉 𝑖′
𝑚+1)

(𝜔1) 𝑑𝜔1 � arcsin 𝛽. (9.39)

We now wish to estimate ∫
S1,+
�̄�𝑚,𝑣𝑚+1

1⋃𝑚−1
𝑖=1 (𝑉 𝑖′

𝑚∪𝑉 𝑖′
𝑚+1)

(𝜔1) 𝑑𝜔1. (9.40)

We will use the binary transition map J�̄�𝑚 ,𝑚𝑚+1 : S+
�̄�𝑚 ,𝑣𝑚+1

→ S𝑑−1
1 , which is given by

𝜈1 := J�̄�𝑚 ,𝑣𝑚+1 (𝜔1) = 𝑟−1(�̄�′𝑚 − 𝑣′𝑚+1), (9.41)

to change variables in the above integral. For details on the transition map, see Proposition 12.2 in the
Appendix. By Proposition 12.2, for 𝜔1 ∈ S+

�̄�𝑚 ,𝑣𝑚+1
, the Jacobian matrix of the transition map is

Jac(J�̄�𝑚 ,𝑣𝑚+1 ) (𝜔1) � 𝑟−𝑑𝑏𝑑2 (𝜔1, 𝑣𝑚+1 − �̄�𝑚) > 0.

Therefore, for 𝜔1 ∈ S1+
�̄�𝑚 ,𝑣𝑚+1

, we have

Jac−1(J�̄�𝑚 ,𝑣𝑚+1 ) (𝜔1) � 𝑟𝑑𝑏−𝑑2 (𝜔1, 𝑣𝑚+1 − �̄�𝑚) ≤ 𝑟𝑑𝛽−𝑑 |𝑣𝑚+1 − �̄�𝑚 |−𝑑 � 𝛽−𝑑 , (9.42)

since |𝑣𝑚+1 − �̄�𝑚 | = 𝑟.
For convenience, we express �̄�′𝑚, 𝑣′𝑚+1 in terms of the precollisional velocities �̄�𝑚, 𝑣𝑚+1 and 𝜈1 given

by (9.41). Since |𝑣𝑚+1 − �̄�𝑚 | = 𝑟 , expressions (2.1) yield

�̄�′𝑚 =
�̄�𝑚 + 𝑣𝑚+1

2
+ 𝑟

2
𝜈1, (9.43)

𝑣′𝑚+1 =
�̄�𝑚 + 𝑣𝑚+1

2
− 𝑟

2
𝜈1. (9.44)

We are now in the position to estimate the integral in (9.40). We first estimate for the term corresponding
to 𝑉 𝑖

′
𝑚: Recalling (9.24), we have 𝑉 𝑖′𝑚 =

{
(𝜔1, 𝑣𝑚+1) ∈ S𝑑−1

1 × 𝐵𝑑𝑅 : �̄�′𝑚 ∈ 𝐾𝑑,𝑖𝜂

}
. By (9.43),

�̄�′𝑚 ∈ 𝐾𝑑,𝑖𝜂 ⇔ 𝜈1 = J�̄�𝑚 ,𝑣𝑚+1 (𝜔1) ∈ 𝐾𝑑,𝑖2𝜂/𝑟 , (9.45)

where 𝐾𝑑,𝑖2𝜂/𝑟 is a cylinder of radius 2𝜂/𝑟 . Therefore, we obtain∫
S1,+
�̄�𝑚,𝑣𝑚+1

1𝑉 𝑖′
𝑚
(𝜔1) 𝑑𝜔1 =

∫
S1,+
�̄�𝑚,𝑣𝑚+1

1�̄�′𝑚∈𝐾 𝑑,𝑖
2𝜂

(𝜔1) 𝑑𝜔1

=
∫
S1,+
�̄�𝑚,𝑣𝑚+1

(1𝐾 𝑑,𝑖
2𝜂/𝑟

◦ J�̄�𝑚 ,𝑣𝑚+1 ) (𝜔1) 𝑑𝜔1 (9.46)
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� 𝛽−𝑑
∫
S
𝑑−1
1

1𝐾 𝑑,𝑖
2𝜂/𝑟

(𝜈) 𝑑𝜈 (9.47)

� 𝛽−𝑑 min
{
1,

(𝜂
𝑟

) 𝑑−1
2
}
, (9.48)

where to obtain (9.46), we use (9.45), to obtain (9.47), we use part (iv) of Proposition 12.2 and estimate
(9.42), and to obtain (9.48), we use Lemma 8.1.

Hence, for fixed 𝑣𝑚+1 ∈ 𝑆𝑑−1
𝑟 (�̄�𝑚), we have∫
S1,+
�̄�𝑚,𝑣𝑚+1

1
𝑉 𝑖,′
𝑚
(𝜔1) 𝑑𝜔1 � 𝛽−𝑑 min

{
1,

(𝜂
𝑟

) 𝑑−1
2
}
. (9.49)

Recalling also 𝑉 𝑖′𝑚+1 from (9.25), we obtain in an analogous way the estimate∫
S1,+
�̄�𝑚,𝑣𝑚+1

1𝑉 𝑖′
𝑚+1

(𝜔1) 𝑑𝜔1 � 𝛽−𝑑 min
{
1,

(𝜂
𝑟

) 𝑑−1
2
}
. (9.50)

Combining (9.49)–(9.50) and adding for 𝑖 = 1, ..., 𝑚 − 1, we obtain∫
S1,+
�̄�𝑚,𝑣𝑚+1

1⋃𝑚−1
𝑖=1 (𝑉 𝑖,′

𝑚 ∪𝑉 𝑖,′
𝑚+1)

(𝜔1) 𝑑𝜔1 � 𝑚𝛽−𝑑 min
{
1,

(𝜂
𝑟

) 𝑑−1
2
}
. (9.51)

Therefore, recalling (9.36) and using estimates (9.39), (9.51), we obtain the estimate∫
S+
�̄�𝑚,𝑣𝑚+1

1⋃𝑚−1
𝑖=1 (𝑉 𝑖′

𝑚∪𝑉 𝑖′
𝑚+1)

(𝜔1) 𝑑𝜔1 � arcsin 𝛽 + 𝑚𝛽−𝑑 min
{
1,

(𝜂
𝑟

) 𝑑−1
2
}
. (9.52)

Hence, (9.35) yields

|B2+
𝑚 (�̄�𝑚) | � 𝜂𝑑 +

∫ 2𝑅

0

∫
𝑆𝑑−1
𝑟 ( �̄�𝑚)

arcsin 𝛽 + 𝑚𝛽−𝑑 min
{
1,

(𝜂
𝑟

) 𝑑−1
2
}
𝑑𝑣𝑚+1 𝑑𝑟

� 𝜂𝑑 +
∫ 2𝑅

0
𝑟𝑑−1

(
arcsin 𝛽 + 𝑚𝛽−𝑑 min

{
1,

(𝜂
𝑟

) 𝑑−1
2
})

𝑑𝑟

� 𝜂𝑑 + 𝑚𝑅𝑑
(
arcsin 𝛽 + 𝛽−𝑑𝜂

𝑑−1
2

)
� 𝑚𝑅𝑑

(
𝛽 + 𝛽−𝑑𝜂

𝑑−1
2

)
,

(9.53)

after using an estimate similar to (8.2) and the fact that 𝜂 << 1, 𝑚 ≥ 1, 𝛽 << 1. Choosing 𝛽 = 𝜂
𝑑−1
2𝑑+2 ,

we obtain

|B2+
𝑚 (�̄�𝑚) | � 𝑚𝑅𝑑𝜂

𝑑−1
2𝑑+2 . (9.54)

Combining (9.27), (9.31), (9.54), and the fact 𝜂 << 1, we obtain the required estimate. �

9.3. Stability under ternary adjunction

Now, we prove Proposition 9.6 and Proposition 9.7 which will be the inductive step for controlling
ternary adjunction of particles. To derive Proposition 9.6 and Proposition 9.7, in addition to results from
[5], we develop new algebraic and geometric techniques, thanks to which we can treat the newly formed
ternary collisional configuration runs to a binary collision under time evolution.
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9.3.1. Ternary adjunction
For convenience, given 𝑣 ∈ R𝑑 , let us denote(

S
2𝑑−1
1 × 𝐵2𝑑

𝑅

)+
(𝑣) =

{
(𝜔1, 𝜔2, 𝑣1, 𝑣2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 : 𝑏3(𝜔1, 𝜔2, 𝑣1 − 𝑣, 𝑣2 − 𝑣) > 0

}
, (9.55)

where 𝑏3 is the ternary cross-section given in (2.9).
Recall from (9.2) that given 𝑚 ∈ N and 𝑍𝑚 = (𝑋𝑚, 𝑉𝑚) ∈ R2𝑑𝑚, we denote the backwards in time

free flow as 𝑍𝑚 (𝑡) = (𝑋𝑚 − 𝑡𝑉𝑚, 𝑉𝑚), 𝑡 ≥ 0.
Proposition 9.5. Consider parameters 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 as in (9.4) and 𝜖3 << 𝛼. Let 𝑚 ∈ N, �̄�𝑚 =
( �̄�𝑚, �̄�𝑚) ∈ 𝐺𝑚(𝜖0, 0), ℓ ∈ {1, ..., 𝑚}, and 𝑋𝑚 ∈ 𝐵𝑑𝑚

𝛼/2( �̄�𝑚). Let us denote

Fℓ
𝑚+2 = {(𝑖, 𝑗) ∈ {1, ..., 𝑚 + 2} × {1, ..., 𝑚 + 2} : 𝑖 ≠ ℓ, 𝑖 ≤ min{ 𝑗 , 𝑚}}.

Then there is a subset B̃3
ℓ (�̄�𝑚) ⊆ (S2𝑑−1

1 × 𝐵2𝑑
𝑅 )+(�̄�𝑚) such that

1. For any (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 )+(�̄�𝑚) \ B̃3
ℓ (�̄�𝑚), one has

𝑑2(𝑥𝑖 (𝑡), 𝑥 𝑗 (𝑡)) >
√

2𝜖3, ∀(𝑖, 𝑗) ∈ Fℓ
𝑚+2, ∀𝑡 ≥ 0,

𝑑3(𝑥ℓ (𝑡); 𝑥𝑚+1(𝑡), 𝑥𝑚+2 (𝑡)) >
√

2𝜖3, ∀𝑡 ≥ 0,
𝑍𝑚+2 ∈ 𝐺𝑚+2(𝜖0/2, 𝛿),
�̄�𝑚+2 ∈ 𝐺𝑚+2(𝜖0, 𝛿),

(9.56)

where

𝑍𝑚+2 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚+1, 𝑥𝑚+2, �̄�1, ..., �̄�ℓ , ..., �̄�𝑚, 𝑣𝑚+1, 𝑣𝑚+2),

𝑥𝑚+𝑖 = 𝑥ℓ +
√

2𝜖3𝜔𝑖 , ∀𝑖 ∈ {1, 2},
�̄�𝑚+2 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚, 𝑥𝑚, �̄�1, ..., �̄�ℓ , ..., �̄�𝑚, 𝑣𝑚+1, 𝑣𝑚+2).

2. For any (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 )+(�̄�ℓ) \ B̃3
ℓ (�̄�𝑚), one has

𝑑2(𝑥𝑖 (𝑡), 𝑥 𝑗 (𝑡)) >
√

2𝜖3, ∀(𝑖, 𝑗) ∈ Fℓ
𝑚+2, ∀𝑡 ≥ 0,

𝑑3(𝑥ℓ (𝑡); 𝑥𝑚+1(𝑡), 𝑥𝑚+2 (𝑡)) >
√

2𝜖3, ∀𝑡 ≥ 0,
𝑍∗
𝑚+2 ∈ 𝐺𝑚+2(𝜖0/2, 𝛿),

�̄�∗
𝑚+2 ∈ 𝐺𝑚+2(𝜖0, 𝛿),

(9.57)

where

𝑍∗
𝑚+2 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚+1, 𝑥𝑚+2, �̄�1, ..., �̄�

∗
ℓ , ..., �̄�𝑚, 𝑣

∗
𝑚+1, 𝑣

∗
𝑚+2),

𝑥𝑚+𝑖 = 𝑥ℓ +
√

2𝜖3𝜔𝑖 , ∀𝑖 ∈ {1, 2},
�̄�∗
𝑚+2 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚, 𝑥𝑚, �̄�1, ..., �̄�

∗
ℓ , ..., �̄�𝑚, 𝑣

∗
𝑚+1, 𝑣

∗
𝑚+2),

(�̄�∗ℓ , 𝑣
∗
𝑚+1, 𝑣

∗
𝑚+2) = 𝑇𝜔1 ,𝜔2 (�̄�ℓ , 𝑣𝑚+1, 𝑣𝑚+2).

There also holds the measure estimate

|B̃3
ℓ (�̄�𝑚) | � 𝑚𝑅2𝑑𝜂

𝑑−1
4𝑑+2 , (9.58)

where | · | denotes the product measure on S2𝑑−1
1 × 𝐵2𝑑

𝑅 .
Proof. This Proposition follows from the statement and the proof of Proposition 9.2 and the statement
of Proposition 9.4 from [5]. �
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We rely on Proposition 9.5 to derive Proposition 9.6 and Proposition 9.7. Recall the notation from
(3.7)

D̊𝑚+2, 𝜖2 , 𝜖3 =
{
𝑍𝑚+2 = (𝑋𝑚+2, 𝑉𝑚+2) ∈ R2𝑑 (𝑚+2) : 𝑑2(𝑥𝑖 , 𝑥 𝑗 ) > 𝜖2, ∀(𝑖, 𝑗) ∈ I2

𝑚+2,

and 𝑑3(𝑥𝑖; 𝑥 𝑗 , 𝑥𝑘 ) >
√

2𝜖3, ∀(𝑖, 𝑗 , 𝑘) ∈ I3
𝑚+2

}
,

where I2
𝑚+2, I3

𝑚+2 are given by (3.1)–(3.2), respectively.

Proposition 9.6. Consider parameters 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 as in (9.4) and 𝜖2 << 𝜂2𝜖3 << 𝛼. Let 𝑚 ∈ N,
�̄�𝑚 = ( �̄�𝑚, �̄�𝑚) ∈ 𝐺𝑚 (𝜖0, 0), ℓ ∈ {1, ..., 𝑚} and 𝑋𝑚 ∈ 𝐵𝑑𝑚

𝛼/2( �̄�𝑚). Then there is a subset B3
ℓ (�̄�𝑚) ⊆

(S2𝑑−1
1 × 𝐵2𝑑

𝑅 )+(�̄�ℓ) such that

1. For any (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 )+(�̄�ℓ) \ B3
ℓ (�̄�𝑚), one has

𝑍𝑚+2(𝑡) ∈ D̊𝑚+2, 𝜖2 , 𝜖3 , ∀𝑡 ≥ 0, (9.59)

𝑍𝑚+2 ∈ 𝐺𝑚+2(𝜖0/2, 𝛿) (9.60)

�̄�𝑚+2 ∈ 𝐺𝑚+2(𝜖0, 𝛿), (9.61)

where

𝑍𝑚+2 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚+1, 𝑥𝑚+2, �̄�1, ..., �̄�ℓ , ..., �̄�𝑚, 𝑣𝑚+1, 𝑣𝑚+2),

𝑥𝑚+𝑖 = 𝑥ℓ −
√

2𝜖3𝜔𝑖 , ∀𝑖 ∈ {1, 2},
�̄�𝑚+2 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚, 𝑥𝑚, �̄�1, ..., �̄�ℓ , ..., �̄�𝑚, 𝑣𝑚+1, 𝑣𝑚+2).

(9.62)

2. For any (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 )+(�̄�ℓ) \ B3
ℓ (�̄�𝑚), one has

𝑍∗
𝑚+2(𝑡) ∈ D̊𝑚+2, 𝜖2 , 𝜖3 , ∀𝑡 ≥ 0, (9.63)

𝑍∗
𝑚+2 ∈ 𝐺𝑚+2(𝜖0/2, 𝛿), (9.64)

�̄�∗
𝑚+2 ∈ 𝐺𝑚+2(𝜖0, 𝛿), (9.65)

where

𝑍∗
𝑚+2 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚+1, 𝑥𝑚+2, �̄�1, ..., �̄�

∗
ℓ , ..., �̄�𝑚, 𝑣

∗
𝑚+1, 𝑣

∗
𝑚+2),

𝑥𝑚+𝑖 = 𝑥ℓ +
√

2𝜖3𝜔𝑖 , ∀𝑖 ∈ {1, 2},
�̄�∗
𝑚+2 = (𝑥1, ..., 𝑥ℓ , ..., 𝑥𝑚, 𝑥𝑚, 𝑥𝑚, �̄�1, ..., �̄�

∗
ℓ , ..., �̄�𝑚, 𝑣

∗
𝑚+1, 𝑣

∗
𝑚+2),

(�̄�∗ℓ , 𝑣
∗
𝑚+1, 𝑣

∗
𝑚+2) = 𝑇𝜔1 ,𝜔2 (�̄�ℓ , 𝑣𝑚+1, 𝑣𝑚+2).

(9.66)

Proof. By symmetry, we may assume that ℓ = 𝑚. Recall the set B̃3
𝑚(�̄�𝑚) from Proposition 9.5 satisfying

(9.56)–(9.57).
We will construct a set A𝑚(�̄�𝑚) ⊆ (S2𝑑−1

1 × 𝐵2𝑑
𝑅 )+(�̄�𝑚), such that for any (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈

(S2𝑑−1
1 × 𝐵2𝑑

𝑅 )+(�̄�𝑚) \A𝑚(�̄�𝑚).
◦ Using notation from (9.62) for the precollisional case, we have

|𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | > 𝜖2, ∀𝑡 ≥ 0, ∀𝑖, 𝑗 ∈ {𝑚, 𝑚 + 1, 𝑚 + 2} with 𝑖 < 𝑗 . (9.67)

◦ Using notation from (9.66) for the postcollisional case, we have

|𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | > 𝜖2, ∀𝑡 ≥ 0, ∀𝑖, 𝑗 ∈ {𝑚, 𝑚 + 1, 𝑚 + 2} with 𝑖 < 𝑗 . (9.68)
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Then thanks to Proposition 9.5 and (9.67)–(9.68), the set

B3
𝑚(�̄�𝑚) := B̃3

𝑚(�̄�𝑚) ∪A𝑚(�̄�𝑚)

will satisfy (9.59)–(9.61), (9.63)–(9.65). Let us introduce the following notation:

𝛾 :=
𝜖2
𝜖3

<< 𝜂2, since 𝜖2 << 𝜂2𝜖3, by assumption, (9.69)

and

𝛾′ =
(
1 − 𝛾

2

)1/2
< 1. (9.70)

Construction of the set satisfying (9.67): Here, we use notation from (9.62). We distinguish the
following cases:

◦ Case (𝑖, 𝑗) = (𝑚, 𝑚 + 1): Consider 𝑡 ≥ 0. We have

|𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) |2 = |𝑥𝑚 (𝑡) − 𝑥𝑚+1 (𝑡) |2

= |
√

2𝜖3𝜔1 + (𝑣𝑚+1 − �̄�𝑚)𝑡 |2

= 2𝜖2
3 |𝜔1 |2 + 2

√
2𝜖3〈𝜔1, 𝑣𝑚+1 − �̄�𝑚〉𝑡 + |𝑣𝑚+1 − �̄�𝑚 |2𝑡2.

(9.71)

We define the sets

Ω1 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 : |𝜔1 | ≤
√
𝛾}, (9.72)

𝐴𝑚,𝑚+1 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 : |〈𝜔1, 𝑣𝑚+1 − �̄�𝑚〉| ≥ 𝛾′ |𝜔1 | |𝑣𝑚+1 − �̄�𝑚 |}. (9.73)

Consider the second degree polynomial in t:

𝑃(𝑡) = (2 − 𝛾)𝜖2
3 |𝜔1 |2 + 2

√
2𝜖3〈𝜔1, 𝑣𝑚+1 − �̄�𝑚〉𝑡 + |𝑣𝑚+1 − �̄�𝑚 |2𝑡2. (9.74)

Let (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \ (Ω1 ∪ 𝐴𝑚,𝑚+1). The polynomial P has discriminant

Δ = 8𝜖2
3 |〈𝜔1, 𝑣𝑚+1 − �̄�𝑚〉|2 − 4(2 − 𝛾)𝜖2

3 |𝜔1 |2 |𝑣𝑚+1 − �̄�𝑚 |2

= 8𝜖2
3 |〈𝜔1, 𝑣𝑚+1 − �̄�𝑚〉|2 − 8𝛾′2𝜖2

3 |𝜔1 |2 |𝑣𝑚+1 − �̄�𝑚 |2

= 8𝜖2
3

(
|〈𝜔1, 𝑣𝑚+1 − �̄�𝑚〉|2 − 𝛾′2 |𝜔1 |2 |𝑣𝑚+1 − �̄�𝑚 |2

)
< 0

since (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∉ 𝐴𝑚,𝑚+1. Since 𝛾 << 1, we obtain 𝑃(𝑡) > 0, for all 𝑡 ≥ 0, or in other words,

2𝜖2
3 |𝜔1 |2 + 2

√
2𝜖3〈𝜔1, 𝑣𝑚+1 − �̄�𝑚〉𝑡 + |𝑣𝑚+1 − �̄�𝑚 |2𝑡2 > 𝛾𝜖2

3 |𝜔1 |2. (9.75)

Since (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∉ Ω1, expressions (9.71), (9.75) yield

|𝑥𝑚 (𝑡) − 𝑥𝑚+1(𝑡) |2 > 𝛾𝜖2
3 |𝜔1 |2 > 𝛾2𝜖2

3 = 𝜖2
2 . (9.76)

Therefore, for any (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \ (Ω1 ∪ 𝐴𝑚,𝑚+1), we have

|𝑥𝑚 (𝑡) − 𝑥𝑚+1(𝑡) | > 𝜖2, ∀𝑡 ≥ 0.
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◦ Case (𝑖, 𝑗) = (𝑚, 𝑚 + 2): We follow a similar argument using the sets

Ω2 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 : |𝜔2 | ≤
√
𝛾}, (9.77)

𝐴𝑚,𝑚+2 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 : |〈𝜔2, 𝑣𝑚+2 − �̄�𝑚〉| ≥ 𝛾′ |𝜔2 | |𝑣𝑚+2 − �̄�𝑚 |} (9.78)

to conclude that for all (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \ (Ω2 ∪ 𝐴𝑚,𝑚+2), we have

|𝑥𝑚+2 (𝑡) − 𝑥𝑚(𝑡) | > 𝜖2, ∀𝑡 ≥ 0.

◦ Case (𝑖, 𝑗) = (𝑚 + 1, 𝑚 + 2): We follow a similar argument using the sets

Ω1,2 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 : |𝜔1 − 𝜔2 | ≤
√
𝛾}, (9.79)

𝐵𝑚+1,𝑚+2 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 :
|〈𝜔1 − 𝜔2, 𝑣𝑚+1 − 𝑣𝑚+2〉| ≥ 𝛾′ |𝜔1 − 𝜔2 | |𝑣𝑚+1 − 𝑣𝑚+2 |} (9.80)

to conclude that for all (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \ (Ω1,2 ∪ 𝐵𝑚+1,𝑚+2), we have

|𝑥𝑚+1 (𝑡) − 𝑥𝑚+2(𝑡) | > 𝜖2, ∀𝑡 ≥ 0.

Defining

A−
𝑚(�̄�𝑚) = Ω1 ∪Ω2 ∪Ω1,2 ∪ 𝐴𝑚,𝑚+1 ∪ 𝐴𝑚,𝑚+2 ∪ 𝐵𝑚+1,𝑚+2, (9.81)

we obtain that (9.67) holds for (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \A−
𝑚 (�̄�𝑚).

Construction of the set satisfying (9.68): Here, we use notation from (9.66). We distinguish the
following cases:

◦ Case (𝑖, 𝑗) = (𝑚, 𝑚 + 1): We follow a similar argument to the precollisional case, using the set Ω1,
defined in (9.72), and the set

𝐴∗
𝑚,𝑚+1 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 :

��〈𝜔1, 𝑣
∗
𝑚+1 − �̄�∗𝑚〉

�� ≥ 𝛾′ |𝜔1 | |𝑣∗𝑚+1 − �̄�∗𝑚 |} (9.82)

to conclude that for all (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \ (Ω2 ∪ 𝐴∗
𝑚,𝑚+1), we have

|𝑥𝑚+1 (𝑡) − 𝑥𝑚(𝑡) | > 𝜖2, ∀𝑡 ≥ 0.

◦ Case (𝑖, 𝑗) = (𝑚, 𝑚 + 2): We follow a similar argument to the precollisional case, using the set Ω2,
defined in (9.77), and the set

𝐴∗
𝑚,𝑚+2 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 :

��〈𝜔2, 𝑣
∗
𝑚+2 − �̄�∗𝑚〉

�� ≥ 𝛾′ |𝜔2 | |𝑣∗𝑚+2 − �̄�∗𝑚 |} (9.83)

to conclude that for all (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \ (Ω2 ∪ 𝐴∗
𝑚,𝑚+2), we have

|𝑥𝑚+2 (𝑡) − 𝑥𝑚(𝑡) | > 𝜖2, ∀𝑡 ≥ 0.

◦ Case (𝑖, 𝑗) = (𝑚 + 1, 𝑚 + 2): We follow a similar argument to the precollisional case, using the set
Ω1,2, defined in (9.79), and the set

𝐵∗
𝑚+1,𝑚+2 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 : (9.84)��〈𝜔1 − 𝜔2, 𝑣

∗
𝑚+1 − 𝑣∗𝑚+2〉

�� ≥ 𝛾′ |𝜔1 − 𝜔2 | |𝑣∗𝑚+1 − 𝑣∗𝑚+2 |} (9.85)
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to conclude that for all (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \ (Ω2 ∪ 𝐵∗
𝑚+1,𝑚+2), we have

|𝑥𝑚+1 (𝑡) − 𝑥𝑚+2(𝑡) | > 𝜖2, ∀𝑡 ≥ 0.

Defining

A+
𝑚(�̄�𝑚) = Ω1 ∪Ω2 ∪Ω1,2 ∪ 𝐴∗

𝑚,𝑚+1 ∪ 𝐴∗
𝑚,𝑚+2 ∪ 𝐵∗

𝑚+1,𝑚+2, (9.86)

we obtain that (9.68) holds for (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 ) \A+
𝑚(�̄�𝑚).

Defining

A𝑚(�̄�𝑚) = (S2𝑑−1
1 × 𝐵2𝑑

𝑅 )+(�̄�𝑚) ∩
(
A−
𝑚(�̄�𝑚) ∪A+

𝑚(�̄�𝑚)
)
, (9.87)

(9.67)–(9.68) hold for any (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ (S2𝑑−1
1 × 𝐵2𝑑

𝑅 )+(�̄�𝑚) \A𝑚(�̄�𝑚).
The set

B3
𝑚(�̄�𝑚) = B̃3

𝑚(�̄�𝑚) ∪A𝑚(�̄�𝑚) (9.88)

satisfies (9.59)–(9.61), (9.63)–(9.65); thus, it is the set we need to conclude the proof. �

9.3.2. Measure estimate for ternary adjunction
We now provide the corresponding measure estimate for the set B3

ℓ (�̄�𝑚) appearing in Proposition 9.6.
To estimate the measure of this set, we will strongly rely on the results of Section 8.

Proposition 9.7. Consider parameters 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 as in (9.4) and 𝜖2 << 𝜂2𝜖3 << 𝛼. Let 𝑚 ∈ N,
�̄�𝑚 ∈ 𝐺𝑚(𝜖0, 0), ℓ ∈ {1, ..., 𝑚} and B3

ℓ (�̄�𝑚) be the set appearing in the statement of Proposition 9.6.
Then the following measure estimate holds:��B3

ℓ (�̄�𝑚)
�� � 𝑚𝑅2𝑑𝜂

𝑑−1
4𝑑+2 ,

where | · | denotes the product measure on S2𝑑−1
1 × 𝐵2𝑑

𝑅 .

Proof. By symmetry, we may assume ℓ = 𝑚. Recall that

B3
𝑚(�̄�𝑚) = B̃3

𝑚 (�̄�𝑚) ∪A𝑚(�̄�𝑚), (9.89)

where B̃3
𝑚 (�̄�𝑚) is given by Proposition 9.5 and A𝑚(�̄�𝑚) is given by (9.87). Estimate (9.58) yields

|B̃3
𝑚 (�̄�𝑚) | � 𝑚𝑅2𝑑𝜂

𝑑−1
4𝑑+2 , (9.90)

so it suffices to estimate the measure of A𝑚(�̄�𝑚). By (9.87), it suffices to estimate the measure of
A−
𝑚(�̄�𝑚) and A+

𝑚(�̄�𝑚) which are given by (9.81), (9.86), respectively.
Let us recall the notation from (9.69)–(9.70):

𝛾 =
𝜖2
𝜖3

<< 𝜂2, 𝛾′ =

√
1 − 𝛾

2
.

Estimate of A−
𝑚(�̄�𝑚): Recall from (9.81) that

A−
𝑚(�̄�𝑚) = Ω1 ∪Ω2 ∪Ω1,2 ∪ 𝐴𝑚,𝑚+1 ∪ 𝐴𝑚,𝑚+2 ∪ 𝐵𝑚+1,𝑚+2, (9.91)

where Ω1, 𝐴𝑚,𝑚+1 are given by (9.72)–(9.73), Ω2, 𝐴𝑚,𝑚+2 by (9.77)–(9.78) and Ω1,2, 𝐵𝑚+1,𝑚+2 are given
by (9.79)–(9.80).
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◦ Estimate for Ω1,Ω2: Without loss of generality, it suffices to estimate the measure of Ω1. Recalling
notation from (8.3), Fubini’s Theorem and Lemma 8.3 yield

|Ω1 | =
∫
𝐵2𝑑
𝑅

∫
S

2𝑑−1
1

1𝑀1 (
√
𝛾) 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2 � 𝑅2𝑑𝛾𝑑/2, (9.92)

A symmetric argument yields

|Ω2 | � 𝑅2𝑑𝛾𝑑/2. (9.93)

◦ Estimate for Ω1,2: Recalling notation from (8.5), (9.79) yields

Ω1,2 = (S2𝑑−1
1 ∩𝑊2𝑑√

𝛾) × 𝐵2𝑑
𝑅 .

Therefore, Fubini’s Theorem and Lemma 8.4 imply

|Ω1,2 | =
∫
𝐵2𝑑
𝑅

∫
S

2𝑑−1
1

1𝑊 2𝑑√
𝛾
𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2 � 𝑅2𝑑𝛾

𝑑−1
4 . (9.94)

◦ Estimate for 𝐴𝑚,𝑚+1: Recalling notation from (8.6), the set 𝐴𝑚,𝑚+1, which was defined in (9.73), can
be written as

𝐴𝑚,𝑚+1 =
{
(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 : 𝜔1 ∈ 𝑆(𝛾′, 𝑣𝑚+1 − �̄�𝑚)

}
.

Therefore, the representation of the (2𝑑 − 1)- unit sphere (8.1) and Lemma 8.5 yield

|𝐴𝑚,𝑚+1 | ≤
∫
𝐵2𝑑
𝑅

∫
𝐵𝑑

1

∫
S
𝑑−1√

1−|𝜔2 |2

1𝑆 (𝛾′,𝑣𝑚+1−�̄�𝑚) 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2

� 𝑅2𝑑 arccos 𝛾′

= 𝑅2𝑑 arccos
√

1 − 𝛾

2
. (9.95)

◦ Estimate for 𝐴𝑚,𝑚+2: We follow a similar argument as in the previous case to obtain

|𝐴𝑚,𝑚+2 | � 𝑅2𝑑 arccos
√

1 − 𝛾

2
. (9.96)

◦ Estimate for 𝐵𝑚+1,𝑚+2: Recalling notation from (8.7), (9.80) yields

𝐵𝑚+1,𝑚+2 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 : (𝜔1, 𝜔2) ∈ 𝑁 (𝛾′, 𝑣𝑚+1 − 𝑣𝑚+2)}.

Therefore, using Lemma 8.6, we obtain

|𝐵𝑚+1,𝑚+2 | =
∫
𝐵2𝑑
𝑅

∫
S

2𝑑−1
1

1𝑁 (𝛾′,𝑣𝑚+1−𝑣𝑚+2) (𝜔1, 𝜔2) 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2

� 𝑅2𝑑 arccos 𝛾′

= 𝑅2𝑑 arccos
√

1 − 𝛾

2
. (9.97)
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Using (9.91) and estimates (9.92)–(9.97), we obtain

|A−
𝑚 (�̄�𝑚) | � 𝑅2𝑑

(
𝛾𝑑/2 + 𝛾

𝑑−1
4 + arccos

√
1 − 𝛾

2

)
. (9.98)

Estimate of A+
𝑚(�̄�𝑚): Recall from (9.86) that

A+
𝑚(�̄�𝑚) = Ω1 ∪Ω2 ∪Ω1,2 ∪ 𝐴∗

𝑚,𝑚+1 ∪ 𝐴∗
𝑚,𝑚+2 ∪ 𝐵∗

𝑚+1,𝑚+2, (9.99)

where Ω1, Ω2, Ω1,2, 𝐴∗
𝑚,𝑚+1, 𝐴∗

𝑚,𝑚+2, 𝐵∗
𝑚+1,𝑚+2 are given by (9.72), (9.77), (9.79), (9.82)–(9.85),

respectively. We already have estimates for Ω1, Ω2, Ω1,2 from (9.92)–(9.94); hence, it suffices to derive
estimates for 𝐴∗

𝑚,𝑚+1, 𝐴∗
𝑚,𝑚+2, 𝐵∗

𝑚+1,𝑚+2.
For the rest of the proof, we consider a parameter 0 < 𝛽 << 1 which will be chosen later in terms of

𝜂, see (9.149).
◦ Estimate for 𝐴∗

𝑚,𝑚+1: Recall from (9.82) the set

𝐴∗
𝑚,𝑚+1 =

{
(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 : |〈𝜔1, 𝑣

∗
𝑚+1 − �̄�∗𝑚〉| ≥ 𝛾′ |𝜔1 | |𝑣∗𝑚+1 − �̄�∗𝑚 |

}
. (9.100)

But for any (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 , the ternary collisional law (2.8) implies

𝑣∗𝑚+1 − �̄�∗𝑚 = 𝑣𝑚+1 − �̄�𝑚 − 2𝑐𝜔1 ,𝜔2 , �̄�𝑚 ,𝑣𝑚+1 ,𝑣𝑚+2𝜔1 − 𝑐𝜔1 ,𝜔2 , �̄�𝑚 ,𝑣𝑚+1 ,𝑣𝑚+2𝜔2,

where

𝑐𝜔1 ,𝜔2 , �̄�𝑚 ,𝑣𝑚+1 ,𝑣𝑚+2 =
〈𝜔1, 𝑣𝑚+1 − �̄�𝑚〉 + 〈𝜔2, 𝑣𝑚+2 − �̄�𝑚〉

1 + 〈𝜔1, 𝜔2〉
. (9.101)

For convenience, we denote

𝑐 := 𝑐𝜔1 ,𝜔2 , �̄�𝑚 ,𝑣𝑚+1 ,𝑣𝑚+2 .

Therefore, by (9.100), we may write

𝐴∗
𝑚,𝑚+1 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 :

|〈𝜔1, 𝑣𝑚+1 − �̄�𝑚 − 2𝑐𝜔1 − 𝑐𝜔2〉| ≥ 𝛾′ |𝜔1 | |𝑣𝑚+1 − �̄�𝑚 − 2𝑐𝜔1 − 𝑐𝜔2 |}.

By Fubini’s Theorem, we have

|𝐴∗
𝑚,𝑚+1 | ≤

∫
S

2𝑑−1
1 ×𝐵𝑑

𝑅

∫
𝐵𝑑
𝑅

1𝑉𝑚,𝑚+1
𝜔1 ,𝜔2 ,𝑣𝑚+2

(𝑣𝑚+1) 𝑑𝑣𝑚+1 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+2, (9.102)

where given (𝜔1, 𝜔2, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵𝑑𝑅, we write

𝑉𝑚,𝑚+1
𝜔1 ,𝜔2 ,𝑣𝑚+2 =

{
𝑣𝑚+1 ∈ 𝐵𝑑𝑅 : (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ 𝐴∗

𝑚,𝑚+1
}
. (9.103)

Recall from (8.11) the set

𝐼1 =
{
(𝜔1, 𝜔2) ∈ R2𝑑 ��1 − 2|𝜔1 |2

�� ≤ 2𝛽
}
. (9.104)

Using (9.102), we obtain

|𝐴∗
𝑚,𝑚+1 | = �̃�1 + �̃� ′1, (9.105)
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where

�̃�1 =
∫
(S2𝑑−1

1 ∩𝐼1)×𝐵𝑑
𝑅

∫
𝐵𝑑
𝑅

1𝑉𝑚,𝑚+1
𝜔1 ,𝜔2 ,𝑣𝑚+2

(𝑣𝑚+1) 𝑑𝑣𝑚+1 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+2, (9.106)

�̃� ′1 =
∫
(S2𝑑−1

1 \𝐼1)×𝐵𝑑
𝑅

∫
𝐵𝑑
𝑅

1𝑉𝑚,𝑚+1
𝜔1 ,𝜔2 ,𝑣𝑚+2

(𝑣𝑚+1) 𝑑𝑣𝑚+1 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+2. (9.107)

We treat each of the terms in (9.105) separately.
Estimate for �̃�1: By (9.106), Fubini’s Theorem and Lemma 8.7, we obtain

�̃�1 � 𝑅2𝑑
∫
S

2𝑑−1
1

1𝐼1 𝑑𝜔1 𝑑𝜔2 � 𝑅2𝑑𝛽. (9.108)

Estimate for �̃� ′1: Let us fix (𝜔1, 𝜔2, 𝑣𝑚+2) ∈ (S2𝑑−1
1 \ 𝐼1)×𝐵𝑑𝑅. We define the smooth map 𝐹1

𝜔1 ,𝜔2 ,𝑣𝑚+2 :
𝐵𝑑𝑅 → R𝑑 , by

𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1) := 𝑣∗𝑚+1 − �̄�∗𝑚 = 𝑣𝑚+1 − �̄�𝑚 − 2𝑐𝜔1 − 𝑐𝜔2, (9.109)

where c is given by (9.101).
We are showing that we may change variables under 𝐹1

𝜔1 ,𝜔2 ,𝑣𝑚+2 , as long as (𝜔1, 𝜔2, 𝑣𝑚+1) ∈
(S2𝑑−1

1 \ 𝐼1) × 𝐵𝑑𝑅 (i.e., we are showing that 𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 has nonzero Jacobian and is injective). In,

particular we will see that the Jacobian is bounded from below by 𝛽.
We first show the Jacobian has a lower bound 𝛽. Differentiating with respect to 𝑣𝑚+1, we obtain

𝜕𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2

𝜕𝑣𝑚+1
= 𝐼𝑑 + (−2𝜔1 − 𝜔2)∇𝑇𝑣𝑚+1𝑐.

Recalling (9.101), we have

∇𝑇𝑣𝑚+1𝑐 =
1

1 + 〈𝜔1, 𝜔2〉
𝜔𝑇1 .

Using Lemma 12.1 from the Appendix, we get

Jac 𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1) = det

(
𝐼𝑑 +

1
1 + 〈𝜔1, 𝜔2〉

(−2𝜔1 − 𝜔2)𝜔𝑇1
)

= 1 + −2|𝜔1 |2 − 〈𝜔1, 𝜔2〉
1 + 〈𝜔1, 𝜔2〉

=
1 − 2|𝜔1 |2

1 + 〈𝜔1, 𝜔2〉
.

Since (𝜔1, 𝜔2) ∉ 𝐼1, we have
��1 − 2|𝜔1 |2

�� > 2𝛽, and hence,

��Jac 𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1)

�� = ��1 − 2|𝜔1 |2
��

1 + 〈𝜔1, 𝜔2〉
>

2𝛽
1 + 〈𝜔1, 𝜔2〉

≥ 4𝛽
3

> 𝛽, (9.110)

since
1
2
≤ 1 + 〈𝜔1, 𝜔2〉 ≤

3
2

, by (2.10). Thus,

��Jac 𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1)

��−1 < 𝛽−1, ∀𝑣𝑚+1 ∈ 𝐵𝑑𝑅 . (9.111)
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We now show that 𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 is injective. For this purpose, consider 𝑣𝑚+1, 𝜉𝑚+1 ∈ 𝐵𝑑𝑅 such that

𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1) = 𝐹1

𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝜉𝑚+1)

⇔ 𝑣𝑚+1 − 𝜉𝑚+1 =
〈𝑣𝑚+1 − 𝜉𝑚+1, 𝜔1〉

1 + 〈𝜔1, 𝜔2〉
(2𝜔1 + 𝜔2), (9.112)

thanks to (9.101). Therefore, there is 𝜆 ∈ R such that

𝑣𝑚+1 − 𝜉𝑚+1 = 𝜆(2𝜔1 + 𝜔2), (9.113)

so replacing 𝑣𝑚+1 − 𝜉𝑚+1 in (9.112) with the right-hand side of (9.113), we obtain

𝜆(1 − 2|𝜔1 |2) = 0,

which yields 𝜆 = 0, since we have assumed (𝜔1, 𝜔2) ∉ 𝐼1. Therefore, 𝑣𝑚+1 = 𝜉𝑚+1, thus 𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 is

injective.
Since (𝜔1, 𝜔2, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵𝑑𝑅 and �̄�𝑚 ∈ 𝐵𝑑𝑅, Cauchy-Schwartz inequality yields that, for any
𝑣𝑚+1 ∈ 𝐵𝑑𝑅, we have

|𝐹𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1) | ≤ |𝑣𝑚+1 | + |�̄�𝑚 | +
|𝜔1 | ( |𝑣𝑚+1 | + |�̄�𝑚 |) + |𝜔2 | ( |�̄�𝑚 | + |𝑣𝑚+2 |)

1 + 〈𝜔1, 𝜔2〉
(2|𝜔1 | + |𝜔2 |) ≤ 26𝑅,

by the fact that (𝜔1, 𝜔2, 𝑣𝑚+2) ∈ S2𝑑−1
1 × 𝐵𝑑𝑅 and (2.10). Therefore,

𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 [𝐵

𝑑
𝑅] ⊆ 𝐵𝑑26𝑅 . (9.114)

Additionally, recalling (9.103), (9.100) and (9.109), we have

𝑉𝑚,𝑚+1
𝜔1 ,𝜔2 ,𝑣𝑚+2 = {𝑣𝑚+1 ∈ 𝐵𝑑𝑅 : 〈𝜔1, 𝐹𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1)〉 ≥ 𝛽 |𝜔1 | |𝐹𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1) |},

and thus,

𝑣𝑚+1 ∈ 𝑉𝑚,𝑚+1
𝜔1 ,𝜔2 ,𝑣𝑚+2 ⇔ 𝐹1

𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1) ∈ 𝑈𝜔1 , (9.115)

where

𝑈𝜔1 =
{
𝜈 ∈ R𝑑 : 〈𝜔1, 𝜈〉 ≥ 𝛾′ |𝜔1 | |𝜈 |

}
. (9.116)

Hence,

1𝑉𝑚,𝑚+1
𝜔1 ,𝜔2 ,𝑣𝑚+2

(𝑣𝑚+1) = 1𝑈𝜔1
(𝐹1

𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1)), ∀𝑣𝑚+1 ∈ 𝐵𝑑𝑅 . (9.117)

Therefore, performing the substitution 𝜈 := 𝐹1
𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1), and using (9.111), we obtain∫

𝐵𝑑
𝑅

1𝑉𝑚,𝑚+1
𝜔1 ,𝜔2 ,𝑣𝑚+2

(𝑣𝑚+1) 𝑑𝑣𝑚+1 =
∫
𝐵𝑑
𝑅

1𝑈𝜔1
(𝐹1

𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1)) 𝑑𝑣𝑚+1 ≤ 𝛽−1
∫
𝐵𝑑

26𝑅

1𝑈𝜔1
(𝜈) 𝑑𝜈.

Recalling notation from (8.6) and (9.116), we have

1𝑈𝜔1
(𝜈) = 1𝑆 (𝛾′,𝜈) (𝜔1), ∀𝜔1 ∈ 𝐵𝑑1 , ∀𝜈 ∈ 𝐵𝑑26𝑅 . (9.118)
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Therefore, using (9.107), (9.118), Fubini’s Theorem and (9.118), we obtain

𝐼 ′1 ≤ 𝛽−1
∫
(S2𝑑−1

1 \𝐼1)×𝐵𝑑
𝑅

∫
𝐵𝑑

26𝑅

1𝑈𝜔1
(𝜈) 𝑑𝜈 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+2

≤ 𝛽−1
∫
𝐵𝑑

26𝑅×𝐵
𝑑
𝑅

∫
𝐵𝑑

1

∫
S
𝑑−1√

1−|𝜔2 |2

1𝑆 (𝛾′,𝜈) (𝜔1) 𝑑𝜔1 𝑑𝜔2 𝑑𝜈 𝑑𝑣𝑚+2

� 𝑅2𝑑𝛽−1 arccos 𝛾′ (9.119)

= 𝑅2𝑑𝛽−1 arccos
√

1 − 𝛾

2
, (9.120)

where to obtain (9.119), we use Lemma 8.5. Combining (9.105), (9.108), (9.120), we obtain

|𝐴∗
𝑚,𝑚+1 | ≤ 𝑅2𝑑

(
𝛽 + 𝛽−1 arccos

√
1 − 𝛾

2

)
. (9.121)

◦ Estimate for 𝐴∗
𝑚,𝑚+2: The argument is entirely symmetric, using the set

𝑉𝑚,𝑚+2
𝜔1 ,𝜔2 ,𝑣𝑚+1 =

{
𝑣𝑚+2 ∈ 𝐵𝑑𝑅 : (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ 𝐴∗

𝑚,𝑚+2
}
,

for fixed (𝜔1, 𝜔2, 𝑣𝑚+1) ∈ S2𝑑−1
1 × 𝐵𝑑𝑅 and the map

𝐹2
𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2) = 𝑣𝑚+2 − �̄�𝑚 − 𝑐𝜔1 − 2𝑐𝜔2.

We obtain the estimate

|𝐴∗
𝑚,𝑚+2 | � 𝑅2𝑑

(
𝛽 + 𝛽−1 arccos

√
1 − 𝛾

2

)
. (9.122)

◦ Estimate for 𝐵∗
𝑚+1,𝑚+2: The estimate for 𝐵∗

𝑚+1,𝑚+2 is in the same spirit as the previous estimates;
however, we will need to distinguish cases depending on the size of the impact directions. The reason
for that is that we rely on Lemma 8.8 from Section 8 which provides estimates on hemispheres of the
(2𝑑 − 1)-unit sphere.

Recall from (9.85) the set

𝐵∗
𝑚+1,𝑚+2 = {(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 : (9.123)

|〈𝜔1 − 𝜔2, 𝑣
∗
𝑚+1 − 𝑣∗𝑚+2〉| ≥ 𝛾′ |𝜔1 − 𝜔2 | |𝑣∗𝑚+1 − 𝑣∗𝑚+2 |}.

The ternary collisional law (2.8) yields 𝑣∗𝑚+1 − 𝑣∗𝑚+2 = 𝑣𝑚+1 − 𝑣𝑚+2 − 𝑐(𝜔1 − 𝜔2), where c is given by
(9.101). Thus, we may write

𝐵∗
𝑚+1,𝑚+2 ={(𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ S2𝑑−1

1 × 𝐵2𝑑
𝑅 :

|〈𝜔2 − 𝜔1, 𝑣𝑚+2 − 𝑣𝑚+1 − 𝑐(𝜔2 − 𝜔1)〉| ≥ 𝛾′ |𝜔2 − 𝜔1 | |𝑣𝑚+2 − 𝑣𝑚+1 − 𝑐(𝜔2 − 𝜔1) |}.

Recall from (8.13)–(8.14), the sets

S1,2 =
{
(𝜔1, 𝜔2) ∈ S2𝑑−1

1 : |𝜔1 | < |𝜔2 |
}
, S2,1 =

{
(𝜔1, 𝜔2) ∈ S2𝑑−1

1 : |𝜔2 | < |𝜔1 |
}
.

We also recall from (8.15)–(8.16) the sets

𝐼1,2 = {(𝜔1, 𝜔2) ∈ R2𝑑 ��|𝜔1 |2 + 2〈𝜔1, 𝜔2〉
�� ≤ 𝛽}, 𝐼2,1 = {(𝜔1, 𝜔2) ∈ R2𝑑 ��|𝜔2 |2 + 2〈𝜔1, 𝜔2〉

�� ≤ 𝛽}.
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We clearly have

|𝐵∗
𝑚+1,𝑚+2 | =

∫
S

2𝑑−1
1 ×𝐵2𝑑

𝑅

1𝐵∗
𝑚+1,𝑚+2

𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2

=
∫
S1,2×𝐵2𝑑

𝑅

1𝐵∗
𝑚+1,𝑚+2

𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2 +
∫
S2,1×𝐵2𝑑

𝑅

1𝐵∗
𝑚+1,𝑚+2

𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2

= �̃�1,2 + �̃� ′1,2 + �̃�2,1 + �̃� ′2,1, (9.124)

where

�̃�1,2 =
∫
(S1,2∩𝐼1,2)×𝐵2𝑑

𝑅

1𝐵∗
𝑚+1,𝑚+2

𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2, (9.125)

�̃� ′1,2 =
∫
(S1,2\𝐼1,2)×𝐵2𝑑

𝑅

1𝐵∗
𝑚+1,𝑚+2

𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2, (9.126)

�̃�2,1 =
∫
(S2,1∩𝐼2,1)×𝐵2𝑑

𝑅

1𝐵∗
𝑚+1,𝑚+2

𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2, (9.127)

𝐼 ′2,1 =
∫
(S2,1\𝐼2,1)×𝐵2𝑑

𝑅

1𝐵∗
𝑚+1,𝑚+2

𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1 𝑑𝑣𝑚+2. (9.128)

We treat each of the terms in (9.124) separately.
Estimate for �̃�1,2: By (9.125), Fubini’s Theorem and Lemma 8.8, we obtain

�̃�1,2 � 𝑅2𝑑
∫
S1,2

1𝐼1,2 𝑑𝜔1 𝑑𝜔2 � 𝑅2𝑑𝛽. (9.129)

Estimate for �̃�2,1: Similarly, we obtain

�̃�2,1 � 𝑅2𝑑𝛽. (9.130)

Estimate for 𝐼 ′1,2: From (9.126), we obtain

𝐼 ′1,2 ≤
∫
S1,2\𝐼1,2

∫
𝐵𝑑
𝑅

∫
𝐵𝑑
𝑅

1𝑉𝑚+1,𝑚+2
𝜔1 ,𝜔2 ,𝑣𝑚+1

(𝑣𝑚+2) 𝑑𝑣𝑚+2 𝑑𝑣𝑚+1 𝑑𝜔1 𝑑𝜔2, (9.131)

where given (𝜔1, 𝜔2, 𝑣𝑚+1) ∈ (S1,2 \ 𝐼1,2) × 𝐵𝑑𝑅, we denote

𝑉𝑚+1,𝑚+2
𝜔1 ,𝜔2 ,𝑣𝑚+1 =

{
𝑣𝑚+2 ∈ 𝐵𝑑𝑅 : (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ 𝐵∗

𝑚+1,𝑚+2
}
. (9.132)

Let us fix (𝜔1, 𝜔2, 𝑣𝑚+1) ∈ (S1,2 \ 𝐼1,2) × 𝐵𝑑𝑅. We define the map 𝐹1,2
𝜔1 ,𝜔2 ,𝑣𝑚+1 : 𝐵𝑑𝑅 → R𝑑 by

𝐹1,2
𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2) = 𝑣𝑚+2 − 𝑣𝑚+1 − 𝑐(𝜔2 − 𝜔1),

where c is given by (9.101).
In a similar way as in the estimate of of |𝐴∗

𝑚,𝑚+1 |, for any (𝜔1, 𝜔2) ∉ 𝐼1,2, we have

��Jac 𝐹1,2
𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2)

�� = ��|𝜔1 |2 + 2〈𝜔1, 𝜔2〉
��

1 + 〈𝜔1, 𝜔2〉
>

𝛽

1 + 〈𝜔1, 𝜔2〉
≥ 2𝛽

3
. (9.133)
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Thus,

��Jac 𝐹1,2
𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2)

��−1 ≤ 3𝛽−1

2
, ∀𝑣𝑚+2 ∈ 𝐵𝑑𝑅 . (9.134)

Similarly to the estimate for |𝐴∗
𝑚,𝑚+1 |, we show also that 𝐹1,2

𝜔1 ,𝜔2 ,𝑣𝑚+1 is injective.
Since (𝜔1, 𝜔2, 𝑣𝑚+1) ∈ S2𝑑−1

1 × 𝐵𝑑𝑅 and �̄�𝑚 ∈ 𝐵𝑑𝑅, Cauchy-Schwartz inequality yields that, for any
𝑣𝑚+2 ∈ 𝐵𝑑𝑅, we have

|𝐹1,2
𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2) | ≤ |𝑣𝑚+2 | + |𝑣𝑚+1 | +

|𝜔1 | ( |𝑣𝑚+1 | + |�̄�𝑚 |) + |𝜔2 | ( |𝑣𝑚+2 | + |�̄�𝑚 |)
1 + 〈𝜔1, 𝜔2〉

(|𝜔2 | + |𝜔1 |) ≤ 18𝑅,

since 1
2 ≤ 1 + 〈𝜔1, 𝜔2〉 ≤ 3

2 . Therefore,

𝐹1,2
𝜔1 ,𝜔2 ,𝑣𝑚+1 [𝐵

𝑑
𝑅] ⊆ 𝐵𝑑18𝑅 . (9.135)

Additionally,

𝑣𝑚+2 ∈ 𝑉𝑚+1,𝑚+2
𝜔1 ,𝜔2 ,𝑣𝑚+1 ⇔ 𝐹1,2

𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2) ∈ 𝑈𝜔1 ,𝜔2 ,

where

𝑈𝜔1 ,𝜔2 =
{
𝜈 ∈ R𝑑 : 〈𝜔2 − 𝜔1, 𝜈〉 ≥ 𝛾′ |𝜔2 − 𝜔1 | |𝜈 |

}
. (9.136)

Hence,

1𝑉𝑚+1,𝑚+2
𝜔1 ,𝜔2 ,𝑣𝑚+1

(𝑣𝑚+2) = 1𝑈𝜔1 ,𝜔2
(𝐹1,2

𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2)), ∀𝑣𝑚+2 ∈ 𝐵𝑑𝑅 . (9.137)

Therefore, performing the substitution 𝜈 := 𝐹1,2
𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2), and using (9.134), we obtain∫

𝐵𝑑
𝑅

1𝑉𝑚+1,𝑚+2
𝜔1 ,𝜔2 ,𝑣𝑚+1

(𝑣𝑚+2) 𝑑𝑣𝑚+2 =
∫
𝐵𝑑
𝑅

1𝑈𝜔1 ,𝜔2
(𝐹1,2

𝜔1 ,𝜔2 ,𝑣𝑚+1 (𝑣𝑚+2)) 𝑑𝑣𝑚+2 ≤ 𝛽−1
∫
𝐵𝑑

18𝑅

1𝑈𝜔1 ,𝜔2
(𝜈) 𝑑𝜈.

(9.138)

Recalling the set 𝑁 (𝛾′, 𝜈) =
{
(𝜔1, 𝜔2) ∈ R2𝑑 : 〈𝜔1 − 𝜔2, 𝜈〉 ≥ 𝛾′ |𝜔1 − 𝜔2 | |𝜈 |

}
, from (8.7) and (9.136),

we have

1𝑈𝜔1 ,𝜔2
(𝜈) = 1𝑁 (𝛾′,𝜈) (𝜔1, 𝜔2), ∀(𝜔1, 𝜔2) ∈ S2𝑑−1

1 , ∀𝜈 ∈ 𝐵𝑑18𝑅 . (9.139)

Therefore, using (9.131), (9.138), Fubini’s Theorem and (9.139), we obtain

𝐼 ′1,2 ≤ 𝛽−1
∫
(S1,2\𝐼1,2)×𝐵𝑑

𝑅

∫
𝐵𝑑

18𝑅

1𝑈𝜔1 ,𝜔2
(𝜈) 𝑑𝜈 𝑑𝜔1 𝑑𝜔2 𝑑𝑣𝑚+1

≤ 𝛽−1
∫
𝐵𝑑
𝑅×𝐵

𝑑
18𝑅

∫
S

2𝑑−1
1

1𝑁 (𝛾′,𝜈) (𝜔1, 𝜔2) 𝑑𝜔1 𝑑𝜔2 𝑑𝜈 𝑑𝑣𝑚+1

� 𝑅2𝑑𝛽−1 arccos 𝛾′ (9.140)

= 𝑅2𝑑𝛽−1 arccos
√

1 − 𝛾

2
,
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where to obtain (9.140), we use Lemma 8.6. Therefore,

𝐼 ′12 ≤ 𝑅2𝑑𝛽−1 arccos
√

1 − 𝛾

2
. (9.141)

Estimate for 𝐼 ′2,1: The argument is entirely symmetric, using the set

𝑉𝑚+1,𝑚+2
𝜔1 ,𝜔2 ,𝑣𝑚+2 =

{
𝑣𝑚+1 ∈ 𝐵𝑑𝑅 : (𝜔1, 𝜔2, 𝑣𝑚+1, 𝑣𝑚+2) ∈ 𝐵∗

𝑚+1,𝑚+2
}
.

for given (𝜔1, 𝜔2, 𝑣𝑚+2) ∈ (S2,1\ 𝐼2,1)×𝐵𝑑𝑅 and the map 𝐹2,1
𝜔1 ,𝜔2 ,𝑣𝑚+2 (𝑣𝑚+1) = 𝑣𝑚+1−𝑣𝑚+2−𝑐(𝜔1−𝜔2).

We obtain

𝐼 ′21 ≤ 𝑅2𝑑𝛽−1 arccos
√

1 − 𝛾

2
. (9.142)

Recalling (9.124) and using (9.129)–(9.130), (9.141)–(9.142), we obtain

|𝐵∗
𝑚+1,𝑚+2 | � 𝑅2𝑑

(
𝛽 + 𝛽−1 arccos

√
1 − 𝛾

2

)
. (9.143)

Recalling (9.99) and using (9.92)–(9.94), (9.121), (9.122), (9.143), we obtain

|A+
𝑚 (�̄�𝑚) | � 𝑅2𝑑

(
𝛾𝑑/2 + 𝛾

𝑑−1
4 + 𝛽 + 𝛽−1 arccos

√
1 − 𝛾

2

)
. (9.144)

Recalling (9.87), using (9.98), (9.144) and using the fact that 𝛾 << 1, we obtain

|A𝑚 (�̄�𝑚) | � 𝑅2𝑑
(
𝛾

𝑑−1
4 + 𝛽 + 𝛽−1 arccos

√
1 − 𝛾

2

)
. (9.145)

Choice of 𝛽: Let us now choose 𝛽 in terms of 𝜂. Recalling that 𝜖2 << 𝜂2𝜖3 and (9.69), we have

𝛾
𝑑−1

4 << 𝜂
𝑑−1

2 . (9.146)

Moreover, since 𝜂 << 1, we may assume

𝜂
√

2
≤ sin 𝜂 ≤ 𝜂. (9.147)

Since 𝛾 << 𝜂2, (9.147) implies

𝛾 << 2 sin2 𝜂 ⇒ arccos
√

1 − 𝛾

2
< 𝜂. (9.148)

Choosing

𝛽 = 𝜂1/2 << 1, (9.149)

estimates (9.145)–(9.146), (9.148) imply

|A𝑚 (�̄�𝑚) | � 𝑅2𝑑
(
𝜂

𝑑−1
2 + 𝜂1/2

)
� 𝑅2𝑑𝜂

𝑑−1
4𝑑+2 , (9.150)

since 𝜂 << 1 and 𝑑 ≥ 2. The claim comes from (9.89)–(9.90) and (9.150). �
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10. Elimination of recollisions

In this section, we reduce the convergence proof to comparing truncated elementary observables. We
first restrict to good configurations and provide the corresponding measure estimate. This is happening
in Proposition 10.2. We then inductively apply Proposition 9.2 and Proposition 9.4 or Proposition 9.6
and Proposition 9.7 (depending on whether the adjunction is binary or ternary) to reduce the convergence
proof to truncated elementary observables. The convergence proof, completed in Section 11, will then
follow naturally, since the backwards (𝜖2, 𝜖3)-flow and the backwards free flow will be comparable out
of a small measure set. Throughout this section, 𝑠 ∈ N will be fixed, (𝑁, 𝜖2, 𝜖3) are given in the scaling
(4.24) with N large enough such that 𝜖2 << 𝜖3, and the parameters 𝑛, 𝑅, 𝜖0, 𝛼, 𝜂, 𝛿 satisfy (9.4).

10.1. Restriction to good configurations

Inductively using Lemma 9.1, we are able to reduce the convergence proof to good configurations, up
to a small measure set. The measure of the complement will be negligible in the limit.

For convenience, given 𝑚 ∈ N, let us define the set

𝐺𝑚(𝜖3, 𝜖0, 𝛿) := 𝐺𝑚(𝜖3, 0) ∩ 𝐺𝑚(𝜖0, 𝛿). (10.1)

For 𝑠 ∈ N, we also recall from (6.3) the set Δ𝑋𝑠 (𝜖0) of well-separated spatial configurations.

Lemma 10.1. Let 𝑠 ∈ N. Let 𝑠 ∈ N, 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 be parameters as in (9.4) and 𝜖2 << 𝜖3 << 𝛼. Then
for any 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0), there is a subset of velocities M𝑠 (𝑋𝑠) ⊆ 𝐵𝑑𝑠𝑅 of measure

|M𝑠 (𝑋𝑠) |𝑑𝑠 ≤ 𝐶𝑑,𝑠𝑅
𝑑𝑠𝜂

𝑑−1
2 , (10.2)

such that

𝑍𝑠 ∈ 𝐺𝑠 (𝜖3, 𝜖0, 𝛿), ∀𝑉𝑠 ∈ 𝐵𝑑𝑠𝑅 \M𝑠 (𝑋𝑠). (10.3)

Proof. We use Proposition 10.1. from [5] for 𝜖 = 𝜖3. �

For 𝑠 ∈ N and 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0), let us denote M𝑐
𝑠 (𝑋𝑠) = 𝐵𝑑𝑠𝑅 \M𝑠 (𝑋𝑠). Consider 1 ≤ 𝑘 ≤ 𝑛 and let us

recall the observables 𝐼𝑁𝑠,𝑘,𝑅, 𝛿 , 𝐼∞𝑠,𝑘,𝑅, 𝛿 defined in (7.23)–(7.24). We restrict the domain of integration
to velocities giving good configurations.

In particular, we define

�̃�𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) (𝑋𝑠) =
∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑁 ,𝑅, 𝛿 (𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 , (10.4)

�̃�∞𝑠,𝑘,𝑅, 𝛿 (𝑡) (𝑋𝑠) =
∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘)𝑅,𝛿 (𝑋𝑠 , 𝑉𝑠) 𝑑𝑉𝑠 . (10.5)

Let us apply Proposition 10.1 to restrict to initially good configurations. To keep track of all the
possible adjuctions, we recall recall the notation from (7.3)–(7.5): given 𝑘 ∈ N, we write

𝑆𝑘 = {𝜎 = (𝜎1, ..., 𝜎𝑘 ) : 𝜎𝑖 ∈ {1, 2}},
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and given 𝜎 ∈ 𝑆𝑘 , we write

�̃�ℓ =
ℓ∑
𝑖=1

𝜎𝑖 , 1 ≤ ℓ ≤ 𝑘, �̃�0 = 0.

Proposition 10.2. Let 𝑠, 𝑛 ∈ N, 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 be parameters as in (9.4), (𝑁, 𝜖2, 𝜖3) in the scaling (4.24)
with 𝜖2 << 𝜖3 << 𝛼, and 𝑡 ∈ [0, 𝑇]. Then, the following estimates hold:

𝑛∑
𝑘=1

‖𝐼𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) − �̃�𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡)‖𝐿∞(Δ𝑋
𝑠 (𝜖0)) ≤ 𝐶𝑑,𝑠,𝜇0 ,𝑇 𝑅

𝑑𝑠𝜂
𝑑−1

2 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 ,

𝑛∑
𝑘=1

‖𝐼∞𝑠,𝑘,𝑅, 𝛿 (𝑡) − �̃�∞𝑠,𝑘,𝑅, 𝛿 (𝑡)‖𝐿∞(Δ𝑋
𝑠 (𝜖0)) ≤ 𝐶𝑑,𝑠,𝜇0 ,𝑇 𝑅

𝑑𝑠𝜂
𝑑−1

2 ‖𝐹0‖∞,𝛽0 ,𝜇0 .

Proof. We present the proof for the BBGKY hierarchy case only. The proof for the Boltzmann hierarchy
case is similar. Let us fix 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0).

We first assume that 𝑘 ∈ {1, ..., 𝑛}. Triangle inequality, an inductive application of estimate (5.7),
estimate (5.6) and part (𝑖𝑖) of Proposition 5.3 yield

|𝐼𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) (𝑋𝑠)−�̃�
𝑁
𝑠,𝑘,𝑅, 𝛿 (𝑡) (𝑋𝑠) | ≤

∑
𝜎∈𝑆𝑘

∫
M𝑠 (𝑋𝑠)

|𝜙𝑠 (𝑉𝑠) 𝑓 (𝑠,𝑘,𝜎)
𝑁 ,𝑅, 𝛿 (𝑡, 𝑋𝑠 , 𝑉𝑠) | 𝑑𝑉𝑠

≤ 2𝑇 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑒−𝑠μ(𝑇 )

(
1
8

) 𝑘−1
‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0

∫
M𝑠 (𝑋𝑠)

𝑒−β (𝑇 )𝐸𝑠 (𝑍𝑠) 𝑑𝑉𝑠 (10.6)

≤ 2𝑇 ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑒−𝑠μ(𝑇 )

(
1
8

) 𝑘−1
|M𝑠 (𝑋𝑠) |𝑑𝑠 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 , (10.7)

where to obtain (10.6), we use (7.4).
For 𝑘 = 0, part (𝑖) of Proposition 5.3 and Remark 5.1 similarly yield

|𝐼𝑁𝑠,0,𝑅, 𝛿 (𝑡) (𝑋𝑠) − �̃�𝑁𝑠,0,𝑅, 𝛿 (𝑡) (𝑋𝑠) | ≤ ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑒−𝑠μ(𝑇 ) |M𝑠 (𝑋𝑠) |𝑑𝑠 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 . (10.8)

The claim comes after using (10.7)–(10.8), adding over 𝑘 = 0, ..., 𝑛, and using the measure estimate
of Proposition 10.1. �

Remark 10.3. Given 𝑠 ∈ N and 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0), the definition of M𝑠 (𝑋𝑠) implies that

�̃�𝑁𝑠,0,𝑅, 𝛿 (𝑡) (𝑋𝑠) = �̃�∞𝑠,0,𝑅, 𝛿 (𝑡) (𝑋𝑠).

Therefore, by Proposition 10.2, convergence reduces to controlling the differences �̃�𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) −
�̃�∞𝑠,𝑘,𝑅, 𝛿 (𝑡), for 𝑘 = 1, ..., 𝑛, in the scaled limit.

10.2. Reduction to elementary observables

Here, given 𝑠 ∈ N and 1 ≤ 𝑘 ≤ 𝑛, we express the observables �̃�𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡), �̃�
∞
𝑠,𝑘,𝑅, 𝛿 (𝑡), defined in (10.4)–

(10.5), as a superposition of elementary observables.
For this purpose, given ℓ ∈ N, and recalling (7.19), (4.15), we decompose the BBGKY hierarchy

binary truncated collisional operator as

C𝑁 ,𝑅ℓ,ℓ+1 =
ℓ∑
𝑖=1

C𝑁 ,𝑅,+,𝑖ℓ,ℓ+1 −
ℓ∑
𝑖=1

C𝑁 ,𝑅,−,𝑖ℓ,ℓ+1 ,

https://doi.org/10.1017/fms.2025.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.11


Forum of Mathematics, Sigma 77

where

C𝑁 ,𝑅,+,𝑖ℓ,ℓ+1 𝑔ℓ+1 (𝑍ℓ) = 𝐴2
𝑁 ,𝜖2 ,ℓ

∫
S
𝑑−1
1 ×𝐵𝑑

𝑅

𝑏+2 (𝜔1, 𝑣ℓ+1 − 𝑣𝑖)𝑔ℓ+1(𝑍 𝑖
′

ℓ+1, 𝜖2
) 𝑑𝜔1 𝑑𝑣ℓ+1,

C𝑁 ,𝑅,−,𝑖ℓ,ℓ+1 𝑔ℓ+1 (𝑍ℓ) = 𝐴2
𝑁 ,𝜖2 ,ℓ

∫
S
𝑑−1
1 ×𝐵𝑑

𝑅

𝑏+2 (𝜔1, 𝑣ℓ+1 − 𝑣𝑖)𝑔ℓ+1(𝑍 𝑖ℓ+1, 𝜖2
) 𝑑𝜔1 𝑑𝑣ℓ+1,

and the ternary truncated collisional operator as

C𝑁 ,𝑅ℓ,ℓ+2 =
ℓ∑
𝑖=1

C𝑁 ,𝑅,+,𝑖ℓ,ℓ+2 −
ℓ∑
𝑖=1

C𝑁 ,𝑅,−,𝑖ℓ,ℓ+2 ,

where

C𝑁 ,𝑅,+,𝑖ℓ,ℓ+2 𝑔ℓ+2 (𝑍ℓ ) = 𝐴3
𝑁 ,𝜖3 ,ℓ

∫
S

2𝑑−1
1 ×𝐵2𝑑

𝑅

𝑏+3 (𝜔1, 𝜔2, 𝑣ℓ+1 − 𝑣𝑖 , 𝑣ℓ+2 − 𝑣𝑖)√
1 + 〈𝜔1, 𝜔2〉

𝑔ℓ+2 (𝑍 𝑖∗ℓ+2, 𝜖3
) 𝑑𝜔1 𝑑𝜔2 𝑑𝑣ℓ+1 𝑑𝑣ℓ+2,

C𝑁 ,𝑅,−,𝑖ℓ,ℓ+2 𝑔ℓ+2 (𝑍ℓ ) = 𝐴3
𝑁 ,𝜖3 ,ℓ

∫
S

2𝑑−1
1 ×𝐵2𝑑

𝑅

𝑏+3 (𝜔1, 𝜔2, 𝑣ℓ+1 − 𝑣𝑖 , 𝑣ℓ+2 − 𝑣𝑖)√
1 + 〈𝜔1, 𝜔2〉

𝑔ℓ+2 (𝑍 𝑖ℓ+2, 𝜖3
) 𝑑𝜔1 𝑑𝜔2 𝑑𝑣ℓ+1 𝑑𝑣ℓ+2.

In order to expand the observable �̃�𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) to elementary observables, we need to take into account
all the possible particle adjuctions occurring by adding one or two particles to the system in each step.
More precisely, given 𝜎 ∈ 𝑆𝑘 , and 𝑖 ∈ {1, ..., 𝑘}, we are adding 𝜎𝑖 ∈ {1, 2} particle(s) to the existing
𝑠 + �̃�𝑖−1 particles in either precollisional or postcollisional way. In order to keep track of this process,
given 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 , we introduce the notation

M𝑠,𝑘,𝜎 =
{
𝑀 = (𝑚1, ..., 𝑚𝑘 ) ∈ N𝑘 : 𝑚𝑖 ∈ {1, ..., 𝑠 + �̃�𝑖−1}, ∀𝑖 ∈ {1, ..., 𝑘}

}
, (10.9)

J𝑠,𝑘,𝜎 =
{
𝐽 = ( 𝑗1, ..., 𝑗𝑘 ) ∈ N𝑘 : 𝑗𝑖 ∈ {−1, 1}, ∀𝑖 ∈ {1, ..., 𝑘}

}
. (10.10)

U𝑠,𝑘,𝜎 = J𝑠,𝑘,𝜎 ×M𝑠,𝑘,𝜎 . (10.11)

Under this notation, the BBGKY hierarchy observable functional �̃�𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) can be expressed, for
1 ≤ 𝑘 ≤ 𝑛, as a superposition of elementary observables

�̃�𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡) (𝑋𝑠) =
∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

(
𝑘∏
𝑖=1

𝑗𝑖

)
�̃�𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠), (10.12)

where the elementary observables are defined by

�̃�𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠) =
∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠)

∫
T𝑘,𝛿 (𝑡)

𝑇 𝑡−𝑡1𝑠 C𝑁 ,𝑅, 𝑗1 ,𝑚1
𝑠,𝑠+�̃�1

𝑇 𝑡1−𝑡2
𝑠+�̃�1

...

...𝑇 𝑡𝑘−1−𝑡𝑘
𝑠+�̃�𝑘−1

C𝑁 ,𝑅, 𝑗𝑘 ,𝑚𝑘

𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘
𝑇 𝑡𝑚
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑠) 𝑑𝑡𝑘 ... 𝑑𝑡1𝑑𝑉𝑠 .

(10.13)

Similarly, given ℓ ∈ N, and recalling (4.31), (4.35), we decompose the Boltzmann hierarchy binary
and ternary collisional operators as

C∞,𝑅
ℓ,ℓ+1 =

ℓ∑
𝑖=1

C∞,𝑅,+,𝑖
ℓ,ℓ+1 −

ℓ∑
𝑖=1

C∞,𝑅,−,𝑖
ℓ,ℓ+1 ,
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where

C∞,𝑅,+,𝑖
ℓ,ℓ+1 𝑔ℓ+1 (𝑍ℓ) =

∫
S
𝑑−1
1 ×𝐵𝑑

𝑅

𝑏+2 (𝜔1, 𝑣ℓ+1 − 𝑣𝑖)𝑔ℓ+1(𝑍 𝑖
′

ℓ+1) 𝑑𝜔1 𝑑𝑣ℓ+1,

C∞,𝑅,−,𝑖
ℓ,ℓ+1 𝑔ℓ+1 (𝑍ℓ) =

∫
S
𝑑−1
1 ×𝐵𝑑

𝑅

𝑏+2 (𝜔1, 𝑣ℓ+1 − 𝑣𝑖)𝑔ℓ+1(𝑍 𝑖ℓ+1) 𝑑𝜔1 𝑑𝑣ℓ+1,

C∞,𝑅
ℓ,ℓ+2 =

ℓ∑
𝑖=1

C∞,𝑅,+,𝑖
ℓ,ℓ+2 −

ℓ∑
𝑖=1

C∞,𝑅,−,𝑖
ℓ,ℓ+2 ,

where

C∞,𝑅,+,𝑖
ℓ,ℓ+2 𝑔ℓ+2 (𝑍ℓ) =

∫
S

2𝑑−1
1 ×𝐵2𝑑

𝑅

𝑏+3 (𝜔1, 𝜔2, 𝑣ℓ+1 − 𝑣𝑖 , 𝑣ℓ+2 − 𝑣𝑖)√
1 + 〈𝜔1, 𝜔2〉

𝑔ℓ+2 (𝑍 𝑖∗ℓ+2) 𝑑𝜔1 𝑑𝜔2 𝑑𝑣ℓ+1 𝑑𝑣ℓ+2,

C∞,𝑅,−,𝑖
ℓ,ℓ+2 𝑔ℓ+2 (𝑍ℓ) =

∫
S

2𝑑−1
1 ×𝐵2𝑑

𝑅

𝑏+3 (𝜔1, 𝜔2, 𝑣ℓ+1 − 𝑣𝑖 , 𝑣ℓ+2 − 𝑣𝑖)√
1 + 〈𝜔1, 𝜔2〉

𝑔ℓ+2 (𝑍 𝑖ℓ+2) 𝑑𝜔1 𝑑𝜔2 𝑑𝑣ℓ+1 𝑑𝑣ℓ+2.

Under this notation, the Boltzmann hierarchy observable functional �̃�∞𝑠,𝑘,𝑅, 𝛿 (𝑡) can be expressed, for
1 ≤ 𝑘 ≤ 𝑛, as a superposition of elementary observables

�̃�∞𝑠,𝑘,𝑅, 𝛿 (𝑡) (𝑋𝑠) =
∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

(
𝑘∏
𝑖=1

𝑗𝑖

)
�̃�∞𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠), (10.14)

where the elementary observables are defined by

�̃�∞𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠) =
∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠)

∫
T𝑘,𝛿 (𝑡)

𝑆𝑡−𝑡1𝑠 C∞,𝑅, 𝑗1 ,𝑚1
𝑠,𝑠+�̃�1

𝑆𝑡1−𝑡2
𝑠+�̃�1

...

...𝑆𝑡𝑘−1−𝑡𝑘
𝑠+�̃�𝑘−1

C∞,𝑅, 𝑗𝑘 ,𝑚𝑘

𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘
𝑆𝑡𝑚
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑠) 𝑑𝑡𝑘 ... 𝑑𝑡1𝑑𝑉𝑠 .

(10.15)

10.3. Boltzmann hierarchy pseudo-trajectories

We introduce the following notation which we will be constantly using from now on. Let 𝑠 ∈ N,
𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ R2𝑑𝑠 , 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 and 𝑡 ∈ [0, 𝑇]. Let us recall from (7.2) the set

T𝑘 (𝑡) =
{
(𝑡1, ..., 𝑡𝑘 ) ∈ R𝑘 : 0 = 𝑡𝑘+1 < 𝑡𝑘 < ... < 𝑡1 < 𝑡0 = 𝑡

}
, 𝑡0 = 𝑡, 𝑡𝑘+1 = 0.

Consider (𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘 (𝑡), 𝐽 = ( 𝑗1, ..., 𝑗𝑘 ), 𝑀 = (𝑚1, ..., 𝑚𝑘 ), (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 . For each 𝑖 = 1, ..., 𝑘 ,
we distignuish two possible situations:

If 𝜎𝑖 = 1, we consider (𝜔𝑠+�̃�𝑖
, 𝑣𝑠+�̃�𝑖

) ∈ S𝑑−1
1 × 𝐵𝑑𝑅 . (10.16)

If 𝜎𝑖 = 2, we consider (𝜔𝑠+�̃�𝑖−1, 𝜔𝑠+�̃�𝑖
, 𝑣𝑠+�̃�𝑖−1, 𝑣𝑠+�̃�𝑖

) ∈ S2𝑑−1
1 × 𝐵2𝑑

𝑅 . (10.17)

For convenience, for each 𝑖 = 1, ..., 𝑘 , we will write (ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖) ∈ S
𝑑𝜎𝑖−1
1 ×𝐵𝑑𝜎𝑖

𝑅 where (ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖)
is of the form (10.16) if 𝜎𝑖 = 1 and of the form (10.17) if 𝜎𝑖 = 2.

We inductively define the Boltzmann hierarchy pseudo-trajectory of 𝑍𝑠 . Roughly speaking, the
Boltzmann hierarchy pseudo-trajectory forms the configurations on which particles are adjusted during
backwards in time evolution.

Intuitively, assume we are given a configuration 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ R2𝑑𝑠 at time 𝑡0 = 𝑡. 𝑍𝑠 evolves under
backwards free flow until the time 𝑡1 when the configuration (ω𝜎,1, v𝜎,1) is added, neglecting positions,
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to the 𝑚1-particle, the adjunction being precollisional if 𝑗1 = −1 and postcollisional if 𝑗1 = 1. We then
form an (𝑠+ �̃�1)-configuration and continue this process inductively until time 𝑡𝑘+1 = 0. More precisely,
we inductively construct the Boltzmann hierarchy pseudo-trajectory of 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ R2𝑑𝑠 as follows:

Time 𝑡0 = 𝑡: We initially define 𝑍∞
𝑠 (𝑡−0 ) =

(
𝑥∞1 (𝑡−0 ), ..., 𝑥

∞
𝑠 (𝑡−0 ), 𝑣

∞
1 (𝑡−0 ), ..., 𝑣

∞
𝑠 (𝑡−0 )

)
:= 𝑍𝑠 .

Time 𝑡𝑖 , 𝑖 ∈ {1, ..., 𝑘}: Consider 𝑖 ∈ {1, ..., 𝑘} and assume we know

𝑍∞
𝑠+�̃�𝑖−1

(𝑡−𝑖−1) =
(
𝑥∞1 (𝑡−𝑖−1), ..., 𝑥

∞
𝑠+�̃�𝑖−1

(𝑡−𝑖−1), 𝑣
∞
1 (𝑡−𝑖−1), ..., 𝑣

∞
𝑠+�̃�𝑖−1

(𝑡−𝑖−1)
)
.

We define 𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 ) =
(
𝑥∞1 (𝑡+𝑖 ), ..., 𝑥∞𝑠+�̃�𝑖−1

(𝑡+𝑖 ), 𝑣∞1 (𝑡+𝑖 ), ..., 𝑣∞𝑠+�̃�𝑖−1
(𝑡+𝑖 )

)
as:

𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 ) :=
(
𝑋∞
𝑠+�̃�𝑖−1

(
𝑡−𝑖−1

)
− (𝑡𝑖−1 − 𝑡𝑖)𝑉∞

𝑠+�̃�𝑖−1

(
𝑡−𝑖−1

)
, 𝑉∞
𝑠+�̃�𝑖−1

(
𝑡−𝑖−1

) )
.

We also define 𝑍∞
𝑠+�̃�𝑖

(𝑡−𝑖 ) =
(
𝑥∞1 (𝑡−𝑖 ), ..., 𝑥∞𝑠+�̃�𝑖

(𝑡−𝑖 ), 𝑣∞1 (𝑡−𝑖 ), ..., 𝑣∞𝑠+�̃�𝑖
(𝑡−𝑖 )

)
as:(

𝑥∞𝑗 (𝑡−𝑖 ), 𝑣∞𝑗 (𝑡−𝑖 )
)

:= (𝑥∞𝑗 (𝑡+𝑖 ), 𝑣∞𝑗 (𝑡+𝑖 )), ∀ 𝑗 ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖}.

For the rest of the particles, we distiguish the following cases, depending on 𝜎𝑖:

◦ 𝜎𝑖 = 1: If 𝑗𝑖 = −1: (
𝑥∞𝑚𝑖

(𝑡−𝑖 ), 𝑣∞𝑚𝑖
(𝑡−𝑖 )

)
:=

(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣∞𝑚𝑖
(𝑡+𝑖 )

)
,(

𝑥∞𝑠+�̃�𝑖
(𝑡−𝑖 ), 𝑣∞𝑠+�̃�𝑖

(𝑡−𝑖 )
)

:=
(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑠+�̃�𝑖

)
,

while if 𝑗𝑖 = 1: (
𝑥∞𝑚𝑖

(𝑡−𝑖 ), 𝑣∞𝑚𝑖
(𝑡−𝑖 )

)
:=

(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣∞
′

𝑚𝑖
(𝑡+𝑖 )

)
,(

𝑥∞𝑠+�̃�𝑖
(𝑡−𝑖 ), 𝑣∞𝑠+�̃�𝑖

(𝑡−𝑖 )
)

:=
(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣′𝑠+�̃�𝑖

)
,

where (𝑣∞′
𝑚𝑖
(𝑡−𝑖 ), 𝑣′𝑠+�̃�𝑖

) = 𝑇𝜔𝑠+�̃�𝑖

(
𝑣∞𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑠+�̃�𝑖

)
.

◦ 𝜎𝑖 = 2: If 𝑗𝑖 = −1: (
𝑥∞𝑚𝑖

(𝑡−𝑖 ), 𝑣∞𝑚𝑖
(𝑡−𝑖 )

)
:=

(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣∞𝑚𝑖
(𝑡+𝑖 )

)
,(

𝑥∞𝑠+�̃�𝑖−1 (𝑡
−
𝑖 ), 𝑣∞𝑠+�̃�𝑖−1 (𝑡

−
𝑖 )

)
:=

(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑠+�̃�𝑖−1
)
,(

𝑥∞𝑠+�̃�𝑖
(𝑡−𝑖 ), 𝑣∞𝑠+�̃�𝑖

(𝑡−𝑖 )
)

:=
(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑠+�̃�𝑖

)
,

while if 𝑗𝑖 = 1: (
𝑥∞𝑚𝑖

(𝑡−𝑖 ), 𝑣∞𝑚𝑖
(𝑡−𝑖 )

)
:=

(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣∞∗
𝑚𝑖

(𝑡+𝑖 )
)
,(

𝑥∞𝑠+�̃�𝑖−1(𝑡
−
𝑖 ), 𝑣∞𝑠+�̃�𝑖−1(𝑡

−
𝑖 )

)
:=

(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣∗𝑠+�̃�𝑖−1

)
,(

𝑥∞𝑠+�̃�𝑖
(𝑡−𝑖 ), 𝑣∞𝑠+�̃�𝑖

(𝑡−𝑖 )
)

:=
(
𝑥∞𝑚𝑖

(𝑡+𝑖 ), 𝑣∗𝑠+�̃�𝑖

)
,

where (𝑣∞∗
𝑚𝑖

(𝑡−𝑖 ), 𝑣∗𝑠+�̃�𝑖−1, 𝑣
∗
𝑠+�̃�𝑖

) = 𝑇𝜔𝑠+�̃�𝑖−1 ,𝜔𝑠+�̃�𝑖

(
𝑣∞𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑠+�̃�𝑖−1, 𝑣𝑠+�̃�𝑖

)
.

Time 𝑡𝑘+1 = 0: We finally obtain

𝑍∞
𝑠+�̃�𝑘

(0+) = 𝑍∞
𝑠+�̃�𝑘

(𝑡+𝑘+1) =
(
𝑋∞
𝑠+�̃�𝑘

(
𝑡−𝑘
)
− 𝑡𝑘𝑉

∞
𝑠+�̃�𝑘

(
𝑡−𝑘
)
, 𝑉∞
𝑠+�̃�𝑘

(
𝑡−𝑘
) )
.
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The process is illustrated in the following diagram (to be read from right to left):

𝑍∞
𝑠 (𝑡−0 )𝑍∞

𝑠 (𝑡+1 )

(ω𝜎1 ,1, v𝜎1 ,1),
( 𝑗1, 𝑚1)

𝑍∞
𝑠+�̃�1

(𝑡−1 )...𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 )

(ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖),
( 𝑗𝑖 , 𝑚𝑖)

𝑍∞
𝑠+�̃�𝑖

(𝑡−𝑖 )...𝑍∞
𝑠+�̃�𝑘

(𝑡+
𝑘+1)

𝑡0 − 𝑡1𝑡1 − 𝑡2𝑡𝑖−1 − 𝑡𝑖𝑡𝑖 − 𝑡𝑖+1𝑡𝑘 − 𝑡𝑘+1

We give the following definition:
Definition 10.4. Let 𝑠 ∈ N, 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ R2𝑑𝑠 , (𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘 (𝑡), 𝐽 = ( 𝑗1, ..., 𝑗𝑘 ), 𝑀 =
(𝑚1, ..., 𝑚𝑘 ), (𝐽, 𝑀) ∈ U𝑠,𝑘 , and for each 𝑖 = 1, ..., 𝑘 , 𝜎 ∈ 𝑆𝑘 , we consider (ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖) ∈
S
𝑑𝜎𝑖−1
1 × 𝐵𝑑𝜎𝑖

𝑅 . The sequence {𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 )}𝑖=0,...,𝑘+1 constructed above is called the Boltzmann hi-
erarchy pseudo-trajectory of 𝑍𝑠 .

10.4. Reduction to truncated elementary observables

We will now use the Boltzmann hierarchy pseudo-trajectory to define the BBGKY hierarchy and Boltz-
mann hierarchy truncated observables. The convergence proof will then be reduced to the convergence
of the corresponding truncated elementary observables.

Given ℓ ∈ N, recall the notation from (10.1):

𝐺ℓ (𝜖3, 𝜖0, 𝛿) = 𝐺ℓ (𝜖3, 0) ∩ 𝐺ℓ (𝜖0, 𝛿).

Given 𝑡 ∈ [0, 𝑇], we also recall from (7.22) the set T𝑘, 𝛿 (𝑡) of separated collision times:

T𝑘, 𝛿 (𝑡) := {(𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘 (𝑡) : 0 ≤ 𝑡𝑖+1 ≤ 𝑡𝑖 − 𝛿, ∀𝑖 ∈ [0, 𝑘]}, 𝑡𝑘+1 = 0, 𝑡0 = 𝑡.

Consider 𝑡 ∈ [0, 𝑇], 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0), 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 and (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 and (𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘, 𝛿 .
By Proposition 10.1, for any𝑉𝑠 ∈ M𝑐

𝑠 (𝑋𝑠), we have 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ 𝐺𝑠 (𝜖3, 𝜖0, 𝛿), which in turn implies
𝑍∞
𝑠 (𝑡+1 ) ∈ 𝐺𝑠 (𝜖0, 0) since 𝑡0 − 𝑡1 > 𝛿. Now we observe that either (9.8), (9.12) from Proposition 9.2 (if

the adjunction is binary), or (9.61), (9.65) from Proposition 9.6 (if the adjunction is ternary) yield that
there is a set B𝑚1

(
𝑍∞
𝑠

(
𝑡+1
) )

⊆ S𝑑𝜎1−1
1 × 𝐵𝑑𝜎1

𝑅 such that

𝑍∞
𝑠+�̃�1

(𝑡+2 ) ∈ 𝐺𝑠+�̃�1 (𝜖0, 0), ∀(ω𝜎1 ,1, v𝜎1 ,1) ∈ B𝑐𝑚1

(
𝑍∞
𝑠

(
𝑡+1
) )
,

B𝑐𝑚1

(
𝑍∞
𝑠

(
𝑡+1
) )

:= (S𝑑𝜎𝑖−1
1 × 𝐵𝑑𝜎𝑖

𝑅 )+
(
𝑣∞𝑚1

(
𝑡+1
) )
\ B𝑚1

(
𝑍∞
𝑠

(
𝑡+1
) )
.

Clearly, this process can be iterated. In particular, given 𝑖 ∈ {2, ..., 𝑘}, we have

𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 ) ∈ 𝐺𝑠+�̃�𝑖−1 (𝜖0, 0),

so there exists a set B𝑚𝑖

(
𝑍∞
𝑠+�̃�𝑖−1

(
𝑡+𝑖
) )

⊆ S𝑑𝜎𝑖−1
1 × 𝐵𝑑𝜎𝑖

𝑅 such that

𝑍∞
𝑠+�̃�𝑖

(𝑡+𝑖+1) ∈ 𝐺𝑠+�̃�𝑖
(𝜖0, 0), ∀(ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖) ∈ B𝑐𝑚𝑖

(
𝑍∞
𝑠+�̃�𝑖−1

(
𝑡+𝑖
) )
, (10.18)

where

B𝑐𝑚𝑖

(
𝑍∞
𝑠

(
𝑡+𝑖
) )

:= (S𝑑𝜎𝑖−1
1 × 𝐵𝑑𝜎𝑖

𝑅 )+
(
𝑣∞𝑚𝑖

(
𝑡+𝑖
) )
\ B𝑚𝑖

(
𝑍∞
𝑠+�̃�𝑖

(
𝑡+𝑖
) )
.

We finally obtain 𝑍∞
𝑠+�̃�𝑘

(0+) ∈ 𝐺𝑠+�̃�𝑘
(𝜖0, 0).
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Let us now define the truncated elementary observables. Heuristically we will truncate the domains
of adjusted particles in the definition of the observables �̃�𝑁𝑠,𝑘,𝑅, 𝛿 , �̃�∞𝑠,𝑘,𝑅, 𝛿 , defined in (10.4)–(10.5).

More precisely, consider 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 , (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 and 𝑡 ∈ [0, 𝑇]. For 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0),
Proposition 10.1 implies there is a set of velocities M𝑠 (𝑋𝑠) ⊆ 𝐵2𝑑

𝑅 such that 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈
𝐺𝑠 (𝜖3, 𝜖0, 𝛿), ∀𝑉𝑠 ∈ M𝑐

𝑠 (𝑋𝑠). Following the reasoning above, we define the BBGKY hierarchy
truncated observables as

𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠) =
∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠)

∫
T𝑘,𝛿 (𝑡)

𝑇 𝑡−𝑡1𝑠 C̃𝑁 ,𝑅, 𝑗1 ,𝑚1
𝑠,𝑠+�̃�1

𝑇 𝑡1−𝑡2
𝑠+�̃�1

...

...C̃𝑁 ,𝑅, 𝑗𝑘 ,𝑚𝑘

𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘
𝑇 𝑡𝑚
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑠) 𝑑𝑡𝑘 , ... 𝑑𝑡1𝑑𝑉𝑠 ,

(10.19)

where for each 𝑖 = 1, ..., 𝑘 , we denote

C̃𝑁 ,𝑅, 𝑗𝑖 ,𝑚𝑖

𝑠+�̃�𝑖−1 ,𝑠+�̃�𝑖
𝑔𝑁 ,𝑠+�̃�𝑖

= C𝑁 ,𝑅, 𝑗𝑖 ,𝑚𝑖

𝑠+�̃�𝑖−1 ,𝑠+�̃�𝑖

[
𝑔𝑁 ,𝑠+�̃�𝑖

1(ω𝜎𝑖 ,𝑖 ,v𝜎𝑖 ,𝑖) ∈B
𝑐
𝑚𝑖

(
𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 )
) ] .

In the same spirit, for 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0), we define the Boltzmann hierarchy truncated elementary
observables as

𝐽∞𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠) =
∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠)

∫
T𝑘,𝛿 (𝑡)

𝑆𝑡−𝑡1𝑠 C̃∞,𝑅, 𝑗1 ,𝑚1
𝑠,𝑠+�̃�1

𝑆𝑡1−𝑡2
𝑠 �̃�1

...

...C̃∞,𝑅, 𝑗𝑘 ,𝑚𝑘

𝑠+�̃�𝑘−1 ,𝑠+�̃�𝑘
𝑆𝑡𝑚
𝑠+�̃�𝑘

𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑠) 𝑑𝑡𝑘 , ... 𝑑𝑡1𝑑𝑉𝑠 ,

(10.20)

where for each 𝑖 = 1, ..., 𝑘 , we denote

C̃∞,𝑅, 𝑗𝑖 ,𝑚𝑖

𝑠+�̃�𝑖−1 ,𝑠+�̃�𝑖
𝑔𝑠+�̃�𝑖

= C∞,𝑅, 𝑗𝑖 ,𝑚𝑖

𝑠+�̃�𝑖−1 ,𝑠+�̃�𝑖

[
𝑔𝑠+�̃�𝑖

1(ω𝜎𝑖 ,𝑖 ,v𝜎𝑖 ,𝑖) ∈B
𝑐
𝑚𝑖

(
𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 )
) ] .

Recalling the observables �̃�𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 , �̃�∞𝑠,𝑘,𝑅, 𝛿,𝜎 from (10.13), (10.15) and using Proposition 9.4 or
Proposition 9.7, we obtain the following:

Proposition 10.5. Let 𝑠, 𝑛 ∈ N, 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 be parameters as in (9.4), (𝑁, 𝜖2, 𝜖3) in the scaling (4.24)
with 𝜖2 << 𝜖3 << 𝛼 and 𝑡 ∈ [0, 𝑇]. Then the following estimates hold:

𝑛∑
𝑘=1

∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

‖ �̃�𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) − 𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 ( 𝜖0)) ≤

≤ 𝐶𝑛𝑑,𝑠,𝜇0 ,𝑇
‖𝜙𝑠 ‖𝐿∞

𝑉𝑠
𝑅𝑑 (𝑠+3𝑛)𝜂

𝑑−1
4𝑑+2 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 ,

𝑛∑
𝑘=1

∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

‖ �̃�∞𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) − 𝐽∞𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 ( 𝜖0)) ≤

≤ 𝐶𝑛𝑑,𝑠,𝜇0 ,𝑇
‖𝜙𝑠 ‖𝐿∞

𝑉𝑠
𝑅𝑑 (𝑠+3𝑛)𝜂

𝑑−1
4𝑑+2 ‖𝐹0‖∞,𝛽0 ,𝜇0 .

Proof. As usual, it suffices to prove the estimate for the BBGKY hierarchy case, and the Boltzmann
hierarchy case follows similarly. Fix 𝑘 ∈ {1, ..., 𝑛}, 𝜎 ∈ 𝑆𝑘 and (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 . We first estimate the
difference:

�̃�𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡, 𝐽, 𝑀) (𝑋𝑠) − 𝐽𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡, 𝐽, 𝑀) (𝑋𝑠). (10.21)
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Cauchy-Schwartz inequality and triangle inequality imply

|〈𝜔1, 𝑣1 − 𝑣〉| ≤ 2𝑅, ∀𝜔1 ∈ S𝑑−1
1 , ∀𝑣, 𝑣1 ∈ 𝐵𝑑𝑅, (10.22)

��𝑏3 (𝜔1, 𝜔2, 𝑣1 − 𝑣, 𝑣2 − 𝑣)
�� ≤ 4𝑅, ∀(𝜔1, 𝜔2) ∈ S2𝑑−1

1 , ∀𝑣, 𝑣1, 𝑣2 ∈ 𝐵𝑑𝑅, (10.23)

so ∫
S
𝑑−1
1 ×𝐵𝑑

𝑅

|〈𝜔1, 𝑣1 − 𝑣〉| 𝑑𝜔1 𝑑𝑣1 ≤ 𝐶𝑑𝑅
𝑑+1 ≤ 𝐶𝑑𝑅

3𝑑 , ∀𝑣 ∈ 𝐵𝑑𝑅, (10.24)∫
S

2𝑑−1
1 ×𝐵2𝑑

𝑅

|𝑏3 (𝜔1, 𝜔2, 𝑣1 − 𝑣, 𝑣2 − 𝑣2) | 𝑑𝜔1 𝑑𝜔2 𝑑𝑣1 𝑑𝑣2 ≤ 𝐶𝑑𝑅
2𝑑+1 ≤ 𝐶𝑑𝑅

3𝑑 , ∀𝑣 ∈ 𝐵𝑑𝑅, (10.25)

since 𝑅 >> 1. But in order to estimate the difference (10.21), we integrate at least once over
B𝑚𝑖

(
𝑍∞
𝑠+2𝑖−2

(
𝑡+𝑖
) )

for some 𝑖 ∈ {1, ..., 𝑘}. For convenience, given 𝑣 ∈ R𝑑 , let us write

𝑏𝜎𝑖 (ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖 , 𝑣) :=

{
𝑏2(𝜔𝑠+�̃�𝑖

, 𝑣𝑠+�̃�𝑖
− 𝑣), if 𝜎𝑖 = 1,

𝑏3(𝜔𝑠+�̃�𝑖−1, 𝜔𝑠+�̃�𝑖
, 𝑣𝑠+�̃�𝑖−1 − 𝑣, 𝑣𝑠+�̃�𝑖

− 𝑣), if 𝜎𝑖 = 2.
(10.26)

Under this notation, (10.22)–(10.23) together with Proposition 9.4 or Proposition 9.7, depending on
whether the adunction is binary or ternary, yield the estimate∫

B𝑚𝑖

(
𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 )
) |𝑏𝜎𝑖 (ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖 , 𝑣) | 𝑑ω𝜎𝑖 ,𝑖v𝜎𝑖 ,𝑖 ≤ 𝐶𝑑 (𝑠 + �̃�𝑖−1)𝑅𝑑𝜎𝑖+1𝜂

𝑑−1
2𝑑𝜎𝑖+2

≤ 𝐶𝑑 (𝑠 + 2𝑘)𝑅3𝑑𝜂
𝑑−1
4𝑑+2 , ∀𝑣 ∈ 𝐵𝑑𝑅,

(10.27)

since 𝑅 >> 1 and 𝜂 << 1.
Moreover, we have the elementary inequalities

‖ 𝑓 (𝑠+�̃�𝑘 )
𝑁 ,0 ‖𝐿∞ ≤ 𝑒−(𝑠+�̃�𝑘 )𝜇0 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 ≤ 𝑒−(𝑠+𝑘)𝜇0 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 , (10.28)∫
𝑇𝑘,𝛿 (𝑡)

𝑑𝑡1... 𝑑𝑡𝑘 ≤
∫ 𝑡

0

∫ 𝑡1

0
...

∫ 𝑡𝑘−1

0
𝑑𝑡1... 𝑑𝑡𝑘 =

𝑡𝑘

𝑘!
≤ 𝑇 𝑘

𝑘!
. (10.29)

Therefore, (10.24)–(10.29) imply���̃�𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠) − 𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠)
��

≤ ‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑒−(𝑠+𝑘)𝜇0 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0𝐶𝑑𝑅

𝑑𝑠𝐶𝑘−1
𝑑 𝑅3𝑑 (𝑘−1) (𝑠 + 2𝑘)𝐶𝑑𝑅3𝑑𝜂

𝑑−1
4𝑑+2

𝑇 𝑘

𝑘!

≤ 𝐶𝑘𝑑,𝑠,𝜇0 ,𝑇
‖𝜙𝑠 ‖𝐿∞

𝑉𝑠

(𝑠 + 2𝑘)
𝑘!

𝑅𝑑 (𝑠+3𝑘)𝜂
𝑑−1
4𝑑+2 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 .

Adding for all (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 , we have 2𝑘 𝑠(𝑠+ �̃�1)...(𝑠+ �̃�𝑘−1) ≤ 2𝑘 (𝑠+2𝑘)𝑘 contributions, and thus,∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

‖ �̃�𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) − 𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 ( 𝜖0))

≤ 𝐶𝑘𝑑,𝑠,𝜇0 ,𝑇
‖𝜙𝑠 ‖𝐿∞

𝑉𝑠
𝑅𝑑 (𝑠+3𝑘) (𝑠 + 2𝑘)𝑘+1

𝑘!
𝜂

𝑑−1
4𝑑+2 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0

≤ 𝐶𝑘𝑑,𝑠,𝜇0 ,𝑇
‖𝜙𝑠 ‖𝐿∞

𝑉𝑠
𝑅𝑑 (𝑠+3𝑘)𝜂

𝑑−1
4𝑑+2 ‖𝐹𝑁 ,0‖𝑁 ,𝛽0 ,𝜇0 ,
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since

(𝑠 + 2𝑘)𝑘+1

𝑘!
≤ 2𝑘+1 (𝑠 + 𝑘) (𝑠 + 𝑘)𝑘

𝑘!
≤ 2𝑘+1(𝑠 + 𝑘)𝑒𝑠+𝑘 ≤ 𝐶𝑘𝑠 .

Summing over 𝜎 ∈ 𝑆𝑘 , 𝑘 = 1, ..., 𝑛, we get the required estimate. �

In the next section, in order to conclude the convergence proof, we will estimate the differences of
the corresponding BBGKY hierarchy and Boltzmann hierarchy truncated elementary observables in the
scaled limit.

11. Convergence proof

Recall from Subsection 10.4 that given 𝑠 ∈ N, 𝑡 ∈ [0, 𝑇], and parameters satisfying (9.4), we have
reduced the convergence proof to controlling the differences:

𝐽𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡, 𝐽, 𝑀) − 𝐽∞𝑠,𝑘,𝑅, 𝛿 (𝑡, 𝐽, 𝑀)

for given 1 ≤ 𝑘 ≤ 𝑛 and (𝐽, 𝑀) ∈ U𝑠,𝑘 , where 𝐽𝑁𝑠,𝑘,𝑅, 𝛿 (𝑡, 𝐽, 𝑀), 𝐽∞𝑠,𝑘,𝑅, 𝛿 (𝑡, 𝐽, 𝑀) are given by (10.19),
(10.20). This will be the aim of this section.

Throughout this section, 𝑠 ∈ N, 𝜙𝑠 ∈ 𝐶𝑐 (R𝑑𝑠) will be fixed, (𝑁, 𝜖2, 𝜖3) are in the scaling (4.24),
𝛽0 > 0, 𝜇0 ∈ R,𝑇 > 0 are given by the statements of Theorem 5.7 and Theorem 5.14, and the parameters
𝑛, 𝛿, 𝑅, 𝜂, 𝜖0, 𝛼 satisfy (9.4).

11.1. BBGKY hierarchy pseudo-trajectories and proximity to the Boltzmann hierarchy
pseudo-trajectories

In the same spirit as in Subsection 10.3, we may define the BBGKY hierarchy pseudo-trajectory.
Consider 𝑠 ∈ N, (𝑁, 𝜖2, 𝜖3) in the scaling (4.24), 𝑘 ∈ N and 𝑡 ∈ [0, 𝑇]. Let us recall from (7.2) the set

T𝑘 (𝑡) =
{
(𝑡1, ..., 𝑡𝑘 ) ∈ R𝑘 : 0 = 𝑡𝑘+1 < 𝑡𝑘 < ... < 𝑡1 < 𝑡0 = 𝑡

}
,

where we use the convention 𝑡0 = 𝑡 and 𝑡𝑘+1 = 0. Consider (𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘 (𝑡), 𝜎 ∈ 𝑆𝑘 , 𝐽 = ( 𝑗1, ..., 𝑗𝑘 ),
𝑀 = (𝑚1, ..., 𝑚𝑘 ), (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 , and for each 𝑖 = 1, ..., 𝑘 , we consider (ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖) ∈ S

𝑑𝜎𝑖−1
1 ×𝐵𝑑𝜎𝑖

𝑅 .
The process followed is similar to the construction of the Boltzmann hierarchy pseudo-trajectory.

The only difference is that we take into account the diameter 𝜖2 or the interaction zone 𝜖3 of the adjusted
particles in each step.

More precisely, we inductively construct the BBGKY hierarchy pseudo-trajectory of 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈
R

2𝑑𝑠 as follows:
Time 𝑡0 = 𝑡: We initially define 𝑍𝑁𝑠 (𝑡−0 ) =

(
𝑥𝑁1 (𝑡−0 ), ..., 𝑥

𝑁
𝑠 (𝑡−0 ), 𝑣

𝑁
1 (𝑡−0 ), ..., 𝑣

𝑁
𝑠 (𝑡−0 )

)
:= 𝑍𝑠 .

Time 𝑡𝑖 , 𝑖 ∈ {1, ..., 𝑘}: Consider 𝑖 ∈ {1, ..., 𝑘} and assume we know

𝑍𝑁𝑠+�̃�𝑖−1
(𝑡−𝑖−1) =

(
𝑥𝑁1 (𝑡−𝑖−1), ..., 𝑥

𝑁
𝑠+�̃�𝑖−1

(𝑡−𝑖−1), 𝑣
𝑁
1 (𝑡−𝑖−1), ..., 𝑣

𝑁
𝑠+�̃�𝑖−1

(𝑡−𝑖−1)
)
.

We define 𝑍𝑁
𝑠+�̃�𝑖−1

(𝑡+𝑖 ) =
(
𝑥𝑁1 (𝑡+𝑖 ), ..., 𝑥𝑁𝑠+�̃�𝑖−1

(𝑡+𝑖 ), 𝑣𝑁1 (𝑡+𝑖 ), ..., 𝑣𝑁𝑠+�̃�𝑖−1
(𝑡+𝑖 )

)
as

𝑍𝑁𝑠+�̃�𝑖−1
(𝑡+𝑖 ) :=

(
𝑋𝑁𝑠+�̃�𝑖−1

(
𝑡−𝑖−1

)
− (𝑡𝑖−1 − 𝑡𝑖)𝑉𝑁𝑠+�̃�𝑖−1

(
𝑡−𝑖−1

)
, 𝑉𝑁𝑠+�̃�𝑖−1

(
𝑡−𝑖−1

) )
.

We also define 𝑍𝑁
𝑠+�̃�𝑖

(𝑡−𝑖 ) =
(
𝑥𝑁1 (𝑡−𝑖 ), ..., 𝑥𝑁𝑠+�̃�𝑖

(𝑡−𝑖 ), 𝑣𝑁1 (𝑡−𝑖 ), ..., 𝑣𝑁𝑠+�̃�𝑖
(𝑡−𝑖 )

)
as(

𝑥𝑁𝑗 (𝑡
−
𝑖 ), 𝑣𝑁𝑗 (𝑡

−
𝑖 )

)
:= (𝑥𝑁𝑗 (𝑡

+
𝑖 ), 𝑣𝑁𝑗 (𝑡

+
𝑖 )) ∀ 𝑗 ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},
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For the rest of the particles, we distiguish the following cases, depending on 𝜎𝑖:

◦ 𝜎𝑖 = 1: If 𝑗𝑖 = −1: (
𝑥𝑁𝑚𝑖

(𝑡−𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡−𝑖 )

)
:=

(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡+𝑖 )

)
,(

𝑥𝑁𝑠+�̃�𝑖
(𝑡−𝑖 ), 𝑣𝑁𝑠+�̃�𝑖

(𝑡−𝑖 )
)

:=
(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) − 𝜖2𝜔𝑠+�̃�𝑖
, 𝑣𝑠+�̃�𝑖

)
,

while if 𝑗𝑖 = 1: (
𝑥𝑁𝑚𝑖

(𝑡−𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡−𝑖 )

)
:=

(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑁
′

𝑚𝑖
(𝑡+𝑖 )

)
,(

𝑥𝑁𝑠+�̃�𝑖
(𝑡−𝑖 ), 𝑣𝑁𝑠+�̃�𝑖

(𝑡−𝑖 )
)

:=
(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) + 𝜖2𝜔𝑠+�̃�𝑖
, 𝑣′𝑠+�̃�𝑖

)
,

where (𝑣𝑁 ′
𝑚𝑖

(𝑡−𝑖 ), 𝑣′𝑠+�̃�𝑖
) = 𝑇𝜔𝑠+�̃�𝑖

(
𝑣𝑁𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑠+�̃�𝑖

)
.

◦ 𝜎𝑖 = 2: If 𝑗𝑖 = −1: (
𝑥𝑁𝑚𝑖

(𝑡−𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡−𝑖 )

)
:=

(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡+𝑖 )

)
,(

𝑥𝑁𝑠+�̃�𝑖−1 (𝑡
−
𝑖 ), 𝑣𝑁𝑠+�̃�𝑖−1 (𝑡

−
𝑖 )

)
:=

(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) −
√

2𝜖3𝜔𝑠+�̃�𝑖−1, 𝑣𝑠+�̃�𝑖−1

)
,(

𝑥𝑁𝑠+�̃�𝑖
(𝑡−𝑖 ), 𝑣𝑁𝑠+�̃�𝑖

(𝑡−𝑖 )
)

:=
(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) −
√

2𝜖3𝜔𝑠+�̃�𝑖
, 𝑣𝑠+�̃�𝑖

)
,

while if 𝑗𝑖 = 1: (
𝑥𝑁𝑚𝑖

(𝑡−𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡−𝑖 )

)
:=

(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑁 ∗
𝑚𝑖

(𝑡+𝑖 )
)
,(

𝑥𝑁𝑠+�̃�𝑖−1(𝑡
−
𝑖 ), 𝑣𝑁𝑠+�̃�𝑖−1(𝑡

−
𝑖 )

)
:=

(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) +
√

2𝜖3𝜔𝑠+�̃�𝑖−1, 𝑣
∗
𝑠+�̃�𝑖−1

)
,(

𝑥𝑁𝑠+�̃�𝑖
(𝑡−𝑖 ), 𝑣𝑁𝑠+�̃�𝑖

(𝑡−𝑖 )
)

:=
(
𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) +
√

2𝜖3𝜔𝑠+�̃�𝑖
, 𝑣∗𝑠+�̃�𝑖

)
,

where (𝑣𝑁 ∗
𝑚𝑖

(𝑡−𝑖 ), 𝑣∗𝑠+�̃�𝑖−1, 𝑣
∗
𝑠+�̃�𝑖

) = 𝑇𝜔𝑠+�̃�𝑖−1 ,𝜔𝑠+�̃�𝑖

(
𝑣𝑁𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑠+�̃�𝑖−1, 𝑣𝑠+�̃�𝑖

)
.

Time 𝑡𝑘+1 = 0: We finally obtain

𝑍𝑁𝑠+�̃�𝑘
(0+) = 𝑍𝑁𝑠+�̃�𝑘

(𝑡+𝑘+1) =
(
𝑋𝑁𝑠+�̃�𝑘

(
𝑡−𝑘
)
− 𝑡𝑘𝑉

𝑁
𝑠+�̃�𝑘

(
𝑡−𝑘
)
, 𝑉𝑁𝑠+�̃�𝑘

(
𝑡−𝑘
) )
.

We give the following definition:

Definition 11.1. Let 𝑠 ∈ N, 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ R2𝑑𝑠 , (𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘 (𝑡), 𝐽 = ( 𝑗1, ..., 𝑗𝑘 ), 𝑀 =
(𝑚1, ..., 𝑚𝑘 ), (𝐽, 𝑀) ∈ U𝑠,𝑘 , and for each 𝑖 = 1, ..., 𝑘 , 𝜎 ∈ 𝑆𝑘 , we consider (ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖) ∈
S
𝑑𝜎𝑖−1
1 × 𝐵𝑑𝜎𝑖

𝑅 . The sequence {𝑍𝑁
𝑠+�̃�𝑖−1

(𝑡+𝑖 )}𝑖=0,...,𝑘+1 constructed above is called the BBGKY hierarchy
pseudo-trajectory of 𝑍𝑠 .

We now state the following elementary proximity result of the corresponding BBGKY hierarchy and
Boltzmann hierarchy pseudo-trajectories.

Lemma 11.2. Let 𝑠 ∈ N, 𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ R2𝑑𝑠 , 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 , (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 , 𝑡 ∈ [0, 𝑇]
and (𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘 (𝑡). For each 𝑖 = 1, ..., 𝑘 , consider (ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖) ∈ S𝑑𝜎𝑖−1

1 × R𝑑𝜎𝑖 . Then for all
𝑖 = 1, ..., 𝑘 and ℓ = 1, ..., 𝑠 + �̃�𝑖−1, we have

|𝑥𝑁ℓ (𝑡+𝑖 ) − 𝑥∞ℓ (𝑡
+
𝑖 ) | ≤

√
2𝜖3(𝑖 − 1), 𝑣𝑁ℓ (𝑡+𝑖 ) = 𝑣∞ℓ (𝑡

+
𝑖 ). (11.1)
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Moreover, if 𝑠 < 𝑛, then for each 𝑖 ∈ {1, ..., 𝑘}, there holds���𝑋𝑁𝑠+�̃�𝑖−1
(𝑡+𝑖 ) − 𝑋∞

𝑠+�̃�𝑖−1
(𝑡+𝑖 )

��� ≤ 𝑛3/2𝜖3. (11.2)

Proof. We first prove (11.1) by induction on 𝑖 ∈ {1, ..., 𝑘}. For 𝑖 = 1, the result is trivial since the pseudo-
trajectories initially coincide by construction. Assume the conclusion holds for 𝑖 ∈ {1, ..., 𝑘 − 1}; that
is, for all ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1}, there holds

|𝑥𝑁ℓ (𝑡+𝑖 ) − 𝑥∞ℓ (𝑡
+
𝑖 ) | ≤

√
2𝜖3(𝑖 − 1) and 𝑣𝑁ℓ (𝑡+𝑖 ) = 𝑣∞ℓ (𝑡

+
𝑖 ). (11.3)

We prove the conclusion holds for (𝑖 + 1) ∈ {2, ..., 𝑘}. We need to take different cases for 𝑗𝑖 ∈ {−1, 1}
and 𝜎𝑖 ∈ {1, 2}.

◦ 𝜎𝑖 = 1, 𝑗𝑖 = −1: For the Boltzmann pseudo-trajectory, we get

𝑥∞ℓ (𝑡
+
𝑖+1) = 𝑥∞ℓ (𝑡

+
𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∞ℓ (𝑡

+
𝑖 ), 𝑣∞ℓ (𝑡

+
𝑖+1) = 𝑣∞ℓ (𝑡

+
𝑖 ), ∀ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},

𝑥∞𝑚𝑖
(𝑡+𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∞ℓ (𝑡
+
𝑖 ), 𝑣∞𝑚𝑖

(𝑡+𝑖+1) = 𝑣∞𝑚𝑖
(𝑡+𝑖 ),

𝑥∞𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑠+�̃�𝑖
, 𝑣∞𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑣𝑠+�̃�𝑖
,

while for the BBGKY hierarchy pseudo-trajectory, we get

𝑥𝑁ℓ (𝑡+𝑖+1) = 𝑥𝑁ℓ (𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑁ℓ (𝑡+𝑖 ), 𝑣𝑁ℓ (𝑡+𝑖+1) = 𝑣𝑁ℓ (𝑡−𝑖 ), ∀ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},
𝑥𝑁𝑚𝑖

(𝑡+𝑖+1) = 𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑁𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡+𝑖+1) = 𝑣𝑁𝑚𝑖

(𝑡−𝑖 ),
𝑥𝑁𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑠+�̃�𝑖

− 𝜖2𝜔𝑠+�̃�𝑖
, 𝑣𝑁𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑣𝑠+�̃�𝑖
.

So, for any ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1}, the induction assumption (11.3) implies

𝑣𝑁ℓ (𝑡+𝑖+1) = 𝑣𝑁ℓ (𝑡+𝑖 ) = 𝑣∞ℓ (𝑡
+
𝑖 ) = 𝑣∞ℓ (𝑡

+
𝑖+1),

|𝑥𝑁ℓ (𝑡+𝑖+1) − 𝑥∞ℓ (𝑡
+
𝑖+1) | = |𝑥𝑁ℓ (𝑡+𝑖 ) − 𝑥∞ℓ (𝑡

+
𝑖 ) | ≤

√
2𝜖3 (𝑖 − 1).

Moreover, since 𝜖2 << 𝜖3, for ℓ = 𝑠 + �̃�𝑖 , we get

𝑣𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑣𝑠+�̃�𝑖

= 𝑣∞𝑠+�̃�𝑖
(𝑡+𝑖+1),

|𝑥𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) − 𝑥∞𝑠+�̃�𝑖

(𝑡+𝑖+1) | ≤ |𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − 𝑥∞𝑚𝑖

(𝑡+𝑖 ) | + 𝜖2 |𝜔𝑠+�̃�𝑖
| ≤

√
2𝜖3 (𝑖 − 1) + 𝜖2 <

√
2𝜖3𝑖.

◦ 𝜎𝑖 = 1, 𝑗𝑖 = 1: For the Boltzmann hierarchy pseudo-trajectory, we get

𝑥∞ℓ (𝑡
+
𝑖+1) = 𝑥∞ℓ (𝑡

+
𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∞ℓ (𝑡

+
𝑖 ), 𝑣∞ℓ (𝑡

+
𝑖+1) = 𝑣∞ℓ (𝑡

+
𝑖 ), ∀ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},

𝑥∞𝑚𝑖
(𝑡+𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∞
′

𝑚𝑖
(𝑡+𝑖 ), 𝑣∞𝑚𝑖

(𝑡+𝑖+1) = 𝑣∞
′

𝑚𝑖
(𝑡+𝑖 ),

𝑥∞𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣′𝑠+�̃�𝑖
, 𝑣∞𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑣′𝑠+�̃�𝑖
.

and for the BBGKY hierarchy pseudo-trajectory, we obtain

𝑥𝑁ℓ (𝑡+𝑖+1) = 𝑥𝑁ℓ (𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑁ℓ (𝑡+𝑖 ), 𝑣𝑁ℓ (𝑡+𝑖+1) = 𝑣𝑁ℓ (𝑡+𝑖 ), ∀ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},
𝑥𝑁𝑚𝑖

(𝑡+𝑖+1) = 𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑁

′
𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡+𝑖+1) = 𝑣𝑁

′
𝑚𝑖

(𝑡+𝑖 ),
𝑥𝑁𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣′𝑠+�̃�𝑖

+ 𝜖2𝜔𝑠+�̃�𝑖
, 𝑣𝑁𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑣′𝑠+�̃�𝑖
.
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For ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖}, the induction assumption (11.3) yields

𝑣𝑁ℓ (𝑡+𝑖+1) = 𝑣𝑁ℓ (𝑡+𝑖 ) = 𝑣∞ℓ (𝑡
+
𝑖 ) = 𝑣∞ℓ (𝑡

+
𝑖+1),

|𝑥𝑁ℓ (𝑡+𝑖+1) − 𝑥∞ℓ (𝑡
+
𝑖+1) | = |𝑥𝑁ℓ (𝑡+𝑖 ) − 𝑥∞ℓ (𝑡

+
𝑖 ) | ≤

√
2𝜖3 (𝑖 − 1),

and for ℓ = 𝑚𝑖 , it yields

𝑣𝑁𝑚𝑖
(𝑡+𝑖+1) = 𝑣𝑁

′
𝑚𝑖

(𝑡+𝑖 ) = 𝑣∞
′

𝑚𝑖
(𝑡+𝑖 ) = 𝑣∞ℓ (𝑡

+
𝑖+1),

|𝑥𝑁𝑚𝑖
(𝑡+𝑖+1) − 𝑥∞𝑚𝑖

(𝑡+𝑖+1) | = |𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − 𝑥∞𝑚𝑖

(𝑡+𝑖 ) | ≤
√

2𝜖3 (𝑖 − 1).

Moreover, since 𝜖2 << 𝜖3, for ℓ = 𝑠 + �̃�𝑖 , we obtain

𝑣𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑣′𝑠+�̃�𝑖

= 𝑣∞𝑠+�̃�𝑖
(𝑡+𝑖+1),

|𝑥𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) − 𝑥∞𝑠+�̃�𝑖

(𝑡+𝑖+1) | ≤ |𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − 𝑥∞𝑚𝑖

(𝑡+𝑖 ) | + 𝜖2 |𝜔𝑠+�̃�𝑖
| ≤

√
2𝜖3 (𝑖 − 1) + 𝜖2 <

√
2𝜖3𝑖.

◦ 𝜎𝑖 = 2, 𝑗𝑖 = −1: For the Boltzmann hierarchy pseudo-trajectory, we get

𝑥∞ℓ (𝑡
+
𝑖+1) = 𝑥∞ℓ (𝑡

+
𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∞ℓ (𝑡

+
𝑖 ), 𝑣∞ℓ (𝑡

+
𝑖+1) = 𝑣∞ℓ (𝑡

+
𝑖 ), ∀ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},

𝑥∞𝑚𝑖
(𝑡+𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∞𝑚𝑖
(𝑡+𝑖 ), 𝑣∞𝑚𝑖

(𝑡+𝑖+1) = 𝑣∞𝑚𝑖
(𝑡+𝑖 ),

𝑥∞𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣 �̃�𝑖−1, 𝑣∞ℓ (𝑡
+
𝑖+1) = 𝑣𝑠+�̃�𝑖−1,

𝑥∞𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑠+�̃�𝑖
, 𝑣∞𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑣𝑠+�̃�𝑖
,

while for the BBGKY hierarchy pseudo-trajectory, we get

𝑥𝑁ℓ (𝑡+𝑖+1) = 𝑥𝑁ℓ (𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑁ℓ (𝑡+𝑖 ), 𝑣𝑁ℓ (𝑡+𝑖+1) = 𝑣𝑁ℓ (𝑡−𝑖 ), ∀ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},
𝑥𝑁𝑚𝑖

(𝑡+𝑖+1) = 𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑁𝑚𝑖

(𝑡+𝑖 ), 𝑣𝑁𝑚𝑖
(𝑡+𝑖+1) = 𝑣𝑁𝑚𝑖

(𝑡−𝑖 ),

𝑥𝑁𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) = 𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑠+�̃�𝑖−1 −
√

2𝜖3𝜔𝑠+�̃�𝑖−1, 𝑣𝑁𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) = 𝑣𝑠+�̃�𝑖−1,

𝑥𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑠+�̃�𝑖
−
√

2𝜖3𝜔𝑠+�̃�𝑖
, 𝑣𝑁𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑣𝑠+�̃�𝑖
.

So, for any ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1}, the induction assumption (11.3) implies

𝑣𝑁ℓ (𝑡+𝑖+1) = 𝑣𝑁ℓ (𝑡+𝑖 ) = 𝑣∞ℓ (𝑡
+
𝑖 ) = 𝑣∞ℓ (𝑡

+
𝑖+1),

|𝑥𝑁ℓ (𝑡+𝑖+1) − 𝑥∞ℓ (𝑡
+
𝑖+1) | = |𝑥𝑁ℓ (𝑡+𝑖 ) − 𝑥∞ℓ (𝑡

+
𝑖 ) | ≤

√
2𝜖3 (𝑖 − 1),

Moreover, for ℓ = 𝑠 + �̃�𝑖 − 1, we get

𝑣𝑁𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) = 𝑣𝑠+�̃�𝑖−1 = 𝑣∞𝑠+�̃�𝑖−1(𝑡

+
𝑖+1),

|𝑥𝑁𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) − 𝑥∞𝑠+�̃�𝑖−1(𝑡

+
𝑖+1) | ≤ |𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) − 𝑥∞𝑚𝑖
(𝑡+𝑖 ) | +

√
2𝜖3 |𝜔𝑠+�̃�𝑖−1 | ≤

√
2𝜖3 (𝑖 − 1) +

√
2𝜖3 =

√
2𝜖3𝑖.

and for ℓ = 𝑠 + �̃�𝑖 , we get

𝑣𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑣𝑠+�̃�𝑖

= 𝑣∞𝑠+�̃�𝑖
(𝑡+𝑖+1),

|𝑥𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) − 𝑥∞𝑠+�̃�𝑖

(𝑡+𝑖+1) | ≤ |𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − 𝑥∞𝑚𝑖

(𝑡+𝑖 ) | +
√

2𝜖3 |𝜔𝑠+�̃�𝑖
| ≤

√
2𝜖3 (𝑖 − 1) +

√
2𝜖3 =

√
2𝜖3𝑖.
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◦ 𝜎𝑖 = 2, 𝑗𝑖 = 1 : For the Boltzmann hierarchy pseudo-trajectory, we get

𝑥∞ℓ (𝑡
+
𝑖+1) = 𝑥∞ℓ (𝑡

+
𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∞ℓ (𝑡

+
𝑖 ), 𝑣∞ℓ (𝑡

+
𝑖+1) = 𝑣∞ℓ (𝑡

+
𝑖 ), ∀ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},

𝑥∞𝑚𝑖
(𝑡+𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∞∗
𝑚𝑖

(𝑡+𝑖 ), 𝑣∞𝑚𝑖
(𝑡+𝑖+1) = 𝑣∞∗

𝑚𝑖
(𝑡+𝑖 ),

𝑥∞𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∗𝑠+�̃�𝑖−1,

𝑣∞𝑠+�̃�𝑖−1 (𝑡
+
𝑖+1) = 𝑣∗𝑠+�̃�𝑖−1,

𝑥∞𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑥∞𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∗𝑠+�̃�𝑖
, 𝑣∞𝑠+�̃�𝑖

(𝑡+𝑖+1) = 𝑣∗𝑠+�̃�𝑖
,

and for the BBGKY hierarchy pseudo-trajectory, we obtain

𝑥𝑁ℓ (𝑡+𝑖+1) = 𝑥𝑁ℓ (𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑁ℓ (𝑡+𝑖 ), 𝑣𝑁ℓ (𝑡+𝑖+1) = 𝑣𝑁ℓ (𝑡+𝑖 ), ∀ℓ ∈ {1, ..., 𝑠 + �̃�𝑖−1} \ {𝑚𝑖},
𝑥𝑁𝑚𝑖

(𝑡+𝑖+1) = 𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣𝑁 ∗

𝑚𝑖
(𝑡+𝑖 ), 𝑣𝑁𝑚𝑖

(𝑡+𝑖+1) = 𝑣𝑁 ∗
𝑚𝑖

(𝑡+𝑖 ),

𝑥𝑁𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) = 𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∗𝑠+�̃�𝑖−1 +
√

2𝜖3𝜔𝑠+�̃�𝑖−1,

𝑣𝑁𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) = 𝑣∗𝑠+�̃�𝑖−1,

𝑥𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) − (𝑡𝑖 − 𝑡𝑖+1)𝑣∗𝑠+�̃�𝑖
+
√

2𝜖3𝜔𝑠+�̃�𝑖
,

𝑣∞𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑣∗𝑠+�̃�𝑖

.

For ℓ ∈ {1, ..., �̃�𝑖−1} \ {𝑚𝑖}, the induction assumption (11.3) yields

𝑣𝑁ℓ (𝑡+𝑖+1) = 𝑣𝑁ℓ (𝑡+𝑖 ) = 𝑣∞ℓ (𝑡
+
𝑖 ) = 𝑣∞ℓ (𝑡

+
𝑖+1),

|𝑥𝑁ℓ (𝑡+𝑖+1) − 𝑥∞ℓ (𝑡
+
𝑖+1) | = |𝑥𝑁ℓ (𝑡+𝑖 ) − 𝑥∞ℓ (𝑡

+
𝑖 ) | ≤

√
2𝜖3 (𝑖 − 1).

Thus, for ℓ = 𝑚𝑖 ,

𝑣𝑁𝑚𝑖
(𝑡+𝑖+1) = 𝑣𝑁 ∗

𝑚𝑖
(𝑡+𝑖 ) = 𝑣∞∗

𝑚𝑖
(𝑡+𝑖 ) = 𝑣∞ℓ (𝑡

+
𝑖+1),

|𝑥𝑁𝑚𝑖
(𝑡+𝑖+1) − 𝑥∞𝑚𝑖

(𝑡+𝑖+1) | = |𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − 𝑥∞𝑚𝑖

(𝑡+𝑖 ) | ≤
√

2𝜖3 (𝑖 − 1),

for ℓ = 𝑠 + �̃�𝑖 − 1,

𝑣𝑁𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) = 𝑣∗𝑠+�̃�𝑖−1 = 𝑣∞𝑠+�̃�𝑖−1(𝑡

+
𝑖+1),

|𝑥𝑁𝑠+�̃�𝑖−1(𝑡
+
𝑖+1) − 𝑥∞𝑠+�̃�𝑖−1(𝑡

+
𝑖+1) | ≤ |𝑥𝑁𝑚𝑖

(𝑡+𝑖 ) − 𝑥∞𝑚𝑖
(𝑡+𝑖 ) | +

√
2𝜖3 |𝜔𝑠+�̃�𝑖−1 | ≤

√
2𝜖3 (𝑖 − 1) +

√
2𝜖3 =

√
2𝜖3𝑖,

and for ℓ = 𝑠 + �̃�𝑖 ,

𝑣𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) = 𝑣∗𝑠+�̃�𝑖

= 𝑣∞𝑠+�̃�𝑖
(𝑡+𝑖+1),

|𝑥𝑁𝑠+�̃�𝑖
(𝑡+𝑖+1) − 𝑥∞𝑚𝑖

(𝑡+𝑖+1) | ≤ |𝑥𝑁𝑚𝑖
(𝑡+𝑖 ) − 𝑥∞𝑠+�̃�𝑖

(𝑡+𝑖 ) | +
√

2𝜖3 |𝜔𝑠+�̃�𝑖
| ≤

√
2𝜖3 (𝑖 − 1) +

√
2𝜖3 =

√
2𝜖3𝑖.

Combining all cases, (11.1) is proved by induction.
To prove (11.2), it suffices to add for ℓ = 1, ..., 𝑠 + �̃�𝑖−1, and use the facts 1 ≤ 𝑖 ≤ 𝑘 − 1, �̃�𝑖−1 < �̃�𝑖 ≤

�̃�𝑘−1 < 2𝑘 ≤ 2𝑛, from (7.6), and the assumption 𝑠 < 𝑛. �

11.2. Reformulation in terms of pseudo-trajectories

We will now re-write the BBGKY hierarchy and Boltzmann hierarchy truncated elementary observables
in terms of pseudo-trajectories.

Let 𝑠 ∈ N and assume 𝑠 < 𝑛. For the Boltzmann hierarchy case, there is always free flow between
the collision times. Therefore, recalling (10.20) and (10.26), for 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0), 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 ,
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(𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 , 𝑡 ∈ [0, 𝑇] and (𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘, 𝛿 (𝑡), the Boltzmann hierarchy truncated elementary
observable can be equivalently written as

𝐽∞𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠) =
∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠)

∫
T𝑘,𝛿 (𝑡)

∫
B𝑐
𝑚1 (𝑍∞

𝑠 (𝑡+1 ))
...

∫
B𝑐
𝑚𝑘

(
𝑍∞
𝑠+�̃�𝑘−1

(𝑡+𝑘 )
)

×
𝑘∏
𝑖=1

𝑏+𝜎𝑖

(
ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖 , 𝑣

∞
𝑚𝑖

(
𝑡+𝑖
) )
𝑓 (𝑠+�̃�𝑘 )
0

(
𝑍∞
𝑠+�̃�𝑘

(
0+

) ) 𝑘∏
𝑖=1

(
𝑑ω𝜎𝑖 ,𝑖 𝑑v𝜎𝑖 ,𝑖

)
𝑑𝑡𝑘 ... 𝑑𝑡1 𝑑𝑉𝑠 .

(11.4)

Now we shall see that due to Lemma 11.2, it is possible to make a similar expansion for the BBGKY
hierarchy truncated elementary observables as well.

More precisely, fix 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0), 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 , (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 , 𝑡 ∈ [0, 𝑇] and
(𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘, 𝛿 (𝑡). Consider (𝑁, 𝜖2, 𝜖3) in the scaling (4.24) such that 𝜖2 << 𝜂2𝜖3 and 𝑛3/2𝜖3 << 𝛼. By
Lemma 10.1, given𝑉𝑠 ∈ M𝑐

𝑠 (𝑋𝑠), we have 𝑍𝑠 ∈ 𝐺𝑠 (𝜖3, 𝜖0, 𝛿). By the definition of the set 𝐺𝑠 (𝜖3, 𝜖0, 𝛿),
see (10.1), and the fact that 𝜖2 << 𝜖3, we have

𝑍𝑠 ∈ 𝐺𝑠 (𝜖3, 𝜖0, 𝛿) ⇒ 𝑍𝑠 (𝜏) ∈ D̊𝑠, 𝜖2 , 𝜖3 , ∀𝜏 ≥ 0,

and thus,

Ψ𝜏−𝑡0
𝑠 𝑍𝑁𝑠

(
𝑡−0
)
= Φ𝜏−𝑡0

𝑠 𝑍𝑁𝑠
(
𝑡−0
)
, ∀𝜏 ∈ [𝑡1, 𝑡0], (11.5)

where Ψ𝑠 , given in (3.56), denotes the s-particle (𝜖2, 𝜖3)-interaction zone flow and Φ𝑠, given in (3.57),
denotes the s-particle free flow respectively. We also have

𝑍𝑠 = (𝑋𝑠 , 𝑉𝑠) ∈ 𝐺𝑠 (𝜖3, 𝜖0, 𝛿) ⇒ 𝑍∞
𝑠 (𝑡+1 ) ∈ 𝐺𝑠 (𝜖0, 0).

For all 𝑖 ∈ {1, ..., 𝑘}, inductive application of Proposition 9.2 or Proposition 9.6, depending on whether
the adjunction is binary or ternary, implies that

𝑍∞
𝑠+�̃�𝑖

(𝑡+𝑖+1) ∈ 𝐺𝑠+�̃�𝑖
(𝜖0, 0), ∀(ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖) ∈ B𝑐𝑚𝑖

(𝑍∞
𝑠+�̃�𝑖−1

(𝑡+𝑖 )). (11.6)

Since we have assumed 𝑛3/2𝜖3 << 𝛼 and 𝑠 < 𝑛, (11.2) from Lemma 11.2 implies���𝑋𝑁𝑠+�̃�𝑖−1
(𝑡+𝑖 ) − 𝑋∞

𝑠+�̃�𝑖−1
(𝑡+𝑖 )

��� ≤ 𝛼

2
, ∀𝑖 = 1, ..., 𝑘 . (11.7)

Then, (9.6), (9.10) from Proposition 9.2, or (9.59), (9.63) from Proposition 9.6, depending on whether
the adjunction is binary or ternary, yield that for any 𝑖 = 1, ..., 𝑘 , we have

Ψ𝜏−𝑡𝑖
𝑠+�̃�𝑖

𝑍𝑁𝑠+�̃�𝑖

(
𝑡−𝑖
)
= Φ𝜏−𝑡𝑖

𝑠+�̃�𝑖
𝑍𝑁𝑠+�̃�𝑖

(
𝑡−𝑖
)
, ∀𝜏 ∈ [𝑡𝑖+1, 𝑡𝑖],

where Ψ𝑠+�̃�𝑖
and Φ𝑠+�̃�𝑖

denote the (𝑠 + �̃�𝑖)-particle (𝜖2, 𝜖3)-flow and the (𝑠 + �̃�𝑖)-particle free flow,
given in (3.56) and (3.57), respectively. In other words, the backwards (𝜖2, 𝜖3)-flow coincides with the
free flow in [𝑡𝑖+1, 𝑡𝑖]. Finally, Lemma 11.2 also implies that

𝑣𝑁𝑚𝑖
(𝑡+𝑖 ) = 𝑣∞𝑚𝑖

(𝑡+𝑖 ), ∀𝑖 = 1, ..., 𝑘 .
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Therefore, for 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0), and (𝑁, 𝜖2, 𝜖3) in the scaling (4.24) with 𝑛𝜖3/2
3 << 𝛼 and 𝜖2 << 𝜂2𝜖3, the

BBGKY hierarchy truncated elementary observable can be equivalently written as

𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠) = A𝒔,𝒌
𝑵 ,𝝐2 ,𝝐3

∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠)

∫
T𝑘,𝛿 (𝑡)

∫
B𝑐
𝑚1 (𝑍∞

𝑠 (𝑡+1 ))
...

∫
B𝑐
𝑚𝑘

(
𝑍∞
𝑠+�̃�𝑘−1

(𝑡+𝑘 )
)

×
𝑘∏
𝑖=1

𝑏+𝜎𝑖

(
ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖 , 𝑣

∞
𝑚𝑖

(
𝑡+𝑖
) )
𝑓 (𝑠+�̃�𝑘 )
𝑁 ,0

(
𝑍𝑁𝑠+�̃�𝑘

(
0+

) )
×

𝑘∏
𝑖=1

(
𝑑ω𝜎𝑖 ,𝑖 𝑑v𝜎𝑖 ,𝑖

)
𝑑𝑡𝑘 ... 𝑑𝑡1 𝑑𝑉𝑠,

(11.8)

where, recalling (4.19), (4.22), we denote

A𝒔,𝒌,𝝈
𝑵 ,𝝐2 ,𝝐3

=
∏

𝑖∈{1,...,𝑘 }:𝜎𝑖=1
𝐴2
𝑁 ,𝜖2 ,𝑠+�̃�𝑖−1

∏
𝑖∈{1,...,𝑘 }:𝜎𝑖=2

𝐴3
𝑁 ,𝜖3 ,𝑠+�̃�𝑖−1

. (11.9)

Remark 11.3. Notice that for fixed 𝑠 ∈ N and 𝑘 ≥ 1 and 𝜎 ∈ 𝑆𝑘 , the scaling (4.24) implies

1 −A𝒔,𝒌,𝝈
𝑵 ,𝝐2 ,𝝐3

�
𝑘 (𝑠 + 2𝑘)

𝑁
� 𝑘 (𝑠 + 2𝑘)𝜖𝑑−1

2 � 𝑘 (𝑠 + 2𝑘)𝜖𝑑−1/2
3 . (11.10)

In particular, A𝒔,𝒌,𝝈
𝑵 ,𝝐2 ,𝝐3

↗ 1 as 𝑁 → ∞ and 𝜖2, 𝜖3 → 0+ in the scaling (4.24).

Let us approximate the BBGKY hierarchy truncated elementary observables by Boltzmann hierarchy
truncated elementary observables defining some auxiliary functionals. Let 𝑠 ∈ N and 𝑋𝑠 ∈ Δ𝑋𝑠 (𝜖0). For
1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 and (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 , we define

𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) (𝑋𝑠) =
∫
M𝑐

𝑠 (𝑋𝑠)
𝜙𝑠 (𝑉𝑠)

∫
T𝑘,𝛿 (𝑡)

∫
B𝑐
𝑚1 (𝑍∞

𝑠 (𝑡+1 ))
...

∫
B𝑐
𝑚𝑘

(
𝑍∞
𝑠+�̃�𝑘−1

(𝑡+𝑘 )
)

×
𝑘∏
𝑖=1

𝑏+𝜎𝑖

(
ω𝜎𝑖 ,𝑖 , v𝜎𝑖 ,𝑖 , 𝑣

∞
𝑚𝑖

(
𝑡+𝑖
) )
𝑓 (𝑠+�̃�𝑘 )
0

(
𝑍𝑁𝑠+�̃�𝑘

(
0+

) ) 𝑘∏
𝑖=1

(
𝑑ω𝜎𝑖 ,𝑖 𝑑v𝜎𝑖 ,𝑖

)
𝑑𝑡𝑘 ... 𝑑𝑡1 𝑑𝑉𝑠 .

(11.11)

We conclude that the auxiliary functionals approximate the BBGKY hierarchy truncated elementary
observables 𝐽𝑁𝑠,𝑘,𝑅, 𝛿 , defined in (11.8)

Proposition 11.4. Let 𝑠, 𝑛 ∈ N, with 𝑠 < 𝑛, 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 be parameters as in (9.4), and 𝑡 ∈ [0, 𝑇]. Then
for any 𝜁 > 0, there is 𝑁1 = 𝑁1 (𝜁, 𝑛, 𝛼, 𝜂, 𝜖0) ∈ N, such that for all (𝑁, 𝜖2, 𝜖3) in the scaling (4.24) with
𝑁 > 𝑁1, there holds
𝑛∑
𝑘=1

∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘

‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) − 𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 (𝜖0)) ≤ 𝐶𝑛𝑑,𝑠,𝜇0 ,𝑇

‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑅𝑑 (𝑠+3𝑛) 𝜁2.

(11.12)

In the case of tensorized initial data and approximation by conditioned BBGKY initial data (see
Proposition 6.5), the estimate can be improved to

𝑛∑
𝑘=1

∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) − 𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 (𝜖0))

≤ 𝐶𝑛𝑑,𝑠,𝛽0 ,𝜇0 ,𝑇
‖𝜙𝑠 ‖𝐿∞

𝑉𝑠
𝑅𝑑 (𝑠+3𝑛)𝜖1/2

3 , (11.13)

for all (𝑁, 𝜖2, 𝜖3) in the scaling (4.24) with N large enough.
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Proof. Fix 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 and (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 . Consider (𝑁, 𝜖2, 𝜖3) in the scaling (4.24).
Remark 4.2 guarantees that we can consider N large enough such that 𝜖2 << 𝜂2𝜖3 and 𝑛3/2𝜖3 << 𝛼.
Triangle inequality and the inclusion Δ𝑋𝑠 (𝜖0) ⊆ Δ𝑋𝑠 (𝜖0/2) yield

‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿.𝜎 (𝑡, 𝐽, 𝑀) − 𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 (𝜖0))

≤ ‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) −A𝒔,𝒌,𝝈
𝑵 ,𝝐2 ,𝝐3

𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 ( 𝜖0/2)) (11.14)

+ (1 −A𝒔,𝒌,𝝈
𝑵 ,𝝐2 ,𝝐3

)‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 (𝜖0)) .

We estimate each of the terms in (11.14) separately. For the first term, let us fix (𝑡1, ..., 𝑡𝑘 ) ∈ T𝑘, 𝛿 (𝑡).
Applying (10.18) for 𝑖 = 𝑘 − 1, we obtain

𝑍∞
𝑠+�̃�𝑘−1

(𝑡+𝑘 ) ∈ 𝐺𝑠+�̃�𝑘−1 (𝜖0, 0).

Since 𝑠 < 𝑛 and 𝑛3/2𝜖3 << 𝛼, (11.2), applied for 𝑖 = 𝑘 , implies

|𝑋𝑁𝑠+�̃�𝑘−1
(𝑡+𝑘 ) − 𝑋∞

𝑠+�̃�𝑘−1
(𝑡+𝑘 ) | ≤

𝛼

2
.

Therefore, (9.7), (9.11) from Proposition 9.2, or (9.60), (9.64) from Proposition 9.6, depending on
whether the adjunction is binary or ternary, imply

𝑍𝑁𝑠+�̃�𝑘
(0+) ∈ 𝐺𝑠+�̃�𝑘

(𝜖0/2, 0) ⊆ Δ𝑠+�̃�𝑘
(𝜖0/2). (11.15)

Thus, (10.24)–(10.25), (10.29), (11.8)–(11.11) and crucially (11.15) imply

‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) −A𝒔,𝒌,𝝈
𝑵 ,𝝐2 ,𝝐3

𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 (𝜖0/2))

≤
𝐶𝑘𝑑,𝑠,𝑇
𝑘!

‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑅𝑑 (𝑠+3𝑘) ‖ 𝑓 (𝑠+�̃�𝑘 )

𝑁 ,0 − 𝑓 (𝑠+�̃�𝑘 )
0 ‖𝐿∞ (Δ𝑠+�̃�𝑘

(𝜖0/2))

≤
𝐶𝑘𝑑,𝑠,𝑇
𝑘!

‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑅𝑑 (𝑠+3𝑘) ‖ 𝑓 (𝑠+�̃�𝑘 )

𝑁 ,0 − 𝑓 (𝑠+�̃�𝑘 )
0 ‖𝐿∞ (D𝑠+�̃�𝑘

, 𝜖2 , 𝜖3) , (11.16)

as long as 𝜖3 < 𝜖0/2
√

2 (i.e., N large enough) so that Δ𝑠+�̃�𝑘
(𝜖0/2) ⊆ D𝑠+�̃�𝑘 , 𝜖2 , .

For the second term, by (10.28), we have ‖ 𝑓 (𝑠+�̃�𝑘 )
0 ‖𝐿∞ ≤ 𝑒−(𝑠+𝑘)𝜇0 ‖𝐹0‖∞,𝛽0 ,𝜇0 . Therefore, using

(10.24)– (10.25) and (10.29), we obtain

‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 ( 𝜖0)) ≤

𝐶𝑘𝑑,𝑠,𝜇0 ,𝑇

𝑘!
‖𝜙𝑠 ‖𝐿∞

𝑉𝑠
𝑅𝑑 (𝑠+3𝑘) ‖𝐹0‖∞,𝛽0 ,𝜇0 .

(11.17)

Adding over all (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 , 𝜎 ∈ 𝑆𝑘 , 𝑘 = 1, ..., 𝑛, using (11.16)–(11.17) and the scaling estimate
(11.10), we obtain

𝑛∑
𝑘=1

∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) − 𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞ (Δ𝑠 ( 𝜖0)) ≤ 𝐶𝑛𝑑,𝑠,𝜇0 ,𝑇
‖𝜙𝑠 ‖𝐿∞

𝑉𝑠
𝑅𝑑 (𝑠+3𝑛)

×
(

sup
𝑘∈{1,...,𝑛}

sup
𝜎∈𝑆𝑘

‖ 𝑓 (𝑠+�̃�𝑘 )
𝑁 ,0 − 𝑓 (𝑠+�̃�𝑘 )

0 ‖𝐿∞ (D𝑠+�̃�𝑘 ,𝜖2 , 𝜖3 ) +
‖𝐹0‖∞,𝛽0 ,𝜇0

𝑁

)
.

Since n is fixed, (11.12) follows from convergence in the level of initial data.
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In the case of tensorized initial data and approximation by conditioned BBGKY initial data, the
estimate can be improved to (11.13) using (6.2) and the fact that 𝑁𝜖𝑑−1/2

3 � 1. �

By the proximity Lemma 11.2 and the uniform continuity assumption on the initial data, we also
obtain the following estimate:

Proposition 11.5. Let 𝑠, 𝑛 ∈ N with 𝑠 < 𝑛, 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 be parameters as in (9.4) and 𝑡 ∈ [0, 𝑇]. Then
for any 𝜁 > 0, there is 𝑁2 = 𝑁2 (𝜁, 𝑛) ∈ N, such that for all (𝑁, 𝜖2, 𝜖3) in the scaling (4.24) with 𝑁 > 𝑁2,
there holds

𝑛∑
𝑘=1

∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) − 𝐽∞𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 ( 𝜖0)) ≤ 𝐶𝑛𝑑,𝑠,𝜇0 ,𝑇

‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑅𝑑 (𝑠+3𝑛) 𝜁2.

(11.18)

In the case of Hölder continuous 𝐶0,𝛾 , 𝛾 ∈ (0, 1] tensorized initial data (see Remark 6.3), the estimate
can be improved to

𝑛∑
𝑘=1

∑
𝜎∈𝑆𝑘

∑
(𝐽 ,𝑀 ) ∈U𝑠,𝑘,𝜎

‖𝐽𝑁𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀) − 𝐽∞𝑠,𝑘,𝑅, 𝛿,𝜎 (𝑡, 𝐽, 𝑀)‖𝐿∞(Δ𝑋
𝑠 ( 𝜖0)) ≤ 𝐶𝑛𝑑,𝑠,𝜇0 ,𝑇

‖𝜙𝑠 ‖𝐿∞
𝑉𝑠
𝑅𝑑 (𝑠+3𝑛)𝜖𝛾 ,

(11.19)

for all (𝑁, 𝜖2, 𝜖3) in the scaling (4.24).

Proof. Let 𝜁 > 0. Fix 1 ≤ 𝑘 ≤ 𝑛, 𝜎 ∈ 𝑆𝑘 and (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 . Since 𝑠 < 𝑛, Lemma 11.2 yields

|𝑍𝑁𝑠+�̃�𝑘
(0+) − 𝑍∞

𝑠+�̃�𝑘
(0+) | ≤

√
6𝑛3/2𝜖3, ∀𝑍𝑠 ∈ R2𝑑𝑠 . (11.20)

Thus, the continuity assumption (6.5) on 𝐹0, (11.20), the scaling (4.24), and (4.26) from Remark 4.2
imply that there exists 𝑁2 = 𝑁2 (𝜁, 𝑛) ∈ N, such that for all 𝑁 > 𝑁2, we have

| 𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑁𝑠+�̃�𝑘

(0+)) − 𝑓 (𝑠+�̃�𝑘 )
0 (𝑍∞

𝑠+�̃�𝑘
(0+)) | ≤ 𝐶𝑠+�̃�𝑘−1𝜁2 ≤ 𝐶𝑠+2𝑘−1𝜁2, ∀𝑍𝑠 ∈ R2𝑑𝑠 . (11.21)

In the same spirit as in the proof of Proposition 11.4, using (11.21), (10.24)–(10.25), (10.29), and
summing over (𝐽, 𝑀) ∈ U𝑠,𝑘,𝜎 , 𝜎 ∈ 𝑆𝑘 , 𝑘 = 1, ..., 𝑛, we obtain the result.

In the case of tensorized 𝐶0,𝛾 data, one can easily see by induction that for any 𝑍𝑠+�̃�𝑘
, 𝑍 ′

𝑠+�̃�𝑘
∈

R
2𝑑 (𝑠+�̃�𝑘 ) , we have

| 𝑓 ⊗(𝑠+�̃�𝑘 )
0 (𝑍𝑠+�̃�𝑘

) − 𝑓 ⊗(𝑠+�̃�𝑘 )
0 (𝑍 ′

𝑠+�̃�𝑘
) | ≤ ‖ 𝑓0‖𝑠+�̃�𝑘−1

𝐿∞ [ 𝑓0]𝐶0,𝛾

√
2𝑑 (𝑠 + �̃�𝑘 ) |𝑍𝑠+�̃�𝑘

− 𝑍 ′
𝑠+�̃�𝑘

|𝛾

≤ 𝐶𝑠+�̃�𝑘−1 |𝑍𝑠+�̃�𝑘
− 𝑍 ′

𝑠+�̃�𝑘
|𝛾 .

Thus, by (11.20), we have

| 𝑓 (𝑠+�̃�𝑘 )
0 (𝑍𝑁𝑠+�̃�𝑘

(0+)) − 𝑓 (𝑠+�̃�𝑘 )
0 (𝑍∞

𝑠+�̃�𝑘
(0+)) | ≤ 𝐶𝑠+�̃�𝑘−1𝜖𝛾 ,

and the estimate (11.19) follows in a similar manner as estimate (11.18). �
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11.3. Proof of Theorem 6.8

We are now in the position to prove Theorem 6.8. Fix 𝜃 > 0, 𝑠 ∈ N, 𝜙𝑠 ∈ 𝐶𝑐 (R𝑑𝑠) and 𝑡 ∈ [0, 𝑇].
Consider 𝑛 ∈ N with 𝑠 < 𝑛, and parameters 𝛼, 𝜖0, 𝑅, 𝜂, 𝛿 satisfying (9.4). Let 𝜁 > 0 small enough.
Triangle inequality, Propositions 7.5, 10.2, 10.5, Remark 10.3, estimates (11.12), (11.18) and part (i) of
Definition 6.1, yield that there is 𝑁∗(𝜁) ∈ N such that for all 𝑁 > 𝑁∗, we have

‖𝐼𝑁𝑠 (𝑡) − 𝐼∞𝑠 (𝑡)‖𝐿∞(Δ𝑋
𝑠 (𝜖0)) ≤ 𝐶

(
2−𝑛 + 𝑒−

𝛽0
3 𝑅

2 + 𝛿𝐶𝑛
)
+ 𝐶𝑛𝑅4𝑑𝑛𝜂

𝑑−1
4𝑑+2 + 𝐶𝑛𝑅4𝑑𝑛𝜁2, (11.22)

where 𝐶 > 1 is an appropriate constant.
We now choose parameters satisfying (9.4), depending only on 𝜁 , such that the right-hand side of

(11.22) becomes less than 𝜁 .
Choice of parameters: For 𝜁 sufficiently small, we choose 𝑛 ∈ N and the parameters 𝛿, 𝜂, 𝑅, 𝜖0, 𝛼 in

the following order:

max
{
𝑠, log2(𝐶𝜁−1)

}
<< 𝑛, 𝛿 << 𝜁𝐶−(𝑛+1) ,

max
{
1,
√

3𝛽−1/2
0 ln1/2(𝐶𝜁−1)

}
<< 𝑅 << 𝜁−1/4𝑑𝑛𝐶−1/4𝑑 ,

𝜂 << 𝜁
8𝑑+4
𝑑−1 , 𝜖0 << min{𝜃, 𝜂𝛿}, 𝛼 << 𝜖0 min{1, 𝑅−1𝜂}.

(11.23)

Relations (11.23) imply the parameters chosen satisfy (9.4) and depend only on 𝜁 . Then, (11.22)–(11.23)
imply that we may find 𝑁0 (𝜁) ∈ N, such that for all (𝑁, 𝜖) in the scaling (4.24) with 𝑁 > 𝑁0, there holds

‖𝐼𝑁𝑠 (𝑡) − 𝐼∞𝑠 (𝑡)‖𝐿∞(Δ𝑋
𝑠 (𝜃))

𝜖0<𝜃
≤ ‖𝐼𝑁𝑠 (𝑡) − 𝐼∞𝑠 (𝑡)‖𝐿∞(Δ𝑋

𝑠 (𝜖0)) < 𝜁,

and Theorem 6.8 is proved.

Proof of Corollary 6.10
By Theorem 5.20, we have that F = ( 𝑓 ⊗𝑠)𝑠∈N, where f is the mild solution of the ternary Boltzmann

equation. Therefore, in the same spirit as before (using estimates (11.13), (11.19) instead of (11.12),
(11.18)), for N large enough, we have

‖𝐼𝜙𝑠 𝑓
(𝑠)
𝑁 (𝑡) − 𝐼𝜙𝑠 𝑓

⊗𝑠 (𝑡)‖𝐿∞ (Δ𝑋
𝑠 (𝜖0)) ≤ 𝐶

(
2−𝑛 + 𝑒−

𝛽0
3 𝑅

2 + 𝛿𝐶𝑛
)
+ 𝐶𝑛𝑅4𝑑𝑛𝜂

𝑑−1
4𝑑+2 + 𝐶𝑛𝑅4𝑑𝑛𝜖𝛾∗ ,

(11.24)

where 𝛾∗ = min{1/2, 𝛾} ∈ (0, 1
2 ] and 𝛾 is the Hölder regularity of 𝑓0. Consider 0 < 𝑟 < 𝛾∗.

Choice of parameters: For N large enough (or equivalently for 𝜖 small enough), we choose 𝑛 ∈ N
and the parameters 𝛿, 𝜂, 𝑅, 𝜖0, 𝛼 in the following order:

max
{
𝑠, log2 (𝐶𝜖𝛾∗ )

}
<< 𝑛, 𝛿 << 𝜖𝛾∗𝐶−(𝑛+1) ,

max
{
1,
√

3𝛽−1/2
0 ln1/2(𝐶𝜖−𝛾∗ )

}
<< 𝑅 << 𝜖

𝑟−𝛾∗
4𝑑𝑛 𝐶−1/4𝑑 ,

𝜂 << 𝜖
4𝑑+2)
𝑑−1 𝛾∗ , 𝜖0 << min{𝜃, 𝜂𝛿}, 𝛼 << 𝜖0 min{1, 𝑅−1𝜂}.

(11.25)

Then by (11.24), for N large enough, we take

‖𝐼𝜙𝑠 𝑓
(𝑠)
𝑁 (𝑡) − 𝐼𝜙𝑠 𝑓

⊗𝑠 (𝑡)‖𝐿∞ (Δ𝑋
𝑠 (𝜃))

𝜖0<𝜃≤ ‖𝐼𝜙𝑠 𝑓
(𝑠)
𝑁 (𝑡) − 𝐼𝜙𝑠 𝑓

⊗𝑠 (𝑡)‖𝐿∞ (Δ𝑋
𝑠 (𝜖0)) < 𝜖𝑟 ,

and Corollary 6.10 is proved.
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12. Appendix

In this appendix, we present some auxiliary results which are used throughout the paper.

12.1. Calculation of Jacobians

We first present an elementary Linear Algebra result, which will be useful throughout the manuscript
for the calculation of Jacobians. For a proof, see Lemma A.1 from [2].

Lemma 12.1. Let 𝑛 ∈ N, 𝜆 ≠ 0 and 𝑤, 𝑢 ∈ R𝑛. Then

det(𝜆𝐼𝑛 + 𝑤𝑢𝑇 ) = 𝜆𝑛 (1 + 𝜆−1〈𝑤, 𝑢〉),

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.

12.2. The binary transition map

Here, we introduce the binary transition map, which will enable us to control binary postcollisional
configurations. Recall from (2.2) the binary cross-section

𝑏2(𝜔1, 𝜈1) = 〈𝜔, 𝑣1〉, (𝜔1, 𝜈1) ∈ S𝑑−1
1 × R𝑑 .

Given 𝑣1, 𝑣2 ∈ R𝑑 , we define the domain14 Ω :=
{
𝜔1 ∈ R𝑑 : |𝜔1 | ≤ 2, and 𝑏2 (𝜔1, 𝑣2 − 𝑣1) > 0

}
, and

the set S+
𝑣1 ,𝑣2 = {𝜔1 ∈ S𝑑−1

1 : 𝑏2(𝜔1, 𝑣2 − 𝑣1) > 0} ⊆ Ω. We also define the smooth map Ψ : R𝑑 → R
by Ψ(𝜔1) := |𝜔1 |2. Notice that the unit (𝑑 − 1)-sphere is given by level sets of Ψ i.e. S𝑑−1

1 = [Ψ = 1] .

Proposition 12.2. Consider 𝑣1, 𝑣2 ∈ R𝑑 and 𝑟 > 0 such that |𝑣1 − 𝑣2 | = 𝑟. We define the binary
transition map J𝑣1 ,𝑣2 : Ω → R𝑑 as follows:15

J𝑣1 ,𝑣2 (𝜔1) := 𝑟−1 (𝑣′1 − 𝑣′2), 𝜔 ∈ Ω. (12.1)

The map J𝑣1 ,𝑣2 has the following properties:

1. J𝑣1 ,𝑣2 is smooth in Ω with bounded derivative uniformly in r; that is,

‖𝐷J𝑣1 ,𝑣2 (𝜔1)‖∞ ≤ 𝐶𝑑 , ∀𝜔1 ∈ Ω, (12.2)

where ‖ · ‖∞ denotes the maximum element matrix norm of 𝐷J𝑣1 ,𝑣2 ,𝑣3 (𝜔1).
2. The Jacobian of J𝑣1 ,𝑣2 is given by

Jac(J𝑣1 ,𝑣2) (𝜔1) � 𝑟−𝑑𝑏𝑑2 (𝜔1, 𝑣2 − 𝑣1) > 0, ∀𝜔1 ∈ Ω. (12.3)

3. The map J𝑣1 ,𝑣2 : S+
𝑣1 ,𝑣2 → S

𝑑−1
1 \ {𝑟−1(𝑣1 − 𝑣2)} is bijective. Moreover, there holds

S+
𝑣1 ,𝑣2 = [Ψ ◦ J𝑣1 ,𝑣2 = 1] . (12.4)

4. For any measurable 𝑔 : R𝑑 → [0 + ∞], there holds the change of variables estimate∫
S+
𝑣1 ,𝑣2

(𝑔 ◦ J𝑣1 ,𝑣2 (𝜔1) | JacJ𝑣1 ,𝑣2 (𝜔1) | 𝑑𝜔1 �
∫
S
𝑑−1
1

𝑔(𝜈1) 𝑑𝜈1. (12.5)

Proof. The proof is the binary analogue of the proof of Proposition 8.5. in [5]. �

14We trivially extend the binary cross-section for any 𝜔 ∈ R𝑑 .
15We trivially extend the binary collisional operator for any 𝜔 ∈ Ω.
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