BULL. AUSTRAL. MATH. SOC. VOL. 36 (1987) 515-520

A REMARK ON PROJECTIVE MODULES

WOJCIECH KUCHARZ

Let R denote the field of real numbers and let A be the ring of regular functions on R^n , that is the localization of $R[T_1, \ldots, T_n]$ with respect to the set of all polynomials vanishing nowhere on R^n . Let X be an algebraic subset of R^n and let I(X) be the ideal of A of all functions vanishing on X. Assume that X is compact and nonsingular and $k = \operatorname{codim} X = 1$, 2, 4 or 8. We prove here that if the A/I(X)-module $I(X)/I(X)^2$ can be generated by k elements, then there exist a projective A-module P of rank k and a homomorphism from P onto I(X).

1. Introduction

Let R denote the field of real numbers and let A be the ring of all functions $f: R^n \to R$ such that $f = \phi/\psi$ for some polynomial functions $\phi, \psi: R^n \to R$ with ψ vanishing nowhere. In other words, A is (isomorphic to) the localization of the polynomial ring $R[T_1, \ldots, T_n]$ with respect to the set consisting of all polynomials vanishing nowhere on R^n . Given a subset X of R^n , we denote by I(X) the ideal of A of all functions vanishing on X.

Received 24 February 1987.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 \$A2.00 + 0.00

In this note we prove the following.

THEOREM. Let X be a nonsingular algebraic subset of R^n of codimension k. Assume that the A/I(X)-module $I(X)/I(X)^2$ can be generated by k elements. If k = 1, 2, 4 or 8 and X is compact, then there exist a finitely generated projective A-module P of rank k and a surjective homomorphism $h: P \rightarrow I(X)$.

For k = 1 or 2 some better results are known. Indeed, since A is a factorial ring (being a localization of $R[T_1, \ldots, T_n]$), the ideal I(X) is principal if k = 1, without the compactness assumption. If k = 2, then the ideal I(X) is a complete intersection (see [4]) and one can even drop the compactness assumption for dim X = 1 (see [δ]). Moreover, the theorem holds true if k = 2 but X is not necessarily compact (see for example, [7, Theorem 3.1]).

It is unknown whether all finitely generated projective A-modules of rank greater than one are free (proofs of the Serre conjecture concerning finitely generated projective modules over polynomial rings do not seem to extend to this case, see [10], [12]). Therefore the theorem does not allow us to conclude that the ideal I(X) is a complete intersection for k = 2, 4 or 8 (see the remark above for k = 2).

The author does not know whether the theorem remains true for k=4 or β if one drops the compactness assumption or replaces R by another, say real closed, field.

2. Proof of the Theorem

Our terminology and notions concerning real algebraic geometry are consistent with those of [2], [3] and [13]. In particular, A is the ring of regular functions on R^n (see [3, Chapter 3] or [11]). Also recall that an algebraic vector bundle ξ over an affine real algebraic variety X is said to be strongly algebraic if there exists an algebraic bundle η over X such that $\xi \notin \eta$ is algebraically isomorphic to a product vector bundle $X \times R^m$ (see [2], [3, Chapter 12] and [13]).

EXAMPLE 1. The real projective space RP^n with its standard structure of an abstract real algebraic variety is an affine variety (see [3, Theorem 3.4.4] or [1, p. 432]). Moreover, every c^{∞} *R*-vector bundle

over RP^n is C^{∞} isomorphic to a strongly algebraic vector bundle (see [3, Example 12.3.7(c)]). Indeed, let ξ be a C^{∞} *R*-vector bundle over RP^n . Then ξ is stably equivalent to the canonical line bundle γ^n over RP^n or to the direct sum of several copies of γ^n [6, p. 223,

Theorem 12.7]. Obviously, γ^n is strongly algebraic and hence ξ is stably equivalent to a strongly algebraic vector bundle. It follows that ξ is C^{∞} isomorphic to a strongly algebraic vector bundle (see [2, p. 109]).

The next technical result is proved in [13, Proposition 2].

LEMMA 2. Let X be an affine nonsingular real algebraic variety and let ξ be a strongly algebraic vector bundle over X. Assume that X is compact in the Euclidean topology. If s is a C^{∞} section of ξ vanishing on a closed nonsingular algebraic subvariety Y of X, then there exists an algebraic section u of ξ which is arbitrarily close to s in the C^{∞} topology and vanishes on Y.

The last auxiliary result is the following.

LEMMA 3. Let A be a closed C^{∞} submanifold of a C^{∞} manifold M. Assume that the normal vector bundle of A in M is trivial. If codim A = 1,2,4 or 8, then there exist a C^{∞} R-vector bundle ξ over M and a C^{∞} section s of ξ such that rank $\xi = \operatorname{codim} A$, s is transverse to the zero section of ξ and the set of zeros $s^{-1}(0)$ of s is equal to A.

Proof. Let $k = \operatorname{codim} A$ and let S^k be the unit k-dimensional sphere. Since the normal vector bundle of A is trivial, there exist a C^{∞} map $f: M \to S^k$ and a regular value y of f such that $f^{-1}(y) = A$ (see [9]). If k = 1,2,4 or β , then one can find a C^{∞} *R*-vector bundle γ over S^k and a C^{∞} section u of γ such that rank $\gamma = k, u$ is transverse to the zero section of γ and $u^{-1}(0) = \{y\}$ (the construction of γ and u is easily available if one identifies S^1, S^2, S^4 and S^8 with the projective line over the reals, complexes, quaternions and Cayley numbers, respectively). It suffices to set $\xi = f^*\gamma$ and $s = f^*u$, where, as usual, $f^*\gamma$ denotes the pull-back vector bundle and f^*u denotes the pull-back section.

Proof of the Theorem. We identify R^n with a subset of RP^n via the map which sends (x_1, \ldots, x_n) to $[1, x_1, \ldots, x_n]$. Let Y be the Zariski closure of X in RP^n . Then $Y = X \cup X'$, where X' is contained in $RP^n \setminus R^n$. Notice that X is a C^∞ submanifold of RP^n and the normal vector bundle of X is trivial. It follows from Lemma 3 that there exist a C^∞ vector bundle ξ over RP^n and a C^∞ section s of ξ such that rank $\xi = k, s$ is transverse to the zero section of ξ and $s^{-1}(0) = X$. By Example 1, we can assume that ξ is a strongly algebraic vector bundle.

Let Sing(Y) be the set of singular points of Y. By the Hironaka theorem [5], there exist a nonsingular real algebraic variety V and a real algebraic morphism $\pi: V \to RP^n$ such that π isomorphically transforms $V \setminus \pi^{-1}(\operatorname{Sing}(Y))$ onto $RP^n \setminus \operatorname{Sing}(Y)$ and the Zariski closure Z of $\pi^{-1}(Y \setminus \operatorname{Sing}(Y))$ in V is nonsingular. Moreover, since π is the composition of finitely many algebraic blowing-ups, it is a proper map in the Euclidean topology (in particular, V is compact) and V is an *affine* real algebraic vareity. Notice that $Z = Z_1 \cup Z_2$, where $Z_1 = \pi^{-1}(X)$ and Z_2 is a Zariski closed subset of V disjoint from Z_1 . Since Z and Z_2 are both Zariski closed, Z is nonsingular and dimZ = dimZ_2, it follows that Z_1 is Zariski closed in V (see [1, Lemma 1.6]) and, of course, nonsingular.

Clearly, the pull-back vector bundle $\pi^*\xi$ over V is strongly algebraic and the pull-back section π^*s is of class C^{∞} and transverse to the zero section of $\pi^*\xi$ and $(\pi^*s)^{-1}(0) = Z_1$. By Lemma 2, there exists an algebraic section ν of $\pi^*\xi$ arbitrarily close to s in the C^{∞} topology and vanishing on Z_1 . Thus we can assume that ν is transverse to the zero section of $\pi^*\xi$ and $\nu^{-1}(0) = Z_1$.

518

Let η be the restriction of ξ to R^n and let $\rho = (\pi | \pi^{-1} (R^n))^{-1}$. Then $\eta = \rho^* (\pi^* \xi | \pi^{-1} (R^n))$ and $u = \rho^* v$ is an algebraic section of η which is transverse to the zero section of η and satisfies $X = u^{-1}(0)$.

Let Q be the A-module of all algebraic sections of η . It follows from the definition of a strongly algebraic vector bundle that Qis a finitely generated projective module of rank k (see also [3, Proposition 12.1.11]) and hence so is the module $P = \operatorname{Hom}(Q,A)$. Since uis transverse to the zero section of η and $u^{-1}(0) = X$, one easily sees that for every α in P, the element $\alpha(u)$ belongs to I(X) and all elements of this form generate I(X). To conclude the proof, we define h: P + I(X) by $h(\alpha) = \alpha(u)$ for α in P.

References

- [1] S. Akbulut and H. King, "The topology of real algebraic sets with isolated singularities," Ann. of Math. 113,(1981), 425-446.
- [2] R. Benedetti and A. Tognoli, "On real algebraic vector bundles," Bull. Sci. Math. (2) 104(1980), 89-112.
- [3] J. Bochnak, M. Coste and M.F. Roy, Géométrie Algébrique Réelle, (Ergebnisse der Math. Vol. 12, Springer 1987).
- [4] J. Bochnak and W. Kucharz, "Real algebraic surfaces as complete intersections," Sull. London Math. Soc. 19 (1987), 149-153.
- [5] H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero," Ann. of Math. 79(1964), 109-326.
- [6] D. Husemoller, Fibre Bundles, (Graduate Texts in Mathematics 20, second edition, Springer 1975), 209-225.
- [7] W. Kucharz, "Vector bundles over real algebraic surfaces and threefolds," Compositio Math 60 (1986), 209-225.
- [8] W. Kucharz, "Real algebraic curves as complete intersections," Math. Z., 194 (1987), 259-266.
- [9] J. Milnor, Topology from the Differentiable Viewpoint, (Univ. of Virginia Press, Charlottesville 1966).
- [10] D. Quillen, "Projective modules over polynomial rings," Invent. Math. 36 (1976), 167-171.

- [11] R. Silhol, "Géométrie algébrique sur un corps non algébriquement clos," Comm. Algebra 6 (1978), 1134-1165.
- [12] A. Suslin, "Projective modules over polynomial rings," (Russian), Dokl. Akad. Nauk. S.S.S.R. 229 (1976), 1063-1066.
- [13] A. Tognoli, "Algebraic approximation of manifolds and spaces," Séminair Bourbaki vol. 1979/80 (Springer Lect. Notes in Math. 842, 73-94, 1981).

Department of Mathematics and Statistics University of New Mexico Albuquerque, New Mexico 87131 U.S.A.