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A REMARK ON PROJECTIVE MODULES

WOJCIECH KUCHARZ

Let R denote the field of real numbers and let A be the ring

of regular functions on R , that is the localization of

ifCT.j ..., T ] with respect to the set of all polynomials vanish-

ing nowhere on K . Let X be an algebraic subset of R and

let I (X) be the ideal of A of all functions vanishing on X .

Assume that X is compact and nonsingular and k = codim X = 1,

2, 4 or 8. We prove here that if the A/I (X) -module I(X)/I(X)

can be generated by k elements, then there exist a projective

A-module P of rank k and a homomorphism from P onto I(X).

1. Introduction

Let R denote the field of real numbers and let A be the ring of

all functions f : R •*• R such that / = $/\\) for some polynomial functions

$3i> : n -*• R with i|> vanishing nowhere. In other words, A is (iso-

morphic to) the localization of the polynomial ring R\.T.} ...j T ] with

respect to the set consisting of all polynomials vanishing nowhere on R .

Given a subset X of FT , we denote by I(X) the ideal of A of all

functions vanishing on X .
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In this note we prove the following.

THEOREM. Let X be a nonsingular algebraic subset of R*1 of co-

dimension k. Assume that the A/I(X)-module I(X)/I(X) can be generat-

ed by k elements. If k = 1, 2, 4 or 8 and X is compact, then there

exist a finitely generated protective A-module P of rank k and a

surjective homomorphism h: P -»• I(X) .

For k = 1 or 2 some better results are known. Indeed, since A

is a factorial ring (being a localization of RLT' , ..., T ]) , the ideal

I(X) is principal if k = 1 , without the compactness assumption. If

k = 2 , then the ideal I(X) is a complete intersection (see [4]) and one

can even drop the compactness assumption for dim X = 1 (see [S]) . More-

over, the theorem holds true if k = 2 but X is not necessarily compact

(see for example, [7, Theorem 3.1]).

It is unknown whether all finitely generated projective A-modules

of rank greater than one are free (proofs of the Serre conjecture concern-

ing finitely generated projective modules over polynomial rings do not

seem to extend to this case, see [70 ],[7 2 ]) . Therefore the theorem does

not allow us to conclude that the ideal I(X) is a complete intersection

for k = 2^ 4 or 8 (see the remark above for k = 2 ).

The author does not know whether the theorem remains true for k = 4 or

8 if one drops the compactness assumption or replaces R by another, say

real closed, field.

2. Proof of the Theorem

Our terminology and notions concerning real algebraic geometry are

consistent with those of [2], [3] and [13]. In particular, A is the

ring of regular functions on E (see [3, Chapter 3] or [JJ]). Also re-

call that an algebraic vector bundle 5 over an affine real algebraic

variety X is said to be strongly algebraic if there exists an algebraic

bundle n over X such that 5 * n is algebraically isomorphic to a

product vector bundle X x R™ (see [2], [3, Chapter 12] and [73]).

EXAMPLE 1. The real projective space RP™ with its standard

structure of an abstract real algebraic variety is an affine variety (see

[3, Theorem 3.4.4] or [7, p. 432]). Moreover, every d" i?-vector bundle
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over RP^ is C isomorphic to a strongly algebraic vector bundle (see

[3,Example 12.3.7(c)]). Indeed, let 5 be a C° R-v&ctox bundle over

RP . Then £ is stably equivalent to the canonical line bundle y

over RT/ or to the direct sum of several copies of y [6» P- 223,

Theorem 12.7]. Obviously, y is strongly algebraic and hence £ is

stably equivalent to a strongly algebraic vector bundle. It follows that

CO

£ is C isomorphic to a strongly algebraic vector bundle (see [2, p.

109]).

The next technical result is proved in [13, Proposition 2].

LEMMA 2. Let X be an affine nonsingular real algebraic variety

and let £ be a strongly algebraic vector bundle over X . Assume that

X is compact in the Euclidean topology. If s is a C section of £

vanishing on a closed nonsingular algebraic subvariety Y of X , then

there exists an algebraic section u of £ which is arbitrarily close to
CO

s in the C topology and vanishes on 1 .
The last auxiliary result is the following.

LEMMA 3. Let A be a closed C° submanifold of a C°° manifold M.

Assume that the normal vector bundle of A in M is trivial. If
CO

codim A = 1,2,4 or 8, then there exist a C R-vector bundle £ over

M and a C section s of £ such that rank %. = codim A, s is trans-

verse to the zero section of £ and the set of zeros s (0) of s is

equal to A .

Proof. Let k = codim A and let S be the unit fe-dimensional

sphere. Since the normal vector bundle of A is trivial, there exist a

C map f : M •*• £> and a regular value y of f such that f (y) = A

(see [9]). If k = 1,2,4 or 8 , then one can find a (f R-vector bundle

Y over & and a C section u of y such that rank y = k, u is

transverse to the zero section of y and u~ (0) = {y} (the construction

1 2 4 8
of y snd u is easily available if one identifies S , S , S and 5

with the projective line over the reals, complexes, quaternions and Cayley
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numbers, respectively). It suffices to set £ = f*y and s = f*u , where,

as usual, f*y denotes the pull-back vector bundle and f*u denotes the

pull-back section.

Proof Of the Theorem. We identify R* with a subset of RF*1 via

the map which sends (x~}...3x ) to [l,x~,,.. ,x ] . Let Y be the

Zariski closure of X in RF . Then Y = X u Xr , where X' is contain-

ed in RF*1 \ R71 . Notice that X is a C°° submanifold of RF*1 and the

normal vector bundle of X is trivial. It follows from Lemma 3 that

there exist a C vector bundle £ over RF and a C section a of

£ such that rank ? = k, S is transverse to the zero section of £ and

s (0) = X . By Example 1, we can assume that £ is a strongly algebraic

vector bundle.

Let SingfJJ be the set of singular points of Y . By the Hironaka

theorem [5], there exist a nonsingular real algebraic variety V and a

real algebraic morphism ir ; V •*• RF such that ir isomorphically trans-

forms V\TT~ (Sing (YJ) onto RP* \ Sing (Y) and the Zariski closure Z of

IT (Y \ Singly)) in V is nonsingular. Moreover, since IT is the compos-

ition of finitely many algebraic blowing-ups, it is a proper map in the

Euclidean topology (in particular, V is compact) and V is an affine

real algebraic vareity. Notice that Z = Z. u Z. , where Z. = -n~l(X)

and Z_ is a Zariski closed subset of V disjoint from Z. . Since Z

and Z. are both Zariski closed, Z is nonsingular and dimZ = dimZp ,

it follows that Z. is Zariski closed in V (see [7, Lemma 1.6]) and, of

course, nonsingular.

Clearly, the pull-back vector bundle ir*£ over V is strongly

CD

algebraic and the pull-back section n*s is of class C and transverse

to the zero section of ir*£ and (v*s) (0) = Z^ . By Lemma 2, there

exists an algebraic section v of TT*£ arbitrarily close to s in the
00

C topology and vanishing on Zj . Thus we can assume that v is trans-

verse to the zero section of TT*£ and v (0) = Z. .
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Let n be the restriction of £ to iP and let P = CTT|TT (IT)) .

Then n = p*("ir*c|Tr~ Cfî ,U and M = p *V is an algebraic section of n

which is transverse to the zero section of n and satisfies X = u (0) .

Let Q be the .4-module of all algebraic sections of n . It

follows from the definition of a strongly algebraic vector bundle that Q

is a finitely generated projective module of rank k (see also [3 ,

Proposition 12.1.11]) and hence so is the module P = Hom(Q,A) . Since u

is transverse to the zero section of n and u (0) = X , one easily sees

that for every a in P , the element a(u) belongs to I(X) and all

elements of this form generate I(X) . To conclude the proof, we define

h : P •*• I(X) by h(a) = a(u) for a in P .
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