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Abstract. A fixed point of an area-preserving mapping of the plane is called elliptic
if the eigenvalues of its linearization are of unit modulus but not ±1; it is parabolic
if both eigenvalues are 1 or - 1 . The elliptic case is well understood by Moser's
theory. Here we study when is a parabolic fixed point surrounded by closed invariant
curves. We approximate our mapping T by the phase flow of an Hamiltonian system.
A pair of variables, closely related to the action-angle variables, is used to reduce
T into a twist mapping. The conditions for T to have closed invariant curves are
stated in terms of the Hamiltonian.

1. Introduction
Consider an area-preserving mapping of the plane which has a fixed point and let
A,, A2 be the eigenvalues of its linearization at this point. A,, A2 are either both real
or are complex conjugates and A,A2 = 1. If A,, A2 are real and not ±1 , the fixed
point is called hyperbolic and it cannot be stable. If A, = A2, |Ai| = |A2| = 1 and \ l t

A2 are not ±1 , the fixed point is called elliptic. This case is well understood by
Moser's theory and it is known that if the A's are not fcth root of the unity plus
some mild condition, the fixed point is stable and it is surrounded by closed invariant
curves [2,3]. Finally, if A! = A2 = 1, the fixed point is called parabolic. This case will
be studied here.

So we consider an area-preserving mapping

)

where P(x, y), Q(x, y) are real-analytic functions,

P(x,y),Q(x,y) = O(rh), r2

h>l, near (0,0) and

in a small, punctured neighbourhood of (0,0). The origin is an isolated parabolic
fixed point. Our aim is to obtain conditions which guarantee that this fixed point
is surrounded by closed invariant curves.

https://doi.org/10.1017/S0143385700005526 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005526


232 D. Aharonov and U. Elias

Our method is based on the reduction of the mapping (1.1) to a twist mapping.
We shall suggest the system of Hamiltonian differential equations

dx/dt = -Hy, dy/dt = Hx

with
def (•<*>>

H(x,y) = [Q-&PQx-PxQ)]dx-[P + &PQy-PyQ)-]dy,
J(0,0)

whose phase flow g':(jc(O),y(0))->(x(l),y(l)) approximates the mapping (1.1)
very well. This approximation is used to introduce a new pair of variables, p, 6,
which reduce (1.1) into a twist mapping.

After the completion of our manuscript we became aware of the works [4,5] of
C. Simo. Let g(x, >>,) be the generating function of (1.1), which is denned by

Xi=dg(x,yi)/dy, y = dg(x,yl)/dx
and put g(x, y^) = xyx + G(x, yx). Simo claims that the parabolic fixed point of (1.1)
is surrounded by closed invariant curves if and only if G{x, yt) has a strict extremum
there. This had been done by the same idea utilized here, namely a reduction of the
given mapping into a twist mapping by a time unit flow g1 of some Hamiltonian
system. Thus, our method is not new. We choose, naturally, the angle variable 6 as
in [5] and Proposition 2, for example, is identical with Simo's argument. However,
the novelty of this work is the choice of the Hamiltonian. While Simo chooses the
Hamiltonian to be G(x, yO, whose existence is guaranteed by the implicit function
theory, our H(x,y) is defined explicitly and the assumptions can be practically
verified. In the most simple case, when a first approximation of the generating
function suffices to apply Simo's theorem, the result is the same as our simplest
particular case (Theorem 4.1). In more complicated cases, our result is more
applicable but gives only sufficient conditions for stability. Note that some details
in Simo's argument should be carefully reviewed.

Before we begin our work, we present two graphic examples which demonstrate
the difficulties and the beauty of the subject. The examples will be discussed
rigorously in § 4.

Example 1. The area-preserving mapping

is of type (1.1). The results of some numerical experiments for 2n - 1 = 3 are shown
in figure 1. Each curve is generated by several hundred iterations of an initial point.
Example 2. The mapping

is area-preserving and its second iteration S = T2

22 3 x4-2y5-4x3y2+ • • • + y8,

y / ,
is of the form (1.1). Numerical experiments hint that the parabolic fixed point (0,0)
of S is surrounded by closed invariant curves. See figure 2.
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Parabolic fixed points 233

FIGURE 1. Invariant curves of Example 1.

FIGURE 2. Invariant curves of Example 2.

2. An Hamihonian and new variables
The main tool to establish the existence of invariant curves is Moser's theorem
about twist mappings [2, Theorem 3; 3, § 32]:

Given the mapping

(2.1)
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in the annulus a<p<b, -oo<0<oo, 6 - a > l , where f g are real analytic and
periodic in 0 and every closed curve sufficiently close to p = constant intersects its image
curve. For each e > 0 there exists S, independent of y, such that if

\f\ + \g\<ys,
then the mapping admits infinitely many invariant curves of the form

p = v(t), e = t+u(t),

with u, v real analytic, periodic functions and \u(t)\,\v(t)—a>\< e.
Our method is based on the reduction of the mapping (1.1) to a twist mapping.

We shall suggest a system of Hamilton differential equations whose phase flow
approximates the mapping (1.1). This continuous approximation is used to introduce
a new pair of variables, 6, p, which will satisfy all the conditions of Moser's theory.

PROPOSITION 2.1. The mapping (1.1) is area peserving if and only if the system

x' = P + \{PQy-PyQ),

y' = Q-\(PQx-PxQ),

generates an area-preserving mapping g': (x(0), y(0)) -> (x(t), y(t)).

Proof. The mapping (1.1) is area preserving if

six, y)

That is,

or

which guarantees that the system (2.2) generates an area-preserving mapping g' and
vice versa. •

Consequently we define

H(x, f ^x,y) = f ^
J (0,0)

where, by (2.3), the integral is independent of the path of the integration. By this
notation, (2.2) can be written as system of Hamilton canonical equations

dx/dt = -Hy,

* & 4 )

and its trajectories are H(x,y) = constant.
From now on, we shall assume that H(x, y) = A are closed curves which surround

the origin for sufficiently small values of A. This implies, among other things, that
the corresponding solutions of (2.4) are periodic.
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We may get an idea about the form of H if the area-preserving mapping (1.1) is
written in a neighborhood of (0,0) as

xl = x+p(x,y)+p(x,y),

y1=y + q(x,y) + q(x,y),

where p(x,y), q(x,y) are polynomials homogeneous of degree h, h>l, and p, q
are such that p(x, y), q(x, y) = O(rh+1) near r = 0. By considering the lowest order
terms of (2.3), we get that

Px + qy=0.

This, together with the homogeneity of p, q of order h, implies that

(xq -yp)x = xqx + q-ypx = {xqx + yqy)+q = (h + \)q,

and (xq-yp)y = -(h + l)p. Thus Hx = q+O(rh+l), Hy = -p+O(rh+l) imply

H(x,y) = (xq-yp)/(h + \) + O(rh+2). (2.6)

First we estimate how well does the phase flow of (2.4) approximates the mapping
(1.1).

PROPOSITION 2. Consider the mapping (1.1) which maps {x,y) to (xi,yi) and the
mapping g':(x,y)^>(x(t),y(t)) which is generated by (2.4). If P, Q=O(rh), then

x( l ) -x 1 ,y( l ) -y 1 = O(r3'-2). (2.7)

Proof. Equations (2.4) are real-analytic and according to our assumptions all their
solutions are periodic. Hence x(t), y(t) are real-analytic for all t,

x(t) = x(0)+x'{0)t + x"(0)t2/2 +

Now

x' = P+±(PQy-PyQ),

By (2.3)

& X ~ PXyQ)

SO

X"=[~Qy -\{PxQy - PyQx)

+ [Py+\{PQyy ~ PyyQ)][Q -&PQX ~ PXQ)~\

= -PQy + PyQ+O(r3h-2)

and similarly, x°\t) = O(r3>-2), i>3 . Thus

x(l) = x(0)+x'(0)+x"(0)/2+ • • • =x + P+O(r3h'2).

y(l) is treated similarly. •

The next proposition will show that H(x, y) = \ is mapped by (1.1) quite close
to itself.
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PROPOSITION 3. H{x + P, y + Q)-H(x, y) = O(r4h'2).

Proof.

P,y+Q)-H(x,y)

Here

Hx = Q-X2(PQX - PXQ), Hy = P + \{PQy - PyQ),

HXX = QX- \{PQ*x ~ PXXQ), Hyy = -Py- \{PQyy - PyyQ),

2Hxy = (Hx)y + (Hy)x = Qy-Px + PxyQ - PQxy,

Hxxx = Qxx -\{PXQXX +•••), etc.

So

y ~ PyyQ)]Q2

h-3) = O(r4h-2). D

Now we begin a series of heuristic arguments which lead us to the choice of new
variables p, 6. Since in the theory of Moser, the invariant curves of the twist mapping
are located near the curves p = constant, and since we expect that the trajectories
H(x, y) = constant are close to the invariant curves, we shall seek a p(x, y) which
is constant on H = constant. Thus we choose

p = t(H(x,y)), (2.8)

where i/> will be determined later.
The next heuristic considerations will lead us to the choice of 0(x,y). Since in

the twist mapping Qx-Q = p, we try to choose 0(x,y) so that

But as Hx = Q, -Hy = P, we want 0(x, y) to satisfy -0xHy + 6yHx = p = \p{H). Let
us assume from now on that the closed curves H = constant are starlike and define
6(x, y) as the solution of the Cauchy problem

6(x,0) = 0, x>0.

The integral surface 6 = 0(x, y) of (2.9) consist of characteristic curves which
satisfy

and pass through the x-axis. The projections of the characteristic curves on the x-y
plane are the solutions of

(2.10)

x(0) = xo, y(0) = 0, xo>0

and the trajectories of this system are, of course, H(x, y) = constant. Consequently,
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6(x,y) is the time required for the solution (x(8),y{6)) of (2.10) to arrive from the
unique suitable point on the positive x-axis to the point (x, y) while passing an arc of
the curve H(x, y) = constant. Since H2

X+H2
y = (P2+Q2)(l + o(l))*0 in a small

punctured neighbourhood of the origin, (2.10) has no critical points except (0,0)
and (x(6), y(6)) traverses the trajectory H(x, y) = A in one direction. Thus we obtain
a multi-valued function 0{x, y) in every ring A[ < H < A2.

On the other hand, (2.4) and (2.10) have the same trajectories H{x, y) = constant
and their solutions differ only by their different parametrizations 6, t, which are
related by

So on every trajectory H = constant,

6 = tfi(H)t = pt. (2.11)

In order that the twist mapping will be periodic in 6, we want the solution 8 of
(2.9) to increase by a fixed number, say 1, when (x, y) surrounds the origin once
along H = A. This is the case if we choose

where T(A) is the period of the solution of (2.4) which traverses H = A. Thus

p(x,y) = l/T(H(x,y)). (2.12)

By (2.11) we have the representation

Oix^oix^r^^, (2,3)

where the integration is along the curve H = A from the positive x-axis to the point
(x,y). Indeed, if we parametrize the integral in (2.13) by the solutions x = x(t),
y = y(t) of (2.4), it becomes |<xy) dt, the time required for the solution (x{t),y(t))
of (2.4) to arrive to the point (x, y).

The area A(A) of the interior of the closed curve H(x, y) = A is closely related
to our discussion. The differential of the arclength on H = A is ds = [x'2+y'2]1/2 dt =
[H2

x + H2]i/2 dt and the length of the normal to H = A, which connects H = A to
H = A + AA, is AA/|grad H\ = Ak/[H2

X+H2
y]

1/2. Hence, the area of the ring A < H <
A+AA is

T-(A)

Jo

Thus

For a different proof, see [1, p. 282].
In our case we have

) asA-»0.
For, if P(x, y), Q(x, y) = O(rh), h > 1, then H{x, y) = O(rh+1) near the origin. On
a curve H = A we have A s c , r H I and so y4(A)>c2A

2/('1+1). Since A(A) is analytic
and /4(0) = 0, it follows that T(A) = /4'(A)-*oo.
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If we put in (2.9) il>(H) = \/T{H) = 1/A'(A)|A=H, it maybe written as

d6dA(H(x,y)) td0dA(H(x,y))
1 = |

dx dy dy dx
Therefore A(H(x, y)), d(x,y) are the action-angle variables for the system (2.4).
See [2, p. 279].

3. The main theorem
THEOREM 3.1. Given the area-preserving mapping (1.1)

where P(x,y), Q(x,y) are real-analytic functions,

P(x,y),Q(x,y)=O(rh), r2 = x2 + y2,

h > 1, near (0,0) and P2+Q2^0 in a small, punctured neighbourhood of (0,0). Let
H be, as before,

def f <*
H(x,y) = [Q-i(PQx-PxQ)] dx-[P + \(PQy-PyQ)] dy.

J (0,0
yPy

(0,0)

The isolated parabolic fixed point (0,0) is surrounded by closed invariant curves if the
following conditions hold:

(a) H(x, y) > 0 in a punctured neighborhood of the origin and the curves H(x, y) = A,
A > 0, are closed and surround the origin.

(b) There exist positive constants cx, c2 such that near the origin

(3.1)
(3.2)

(c) There exists an integer k,

h<k<(4h-2)—-^ (3.3)
2h2 + 2h + l

such that
H(x,y)>c3r

k>0 (3.4)

near the origin.
The case H < 0 is treated similarly.

Proof. Our aim is to show that under the change of variables (x, y)++(p, 6), the
mapping (1.1) actually becomes the twist mapping (2.1)

o,6),

where /(p, 0), g(p, 6) are real-analytic, periodic in 6 and / = o(p), g = o(p2) in a
small neighbourhood of the origin. As several of our estimates depend on the area
A(\) of the region H<A, we begin with

LEMMA 1. If (3.1), (3.2) hold near the origin, then

A'(\) = O(A(\)/\), A"(A) = O(A(A)/A2). (3.5)
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Proof. Let us write the Hamiltonian in polar coordinates as H(r,<j>) = \. Since
xy'-yx' = xHx + yHy2:clH>0, H = k is a starlike curve, and we can write r =
r(<j>, A) such that

tf(r(«M),«) = A.
Differentiating with respect to A,

^ = 1 . (3.6)
dr d\

Now

A(A)=H r 2 d 0 = ! | r\4>,k)d<t>
JH=A JO

and since by (3.6), rA = 1/Hr

A'(A)=| rr,d<t>=\ r/Hrd<f>.
Jo Jo

But according to (3.1), rHr = xHx + yHy > cxH, therefore

JH

Similarly, by rA = l/Hr

(r/Hr)rr, = J (Hr -

According to (3.2), r2Hrr = x2Hxx + 2xyHxy+y2Hyy < c2H, therefore

JH=A

LEMMA 2. Let H(x, y)>0 in a punctured neighborhood of the origin. If the mapping
(1.1) is written as in (2.5) and the homogeneous polynomial xq(x,y)-yp(x,y) of
degree h + l has along any ray y/x = constant a zero of order I at most, O s / < H 1 ,
then

A(\) =

Since the proof of this lemma is not closely related to the main idea of our theorem,
it is delayed to the end of this section.

Let us return to the proof of the theorem. The point (x, y) is mapped by (1.1)
into (x1,y1) = (x + P,y + Q). Let H = k and H = A + AA be curves through (x,y)
and (xi.yi), respectively. The relative position of these curves depends, of course,
on the point {x, y), but as proved in Proposition 3, we always have AA = O(r4/l"2).
By inequality (3.4), every point on the curve H = A satisfies r = O(\l/k) and so

AA = O(A<4h-2)A). (3.7)
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But since k<(4h-2)(h2 + 2h + l)/(2h2 + 2h + l)<4h-2, this implies

AA = o(A).

Consider now T(A). The worst bound of Lemma 2 for A{\) (which corresponds
to l = h + l) is

Since it is smaller than ( 4 / I - 2 ) ( / J 2 + 2/I + 1) / (2 / I 2 + 2/I + 1), it is easily seen that
(2/» + l)/(/» + l)2>2-(4fc-2)/fc Consequently, A(\) = o(\2-(4h-2)/k) and by
Lemma 1, A"(A) = o(A-(4/l-2)/fc). So

T( A + AA) - T( A) = 7'(Ao) AA = A"( Ao) O(\(4h'2)/k)

since A<A0<A+AA and Ao= A(l + o(l)). Note that this is by no means trivial,
since T(A)-»oo as A -»0. It rather shows how small AA is. (The choice of the worst
bound in Lemma 2 is not a severe restriction. If one takes the stricter bound
A(A) = O(A2/(/l+I)), which corresponds to / < (h +1)/2, it would enable us to extend
the range of k only by less than \/h.)

Now we are ready to estimate the change of p:

= -(T(A+AA)-r(A))/T(A)T(A+AA)

= o(l)/T2(A) = o(p2). (3.8)

Thus the second equation of (2.1) holds with g(p, 6) = o(p2).
We turn to the first equation of (2.1) and prove that

6(xl,yl)-6(x,y) = p(l + o(l)). (3.9)

Recall that the Hamiltonian system (2.4) generates a mapping g':(x(0),
(*(0» y(0)- I n particular after a time t = 1, the point (x, y) of H = A is mapped to
the point (x(l),y(l)) of H = \:

For these two points of H = A, we have by (2.13)

0(x(\),y(l))-6(x,y)-p,

thus instead of (3.9) it suffices to show that

O(x(l),y(l))-0(xl,y1)mo(p(x,y)), (3.10)

where, by (2.11)

•<*w»-ydx + xdy
.A xHx+yHy '

mh + xd? a , 2 )

r
yt)

J H = A +A+AA xnx-ryn
y
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In (3.11) p(x(l), y(l)) = p(x,y) since both points lay on the same curve H = A,
while for p(xi,yi) which appears in (3.12) we have already seen that p{xx,yl) =
p(x, y)+o(p2(x, y)). Dividing (3.10) by p(x, y) results in

I'
H=A+AA xHx + yHy

Note that each integral in (3.13) equals a period of time in which a solution of (2.4)
traverses an arc of a trajectory. As T(A)-»oo, each of these integrals is unbounded
for (x,y) near the origin. This is the source of the difficulty to verify (3.13).

We connect (xi.^i). (x(l),y(l)) by a straight line and the other two endpoints
of the paths by a segment of the x-axis to get a closed path. On y = 0, x dy - y dx = 0,
so (3.13) may be written as

( 1 . , 1 , y J xHx+yHy
 + ° ( P ) J H = A + A A xHx+yHy

(3.14)

where the closed path consists, as explained above, from two arcs H = A, H = A + AA,
an interval on the x-axis and another straight line.

We begin to estimate the third term of (3.14). By (3.1), yx'-xy'= xHx+yHy>
c,H>0, hence H = A is starlike and xdy-ydx has a fixed sign, say positive.
Therefore, if we extend the integration to a whole period,

(xW-yW)-ydx + xdy j-ydx + xdy l " 0 ^ -ydx + xdy+ + ° ( P ) J

f ( -ydx + xdy —y dx + xdy

H

= o(l/T(A))r(A+AA)

Now we turn to the first term of (3.14). On a straight line xdy-ydx has a fixed
sign, say positive, so

I
| J (

zydx±xdy
i ;

-ydx + xdy

(XlOFl) x

The two endpoints lay on H = A, / / = A + AA respectively, but the whole segment
does not lay necessarily between the two curves. However, by Proposition 2,

So, as in the proof of Proposition 3, the values of H along the segment (x(l), y(l)),
(x , ,^ ) are

A + O(rh)O(r3"-2) = A + CKA*4*-2'7") = A(l + o(l)). (3.16)

(3.15) is, accordingly,

O(l/A) xdy-ydx. (3.17)
•'(^i^i)

But the integral in (3.17) equals twice the area of the triangle with vertices (0,0),
), so it is not bigger than
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Consequently, the quantity in (3.17) is O(X{~1+m~1)/k) = o(l), since

k < (4h-2)(h2 + 2h + l)/(2h2 + 2h +1) < 3h - 1 .

Finally we estimate the middle term of (3.14). In this integral x dy -ydx obviously
changes its sign on the closed path, so we estimate its absolute value by transforming
it to a multiple integral:

J xHx + yHy
 = J J [\xHx+yHy)x

+\

As we have seen in (3.16), the segment (X(1),J>(1)), (x , ,^) lies in a ring

A - O(A(4/-2)/fc) < H < A + O(A(4;-2)/fc)

and the whole domain of integration of (3.18) is included in such ring. By assump-
tions (3.1), (3.2), the integrand is O(l/A), thus (3.18) is bounded by

O(1/A)G4(A + O(A(4"-2)/k))-A(A - O(\i4"-2)/k))).

We have already seen that A(A) = o(A2~<4(l-2)A) and by Lemma 1, A'(A) =

A(A + O(A(4"-2)/k))-A(A - O(\(*"-2)/k)) = A'(A0)O(A(4''-2)A)

since Ao = A(l + o(l)). To summarize, the integral in (3.18) is o(l), too. This com-
pletes to establish the twist mapping (2.1)

with /(p, 0) = o(p), g(p, 6) = o(p2) near p = 0. f(p, 6) and g(p, 6) are obviously
analytic when p > 0 and have period 1.

A small neighborhood 0<H(x,y)<i)/~l(e) of the origin is thus mapped on a
narrow annulus 0 < p < e. When we replace p by ep, we get

e^B + ep+f,

P\=P + g,

on the ring 0<p<l . Here f(p,6)=f(ep, 6) = o(s), g(p,6) = e-1g(ep,6) = o(e).
Hence (|/| + \g\)/e -» 0 as e -» 0, as required in the theorem of Moser. Finally, since
mapping (1.1) is area preserving, each closed curve which surrounds the fixed point
(0,0), intersects its image by (1.1). Thus, all the details of Moser's theory apply to
our twist mapping and the existence of closed invariant curves is proved. •

Among our assumptions, (3.3) seems to be the least natural. It would be interesting
to obtain another proof in which this condition could be relaxed or dispensed with.
Proof of Lemma 2. Recall that by (2.6),

H(x, y) = (xq -yp)/(h + l)+O(rh+2).
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The assumption H > 0 implies that xq-yp>0 near the origin. Let us write the
equation of the curve H = A as

rh+1R(</>)+O(rh+2) = \, (3.19)

where R(<f>) = (cos <f>q(cos <f>,sin <£)-sin <f>p(cos <j>,sin #))/(/i + l ) > 0 . R(<f>) may
have a finite number of zeros, one for each ray on which the homogeneous polynomial
xq-yp vanishes. For simplicity let us assume that R(<f>) has a single zero located
at </> = 0 and its multiplicity is /, 0 < / < / i + l. The general case is treated similarly.

Since H<cxr
h+\ on H = \ one has r>c2A1 / ( / l + 1 ) and by (3.19)

=± I"" r2d<M(i)A2/<*+1) f*
J —7T J —I

By our assumptions, R(<f>) = <f>'K(<t>), c4< £(<£)< c5, on \_-TT, IT]. Hence

A(A) = O(A2/(h+1)) \' (<t>' + c6\
l/(h+1)r2/(h+1)d<l>. (3.20)

J —IT

If l<(h + l)/2, the integral in (3.20) is obviously smaller than \lv (f,-2'^h+i) d<j> =
O(\). If />(A + l) /2, we divide [0, tr\ into [0, A1/'<'I+1)]u[A1/'( ' I+1), IT]. The corre-
sponding integral of (3.20) is

Joo JAi/K*+i)

plus similar terms for [—n, 0]. The first of these integral is obviously
> he second one is s m a n e r

J: i -2l/(h + \) j . _ Q/^[\-2l/(h + l)yKh + \)\ _ Q/Al//(h + l)A-2/(h + l)2\

and the estimate A(A) = O(A2/( / l+1) t l-I /< / l+1)+1/2 ' ]) follows.
When / = (h +1)/2, the result is proved by the same method. •

4. Examples
The following is the most simple particular case of Theorem 3.1.

THEOREM 4.1. Suppose that the real analytic, area-preserving mapping (1.1) can be
written in a neighborhood of (0,0) as

xl = x + p(x,y)+p(x,y),
(4.1)

yi = y + q(x,y)+q(x,y),

where p(x, y), q(x, y) are polynomials homogeneous of degree h, h>\, and p, q are
such that

p(x,y),q(x,y)=O(rh+1) near r = 0.

If
xq(x,y)-yp(x,y)*0 for (x, y) * (0,0)

then the fixed point (0,0) is surrounded by closed invariant curves.
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Proof. We have already seen that if the mapping (1.1) is written near (0,0) as (4.1),
then, (2.6)

H(x, y) = (xq -yp)/(h +1)+ O(rh+2).

If in addition we assume now that the (h + l)th order homogeneous polynomial
xq(x, y)—yp(x, y) does not vanish for (x, y) # (0,0), then

\xq-yp\>Arh+l>0

and consequently

Now all the conditions of Theorem 3.1 are satisfied with k = h +1. Indeed,

H{x,y)>crh+\

and (3.3), (3.4) hold trivially with k = h +1.
The same result may be deduced by the theorem of Simo [5]. If we want to write

(4.1) as x, = dg/dyl, y = dg/dx, we get

y = yt- q(x, y)+O{rh+l) = y,- q(x, yi)+O{rh+1) = dg/dx.

By the argument that was used to show (2.6), it follows now that

and the result follows. •

Some variations on the theme of Theorem 4.1 will appear elsewhere.

Example 1. (Continued.) For the area-preserving mapping

we have xq - yp = x2n + y2". Hence, by Theorem 4.1, it really has closed invariant
curves, as hinted by figure 1.

Example 2. (Continued.) That the mapping
2 3 * s 3 2 + • • • + y 8 ,

3+ • • • +y16,

does not satisfy the conditions of Theorem 4.1 since xq-yp = 4x2y2 is not positive
definite. However, it does satisfy the conditions of Theorem 3.1 with h = 3, k = 6. Here

= 12x2y2-20(xy4+x4y)+10(x6+y6)+60x3y3
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We can write

Ax2y2 - B(xy4 + x4y)+C(x6 + y6)+Dx3y3

= ax2y2[l + exy]+[Bxy - y(x3 + y3)]2 + 8[x6 + y6],

with A = a + B2, B = 2By, C = y2+S.lt is easily seen that a, S are positive if A, C> 0
and B2/4C<B2<A, that is B2<4AC. H(x,y) satisfies these conditions, so

H(x,y)>(8/2)(x6 + y6)>cr6

near the origin. Similar arguments show that

0 < x2Hxx + 2xyHxy + y2Hyy < 50H.

Finally, (3.3), (3.4) hold with h = 3, k = 6. •
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