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Abstract. The conformal geometry of the Schwarzian Davey-Stewartson II
hierarchy and its discrete analogue is investigated. Connections with discrete and
continuous isothermic surfaces and generalised Clifford configurations are recorded.
An interpretation of the Schwarzian Davey-Stewartson II flows as integrable de-
formations of conformally immersed surfaces is given.
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1. Introduction. Due to the (re-)discovery of a variety of important connections
between the differential geometry of surfaces and integrable systems, (classical and
modern) differential geometry has been widely recognised as an integral part of
soliton theory (see, e.g., [1]–[3]). However, the fundamental nature of geometry in the
context of integrable systems is a subject of ongoing research and recent investigations
have uncovered unexpected geometric links. For instance, it has been established
that Hirota’s master equation [4] in its Schwarzian form and the associated scalar
Schwarzian Kadomtsev-Petviashvili (SKP) hierarchy are encapsulated in Menelaus’
classical theorem of plane geometry [5]–[7].

In the present paper, we embark on a study of the geometry of the Schwarzian
Davey-Stewartson II hierarchy and its discrete analogue, the quaternionic discrete
SKP (qdSKP) equation. We demonstrate that the qdSKP equation and various
associated continuum limits are canonical objects of conformal (Möbius) geometry
in R 4. In particular, we establish important connections with both discrete and
continuous isothermic surfaces and generalised Clifford point-circle configurations.
We also show that the Schwarzian Davey-Stewartson II hierarchy explicitly defines
integrable deformations of conformal immersions in R 4.

2. The multicomponent discrete Schwarzian KP equation. The multicomponent
KP hierarchy houses a variety of important soliton equations such as the Davey-
Stewartson and N-wave equations and their associated hierarchies [8]. The Schwarzian
KP (SKP) hierarchy consisting of the singularity manifold equations for the
multicomponent KP hierarchy has been shown to admit an elegant compact
formulation [9]. Indeed, it has been established that if an N × N matrix

�(t), t = (t1, t2, t3, . . .) (1)
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depending on an infinite number of ‘times’ tn constitutes a solution of the SKP hierarchy
then the six solutions

�i = Ti�, �ik = TiTk�, i, k = 1, 2, 3, i �= k, (2)

where the ‘shift’ operators Ti are defined by

Ti�(t) = �(t + [ai]) = �

(
t1 + ai, t2 + a2

i

2
, t3 + a3

i

3
, . . .

)
(3)

and ai = const, obey the algebraic 6-point relation

M(�1,�12,�2,�23,�3,�31) = −1. (4)

Here, the multi-ratio M of six matrices P1, . . . , P6 is defined by

M(P1, P2, P3, P4, P5, P6)

= (P1 − P2)(P2 − P3)−1(P3 − P4)(P4 − P5)−1(P5 − P6)(P6 − P1)−1. (5)

The entire SKP hierarchy may then be retrieved from (4) by considering a canonical
limit in which ai → 0 [9]–[11].

As indicated above, the multi-ratio relation (4) represents an algebraic super-
position formula for six solutions of the multicomponent SKP hierarchy. As in the
scalar case [5, 10], it also constitutes an algebraic relation (‘permutability theorem’) for
six solutions generated by a variant of the classical Darboux transformation [12, 13].
Iterative application of the Darboux transformation then produces lattices of solutions
of the multicomponent SKP hierarchy. In particular, the multi-ratio relation (4) may
be interpreted as an equation defined on a Z3 lattice. Thus, in the following, we regard
(4) as a discrete equation for a matrix-valued function

� : Z3 → C N,N, (n1, n2, n3) �→ �(n1, n2, n3), (6)

where the indices on � denote translations on the lattice, that is, for instance,

� = �(n1, n2, n3), �1 = �(n1 + 1, n2, n3), �23 = �(n1, n2 + 1, n3 + 1). (7)

The discrete equation (4) has come to be known as the multicomponent discrete
SKP (dSKP) equation since it encodes the complete multicomponent SKP hierarchy.
Indeed, the genesis of the multicomponent dSKP equation implies that any member
of the multicomponent SKP hierarchy may be obtained from (4) by applying an
appropriate continuum limit. The integrable nature of the multicomponent dSKP
equation is inherited from both the original derivation (1)–(4) and the construction
via Darboux transformations. The following analysis is concerned with the conformal
geometry of the quaternionic dSKP equation and its various continuum limits.

3. The quaternionic dSKP equation. An important property of the multicom-
ponent dSKP equation is its invariance under fractional linear transformations of the
form

� → �′ = (A� + B)(C� + D)−1, (8)
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where A, B, C and D are arbitrary constant matrices. It is therefore natural to
investigate whether contact may be made with conformal (differential) geometry. Thus,
in the remainder of the paper, we assume that the matrix � takes values in the space
of quaternions H . The latter is identified with a four-dimensional Euclidean space
R 4 via

R 4 � (a, b, c, d) ↔ (a1 + b i + c j + d k) ∈ H , (9)

where the matrices 1, i , j, k are defined by

1 =
(

1 0
0 1

)
, i =

(
0 −i
−i 0

)
, j =

(
0 −1
1 0

)
, k =

(−i 0
0 i

)
. (10)

In particular, this isomorphism gives rise to the identities

X2 = det X, XX † = (det X)1, X · Y = 1
2

tr (XY †) (11)

for any quaternions X, Y ∈ H and their vectorial analogues X, Y ∈ R 4. Accordingly,
in the case � ∈ H , we may refer to (4) as the quaternionic dSKP (qdSKP) equation. The
invariance (8) encodes the group of orientation-preserving conformal transformations
in R 4 provided that A, B, C and D are quaternions.

3.1. The ‘geometric’ continuum limit. As alluded to in the preceding section, the
complete quaternionic SKP hierarchy may be retrieved from the qdSKP equation via
appropriate sophisticated limits. We embark on a study of the geometric implications of
this fact in the next section. Here, by contrast, we focus on the natural ‘geometric’ limit
in which the differences �i� = �i − � are regarded as approximations of derivatives,
that is

�i = � + ε�xi + O(ε2), i = 1, 2, 3, (12)

where ε is a lattice parameter and �xi = ∂�/∂xi. In the limit ε → 0 and (x1, x2, x3) =
(x, y, z), the qdSKP equation reduces to

�y�
−1
x �z�

−1
y �x�

−1
z = 1. (13)

The latter becomes an identity if the symmetry

�y + �z = 0 (14)

is imposed. The scalar analogue of this constraint has been shown to lead to conformal
maps or (anti-)analytic functions on the complex plane [5]. As in the scalar case, in
order to obtain a non-trivial continuum limit from the qdSKP equation subject to the
constraint (14), it is required to take into account second-order terms in the Taylor
expansion (12) and consider the terms in the expansion of the qdSKP equation which
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are linear in ε, that is
[
�x y + 1

2
�y y − �y�

−1
x

(
�x y + 1

2
�x x

)]
�−1

x �z�
−1
y �x�

−1
z

+ �y�
−1
x

[
�y z + 1

2
�z z − �z�

−1
y

(
�y z + 1

2
�y y

)]
�−1

y �x�
−1
z (15)

+ �y�
−1
x �z�

−1
y

[
�x z + 1

2
�x x − �x�

−1
z

(
�x z + 1

2
�z z

)]
�−1

z = 0.

Simplification by means of (14) then yields

�x y = 1
2
�x�

−1
y �y y + 1

2
�y y�

−1
y �x. (16)

By virtue of the isomorphism R 4 ∼= H , any solution of the quaternionic equation (16)
gives rise to a surface immersed in R 4 and parametrised by the coordinates x and y.
Its position vector r = (r, r) ∈ R 4 is obtained from the decomposition

� = r1 + r · e, (17)

where the ‘vector’ e is defined by e = (i , j, k). In terms of r , equation (16) is readily
seen to translate into

rx y = ry · ry y

r2
y

rx − rx · ry y

r2
y

ry + rx · ry

r2
y

ry y. (18)

Thus, in the natural geometric continuum limit, the qdSKP equation subject to the
symmetry constraint (14) governs surfaces the position vector of which obeys the
second-order equation (18).

By construction, the surfaces defined above belong to conformal differential
geometry (see, e.g., [14]) due to the invariance of (18) under the group of conformal
(Möbius) transformations as induced by (8). These are integrable in the sense that they
are given in terms of solutions of the soliton equation (16). In order to proceed, it is
now observed that (16) implies that

Qy = 1
2

[
�y y�

−1
y , Q

]
, (19)

where the quaternion Q is defined by

Q = �x�
−1
y �x�

−1
y . (20)

It may therefore be admissible to impose the constraint

(
�x�

−1
y

)2 = −1 (21)

since, in this case, relation (19) is identically satisfied. In the generic case, that is
�x �∼ �y, the constraint (21) is equivalent to the pair

tr
(
�x�

−1
y

) = 0, det
(
�x�

−1
y

) = 1 (22)
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which, in terms of the position vector r, becomes

r2
x = r2

y, rx · ry = 0. (23)

The latter conditions may be used to cast (18) into the form

rx y = rx · rx y

r2
x

rx + ry · rx y

r2
y

ry (24)

or, equivalently,

rx y = arx + bry, (25)

where the real coefficients a and b are determined by the constraints (23). Thus, it has
been established that the surfaces defined by the system (23), (25) constitute a subclass
of the surfaces associated with the continuum limit of the qdSKP equation considered
here.

The geometry of the reduction (23), (25) is now readily revealed. Firstly, the
constraints (23) are equivalent to demanding that the first fundamental form of a
surface be conformally flat, that is

dr2 = �(dx2 + dy2), � = r2
x = r2

y. (26)

The coordinates x and y are therefore conformal coordinates [15]. Secondly, the
hyperbolic equation (25) expresses the fact that the vector rx y is tangential to the
surface so that the coordinates x and y are conjugate [15]. A surface which may
be parametrised simultaneously in terms of conformal and conjugate coordinates is
termed an isothermic surface.† Hence, we conclude that the continuum limit (16) of the
qdSKP equation subject to the constraint (21) is associated with isothermic surfaces.
The latter are classical and have been investigated extensively with respect to both
geometry and integrability (see, e.g., [2, 3] and references therein). The connection with
isothermic surfaces therefore provides a first indication of the fundamental nature of
the qdSKP equation.

3.2. The conformal geometry of the qdSKP equation. Discrete isothermic surfaces.
The qdSKP equation has recently been given a geometric interpretation [16] in terms
of a novel generalisation of Clifford’s classical C4 point-circle configuration. A C4

Clifford configuration is constructed in the following manner [17, 18]: Consider a
point P0 on a plane and four generic coplanar circles S1, S2, S3, S4 passing through
P0. The additional six points of intersection are labelled by P12, P13, P14, P23, P24, P34,
where the indices on Pi k correspond to those of the intersecting circles Si and Sk (cf.
Figure 1). Any three circles Si, Sk, Sl intersect in three points and therefore define
a circle Si k l passing through the points of intersection Pi k, Pil, Pkl. Clifford’s circle
theorem then states that, remarkably, the four circles S123, S124, S134, S234 meet at a
point P1234. It is noted in passing that Clifford configurations (Cn) exist for any number
of initial circles S1, . . . , Sn passing through a point P0.

†Accordingly, a surface is isothermic if and only if its curvature coordinates are conformal modulo a suitable
reparametrisation x → f (x), y → g(y) [15].
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Figure 1. A C4 Clifford configuration

In [5], it has been shown that the six points Pi k of a C4 Clifford configuration are
algebraically related by the multi-ratio relation

M(P14, P12, P24, P23, P34, P13) = −1 (27)

if the plane is identified with the complex plane so that the points Pi k are regarded
as complex numbers. The above multi-ratio relation encodes nothing but Menelaus’
classical theorem of plane geometry if the point P0 is mapped to infinity by a conformal
transformation [19]. Here, it is important to note that if we set aside the points P0 and
P1234 then a C4 Clifford configuration exhibits the combinatorics of an octahedron if
the six points Pi k and eight circles Si, Si k l are identified with the vertices and faces of
an octahedron respectively. In particular, the multi-ratio relation (27) admits the full
symmetry group of an octahedron acting on the entries Pi k. Moreover, Ziegenbein [18]
has proven that all circles and points of a C4 Clifford configuration appear on equal
footing in the sense that the angles made by four oriented circles passing through a
point are the same for all eight points. The converse of Ziegenbein’s theorem is also
valid.

It has been established in [5] that any ‘generic’ six points Pi k on the complex
plane belong to a C4 Clifford configuration if and only if the multi-ratio relation (27)
is satisfied. It is therefore natural to inquire as to the geometric significance of the
quaternionic multi-ratio condition

M(P14, P12, P24, P23, P34, P13) = −1, (28)

where the quaternions Pi k are regarded as points in a four-dimensional Euclidean
space. It is evident that for any ‘generic’ six points Pi k ∈ R 4, the circles Si and Si k l may
still be constructed but, in general, these do not intersect in any points P0 and P1234.
However, if one imposes the Ziegenbein property then the six points Pi k can no longer
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be arbitrary. In fact, it turns out [16] that the Ziegenbein property is equivalent to the
quaternionic multi-ratio condition.† Thus, the latter condition gives rise to generalised
C4 Clifford configurations if their definition is based on the Ziegenbein property.

The preceding discussion of Clifford configurations implies that the qdSKP
equation

M(�1,�12,�2,�23,�3,�31) = −1. (29)

enshrines ‘collections’ of generalised C4 Clifford configurations. This has been made
precise in [16]. On the other hand, the connection with classical isothermic surfaces
as established in Section 3.1 raises the question as to whether the standard integrable
discretisation of isothermic surfaces [2] is related to generalised Clifford configurations.
A quadrilateral lattice (discrete surface)

� : Z2 → R 4 ∼= H (30)

is termed isothermic if the quaternionic cross-ratio

Q(�,�1,�12,�2) = (� − �1)(�1 − �12)−1(�12 − �2)(�2 − �)−1 (31)

associated with any quadrilateral obeys

Q(�,�1,�12,�2) = −1. (32)

Since the above quaternionic cross-ratio condition is invariant under conformal
transformations and any four points in R 4 may be mapped to the plane by means
of an appropriate conformal transformation, the quadrilaterals are inscribed in circles
and their classical (scalar) cross-ratio is −1 [2]. This is the geometric content of the
quaternionic cross-ratio condition (32). It is observed that the quaternionic cross-ratio
condition constitutes a natural discretisation of the constraint (21). However, since
the quadrilaterals are planar, it also discretises the hyperbolic equation (25) so that
(32) may indeed be regarded as a discrete version of the conditions (23), (25) defining
classical isothermic surfaces [2].

The canonical discrete analogue of the constraint (14) is given by the translational
symmetry

�23 = �. (33)

The latter may be used to eliminate quantities which carry an index 3 from the qdSKP
equation (29). On rearranging terms, one obtains

Q(�1,�12,�2,�) = T2̄Q(�12,�1,�,�2), (34)

where T2̄ f (n2) = f (n2 − 1). If the quaternionic cross-ratio condition (32) holds then
both cross-ratios in (34) are −1 due to the symmetry group of the cross-ratio condition.
Accordingly, the pair (32), (33) constitutes a reduction of the qdSKP equation. In
geometric terms, this implies that any discrete isothermic surface extended to a three-
dimensional lattice via the translational symmetry (33) represents a collection of
(degenerate) generalised C4 Clifford configurations as introduced in [16] and alluded
to in the preceding.

† Modulo an inversion with respect to a hypersphere.
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4. Deformation of conformal immersions induced by the Schwarzian Davey-
Stewartson II hierarchy. In order to investigate the conformal differential geometry
of the continuous qSKP hierarchy, we now recall the connection between the qdSKP
equation and the (adjoint) eigenfunctions associated with the quaternionic discrete KP
equation, that is the discrete Davey-Stewartson II equation [9]–[11]. Thus, it is readily
verified that the linear system

φ2 = φ1(�1�)−1�2�, φ3 = φ1(�1�)−1�3� (35)

for a quaternionic function φ is compatible modulo the qdSKP equation (29). Hence,
one may introduce a quaternionic function of ‘separation’ ψ according to

�i� = ψφi. (36)

The compatibility conditions [�i,�k]� = 0 then yield

(φi − φk)φ−1
ik = ψ−1(ψk − ψi). (37)

On the one hand, addition of the three relations (37) produces

(φ1 − φ2)φ−1
12 + (φ2 − φ3)φ−1

23 + (φ3 − φ1)φ−1
31 = 0 (38)

which constitutes the eigenfunction equation for the quaternionic discrete KP equation.
The latter represents nothing but a discrete Davey-Stewartson II equation so that (38)
may be regarded as a discrete version of the modified Davey-Stewartson II equation
which is known as the Ishimori equation [20]. On the other hand, elimination of the
eigenfunction φ from (37) in a similar manner gives rise to the ‘adjoint’ eigenfunction
equation

ψ−1
1 (ψ31 − ψ12) + ψ−1

2 (ψ12 − ψ23) + ψ−1
3 (ψ23 − ψ31) = 0 (39)

with ψ being an adjoint eigenfunction of the discrete Davey-Stewartson II equation.
It is emphasised that the qdSKP and (adjoint) quaternionic discrete KP eigenfunction
equations are equivalent. For instance, if φ is an eigenfunction obeying (38) then the
linear system (37) for ψ is compatible and ψ constitutes a solution of the adjoint
eigenfunction equation (39). Moreover, by construction, the existence of a function �

satisfying the defining relations (36) is guaranteed and � is indeed a solution of the
qdSKP equation (29).

The continuum limit to the qSKP hierarchy requires the introduction of the gauge
transformations

φ → An1
1 An2

2 An3
3 φ, ψ → ψA−n3

3 A−n2
2 A−n1

1 , (40)

where the constant matrices Ai constitute non-degenerate diagonal quaternions. In the
limit in which the qdSKP equation reduces to the nth-order qSKP equation, the system
(36) becomes [9]–[11]

�x = ψA1φ, �y = ψA2φ, �t = Bn(ψ, φ), (41)

where Bn is bilinear in ψ, φ and their derivatives. If we make the choice A1 = 1 and
A2 = k and eliminate the eigenfunction φ from (41) then we obtain the pair

�y = N�x, �t = Ln(�), (42)
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where

N = ψkψ−1 (43)

and Ln(�) = Bn(ψ,ψ−1�x). Accordingly, Ln constitutes a linear operator acting on �

with coefficients depending on ψ and its derivatives. It turns out that these coefficients
may be written as differential expressions in N and a scalar auxiliary function ϕ [9]–[11].
The compatibility condition for the linear system (42) then gives rise to the nth-order
Ishimori equation. For instance, in the case n = 2, the Lax pair (42) assumes the form

�y = N�x, �t = N(�x y − ϕy�x − ϕx�y) (44)

and its compatibility condition yields

Nt = NNx y + NyNx + ϕxNx − ϕyNy − (ϕx x + ϕy y)N. (45)

Now, the definition (43) of N implies that

tr N = 0, N2 = −1, N = S · e, S2 = 1 (46)

and hence decomposition of the matrix equation (45) produces

St = S × Sx y + ϕxSx − ϕySy

ϕx x + ϕy y + (Sx × Sy) · S = 0.
(47)

The latter represents the Ishimori equation which was first set down in [20]. It is
interesting to note that the ‘topological charge’

Q = 1
4π

∫
(Sx × Sy) · S dx dy (48)

is preserved by the Ishimori flow (47)1. In fact, the topological charge may be shown to
be invariant under all higher-order Ishimori flows. It is also remarked that the Ishimori
hierarchy is amenable to the inverse spectral transform (IST) method [21, 22].

The geometry of the Schwarzian Davey-Stewartson (SDS) II hierarchy encoded in
the Lax pair (42) for n = 2, 3, . . . is unveiled by focussing on the ‘scattering problem’
(42)1 (cf. [23]). Thus, if, for any fixed t, we identify the quaternionic function � with the
position vector r of a surface in R 4 then the properties (46)1,2 show that the metric of
the surface is once again given by (26) with x and y being conformal coordinates. Any
SDSII flow (42)2 therefore defines an integrable deformation of conformal immersions
of surfaces in R 4, where the independent variable t is regarded as the deformation
parameter. The associated Ishimori flows possess an infinite set of invariants, the
simplest of which is given by the topological charge (48). Moreover, the invariance of
the qdSKP equation under the Möbius transformation (8) guarantees that the SDSII
deformations are covariant under conformal transformations in R 4. For instance, the
Lax pair (44) is form-invariant under

� → �−1, N → �−1N�, ϕ → ϕ − ln det � (49)

corresponding to the composition of an inversion and a reflection in R 4 given by

r = (r, r) →
( r

r2
,− r

r2

)
, � → �

r4
. (50)
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An important feature of the immersion (42)1 and the deformations (42)2 is that
these are formulated explicitly in terms of geometric quantities, namely the position
vector r (or �) and the quantity N. The latter is known as the ‘left normal’ of the
surface [23]. If tr � = 0, that is if the surface is embedded in R 3 ∼= ImH , then the
immersion formula (42)1 decomposes into

ry = S × rx, S · rx = 0 (51)

so that S constitutes the unit normal

S = rx × ry

�
(52)

to the surface. However, in general, N is not normal to the surface and the constraint
tr � = 0 is not preserved by the SDSII flows (42)2. In this connection, it is interesting to
investigate the stationary points of the SDSII deformations. For instance, if �t = 0
then the flow (44)2 reduces to

�x y = ϕy�x + ϕx�y (53)

which is nothing but the hyperbolic equation (24) with

ϕ = 1
2

ln �. (54)

Thus, the class of surfaces which is preserved by the deformation associated with
the Schwarzian Davey-Stewartson II equation coincides with the class of isothermic
surfaces in R 4. The metric of any such surface is given by

dr2 = e2ϕ(dx2 + dy2), (55)

which affords an immediate geometric interpretation of the auxiliary function ϕ.
Moreover, the auxiliary equation (47)2 constitutes the Gauß equation [15]

ϕx x + ϕy y + Ke2ϕ = 0, (56)

where the Gaußian curvature K of the surface is given by

K = (Sx × Sy) · S e−2ϕ. (57)

The topological charge Q defined by (48) is therefore proportional to the total Gaußian
curvature. Finally, it is noted that the constraint tr � = 0 is compatible with (53) and
gives rise to classical isothermic surfaces in R 3.
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