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ABSTRACT

Algorithms for the calculation of the distribution of the aggregate claims
from a life insurance portfolio have been derived by Kornya (1983), Hipp
(1986) and De Pril (1986 and 1989). All these authors considered the
distribution of the aggregate claims over a single period. In this paper we
derive algorithms for the calculation of the joint distribution of the
aggregate claims from a life portfolio over several periods.

1. INTRODUCTION

Several authors, notably Kornya (1983), Hipp (1986) and De Pril (1986 and
1989) have derived algorithms for the calculation of the distribution of the
aggregate claims from a life insurance portfolio. In each case, the author
considers the aggregate claims over a single period of time. However, a
distinguishing feature of most life insurance portfolios is that the term of the
policies is greater than one year and, taking a year as a natural time period,
the aggregate claims from year to year are likely to be correlated from the
very nature of life insurance. With these features in mind, it is of interest to
derive algorithms for the calculation of the joint distribution of aggregate
claims over several time periods from a life insurance portfolio. In this paper
we present such algorithms.

In the following section we define our notation, make some assumptions
and set out our problem in precise terms. An algorithm for the solution to
our problem is presented as Result 1 in Section 3. This result is a multi-
period extension of De Pril's (1989) Theorem 1, and the proof follows along
the same lines. In Section 4 we present a second algorithm, which can be
regarded as an approximation to the (exact) algorithm in Section 3. An error
bound for this approximate algorithm is given in Result 2. The approxima-
tion corresponds to De Pril's (1989) formulae (16.a) and (16.b) and the proof
of our Result 2 is similar to that of this Theorem 3.
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In Section 5 we describe a hypothetical portfolio of endowment
assurances which we use to illustrate our algorithms. In particular, we are
interested in the joint distribution of the losses in two successive years. We
use the algorithms of Sections 3 and 4 to calculate this joint distribution
exactly and approximately. We compare the results with those obtained
from approximating this joint distribution in different ways.

2. PRELIMINARIES

2.1. Set-up

We consider a life portfolio consisting of a total of N independent policies.
For each policy7,7 = 1, ..., N, we are interested in an m-dimensional vector
of real-valued random variables, Zy = (Z,i, ..., Z/m), determined by the life
history of the policy. For example:

1. Zjk could represent the sum assured paid in year k in respect of policy/
2. Zjk could represent the present value of the loss in year k in respect of

policy j in a portfolio of, for example, endowment assurances, or
annuities or disability policies.

3. The time periods k = 1, ..., m need not be disjoint; they could be
overlapping time periods of unequal length.

The important feature is that for a given policy j , the random variables
{Zjk}™=l are not assumed to be independent. For convenience, we will refer
to Zjk as "the loss from policy j in year k".

We suppose that the policies can be grouped into n (< N) classes such
that policies in the same class are probabilistically identical. More precisely,
we assume that if policies j and / belong to the same class then Zy- and Z/ are
identically distributed (as well as being independent when j' ^ I). Let «,•
denote the number of policies in class i, i = 1, ..., «, so that N = YM=\ ni> a n d
let Xj be a vector with the same distribution as Z; for all policies in class /.

Throughout this paper, all vectors are of dimension m and a vector z has
components (z\, Z2, ..., zm). We will use the notation y < x to mean that
yk < Xk for k = 1, ..., m, and the notation y < x to mean that y^ < x^ for
k = 1, ..., m, with at least one of the inequalities being strict.

2.2. Assumptions

1. For a policy from class i we assume that X_t is an integer-valued vector.
In practical applications, this may require discretisation and hence
approximation.
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2. For a policy from class i and for k = 1, ..., m, let cik be the smallest
possible value of Xik. More precisely:

Cik = inm{xik\xik e 7L and Pr(X,* = xik) > 0}

We denote (c,-i, ..., c,-m) by ct. Let:

<?, = 1 -/>;

We assume that 0 < p, < 1.

2.3. Definitions

For i = 1,2, ..., n, let:

and for y ^ 0 let hi(y) be defined as:

/ ( ) P (

so that A/(>>) is the probability that X_t• — y + c(, given that y ^ 0. (For
convenience, we will define A/(0) to be 0.)

Let Bj(s) be the probability generating function corresponding to the
(multivariate) distribution determined by hi(y) so that:

The following notation will be useful: for j = 1, ..., m, let 6^ denote the
vector whose y'-th component is 1 and all of whose remaining components
are 0.

2.4. Objective

Let Y_ be defined as follows:

7=1

so that the components of the vector Y_ are the total losses in successive years
from the whole portfolio. Let g(y) be the probability function for Y_, defined
for all (non-negative) y.

Our objective is to derive recursive formulae for the calculation of g(y).
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3. AN EXACT ALGORITHM

Result 1:

where w^\y) = X)"=i wi (j) ar>d:

' ~ 'Pi J ' ~ ~ Pi

Proof: Formula (1) is immediate from the definitions of X and /?, and from
the independence of the policies.
Let A(s) be the probability generating function of X- Then, from the
independence of the policies, we have:

i + qiBi(s)r (4)

Hence, for any j , j = 1, ..., m\

d

Now define the functions Wt (s) and W^\s) as follows:

Pi +

1=1

so that:
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From their definitions, the definition of Bi(s) and Assumption 1 in Section
2.2, it can be seen that both Wy (s) and W^(s) can be written as power
series in s^1 ... s^ for y > 0. Hence we can write:

y>0

for some real-valued functions w,- (y) and w(J\y) (= YTi=\ wi M ) - Hence:

(5)

Now differentiate both sides of (5) with respect to s\ {y\ times), ..., Sj (yj — 1
times), ..., sm (ym times) for any y > 6^ and put s\ = ... — sm = 0 to obtain:

( m \ . / m \

k=\ ) yJ \k=\

This proves formula (2).
Now note that:

so that:

(6)

Let _y be any non-negative vector. Formula (3) follows from differentiating
(6) with respect to A'I (y\ times), ..., sm (ym times), putting s\ = ... = sm — 0,
cancelling the term (n™=i yiS) and rearranging.
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Remark: Since formula (3) holds for any y > 0, we have:

Hf(0)=/A(«W) (7)
Pi

Starting from formula (7), formula (3) can be used recursively to calculate
w\'\y) for any y > 0.

4. AN APPROXIMATE ALGORITHM

Throughout this section we will make the following extra assumption:

qi < pi for / = 1, ..., n (8)

Recall that the random variable X& represents the "loss from policy / in year
K\ In many practical applications this loss will achieve its minimum value,
i.e. Cjk, when no claim is made in year k and so/?, will be the probability that
a policyholder from class / does not die in years k = 1,2, ..., m. In such an
application it is quite likely that assumption (8) will hold. This will be the
case in the numerical example in the following section.

Using this assumption we will produce approximations to the joint
probability function g(y) and give bounds for the errors in these
approximations.

First note that (4) can be written:

A(s) = exp(J7(s))

where:

U(s) = Y^ ni
1=1

(=1 V k=\

For each positive integer r, define U(r;s) and A(r;s) as follows:

u(r,s) = g«;- (logip;) + £ (-i)k+i {^jx
lBl{A

A(r;s) = exp(U(r,s)) (9)

We can write:

A(r-s) =
y>0

for some function g(r;y). We regard g(r;y), or some simple adjustment of it,
as an r-th order approximation to g(y).
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We can calculate g(r; y) recursively using (9) as follows:
for any j , j = 1, ..., m:

— A(r;s)=eXp(U(r,s)) — U(r,s)

i=\ k=\

y>0

for some function u^(r;y). Formula (10) corresponds to (5). We can derive
the following formula in exactly the same way that (2) was derived from (5):

1
<f(Y' Y \ Y ) — \ 1J^'' I Y' V\<j(V Y S' ̂  l A l 1 1 l

JC' — —
1 0<y<x-Su)

The (possible) advantages of using g(r;y) as the basis for an approximation
to g(y), i.e. using (11) rather than (2)7are that values of u^{r\y) can be
calculated directly from:

y>0 i=l k=\

whereas values of w^'(y) have to be calculated recursively using (3) and (7),
and also that if r is small and there are only a few vectors y for which hi(y) is
non-zero, then there will only be a few vectors y for which u^\r\y) is non-
zero. This should mean that fewer calculations are required to obtain values
for g(r; y) than are required to obtain values for g(y).

Bound for the approximations are provided by the following result:

Result 2: For any y > 0:

To prove this result we need the multi-dimensional analogue of the results on
the partial ordering of power series used by Kornya (1983) and De pril (1988
and 1989). Let C(s), D(s) and E(s) be any m-dimensional power series
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defined for non-negative powers of s, where 0 < sj < 1 for j = 1, ..., m, so
that, for example:

y>0

for some real valued function c{y) defined for vectors y > 0.

Definitions: W e denote by |C(5)|S the power series J2y>o c(y) ^x ••• s)>m-
W e write:

C(s) <s_ D(s)

whenever for any j / > 0 w e have:

0<x<y 0<x<y

The (one-dimensional version of the) following lemma appears in De Pril
(1988 and 1989) and is proved by Kornya (1983). The proof is similar in the
multi-dimensional case.

Lemma:
(0 |C(j) c(l) c(l) < oowhenever ^

(ii) \C(si+D(i)\<, \C(s)\s+\D(s)\s

(in) \C(s)-D(s)\s<sJC(s)\s-\D(s)\s

(iv) |exp(C(5)) - 1|,<, exp(|C(j)|,) - 1

(v) \C(s)\s<s_ \D(s)\s^ \C(s)\s-\E(s)\s<s_ \D(s)\s.\E(s)\s

(vi) \C(s)\s<s_ \D(s)i=* exp(|C(s)Q - 1 <, exp(|Z)(|)Q - 1

Proof of Result 2: Since:

A(s) — A(r;s) = A(s) • (1 — exp(log^4(r;5) — log A(s)))

we can use part (iii) of the Lemma to write:

\A(s)-A(r;s)\s_<s_ \A(s)l-\exp(logA(r;s) -logA{s)) - l\s_

But:

y>0

j > 0
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using part (i) of the Lemma. Hence:

\A(s) — A(r;s)\s <s |exp(log^4(r;,s;) — logA(s)) — l|s

<s exp(|log^4(r;5) - log A(s)\,) - 1

= exp( |C/(r ;5)-C/(*) | , ) - l

Also

\U(r;s)-U(s)\s =

i=l k=r+\

Hence, using part (vi) of the Lemma:

( n oo / \ k i \

/=1 *=r+l V*'/ V

<s exp I > —-— | - | Fl I - 1
Hence, for any y > 0

/=l - 9i

Remarks: Being a probability, g(x) is always non-negative. However, there is
no guarantee that g(r;x) will always be non-negative. To avoid the
embarrassment of approximating a probability by a negative number, we
could use either |g(r;x)| or max(g(r;x),0) as an r-th order approximation to
g(x). Note that the upper bound in Result 2 applies to these approximations
since

\g(x)-\g(r,x)\\<
0<x<y 0<x<y
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and

J2 \g(x)-max(g(r,x),0)\< ^ \g(x) - g(r; x)\
0<x<y 0<x<y

Setj = 1 in (12), so that we are in the one-dimensional case considered by
De Pril (1986 and 1989). The value of u^(r;x), for any x > 0, can be
calculated from (12) by differentiating the right hand side x times with
respect to s and then setting s = 0. Let h*k{.) denote the &-fold convolution
of hj(.) with itself. Then Bt(s) is the probability generating function of
h*k(.) and it can be seen that:

W(«W(r;;c) =
t=\ k=\

A little algebra then shows that the approximation in this section
corresponds to De Pril's approximation (1989, Section 4).

5. NUMERICAL EXAMPLE

5.1. The portfolio

Consider a portfolio of identical 10-year non-profit endowment assurances.
The sum assured is payable at the end of the year of death, or on maturity,
and premiums are payable annually in advance. The policyholders are all
males and are aged 45 when their policies are effected. We are interested in
the experience of this portfolio, including new entrants next year, over the
next two years. If a polieyholder survives for a year, or surrenders his policy
at the end of a year, the loss to the insurer is zero. If a polieyholder dies in a
year, the loss to the insurer depends on the policyholder's age at the start of
the year: values for these losses are shown in Table 1. These figures are
broadly consistent with the losses from a policy with sum assured 16 and an
annual premium of 1, where loss is defined as the sum assured payable minus
the reserve being held. Also shown in Table 1 are the probability of death in
the coming year for each age (these are taken from the AM(80) Select table,
see CMI Report Number 10 (1990)) and the current number of policyholders
at each age as a multiple of some positive integer K. One year from now, 3A"
policyholders, then aged 45, will enter the portfolio. Finally, for each
polieyholder who survives to age 46 there is a probability of 0.3 that he will
surrender his policy before paying the premium then due.
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TABLE 1

PORTFOLIO DETAILS

Age at start

of the year

45

46

47

48

49

50

51

52

53

54

Loss on death

in the year

15

14

12

11

10

8

6

4

2

0

Prob. of death

in the year x 103

1.467

2.064

2.660

3.003

3.386

3.813

4.290

4.821

5.410

6.065

Current number

of policyholders

IK

2K

2K

2K

2K

2K

2K

2K

2K

2K

We want to calculate the joint distribution of (Xi, X2), where X\ and X2 are
the aggregate losses from this portfolio this year and next year, respectively.
In the terminology of Section 2, we have:

N = 16K: note that those policyholders currently aged 54 will not
contribute to either X\ or X2 and so can be ignored.
n = 10: the ten classes of policyholders are one for the new entrants next
year (/ = 1) and one for each of the current ages 45 to 53 (i = 2, ..., 10).
n, = 3 * for 1 = 1,2 and «, = 2K for i = 3, ..., 10.
m = 2 since we are considering the joint distribution of the losses over
two time periods.
.Xjk is the loss in year k from a policy in class /, so that, for example:

0 w.p. 0.997936

14 w.p. 0.002064

J 0 w.p. 0.002064 + 0.997936 x 0.997340 = 0.997345

" 1 12 w.p. 0.997936 x 0.002660 = 0.002655

c^ = 0 for all / and k since for each policyholder there is either a positive
(or zero) loss on death or a zero loss on survival or withdrawal.

Straightforward calculations give the values for the moments of X\ and
X2, as multiples K, shown in Table 2, where p(X\,X2) is the coefficient of
correlation between X\ and X2-
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TABLE 2

MOMENTS OF XI AND X2

= 0.494129 xK

V[Xi] = 4.950015 xK
Elx2] = 0.521714xA:

V[X2] = 5.342768X.K

p(X1,X2) = -0.002549

5.2. Numerical results

We calculated exact and approximate values of Pr(X\ < x\, X2 < x-i) for
0 < xx < 200,0 < x2 < 200 for both K = 5 and K = 10. For ease of
presentation, we show in Tables 3a and 3b the results for (JCI,X2) = (x,x),
where x = 0, 5, ..., 25, only. The key to these two tables is as follows:

(1) denotes the exact value of the probability calculated using Result 1 in
Section 3. We also calculated these probabilities using the approx-
imate method derived in Section 4 with r = 3; since the upper bound
for the error is exp(A" x 1.5 x 10~8) — 1, the results were the same as
the exact values to at least four decimal places in both tables. Run
times for the approximate algorithm are faster than those for the
exact algorithm, but the difference is apparent only for large values of
the argument {x\,X2). None of the calculated values of g(r;x) was
negative in our examples.

(2) denotes an approximation based on the assumption that X\ and Xi
have independent normal distributions with means and variances as
in Table 2.

(3) denotes an approximation based on the assumption that {X\,X-i) has
a bivariate normal distribution with moments as shown in Table 2.

(4) denotes an approximation based on the assumption that X\ and Xi_
are independent. The distributions of X\ and X^ have been calculated
exactly using De Pril's (1989) one-dimensional recursive algorithm.

(5) denotes an approximation based on a method proposed by Wang
(1997, formula (11.2)). This method produces an approximation to a
joint distribution which has the correct marginal distributions for X\
and X2 and the correct covariance between the two distributions. A
feature of this approximation is that the approximating function need
not be a probability distribution; in particular, it need not always be
non-negative and it need not be bounded above by one.

https://doi.org/10.2143/AST.29.2.504616 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.2.504616


MULTI-PERIOD AGGREGATE LOSS DISTRIBUTIONS FOR A LIFE PORTFOLIO 307

TABLE 3a

EXACT AND APPROXIMATE VALUES OF Pr(Xi < x, X2 < x) : K = 5

X

0
5
10
15
20
25
30

(1)

0.5298

0.6460
0.8015
0.9554

0.9789
0.9926
0.9984

(2)

0.0951
0.4710
0.8635
0.9859
0.9994
1.0000
1.0000

(3)

0.0947
0.4706
0.8635
0.9859
0.9994

1.0000
1.0000

(4)

0.5304
0.6464

0.8017
0.9554
0.9789
0.9926
0.9984

(5)

0.5300
0.6461
0.8015
0.9554

0.9789
0.9926
0.9984

TABLE 3b

EXACT AND APPROXIMATE VALUES OF P r ^ < x, X2 < x) : K = 10

X

0
5
10
15
20
25
30

(1)

0.2807
0.4119
0.6189
0.8486
0.9196
0.9650
0.9878

(2)

0.0573
0.2457
0.5680
0.8401
0.9626
0.9944
0.9995

(3)

0.0571
0.2453
0.5678
0.8401

0.9626
0.9944
0.9995

(4)

0.2813
0.4124
0.6192
0.8487
0.9197
0.9650
0.9878

(5)

0.2810
0.4121
0.6190
0.8485

0.9196
0.9650
0.9878

The numerical example in this section has been included to illustrate the
range of alternative methods available for approximating the joint
distribution of losses from a life portfolio and to test their accuracy when
applied to a particular example. We cannot draw general conclusions from
our numerical results but we can make the following points about Tables 3 a
and 3b:

(a) The numerical results for the independent normal and the bivariate
normal approximations, columns (2) and (3), are very close to each
other. This is presumably because the correlation between X\ and X2
is very small.

(b) This small correlation also explains why Wang's approximation,
column (5), does not produce significantly different results from the
approximation assuming independence of X\ and X2, column (4).

(c) The two normal approximations, columns (2) and (3), produce
significantly poorer approximations than the approximation assum-
ing independence and Wang's approximation, columns (4) and (5). As
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K, the multiplier for the number of policies, increases, we would
expect, by appealing to the Central Limit Theorem, that the two
normal approximations would perform better. However, note that for
K as low as 10, we have a portfolio with over 200 independent
policies.
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Note added in proof stage: Our aim in this paper has been to extend to the
multivariate case the results (in the univariate case) derived by De Pril (1986
and 1989). Our methods follow closely those of De Pril. After submitting this
paper to ASTIN we were made aware of the relationship between our results
and those of Sundt (1998a and 1998b). These relationships are detailed in the
Discussion paper by Sundt in this issue. We readily acknowledge that
Sundt's work predates the work for our paper.
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