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Abstract

A finite-horizon insurance model is studied where the risk/reserve process can be
controlled by reinsurance and investment in the financial market. Our setting is innovative
in the sense that we describe in a unified way the timing of the events, that is, the arrivals of
claims and the changes of the prices in the financial market, by means of a continuous-time
semi-Markov process which appears to be more realistic than, say, classical diffusion-
based models. Obtaining explicit optimal solutions for the minimizing ruin probability is
a difficult task. Therefore we derive a specific methodology, based on recursive relations
for the ruin probability, to obtain a reinsurance and investment policy that minimizes an
exponential bound (Lundberg-type bound) on the ruin probability.
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1. Introduction

We consider a discrete-time insurance risk/reserve process which can be controlled by
reinsurance and investment in the financial market, and we study the ruin probability problem
in the finite-horizon case. Although controlling a risk/reserve process is a very active area of
research (see Chen et al. (2000), Wang et al. (2004), Schmidli (2008), Huang et al. (2009), and
the references therein), obtaining explicit optimal solutions minimizing the ruin probability
is in general a difficult task even for the classical Cramér–Lundberg risk process. Thus, an
alternative method commonly used in ruin theory is to derive inequalities for ruin probabilities.
The inequalities can be used to obtain upper bounds for the ruin probabilities (see Wilmot
and Lin (2001), Grandell (1991, pp. 1–32), and Schmidli (2002)), and this is the approach
followed in the present paper. The basis of this approach is the well-known fact that in the
classical Cramér–Lundberg model if the claim sizes have finite exponential moments then the
ruin probability decays exponentially as the initial surplus increases (see, for instance, the book
by Asmussen (2000, pp. 97–129)). For the heavy-tailed claims case, it is also shown to decay
with a rate depending on the distribution of the claim size; see, e.g. Gaier et al. (2003). Paulsen
(1998) reviewed general processes for the ruin problem when the insurance company invests in
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Ruin probabilities in a finite-horizon risk model 955

a risky asset. Xiong and Yang (2011) gave conditions for the ruin probability to be equal to 1
for any initial endowment and without any assumption on the distribution of the claim size as
long as it was not identically zero.

Control problems for risk/reserve processes are commonly formulated in continuous time.
Schäl (2004) introduced a formulation of the problem where events (arrivals of claims and asset
price changes) occur at discrete points in time that may be deterministic or random, but their
total number is fixed. Diasparra and Romera (2009) considered a similar formulation in discrete
time. Having a fixed total number of events implies that in the case of random time points the
horizon is random as well. In the present paper we follow an approach inspired by Edoli and
Runggaldier (2010), who claimed that a more natural way to formulate the problem in the case
of random time points is to consider a given fixed time horizon so that the number of event
times also becomes random, making the problem nonstandard. Accordingly, it is reasonable to
assume that the control decisions (level of reinsurance and amount invested) also correspond
to these random time points. Note that this formulation can be seen equivalently in discrete or
continuous time.

The stochastic elements that affect the evolution of the risk/reserve process are thus the
timing and size of the claims as well as the dynamics of the prices of the assets in which the
insurer is investing. This evolution is controlled by the sequential choice of the reinsurance and
investment levels.

Claims occur at random points in time and their sizes are also random, while asset price
evolutions are usually modeled as continuous-time processes. On small time scales, prices
actually change at discrete random time points and vary by tick size. In the proposed model
we also let asset prices change only at discrete random time points with their sizes being
random as well. This will allow us to consider the timing of the events, namely the arrivals
of claims and the changes of the asset prices, to be triggered by the same continuous-time
semi-Markov process, i.e. a stochastic process where the embedded jump chain (the discrete
process registering what values the process takes) is a Markov chain, and where the holding
times (the times between jumps) are random variables, whose distribution function may depend
on the two states between which the move is made. Since between event times the situation for
the insurer does not change, we will consider controls only at event times.

Our bounds are derived mainly for the purpose of obtaining a reinsurance and investment
policy that possibly minimizes the ruin probability. These bounds may not be particularly
useful as bounds for the ruin probability itself since they are not guaranteed to be less than 1;
however, they make it possible to actually derive a reinsurance and investment policy that, by
minimizing the bounds, may be considered as a reasonable policy in view of minimizing the ruin
probability. This is confirmed by the simulation results in Piscitello (2012), where one can also
see that, in line with the recent literature, investing in the financial market may be dangerous.
The main computational advantage of minimizing the bounds is that, while the actual optimal
policy may turn out to be of the form of a closed-loop feedback policy and, thus, difficult to
determine computationally, the bound minimizing policy is of the myopic type requiring to
minimize locally the bound at each event time and it is thus of a much simpler structure.

The rest of the paper is organized as follows. In Section 2 we describe the model and,
in particular, the risk process. Section 3 is devoted to deriving recursive relations for the
ruin probability. On the basis of these recursive relations, in Section 4 we obtain exponential
(Lundberg-type) bounds on the ruin probability. In Section 5 we then discuss a policy iteration
approach which yields insurance and investment levels that minimize these bounds. Finally,
Section 6 contains some concluding remarks.
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2. The model

We consider a finite time horizon T > 0. More precisely, to model the timing of the events
(arrival of claims and asset price changes), inspired by Schäl (2005) we introduce the process
{Kt }t>0 for t ≤ T , a continuous-time semi-Markov process (SMP) on {0, 1}, where Kt = 0
holds for the arrival of a claim, and Kt = 1 for a change in the asset price. The embedded
Markov chain, i.e. the jump chain associated to the SMP {Kt }t>0, evolves according to a
transition probability matrix P = ‖pij‖i,j∈{0,1} that is supposed to be given, and the holding
times (the times between jumps) are random variables whose probability distribution function
may depend on the two states between which the move is made. We return to this point in
Subsection 2.1.

Let Tn be the random time of the nth event, n ≥ 1, and let the counting process Nt denote
the number of events having occurred up to time t , defined as

Nt =
∞∑
j=1

1{Tj≤t},

and so Tn = min[t ≥ 0 | Nt = n].
2.1. Risk process

In this section we introduce the dynamics of the controlled risk processXt for t ∈ [0, T ] with
T a given fixed horizon. For this purpose, let Yn be the nth (n ≥ 1) claim payment represented
by a sequence of independent and identically distributed (i.i.d.) random variables with common
probability distribution function (PDF) F(y) having support in the positive half-line. LetZn be
the random variable denoting the time between the occurrence of the (n− 1)th and nth (n ≥ 1)
jumps of the SMP {Kt }t>0. We assume that {Zn} is a sequence of i.i.d. random variables with
PDF G(·). From this we may consider that the transition probabilities of the SMP {Kt }t>0 are

P{KTn+1 = j, Zn+1 ≤ s | KTn = i} = pijG(s).

Note that, for a full SMP model, the distribution function G(·) also depends on i and j , and
the results derived below go through in the same way for this more general case. Since in
many cases of interest (see Example 1 below) G(·) is independent of i and j , for simplicity of
presentation, we will restrict ourselves to such a situation.

Example 1. A specific form of SMP, which we will also refer to later, arises, for example,
as follows. Let N0

t and N1
t be independent Poisson processes with intensities λ0 and λ1,

respectively. We may think of N0
t as counting the number of claims and of N1

t as counting the
number of price changes, withNt = N0

t +N1
t again a Poisson process of intensity λ = λ0 +λ1.

We may then set

KTn =
{

0 if at Tn a jump of N0
t has occurred (claim),

1 if at Tn a jump of N1
t has occurred (price change).

It then easily follows that

P{KTn+1 = j, Zn+1 ≤ s | KTn = i}
= P{KTn+1 = j | Zn+1 ≤ s, KTn = i} P{Zn+1 ≤ s | KTn = i}
= pij P{Z1 ≤ s}
= λj

λ
[1 − e−λs],
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so that, in this case

pij = λj

λ
:= pj for all i, G(s) = [1 − e−λs].

Remark 1. Our model, in particular the specific case of Example 1, does not allow for
simultaneous jumps (claims and price changes may however occur very close to one another).
On the other hand, we could include simultaneous jumps into our model by extending Kt to
take three possible values, namely,

KTn =

⎧⎪⎨
⎪⎩

0 for a claim,

1 for a price change,

2 for simultaneous claim and price changes.

The risk process is controlled by reinsurance and investment. In general, this means that we
may choose adaptively at the event times TNt (they correspond to the jump times of Nt ), the
retention level (or proportionality factor or risk exposure) bNt of a reinsurance contract as well
as the amount δNt to be invested in the risky asset, namely in SNt with St denoting discounted
prices. For the values b that the various bNt may take, we assume that b ∈ [bmin, 1] ⊂ (0, 1],
where bmin will be introduced below and, for the values of δ for the various δNt , we assume
that δ ∈ [δ, δ] with δ ≤ 0 and δ > 0 exogenously given. Note that this condition also allows
for negative values of δ, meaning (see also Schäl (2004)) that short selling of stocks is allowed.
On the other hand, with an exogenously given upper bound δ, it might occasionally happen
that δNt > XNt , implying a temporary debt of the agent beyond his/her current wealth in
order to invest optimally in the financial market. By choosing a policy that minimizes the
ruin probability, this debt is however only instantaneous and, with high probability, leads to a
positive wealth at the next event time.

Assume that prices change only according to

SNt+1 − SNt

SNt
= (eWNt+1 − 1)KTNt+1 ,

where Wn is a sequence of i.i.d. random variables taking values in [w,w] with −∞ < w <

0 < w < +∞ and with PDFH(w). For simplicity and without loss of generality, we consider
only one asset to invest in. An immediate generalization would be to also allow for investment
in the money market account.

Let c be the premium rate (income) paid by the customer to the company, fixed in the contract.
Since the insurer pays the reinsurer a premium rate, which depends on the retention level bNt
chosen at the various event times TNt , we denote byC(bNt ) the net income rate of the insurer at
time t ∈ [0, T ]. For b ∈ [bmin, 1], we let h(b, Y ) represent the part of the generic claim Y paid
by the insurer and in what follows we take the function h(b, Y ) to be of the form h(b, Y ) = bY

(proportional reinsurance). We will call a sequence π = (bn, δn) of control actions a policy,
where (bn, δn) is short for (bTn, δTn). Control actions over a single period will be denoted by
φn = (bn, δn). According to the expected value principle with safety loading θ of the reinsurer,
for a given starting time t < T , the income rate function C(b) can be chosen as follows:

C(b) := c − (1 + θ)
E{Y1 − h(b, Y1)}
E{Z1 ∧ (T − t)} , 0 < t < T . (1)

Note that C(b) depends on the starting and the terminal times t and T only via T − t in the
denominator of (1); the value of T − t can however be considered as given so that C(b) can
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indeed be considered as depending only on the current value b of the retention level (it is in
fact a rate over the interval [t, T ]).

We use Z1 and Y1 in the above formula since, by our i.i.d. assumption, the various Zn
and Yn are all independent copies of Z1 and Y1. Note also that, in order to keep (1) simple
and possibly similar to standard usage, in the denominator on the right-hand side we have
considered the random timeZ1 between two successive events, while more correctly we should
have taken the random time between two successive claims, which is larger. For this, we can
however play with the safety loading factor. In fact, if we denote by Z̄ the average time between
successive claims before T and, for a given θ , put θ̄ = (1+ θ)Z̄/E{Z1 ∧ (T − t)}−1, we have
(1 + θ)/E{Z1 ∧ (T − t)} = (1 + θ̄ )/Z̄. Since in this way 1 + θ̄ = (1 + θ)Z̄/E{Z1 ∧ (T − t)}
and Z̄ > E{Z1 ∧ (T − t)}, we are assured that 1 + θ̄ > 1. We can now define

bmin := min[b ∈ [b∗, 1] | c ≥ C(b) ≥ c∗], (2)

where c∗ ≥ 0 denotes the minimal value of the premium considered by the insurer and b∗ > 0 is
the minimal value for the proportion of the claim paid by the insurer. It follows that C(bmin) =
max[c∗, C(b∗)]. We make the following assumption.

Assumption 1. Suppose that the following statements hold.

(i) The tuple (Zn, Yn,Wn)n≥1 is formed by independent sequences of i.i.d. random variables.

(ii) Defining r̄ := sup{r ≥ 0 | E{erY1} < +∞}, assume that r̄ > 0 and that E{er̄Y1} = +∞.

(iii) c − (1 + θ)E{Y1}/E{Z1 ∧ T } > 0.

Remark 2. (i) Since b ≤ 1, Assumption 1(ii) implies that, for all b ∈ [bmin, 1], we have
E{erbY1} < +∞ for r ∈ [0, r̄) and E{erbY1} = +∞ for r = r̄/bmin.

(ii) Since the support of Y1 is in the positive half-line, we have limr↑r̄ E{erY1} = +∞. Note
that r̄ may be equal to +∞, e.g. if the support of Y1 is bounded.

(iii) For h(b, Y ) = bY , Assumption 1(iii) implies that c ≥ C(b) ≥ c∗ ≥ 0 for all b ∈ [bmin, 1]
and that, furthermore, c ≥ 0.

(iv) From the definition of C(b) in (1), the definition of bmin in (2), Assumption 1(iii), and the
fact that C(bmin) = max[c∗, C(b∗)], it follows that

bmin =
⎧⎨
⎩1 − (c − c∗)E{Z1 ∧ (T − t)}

(1 + θ)E{Y1} if c∗ > C(b∗) > 0,

b∗ if 0 < c∗ ≤ C(b∗).

In the given setting, for the insurance risk process (surplus)X, we obtain the following one-
step transition dynamics between the generic random times Tn and Tn+1 when at Tn a control
action φ = (b, δ) is taken for a certain b ∈ [bmin, 1] ⊂ (0, 1] and δ ∈ [δ, δ]:

XTn+1 = XTn + C(b)Zn+1 − (1 −KTn+1)h(b, Yn+1)+KTn+1δ(e
Wn+1 − 1). (3)

Definition 1. Letting U := [bmin, 1] × [δ, δ], we say that a control action φ = (b, δ) is
admissible if (b, δ) ∈ U . Note that U is compact. A policy π will be called admissible if it
implies admissible control actions.
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We now want to express the one-step dynamics in (3) when starting from a generic time
instant t < T with a capital x. For this purpose, note that if, for a given t < T , we have
Nt = n, the time TNt is the random time of the nth event and Tn ≤ t ≤ Tn+1. Since, when
standing at time t , we observe the time that has elapsed since the last event in TNt , it is not
restrictive to assume that t = TNt (see the comment following (4) below). A further justification
for letting t = TNt can be given in the case of Example 1: the random variable there has a
negative exponential distribution and this distribution is memoryless. Furthermore, since Zn,
Yn, and Wn are i.i.d., in the one-step random dynamics for the risk process Xt we may replace
the generic (Zn+1, Yn+1,Wn+1) by (Z1, Y1,W1). We may thus write

XNt+1 = x + C(b)Z1 − (1 −KTNt+1)h(b, Y1)+KTNt+1δ(e
W1 − 1) (4)

for 0 < t < T, T > 0, and with Xt = x ≥ 0 (recall that we assumed that t = TNt ). Note that,
if we had t 
= TNt and, therefore, t > TNt , the second term on the right-hand side of (4) would
become C(b)[Z1 − (t − TNt )] and (4) could then be rewritten as

XNt+1 = [x − C(b)(t − TNt )] + C(b)Z1 − (1 −KTNt+1)h(b, Y1)+KTNt+1δ(e
W1 − 1),

with the quantity [x−C(b)(t−TNt )], which is known at time t , replacing x. This is the sense in
which we mentioned above that it is not restrictive to assume that t = TNt . In what follows we
will work with the risk processXt (orXNt ), as defined by (4). For convenience, we will denote
by (bn, δn) the values of φ = (b, δ) at t = TNt . Accordingly, we will also write (bNt , δNt ) for
(bTNt , δTNt ).

Objective. Determine an admissible reinsurance and investment policy π so as to minimize
a suitable bound on the ruin probability, where by ‘ruin’ we mean the event when the wealth
process first becomes 0.

Following Schmidli (2008, pp. 147–194) we will also introduce an absorbing (cemetery)
state that we take as the state x = 0; in fact, once the company has been ruined, it is reasonable
to assume that its wealth remains at the level zero.

3. Recursions

We start this section by specifying some notation and introducing the basic definitions
concerning our ruin probabilities.

3.1. Notation and definitions

In view of our ultimate goal of obtaining bounds on the ruin probability over a given finite
time horizon [t, T ], we first introduce the notion of probability of ruin before T within the first
n events. Recalling that ruin occurs as soon as Xt = 0 and that Xt remains at level zero after
ruin, we give the following more formal definition.

Definition 2. Assume that we are standing at time t < T with a surplus value ofXt = XTNt =
x > 0 and with Kt = KTNt = k ∈ {0, 1}. Given an admissible reinsurance and investment
policy π , we will denote byψπn (t, x; k) the probability of ruin before T within the first n events,
defined by

ψπn (t, x, k) = Pπt,x,k{Xn ≤ 0, Tn ≤ T }, (5)

where Pπ
t,x;k denotes the probability conditional on Xt = x > 0,Kt = k ∈ {0, 1} and for a

given admissible policy π .

Our first aim in the next subsection is to obtain a recursive relation for ψπn (t, x; k).
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3.2. Recursive relations

In (5) it was implicit that t < T . In what follows we write ψπn−1(T1, X1;K1) to mean the
random variable, as a function of (T1, X1;K1), given by

ψπn−1(T1, X1;K1) = PπT1,X1,K1
{Xn ≤ 0, Tn ≤ T } (6)

on the event T1 ≤ T .
We now have the following recursion result.

Proposition 1. For an initial surplus x at a given time t ∈ [0, T ], as well as an initial event
KTNt = k and a given admissible policy π , and any n ≥ 1, we have

ψπn (t, x, k) ≤ ψπ1 (t, x, k)+ P{T1 ≤ T } Eπt,x,k{ψπn−1(T1, X1,K1)}.
Proof. We have the decomposition

ψπn (t, x, k) = Pπt,x,k{Xn ≤ 0, Tn ≤ T }
= Pπt,x,k{Xn ≤ 0, Tn ≤ T , X1 ≤ 0, T1 ≤ T }

+ Pπt,x,k{Xn ≤ 0, Tn ≤ T , X1 > 0, T1 ≤ T }.
For the first term on the right-hand side, we have

Pπt,x,k{Xn ≤ 0, Tn ≤ T , X1 ≤ 0, T1 ≤ T }
= Pπt,x,k{Tn ≤ T | X1 ≤ 0, T1 ≤ T } Pπt,x,k{X1 ≤ 0, T1 ≤ T }
= P{Tn ≤ T | T1 ≤ T }ψπ1 (t, x, k)
= P{Tn ≤ T }

P{T1 ≤ T }ψ
π
1 (t, x, k)

= P{NT −NT1 ≥ n− 1}
P{T1 ≤ T } ψπ1 (t, x, k)

= P{NT −Nt ≥ n}
P{T1 ≤ T } ψπ1 (t, x, k)

≤ ψπ1 (t, x, k),

where we have used the facts that

P{NT −Nt ≥ n} ≤ P{NT −Nt ≥ 1} = P{Z1 ≤ T − t} = P{T1 ≤ t}
and the probability of events related to Tn (equivalently to Nt ) does not depend on either π or
(t, x, k).

Taking into account (6) and the fact that it holds on the event T1 ≤ T , for the second term,
we have instead (by F T ,X,K

1 we denote the σ -algebra generated by (Tm,Xm,Km) up to t = T1)

Pπt,x,k{Xn ≤ 0, Tn ≤ T , X1 > 0, T1 ≤ T }
≤ Pπt,x,k{Xn ≤ 0, Tn ≤ T , T1 ≤ T }
= Eπt,x,k{Eπ {1{Xn≤0, Tn≤T }1{T1≤T } | F T ,X,K

1 }}
= Eπt,x,k{1{T1≤T } Eπ {1{Xn≤0, Tn≤T } | F T ,X,K

1 }}
= Eπt,x,k{1{T1≤T } PπT1,X1,K1

{Xn ≤ 0, Tn ≤ T }}
= P{T1 ≤ T } Eπt,x,k{ψπn−1(T1, X1,K1)},

where we have also used the fact that T1 is independent of the other random variables.
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4. Bounds

In this section we derive bounds on the ruin probability in a general setting and in Section 5
we then minimize them with respect to the reinsurance and investment policy. We base our
analysis on the results given in Diasparra and Romera (2009) and Diasparra and Romera (2010)
that are here extended to the general setup of the present paper. To stress the fact that the process
X defined in (3) corresponds to the choice of a specific policy π , in what follows we will use
the notation Xπ .

Given an admissible policy πt = (bt , δt ) and defining, for t ∈ [0, T ], the random variable

V πt := C(b)(Z1 ∧ (T − t))− 1{Z1≤T−t}[(1 −KTNt+1)bY1 −KTNt+1δ(e
W1 − 1)], (7)

where b = bt and δ = δt , let, for r ∈ [0, r̄/bmin) and k ∈ {0, 1},
lπr (t, k) := Et,x,k{e−rV πt } − 1, (8)

which does not depend on x and where, for reasons that should become clear below, we
distinguish the dependence of lπ on r from that on (t, k).

Remark 3. Note that (see Remark 2(i) and (ii)) limr↑r̄/bmin l
π
r (t, k) = +∞ for all (t, k).

Definition 3. We will call a policy π strongly admissible and denote its set by A if at each
t ∈ [0, T ] the corresponding control action (bt , δt ) ∈ U and, for any (t, k) ∈ [0, T ] × {0, 1},
it holds that Eπt,k{V πt } > 0.

Note that A is nonempty since, seeAssumption 1(iii), it contains at least the stationary policy
(bNt , δNt ) ≡ (bmin, 0).

Proposition 2. For each (t, k) ∈ [0, T ] × {0, 1} and each π ∈ A, the following statements
hold.

(i) As a function of r ∈ [0, r̄/bmin) with r̄ such that Assumption 1(ii) is satisfied, lπr (t, k) is
convex with a negative slope at r = 0.

(ii) The equation lπr (t, k) = 0, seen as an equation in r , has a unique positive root in
(0, r̄/bmin) that we denote by Rπ(t, k), so that the defining relation for Rπ(t, k) is

lπRπ (t,k)(t, k) = 0 for all t ∈ [0, T ], k ∈ {0, 1}. (9)

Proof. Differentiating with respect to r under the expectation sign leads to

∂

∂r
(lπr (t, k))

∣∣∣∣
r=0

= Et,x,k{−V πt } < 0,
∂2

∂r2 (l
π
r (t, k)) = Et,x,k{(V πt )2e−rV πt } > 0,

where the first inequality follows from the admissibility of π (see Definition 3), and so part (i)
follows immediately. In view of (ii) note that from Assumption 1(ii) (see also Remark 2(i) and
(ii)) we obtain limr↑r̄/bmin l

π
r (t, k) = +∞. This fact combined with (i) leads to (ii).

Definition 4. For given π ∈ A and t ∈ [0, T ], let

Rπt := inf
t≤s≤T min[Rπ(s, 0), Rπ(s, 1)]. (10)

In relation to this definition see also Remark 7 below.

https://doi.org/10.1239/jap/1354716650 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716650


962 R. ROMERA AND W. RUNGGALDIER

Remark 4. Note that by Remark 3 we may always assume that Rπ(t, k) < r̄/bmin for all
(t, k) ∈ [0, T ] × {0, 1} and, thus, also Rπt < r̄/bmin.

We now derive our first bound.

Lemma 1. Given an initial time t ∈ [0, T ] and an initial event k ∈ {0, 1}, we have

ψπ1 (t, x, k) ≤ e−Rπt x for all x > 0, π ∈ A,

where Rπt is as in Definition 4 (see (10)).

Proof. Note first that, from (3) and definition (7), the random variable V πt represents the
increment of the risk processXt between two successive event times, provided that these event
times occur within the interval [t, T ]. According to Definition 2 we then obtain

ψπ1 (t, x, k) = Pπt,x,k{X1 < 0, T1 ≤ T } ≤ Pπt,x,k{X1 < 0} = Pπt,x,k{V πt ≤ −x}.
On the other hand, by Chebyshev’s inequality we have, for all r > 0,

Pπt,x,k{V πt ≤ −x} = Pπt,x,k{e−rV πt ≥ erx} ≤ e−rx Eπx,k{e−rV πt }.
For r = Rπ(t, k), using the previous two relations, we obtain

ψπ1 (t, x, k) ≤ e−Rπ (t,k)x Eπt,x,k{e−Rπ (t,k)V πt } ≤ e−Rπ (t,k)x ≤ e−Rπt x,

where in the last relation we have used Definition 4 and Proposition 2(ii).

Next set γ := P{NT − Nt ≥ 1} = P{Z1 ≤ T − t} = P{T1 ≤ T }, and note that this γ is
independent of (π, x, k) and it holds that γ < 1.

Lemma 2. Given an initial surplus x > 0 at a given time t ∈ [0, T ], we have, for all n ∈ N,
any initial event k ∈ {0, 1}, and all π ∈ A,

ψπn (t, x, k) ≤
(n−1∑
m=0

γm
)

e−Rπt x .

Proof. The proof is by induction. By Lemma 1, the statement is true for n = 1. Assume
that it is true for n− 1, namely, ψπn−1(t, x, k) ≤ (

∑n−2
m=0 γ

m)e−Rπt x for any x > 0, k ∈ {0, 1},
and π ∈ A. Given the definition of Rπt in (4), we may formulate the induction hypothesis as
follows:

ψπn−1(T − s,X1,K1) ≤
(n−2∑
m=0

γm
)

e−Rπt X1 for all s ∈ [0, T − t].

By Proposition 1, as well as Lemma 1, and taking into account the definitions of Rπt in (10)
and V πt in (7), we then obtain

ψπn (t, x, k) ≤ e−Rπt x + P{T1 ≤ T }
(n−2∑
m=0

γm
)

Eπt,x,k{e−Rπt X1}

≤ e−Rπt x + γ

(n−2∑
m=0

γm
)

e−Rπt x Eπt,x,k{e−Rπt V πt }

≤
(n−1∑
m=0

γm
)

e−Rπt x,
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where the last inequality follows from the definitions ofRπ(t, k) andRπt as well as the properties
of the function lπr (t, k) stated in Proposition 2. In fact, from lπRπ (t,k)(t, k) = 0 (see (9)) and
Rπt ≤ Rπ(t, k), it follows that lπ

Rπt
(t, k) = Eπt,x,k{e−Rπt V πt } − 1 ≤ 0.

As an immediate consequence of Lemma 2, we now obtain our main result.

Theorem 1. Given an initial surplus x > 0 at a given time t ∈ [0, T ], we have, for all n ∈ N,
any initial event k ∈ {0, 1}, and all π ∈ A,

ψπn (t, x, k) ≤ 1

1 − γ
e−Rπt x . (11)

Remark 5. Note that the bound in Theorem 1 will in many cases be larger than 1 and, thus, not
useful as a numerical bound on the probability of ruin itself. The main purpose for deriving this
bound however is to obtain a reinsurance and investment policy that keeps the ruin probability
low, which in Section 5 we find to be the policy that minimizes the bound. With this goal in
mind, there is no need to derive the tightest possible bound; what is important however is that
the coefficient on the right-hand side of (11) is independent of (π, x, k). Note also that, while
the true optimal policy is most likely of the form of a feedback policy and, thus, difficult to
determine, the policy derived from minimizing the bound is of the form of a myopic policy,
which is much easier to derive, as we will show in the next section.

Remark 6. Note that, see Remark 4, for t → T , the right-hand side of (11) is bounded from
below by e−r̄x/bmin , which is strictly positive unless r̄ = +∞ (the latter happens whenever the
support of Y1 is bounded; see Remark 2(ii)). On the other hand, for t → T , we always have
ψπn (t, x, k) → 0. This hints at the possibility of viewing the bound in Theorem 1 as having
the flavor of an infinite-time ruin probability in the spirit of the Lundberg bound, although we
work on a finite time horizon.

5. Optimizing the bounds

As mentioned previously, it is in general a difficult task to obtain an explicit solution to the
reinsurance–investment problem in order to minimize the ruin probability even for the classical
risk process. We will thus choose the reinsurance and investment levels in order to minimize
the bounds that we have derived. By Theorem 1, this amounts to choosing a strategy π ∈ A
such that, for each t ∈ [0, T ], the value of Rπt is as large as possible. In order to achieve
this goal, note that, by Proposition 2, the function lπr (t, k) is, as a function of r ∈ [0, r̄/bmin)

(for every fixed (t, k) ∈ [0, T ] × {0, 1} and π ∈ A), convex with a zero in r = 0 and (see
Remark 4) a unique positive zero in Rπ(t, k) ∈ [0, r̄/bmin). To obtain, for a given t ∈ [0, T ],
the largest value of Rπt = inf t≤s≤T min[Rπ(s, 0), Rπ(s, 1)], it thus suffices to choose π ∈ A
that minimizes lπr (t, k) at r = Rπt . This also appeals to intuition in the sense that, by its
definition in (8), minimizing lπr (t, k) amounts to penalizing negative values of V πt and, thus,
also of Xπt , thereby minimizing the possibility of ruin. For this purpose, in Subsection 5.1 we
propose a policy-improvement-type algorithm.

5.1. Policy improvement

Concerning the minimization of lπr (t, k) at r = Rπt , note that decisions concerning the
control actions φ = (b, δ) have to be made only at the event times Tn. The minimization
of lπr (t, k) with respect to π ∈ A has thus to be performed only for pairs (t, k) of the form
(Tn,KTn), thus leading to a policy π with individual control actions φTn = (bTn, δTn).
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Our problem to determine an investment and insurance policy to minimize the bounds on
the ruin probability may thus be solved by solving the following subproblems:

(i) for a given policy π̄ ∈ A, determine lπ̄r (t, k) for pairs (t, k) of the form (Tn,KTn);

(ii) determine Rπ̄ (Tn,KTn), that is, a solution with respect to r of lπ̄r (Tn,KTn) = 0, and set
Rπ̄t = inf t≤Tn≤T min[Rπ̄ (Tn, 0), Rπ̄ (Tn, 1)];

(iii) improve the policy π̄ by minimizing lπ
Rπ̄
(Tn,KTn) with respect to π ∈ A.

This leads to a policy-improvement-type approach, more precisely, one may proceed as
follows:

(a) start from a given policyπ0 (e.g. the one requiring minimal reinsurance and no investment
in the financial market);

(b) determine Rπ
0
(Tn,KTn) corresponding to π0 for the various (Tn,KTn) as well as the

ensuing Rπ
0
;

(c) determine π1 ∈ A that minimizes lπ
Rπ

0 (Tn,KTn) with respect to π ∈ A for the various
(Tn,KTn); repeat the procedure until a stopping criterion is reached (note that, by the
above procedure, Rπ

n
> Rπ

n−1
).

Note that the policy determined by this procedure is automatically strongly admissible.
A practical way to implement steps (b) and (c) above is to discretize the time interval

[0, T ] and then register an event only at the end of the interval in which it occurred (multiple
events in a same subinterval may be recorded at the end as a single event for each of the two
categories: claims and price changes). The function lπr (t, k) has then to be determined only for
t corresponding to an endpoint of the various subintervals for each of the two possible values
of k.

One crucial step in this procedure is to determine the function lπr (t, k) corresponding to a
given π ∈ A and, for this purpose, we can prove the following result.

Proposition 3. Under the standing assumptions, we have

lπr (t, k) = (1 −G(T − t))e−rC(b)(T−t) − 1

+
∫ T−t

0
e−rC(b)z dG(z)

[
pk,0

∫ ∞

0
erby dF(y)+ pk,1

∫ w

w

e−rδ(ew−1) dH(w)

]
.

Proof. It is an immediate consequence of (7) and (8).

In the specific case described in Example 1, where the Zn are i.i.d., having a negative
exponential distribution with parameter λ = λ0 + λ1 and where pk,h = λh/λ, h = 0, 1,
independently of k, we have the following immediate corollary.

Corollary 1. In the case of Example 1, we have

lπr (t, k) = lπr (t)

= e−(λ+rC(b))(T−t) − 1 + 1

λ+ rC(b)
[1 − e−(λ+rC(b))(T−t)]

×
[
λ0

∫ ∞

0
erby dF(y)+ λ1

∫ w

w

e−rδ(ew−1) dH(w)

]

independently of the value of k.
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Remark 7. It can furthermore be shown, see Piscitello (2012), that in the case of Example 1 the
value ofRπ(t, k) is not only independent of k being a solution of lπr (t) = 0 but it is furthermore
independent of t , so that the bound optimizing policy is stationary.

The expressions for lπr (t, k) are thus easy to obtain provided the distributions of Y1 and W1
are such that the corresponding integrals are easy to compute. In any case they can be computed
approximately by replacing the integrals with the corresponding Riemann–Stieltjes sums.

6. Conclusions

We have considered the problem of minimizing the ruin probability in an insurance model
that allows us to dynamically choose the level of reinsurance and investment in the financial
market. It is a general innovative model that describes in a unifying way the timing of the
events, that is, the arrivals of claims and the changes of the prices in the market. It is based on a
continuous-time semi-Markov process model and it is believed that this model represents reality
more faithfully than, say, classical diffusion-based models. It leads also to some advantages
when estimating the parameters in the model in the sense that it allows one to separate the
information coming from observing the frequency of the individual events and that of the
duration between successive events. Our insurance model is also general enough to contain
particular cases ranging from the classical risk process to models with reinsurance, investment
in the financial market, and dividends. It could possibly be extended to also include the recent
general risk model with reinsurance in Eisenberg and Schmidli (2011) where, to prevent a
negative surplus, the insurer may inject additional capital. We also recall that our bounds were
derived for the main purpose of allowing one to actually determine a reinsurance and investment
policy that keeps the ruin probability at low levels.

We developed a specific methodology to obtain a policy that minimizes the exponential
bound on the ruin probability in Theorem 1. It is based on a policy iteration procedure. Besides
being of interest in itself, the bound minimizing policy that is obtained may also serve as a
benchmark policy with respect to which other standard policies may then be evaluated.

Contrary to many asymptotic (in time and in the initial surplus) approaches (see, e.g. Gaier
et al. (2003), Paulsen (1998), and Hult and Lindskog (2011)) we obtained our results for a fixed,
but arbitrary finite horizon and any given positive initial surplus.
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