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Abstract

Recent advancements in Earth system science have been marked by the exponential increase in the availability of
diverse, multivariate datasets characterised by moderate to high spatio-temporal resolutions. Earth System Data
Cubes (ESDCs) have emerged as one suitable solution for transforming this flood of data into a simple yet robust
data structure. ESDCs achieve this by organising data into an analysis-ready format aligned with a spatio-
temporal grid, facilitating user-friendly analysis and diminishing the need for extensive technical data process-
ing knowledge. Despite these significant benefits, the completion of the entire ESDC life cycle remains a
challenging task. Obstacles are not only of a technical nature but also relate to domain-specific problems in Earth
system research. There exist barriers to realising the full potential of data collections in light of novel cloud-
based technologies, particularly in curating data tailored for specific application domains. These include
transforming data to conform to a spatio-temporal grid with minimum distortions and managing complexities
such as spatio-temporal autocorrelation issues. Addressing these challenges is pivotal for the effective appli-
cation of Artificial Intelligence (AI) approaches. Furthermore, adhering to open science principles for data
dissemination, reproducibility, visualisation, and reuse is crucial for fostering sustainable research. Overcoming
these challenges offers a substantial opportunity to advance data-driven Earth system research, unlocking the full
potential of an integrated, multidimensional view of Earth system processes. This is particularly true when such
research is coupled with innovative research paradigms and technological progress.
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Impact Statement

Today, we have the capability to continuously monitor a broad array of processes within the Earth system at high
spatio-temporal resolutions. However, it is only through combined analysis that these data reveal their full
potential in advancing Earth system research. Earth System Data Cubes (ESDCs) possess transformative
potential in this regard, yet they are accompanied by significant challenges throughout their life cycle. This
paper offers a detailed exploration of these challenges, highlighting the importance of rigorous ESDC analysis
while warning against potentially misleading outcomes from naive applications.

1. Introduction

Humanity possesses the capability to observe and model the majority of Earth’s subsystems, generating
vast amounts of data with unprecedented resolution, quality, and coverage (Simmons et al., 2016; Peng
et al., 2021; Bauer et al., 2021a). The co-interpretation of these diverse datasets represents an unprece-
dented opportunity for understanding the intricacies of the Earth system (Runge et al., 2019; Mahecha
et al., 2020; Tuia et al., 2023). However, this wealth of heterogeneous data comes with substantial
challenges. The sheer volume of data, characterised by variations in spatial and temporal resolution as
well as data curation levels, coupled with the high complexity of processes encoded in these multi-
dimensional datasets, renders conventional data processing and interpretation methods unsuitable
(Boulton, 2018; Sudmanns et al., 2020).

Recognising the need for a simple yet robust data infrastructure to facilitate Earth system data
interoperability led to the emergence of various data cube concepts (Nativi et al., 2017; Baumann
et al., 2019; Giuliani et al., 2019; Kopp et al., 2019; Mahecha et al., 2020, and others). We refer to Earth
System Data Cubes (ESDCs) as frameworks where diverse datasets are integrated into a unified, highly
interoperable system, organised on a common spatio-temporal grid (a more formal definition is given in
Section 2.1). The essence of ESDCs is to convert the vast array of Earth system data into readily accessible
data streams, apt for a variety of Earth system research domains. Such frameworks are gainingwidespread
acceptance in Earth system research as a solution for managing complex Earth Observation (EO) data.

Given the simplicity of such structures, various initiatives have greatly enhanced the use of EO data
derived from satellite remote sensing and other large-scale array data, such as climate model outputs.
Initiatives building on an ESDC concept originally developed their data in hand-crafted ways
(e.g. Mahecha et al., 2020; Estupiñan Suarez et al., 2021; Walther et al., 2022) or created systems
supporting on-demand generations of ESDCs (e.g. Appel and Pebesma, 2019; Killough, 2018; Schramm
et al., 2021). Earth system data providers have invested tremendous efforts in compiling extensive data
catalogues, which can be used for the development of further ESDCs. Notable examples of such
catalogues are provided by Google Earth Engine (GEE, Gorelick et al., 2017)1, Microsoft Planetary
Computer2, or theOpenGeospatial Data Catalogue of AmazonWeb Services (AWS)3. Additionally, there
is a constant effort to increase the adoption of ESDCs (including generation and analysis) within cloud
environments (Zellner et al., 2024). Therefore, ESDCs can be efficiently generated and used in virtual
laboratories, such as the DeepESDL (Brandt et al., 2023; Sturm, 2023)4, or the agricultural virtual lab5.

This access to straightforward aligned Earth system data has facilitated numerous Earth system
research questions. For instance, researchers have employed both linear and non-linear dimensionality
reduction methods to generate global indicators for the terrestrial biosphere (Kraemer et al., 2020),
uncover the main modes of Earth system variables (Bueso et al., 2020), quantified spatial dynamics of
vegetation responses to ENSO in South America (Estupinan-Suarez et al., 2023), or gainedmajor insights

1 https://developers.google.com/earth-engine/datasets/
2 https://planetarycomputer.microsoft.com/catalog
3 https://aws.amazon.com/earth/
4 https://deepesdl.readthedocs.io/
5 https://agriculturevlab.eu/
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on Land Use and Cover Change (LUCC, Santos et al., 2019). Specifically, EO data cubes, or ESDCs
comprising satellite remote sensing imagery, have been instrumental in applications such as learning the
vegetation response to climate drivers using Recurrent Neural Network (RNN) architectures (Martinuzzi
et al., 2023), quantifying drought legacy effects on gross primary production (Yu et al., 2022), and
detecting spatio-temporal extreme events (Mahecha et al., 2017).

However, if the goal is for ESDCs to evolve and become sustainable data infrastructures, it is essential
to develop robust ESDC life cycles. Considering the unique characteristics of ESDCs, we cannot merely
apply existing research data life-cycle concepts; instead, we must identify and address the peculiarities
specific to ESDCs. It is necessary to create opportunities for continuous improvement and to address
current challenges by leveraging contemporary technological advancements, specifications, and research
paradigms. For instance, data formats and sharing protocols must evolve to align with the current status of
cloud-based technologies and standards, in accordance with the adoption of FAIR Open Science
principles (Wilkinson et al., 2016). Moreover, transforming heterogeneous data into an analysis-ready
format aligned with a multidimensional spatio-temporal grid is often complex and subject to application-
specific variations (Giuliani et al., 2019; Zuefle et al., 2021).

The resulting data format, though straightforward and relatively easy to analyse, encompasses inherent
complexities (Béjar et al., 2023). These intricacies necessitate careful consideration during data analysis,
requiring a profound understanding of the nature of Earth system processes. Naive analyses based on
ESDCs can potentially lead to misleading interpretations as pointed out, e.g. by Meyer et al. (2018);
Rußwurm et al. (2023) or Sweet et al. (2023). Common pitfalls include model performance inflation
caused by spatio-temporal auto-correlation, biased sampling, and inaccurate spatial aggregations. It’s
only by adequately addressing these challenges that the full potential of ESDCs can be realised, aligning
with the perspectives of various authors (Reichstein et al., 2019; Irrgang et al., 2021; Hsieh, 2022; Sun
et al., 2022; Persello et al., 2022; Tuia et al., 2023). Topics widely discussed today are generative
processes in Artificial Intelligence (AI) that could enable researchers to reconstruct unseen data (Rüttgers
et al., 2019; Oyama et al., 2023). Another promising direction is the potential formaking causal inferences
solely from data (Runge et al., 2019; Krich et al., 2021; Christiansen et al., 2022; Camps-Valls et al.,
2023). Also, integrating physical constraints and domain knowledge in the inference process can lead to
more plausible semi-empirical predictions (Ilie et al., 2017; Karniadakis et al., 2021; Camps-Valls et al.,
2021; Cortés-Andrés et al., 2022). Concurrently, advances in data processing and visualisation technolo-
gies not only enhance data exploration and analysis but also aid in disseminating research findings
(Söchting et al., 2023).

This paper seeks to identify the challenges inherent in the complete ESDC life cycle while, at the same
time, highlighting the potential to advance Earth system research through these data structures. The
manuscript is organised as follows: Section 2 introduces the concept of ESDC and its relationship to
information-preserving systems for Earth system data. In Section 3, we elaborate on the ESDC life cycle,
displaying the obstacles encountered during data processing and proposing pathways toward creating
analysis-ready ESDCs. Section 4 explores the transformative possibilities stemming from contemporary
AI advancements in Earth system researchwhile Section 5 cautions against the risks of uninformed ESDC
analysis. Section 6 addresses the technical facets of manipulating ESDCs throughout their life cycle,
offering insights into technologies that can streamline Earth system data processing. Lastly, in Section 7,
we examine the challenges associatedwith data visualisation in the context of ESDCs. Through this paper,
we aim to outline the complexities and opportunities associatedwith employing ESDCs, hopefully paving
the way for advancements in Earth system research.

2. The Art of Data Cubes

Data cubes are renowned for their capacity to serve as multidimensional arrays of data, enabling the
representation of values across various dimensions of interest within a specific domain. Specialised data
cubes designed for analytical queries in database systems, such as Online Analytical Processing (OLAP,
Chaudhuri and Dayal, 1997) cubes, have been integrated with Geographical Information System (GIS)
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databases to give rise to Spatial OLAP (SOLAP, Rivest et al., 2005) cubes. SOLAP infrastructures,
although traditionally associatedwith vector data, are also available for raster data (Kasprzyk andDonnay,
2017). Database systems have proven effective in storing and managing Earth system data in the form of
data cubes, exemplified by array database solutions like Rasdaman (Baumann et al., 1998). Additionally,
data cube infrastructures can be employed to store indexed files (Killough, 2018), thus safeguarding the
information that might otherwise be lost during data transformation processes, such as reprojection. Here,
we rely on a specific interpretation of data cubes, specifically tailored to tackle the vast volumes and
interoperability challenges of Earth system data. We first explain the concept of ESDCs, but also provide
an overview of related information-preserving structures, namely image collections and information-
preserving data cubes, showcasing how they interface with ESDCs.

2.1. What are Earth System Data Cubes (ESDCs)?

The concept of ESDCs was introduced along with the Earth System Data Lab (ESDL, Mahecha et al.,
2020), an integrated data and analytical hub that aimed to unify multiple heterogeneous Earth system data
streams into a standard data model with a unique Coordinate Reference System (CRS). ESDCs represent
multidimensional data structures designed to facilitate streamlined access, analysis, and manipulation of
Earth system data. ESDCs comprise labels as dimensions defining the cube’s axes, an array of gridswith
their associated coordinate values distributed along these dimensions, and univariate data associated with
each grid cell. Furthermore, in this paper, we add a new component: a suite of attributes that characterise
the data, the dimensions, and the complete ESDC entity.

The dimensions are a set of labels describing the axes of the ESDC. Generally, these dimensions
comprise space (e.g. “x” and “y”), time, and variables. Nevertheless, further dimensions can be added
(e.g. “pressure levels”, “model ensembles” or “time series components”). It is crucial to emphasise that
while ESDCs conventionally incorporate spatial and temporal dimensions (e.g. latitude, longitude, and
time), they are not confined to this paradigm (cf. Table 1 of Mahecha et al., 2020). ESDCs can exhibit
different dimensions, and the number of dimensions is called the order of the ESDC. Thus, an increment in
the ESDC’s complexity according to its dimensions is given by their order (e.g. a spatio-temporal grid of a
univariate ESDC has an order of 3, while the order of a multivariate ESDC is 4).

The grouping of grids consists of discrete subsets derived from the domain of each dimension’s
axis. The values of these subsets are referred to as coordinates, and, in the case of a regular grid, they
determine the data’s resolution along that specific dimension. For instance, a grid determining a
resolution of 0.5 degrees for the “latitude” dimension in a global ESDC may have a set of coordinates
grid latitudeð Þ¼ �89:75,�89:25,…, 89:25, 89:75f g. While coordinates are often associated with
numerical values (e.g. latitudes and longitudes), they can encompass a wide range of values.
For instance, timestamps in a “time” dimension with a set of coordinates
grid timeð Þ¼ “2022�01�01”,“2022�01�02”,…,“2022�12�31”f g, or components derived from
a time series decomposition approach in a “component” dimension with a set of coordinates
grid componentð Þ¼ “raw”,“trend”,“seasonal”,“residual”f g. The grids within an ESDC exhibit the
following characteristics: 1) In the case of spatial dimensions, they reference the same CRS, 2) the
coordinates within a grid share identical units, and 3) they must consist of at least two coordinates;
otherwise, the dimension (and consequently the grid) is omitted. It’s important to note that, given
these properties, irregular grids are also possible, with the temporal dimension grid being a typical
example in EO data due to the irregular revisit times of some satellite missions (e.g. Sentinel-2).

The array of data represents scalar values corresponding to each grid cell. Typically, the data spans
from observed measurements to modelled values. Nevertheless, one can also encounter higher-order
features (that is data derived from operations performed on the original values), such as outcomes from
time series decomposition or AI-generated products. Furthermore, flag values, which delineate data
status, can be incorporated. Cells without data are denoted as “NA” (that is not available).

The collection of attributes comprises a series of key-value objects that provide additional details
about the data. These objects serve as metadata and can offer descriptions ranging from individual
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variables (including their associated dimensions) to the entire ESDC. The information contained within
these attributes typically encompasses a wide range of elements, including, but not limited to, names,
acronyms, units, flag definitions, versions, and source details.

2.2. Relation of ESDCs to Image Collections and Data Cubes

Earth system data often exhibits heterogeneity and irregularity, particularly within EO data. Variability
can manifest in different spatial resolutions, time units, projections, formats, and more, sometimes even
within the same data product. Consequently, two robust approaches to retaining data integrity without
succumbing to information loss due to transformations (e.g. reprojection, reduction, and resampling) are
to utilise image collections (refer to Appel and Pebesma, 2019 for a comprehensive distinction between
image collections and conventional data cubes) or to adopt a process where original files are stored and
indexed within a information-preserving data cube infrastructure based on their file metadata
(Figure 1). In the latter approach, the original files can be stored locally or in the cloud while preserving
the essential information intact.

A successful example of image collections is the GEE Catalogue. This extensive, multi-petabyte
catalogue stores data in tiled images, where each image may encompass multiple bands, thereby
preserving essential information. Furthermore, these images can be organised into an image collection
if they share relevancy. GEE also offers the computational resources necessary for accessing and
analysing their catalogued data. Within GEE, data cube-like operations can be seamlessly executed
through dynamic on-the-fly reprojection, resampling, and reduction for the tiles where a subset of pixels
was explicitly requested. It is worth noting, however, that users are required to conform to the specific
Application Programming Interfaces (API) provided by GEE for processing and analysing the data
effectively.

Standardising image collections and their access brings simplicity and promotes data usage across
platforms. Currently, a widely recognised standard is the Spatio-Temporal Assets Catalog (STAC)
specification. This specification empowers users to query data assets based on metadata and spatio-
temporal criteria. Coupled with domain-specific API clients available for multiple programming

Figure 1. Representations of different storage systems for gridded data in Earth system research: Image
collections (left), information-preserving data cubes (centre), and Earth system data cubes (ESDCs,
right). Differences in these abstract representations have deep implications for data storage systems,
accessibility, interoperability and metadata definitions.
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languages (cf. Section 6.2) and GIS software (e.g. QGIS STAC Plugin6), users can easily retrieve data.
The flexibility of the STAC specification has prompted numerous data providers to adopt it for creating
their own data catalogues7, with notable examples including Microsoft Planetary Computer Catalogue8

and the United States Geological Survey (USGS) Landsat Archive Catalogue (stored in the Amazon
Simple Storage Service, S3)9.

The information-preserving data cube approach is exemplified by the Open Data Cube (ODC)
initiative, a prominent model in this field (Killough, 2018; Killough et al., 2020)10. This approach has
played a pivotal role in informing governmental actions and policies, as evidenced by their integration
into national and regional data cube frameworks (Dhu et al., 2019; Sudmanns et al., 2022). Noteworthy
instances of these initiatives include Digital Earth Africa (DE Africa, formerly known as Africa Regional
Data Cube, Killough, 2019), Digital Earth Australia (DE Australia, previously Australian Geoscience
Data Cube, Lewis et al., 2017; Dhu et al., 2017), the Colombian Data Cube (CDCol, Ariza-Porras et al.,
2017; Bravo et al., 2017; Villamizar et al., 2018), and the Swiss Data Cube (SDC, Giuliani et al., 2017).

While both of these approaches excel in preserving data integrity and offering flexibility for various
analyses, achieving Earth systemdata interoperability necessitates their integration into a unified structure
through ESDCs. These ESDCs can be constructed from either approach. For instance, in the case of image
collections, it is feasible to request pixels from GEE (Clinton, 2023), and data transformations can be
executed within the GEE cloud-based environment before downloading the data. It’s important to note
that limitations related to the size of the requested data can be a potential concern in this process.
Alternatively, STAC simplifies the process, particularly when combined with cloud-ready formats. This
lazily enables the creation of ESDCs. In the information-preserving data cube approach, platforms like
ODC offer a comprehensive system for transforming original data into ESDCs and even provide
mechanisms for storing the resulting ESDCswithin the data cube infrastructure11. Noteworthy is openEO
(Schramm et al., 2021), an API striving to connect multiple backends in a standardised way, including
image collection providers (e.g. GEE) and information-preserving data cubes (e.g. ODC)12, to generate
ESDCs.

3. The ESDC Life cycle

Creating an ESDC from multiple sources, including source files, data cubes, or image collections, is a
multifaceted process. The ESDC life cycle, as illustrated in Figure 2, encompasses several crucial stages,
each playing a vital role in the generation, analysis, and effective utilisation of these data structures. The
ESDC life cycle comprises the following key phases: data collection, curation, cubing, harmonisation,
transformation, analysis, and reuse. These phases are linked, reflecting the meticulous efforts involved in
ESDCs’ development. In parallel to these stages, metadata generation occurs concurrently with data
transformations, data exploration, visualisation, and dissemination. This section provides an overview of
the ESDC life cycle, emphasising relevant considerations that contribute to the streamlined development
and utilisation of ESDCs.

3.1. Collection

Given that data providers frequently utilise diverse formats and protocols for data sharing, particularly in
proportion to the multidimensional complexity of the data, the establishment of streamlined access
mechanisms becomes imperative. Traditionally, File Transfer Protocol (FTP) servers have been used for

6 https://github.com/stac-utils/qgis-stac-plugin
7 https://stacindex.org/catalogs/
8 https://planetarycomputer.microsoft.com/
9 https://www.usgs.gov/core-science-systems/nli/landsat/landsat-commercial-cloud-data-access
10 https://www.opendatacube.org/ceos
11 https://www.opendatacube.org/overview
12 https://openeo.org/software.html
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data sharing. However, to enhance data discoverability and usability, data providers are increasingly
adopting data stores that offer persistent and standardised data storage. Repositories play a vital role in this
process by standardising metadata, enabling easy search and retrieval of assets through metadata queries.
Recently, more and more data providers offer APIs to facilitate efficient querying of metadata and access
to the data itself by adopting specifications such as STAC and enabling range requests for cloud-optimised
data (e.g. Zenodo recently started to support HTTP range requests13).

The flexibility of these specifications enhances data interoperability by enabling the development of
extensions that simplify data integration. For instance, the Electro-Optical STAC-extension14 has been
created to facilitate the integration of multispectral remote sensing data by expanding the capabilities of
STAC to accommodate specific requirements and metadata associated with this kind of data. Looking
ahead, the advantages of data interoperabilitymay potentially extend beyond the realm of raw source data,
encompassing entire ESDCs. The datacube STAC-extension15 (currently in a “candidate” Extension

Figure 2. ESDC life cycle. The inner circle represents data processing tasks, and the outer circles
represent ancillary tasks that run parallel to the processing steps, involving activities such as data
exploration, visualisation, dissemination, and metadata generation. The outermost circle of the diagram
illustrates the readiness level of the processed ESDCs at specific points within the cycle.

13 https://blog.zenodo.org/2021/12/07/2021-12-07-hardening-our-service/
14 https://github.com/stac-extensions/eo
15 https://github.com/stac-extensions/datacube
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Maturity level) has been developed with the primary objective of advancing the integration and
interoperability of structured data representations like ESDCs within the STAC ecosystem. This effort
aims to broaden the scope of opportunities for reusing ESDCs in new data processing pipelines.

Additionally, the efficiency of data access and collection is contingent upon data formats. GeoTIFF is
arguably the most used and renowned data format for georeferenced raster data. This format adds a
standard specification for the TIFF format that describes the spatial properties of the raster. It is widely
used for EO products such as Landsat imagery. The need to operate in cloud environments has driven the
development of cloud-optimised geospatial data formats. Consequently, the GeoTIFF format has evolved
to the Cloud-Optimised GeoTIFF (COG)16 format, enhanced to function efficiently in cloud environ-
ments through HTTP range requests. COGs offer several advantages over traditional GeoTIFFs, includ-
ing reduced latency in data retrieval, faster visualization of large datasets, and a tiled structure that enables
parallel processing. The significance of this format is underscored by its recent approval as an Open
Geospatial Consortium (OGC) standard17,18.

When the dimensionality of the data increases, formats such as NetCDF or HDF5 are typically used to
encapsulate data and coordinate values. Tiling and chunking allow efficient access to big data arrays for
both data formats. However, these formats are not inherently optimised for cloud environments. The Zarr
specification19 addresses this limitation and can be used directly in cloud environments, offering several
advantages over NetCDF and HDF5. Zarr enables more efficient chunk access for parallel processing,
provides better support for distributed computing, and offers improved read andwrite speeds, particularly
in cloud storage systems. Moreover, Zarr’s flexible chunking scheme allows for optimised data access
patterns, and its simpler metadata structure facilitates easier data discovery and management. Addition-
ally, specifications such as geo-zarr20 and the xcube dataset convention21 have been introduced to further
enhance data interoperability and compatibility within the context of Earth system data.

3.2. Curation

Effective data curation stands as a critical anchor in the preparation of data for subsequent spatio-temporal
processes and analysis via ESDCs (Marujo et al., 2022). The transformation of raw data into Analysis-
Ready Data (ARD) has emerged as an essential prerequisite across multiple initiatives. ARD ensures that
data are readily amenable to queries, analysis, and application development. Notable instances of these
initiatives include DE Africa22, DE Australia23, and the Brazil Data Cube (Ferreira et al., 2020; Marujo
et al., 2022), among others.

The Committee on Earth Observation Satellites (CEOS) has precisely defined ARD as “satellite data
that have been processed to a minimum set of requirements and organized into a form that allows
immediate analysis with a minimum of additional user effort and interoperability both through time and
with other datasets”24. In this definition, ARD also exhibit interoperability both across time andwith other
datasets (refer to Siqueira et al., 2019 for an overview of the CEOS ARD for Land initiative, CARD4L).
CEOS has established a comprehensive set of Product Family Specifications (PFS) tailored to various
data groups, including Surface Reflectance, Surface Temperature, Polarimetric Radar, and more. These
specifications undergo rigorous peer review processes across multiple satellite platforms, such as Landsat
and Sentinel collections, to obtain CEOSARD approval. It’s worth noting that there are ongoing efforts to
develop additional PFS, including Interferometric Radar and LiDARTerrain andCanopyHeight. It is also

16 https://www.cogeo.org/
17 https://docs.ogc.org/is/21-026/21-026.html
18 https://www.ogc.org/press-release/cloud-optimized-geotiff-cog-published-as-official-ogc-standard/
19 https://zarr.dev/
20 https://github.com/zarr-developers/geozarr-spec
21 https://xcube.readthedocs.io/en/latest/cubespec.html
22 https://www.digitalearthafrica.org/platform-resources/analysis-ready-data
23 https://www.dea.ga.gov.au/about/analysis-ready-data
24 https://ceos.org/ard
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worth noting that the OGC has recently addressed the CEOS ARD concept by forming a new Standards
Working Group (SWG) to define a generic multi-part standard specifying a set of minimum requirements
for geospatial products to be considered ARD25.

It is important to recognise that achieving an ARD level can extend beyond minimum standard
specifications. Obtaining ARD often involves crucial preprocessing and data curation tasks that are
tailored to the unique requirements of the application domain. For instance, in the context of EO data,
these tasks may encompass but are not limited to, cloud and cloud shadowmasking (refer to Skakun et al.,
2022 for a comprehensive intercomparison exercise of multiple cloud and cloud shadow masking
methods), snow masking (e.g. Richiardi et al., 2021), and the correction of Bidirectional Reflectance
Distribution Function (BRDF) effects to derive Nadir BRDF Adjusted Reflectance (NBAR) values
(e.g. Roy et al., 2016).

3.3. Cubing

The concept of ARD may exhibit some subjectivity depending on the specific application. This
subjectivity pertains to the data that populates an ESDC. In contrast, ESDCs inherently represent
straightforward yet robust analysis-ready integrated entities, capable of simplifying a broad spectrum
of analytical tasks (Baumann et al., 2019). An ESDC filled with ARD is often called an Analysis-Ready
Data Cube (ARDC), a concept widely employed in DeepESDL. To generate an ARDC, the critical step
involves aligning data onto a unified grid. Domain experts predefine this grid, and all data sources must
conform. Furthermore, the efficacy of the ARDC processing is significantly influenced by the imple-
mentation of an optimal chunking strategy for this grid. This strategymust be tailored to facilitate efficient
data processing across diverse analytical scenarios. For instance, analyses focused on temporal dynamics
benefit from chunking strategies that preserve the temporal dimension, whereas spatial analyses or
cartographic visualisations are optimised by maintaining spatial dimensions within chunks. In scenarios
requiring multi-temporal spatial analysis, a hybrid approach combining both temporal and spatial
preservation in chunking can be advantageous.

When the grid moves in the spatio-temporal domain, the varying spatio-temporal resolutions and
coverage among multiple data sources require selecting adequate methods to fit the data into the
predefined grid. Datasets with varying spatial resolutions and coveragemust be resampled onto a standard
spatial grid. This process often requires modifying the data (Cracknell, 1998). While non-destructive
algorithms such as nearest neighbours can preserve data values (at the cost of duplicating or ignoring
values), significant differences in spatial resolution often require transformation through (non-) linear
resampling methods, such as cubic convolution or advanced fusion techniques (Nikolakopoulos, 2008).
Complex AI methods can be employed to perform spatial transformations while preserving the quality of
the measured variable (e.g. multi-image super-resolution algorithms, Michel et al., 2022; Razzak et al.,
2023). Another often overlooked issue arises when dealing with extensive variables. In such instances, it
is crucial to ensure that, for example, mass balances are not distorted in the process of creating new
products.

It is important to note that the application of resampling methods, particularly in the context of
generating Global ESDCs covering the entire planet (e.g. Mahecha et al., 2020), may introduce geometric
distortions. Projecting global datasets onto a plane can distort the data in terms of area, distances, and
angles (Snyder and Voxland, 1989), posing challenges for subsequent analysis (cf. Section 5.1). This can
be alleviated by using a Discrete Global Grid System (DGGS, Kmoch et al., 2022). This kind of grid
system seeks to minimise distortions, harmonise cell sizes and maintain consistent distances from
neighbours. Defining standards and solutions for efficient chunk storage, subsetting, and integration into
the ESDC framework will be a challenging future task. Still, it could lead to significant improvements in
both the performance and accuracy of spatial algorithms.

25 https://www.ogc.org/press-release/ogc-forms-new-analysis-ready-data-standards-working-group
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In the case of Regional ESDCs (e.g. Estupiñan Suarez et al., 2021), which may cover entire continents,
oceans, or administrative regions at various hierarchical levels, selecting an appropriate CRS is crucial to
ensure minimal geometric distortion. On local scales, Local ESDCs (also referred to as mini cubes,
Requena-Mesa et al., 2021) cover smaller areas of interest (e.g.Walther et al., 2022), ideally characterised
by high spatial resolutions ranging from sub-meters to meters. Using local ESDCs together with a local
CRS enables to minimise distortions.

When dealing with datasets characterised by varying temporal grids, even if they share the same date-
time units, irregular temporal grids may emerge. These discrepancies can introduce temporal gaps within
the time dimension. In caseswhere datasets exhibit varying date-time units, especially whenworkingwith
datasets featuring finer date-time units (e.g. daily records), it becomes necessary to aggregate them to
align with a predefined coarser temporal grid (e.g. monthly records).While this process is straightforward
for regularly sampled data, it can pose challenges for EO data with long revisit periods (e.g. Landsat data).
These challenges can potentially introduce uncertainties during aggregation. Substantial gaps in EO data
can have a detrimental impact on the accuracy and representativeness of the aggregated results. This
concern is further exacerbated when additional gaps arise due to data disturbances, such as cloud and
shadow interference.

3.4. Harmonisation

Additional post-processing of data variables may be necessary to address Earth system challenges. This
entails further data curation to obtain a fully gap-filled, harmonised product with evenly spaced time steps.
In alignment with the naming conventions established for EO data cubes by Frantz, 2019, we refer to a
thoroughly harmonised ESDC as a highly ARDC (hARDC).

Data harmonisation is crucial to ensure the consistency and compatibility of variables obtained or
generated using different methodological or technical approaches (Wulder et al., 2015). When discrep-
ancies exist between data measurement or production methods, it can introduce inconsistencies that
hinder subsequent analyses involving the specific variables (Vogeler et al., 2018). To address this, one
approach is to create separate variables that represent the same measured quantity, highlighting the
differences between them. However, to enhance spatio-temporal resolution and coverage, harmonisation
of variables is often necessary (e.g. harmonising reflectance values from Sentinel-2 and Landsat, Claverie
et al., 2018; Marujo et al., 2023).

This can be achieved through simple methods that involve sampling data from the same spatio-
temporal index in both variables to establish a direct conversion model (e.g. using matched observations
to match Landsat 8 and Sentinel-2, Shang and Zhu, 2019). Alternatively, more advanced AI models can
harmonise data by incorporating one ormore additional variables (e.g. creating a global product ofOCO-2
Sun-Induced Fluorescence, SIF, Li and Xiao, 2019). This may require the development of an entire AI
pipeline to extend a variable with newly available data or reconstruct it, especially in cases where the
variable was not previously measured (e.g. reconstructing SIF fromTROPOMI, Chen et al., 2022). In this
sense, data harmonisation also encompasses projecting data in simulated future scenarios (e.g. projecting
vegetation dynamics for the rest of the century, Mahowald et al., 2016). In addition, it is crucial to
incorporate uncertaintymetrics to facilitate accurate and reliable future analysis using the harmonised data
variables (cf. Section 4.3).

Additionally, to effectively use algorithms that incorporate temporal structures, such as Recurrent
Neural Networks (RNNs, Sherstinsky, 2020), a regularly spaced and gapless time dimension is usually
required. Hence, data from an irregular time dimension should be aggregated or interpolated to fit into a
regular temporal grid (e.g. gap-filling Landsat reflectances on a monthly basis, Moreno-Martínez et al.,
2020). A suitable predefined temporal resolution must be selected, and data must be gap-filled. Various
gap-filling techniques, ranging from simple linear interpolation to more complex AI-based modelling
approaches, can be employed to address this (e.g. using Long Short-Term Memory networks, LSTMs,
Ren et al., 2022). The choice of the gap-filling method depends on factors such as the data’s nature, the
desired accuracy level, and the specific requirements of the analysis or application.
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3.5. Transformation

Expertly crafted higher-order features often prove highly relevant for addressing Earth system challenges.
These new features span a spectrum, encompassing operations that range from simple transformations of
the original variables to the creation of entirely novel features derived from advanced AI models.
Examples of such features include the computation of spectral indices derived from reflectance bands
(Montero et al., 2023), the extraction of frequencies through time series decomposition (Mahecha et al.,
2010), the creation of spatio-temporal compositions (e.g. Griffiths et al., 2013), summarising high
dimensional dynamics (e.g. Kraemer et al., 2020), and outputs generated by AI models (e.g. Brown
et al., 2022). To illustrate, consider a study focusing on climate extremes like heatwaves and droughts’
impact on the terrestrial biosphere. In such cases, calculating anomalies for critical variables (e.g. air
temperature and soil moisture as proxies for heatwaves and droughts, with Gross Primary Production as
the target biosphere variable) is pivotal (see Figure 3). Creating these novel features introduces a new
dimension to distinguish between variable values corresponding to raw data and those representing
anomalies. In line with the naming conventions introduced by Frantz, 2019, we designate an ESDC with
higher-order features as a hARDC Plus (hARDC+).

3.6. Reuse

ESDCs, after generation and analysis, can either evolve into dynamic versions through continuous
updates or become static ESDCs, serving as input for the generation of new ESDCs. In the first scenario,

Figure 3. Abstract representation illustrating the connection between three Earth system variables in a
hARDC+ (from top to bottom: anomalies in air temperature, soil moisture, and gross primary
production). The arrows illustrate the interactions that can be modelled, e.g., predictive modelling (top to
bottom) or interpretation (bottom to top), depending on the use case of interest.
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establishing a Continuous Integration (CI) pipeline becomes essential for automating ESDCupdates. This
pipeline can be scheduled to align with the release of new dataset versions, ensuring the ESDC remains
current. However, this approach may prove inefficient for EO products that are delivered regularly
(e.g. Sentinel-2 or MODIS) and that may be constantly reprocessed by data providers, releasing new
versions with updated processing pipelines. In this case, the update schedule should alignwith the specific
needs of the ESDC (e.g.monthly, semi-annually, or annually). In the second scenario, an automatic update
of dataset versions is also feasible, eliminating the necessity to extend the ESDC to themost recent date. In
either scenario, it is crucial to implement clear reproducibility and traceability practices to ensure the data
integrity of future ESDCs.

As highlighted in Section 3.1, standardisation is pivotal in promoting fluid data interoperability within
this context. OGC has recognised the growing significance of data cube approaches for geospatial data.
OGC recently established theGeoDataCubes SWG to create anAPI that facilitates interoperability among
various solutions26. This standard covers a broad scope, explicitly includingAPI functionalities for access
and processing, exchange format recommendations, profiles, and a metadata model.

Additionally, cloud technologies have ushered in the development of data cube services that abstract
the underlying file structures and formats, replacing them with APIs offering diverse processing
functionalities and promoting interoperability. For instance, platforms like Sentinel Hub27 serve as
sources for ESDC generation through tools like xcube. Moreover, the openEO platform28 aims to provide
an API that enables connections from multiple clients to various cloud backends using a unified API
(Schramm et al., 2021). Approaches like these allow the tailored specification of ESDCs on-demand, with
server-side processing relieving requesters of the complexities of the generation task. However, this
convenience often comes with a trade-off, as the processing engine’s code basis, the processing
environment, and the input data are not known to requesters. Any modifications to these specifications
can result in different outcomes for identical requests to the data cube API, hindering a streamlined update
of dynamic ESDCs and a transparent basis for reusing static ESDCs.

In contrast, less convenient but more transparent approaches fully document the ESDC generation
process through “recipes”. These recipes contain versioned source code used for input data processing.
Examples include the Pangeo Forge29 (Stern et al., 2022) and DeepESDL recipes30. Recipes, coupled
with versioned input data and fully specified processing environments, enable practical reproducibility of
resulting ESDCs. This approach supports the seamless updating of dynamic ESDCs when new data
becomes available and provides transparency for incorporating static ESDCs into new datasets.

Ongoing efforts to enhance data lineage and provenance transparency are integral to the Copernicus
Data Space Ecosystem. The development of the “traceability” service31, currently in progress, is designed
to empower users to trace all modifications to the data from its origin to its delivery to the end user,
ensuring greater transparency and accountability in the ESDC life cycle.

3.7. Metadata generation

Traceability and self-explanatory power are essential aspects alongside the data values themselves. When
an ESDC is generated, end users may access its description through various sources, including docu-
mentation that adheres to best practices for open data publishing within the Earth sciences. Such practices
are supported by data journals (e.g. ESSD32) and scientific associations (e.g. AGU Open Science33),
provided that the data producers have furnished comprehensive documentation. However, the data must

26 https://www.ogc.org/press-release/ogc-forms-new-geodatacube-standards-working-group
27 https://www.sentinel-hub.com/
28 https://openeo.cloud
29 https://pangeo-forge.org
30 https://github.com/deepesdl/cube-gen
31 https://dataspace.copernicus.eu/analyse/traceability
32 https://www.earth-system-science-data.net/policies/data_policy.html
33 https://www.agu.org/-/media/files/publications/your-6-step-guide-for-publishing-open-access-with-agu.pdf/
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carry its own encapsulated description in the form of metadata, which typically comprises a set of
attributes represented as key-value pairs. This ensures the data contain relevant information about their
characteristics, facilitating understanding and utilisation.

Metadata generation should begin at the initial stage of data collection, encompassing crucial
information such as data descriptors (e.g. name, units, measurement methods and equipment, resolution),
data transformations (e.g. resampling or interpolation methods), metadata transformations (e.g. renaming
procedures, conventions conversion), and responsible producers (e.g. creator entity, data provider). This
metadata generation process should be consistently maintained throughout the entire ESDC life cycle,
documenting each step undertaken to derive the final product (e.g. storing the process graphs from
openEO when using this platform34). This ensures comprehensive self-contained documentation of the
history and processing of the ESDC.

While flexibility exists in metadata management, conventions are crucial when dealing with Earth system
data. The Climate and Forecast Metadata Conventions (CF Conventions, Hassell et al., 2017), for instance,
represent a comprehensive set of standards specifically designed for Earth system data stored in formats such
as NetCDF (although they can be readily applied to other formats like Zarr). These conventions facilitate the
creation of clear anddetailed descriptions of data variables and coordinate dimensions. Furthermore, software
like xarray (Hoyer and Hamman, 2017) can parse CF Conventions and leverage them for different ESDC
processes35. Compliance with CF Conventions not only simplifies data sharing but also promotes interoper-
ability among various data sources, ensuring that ESDCs adhere to established standards.

4. Leveraging ESDCs for Earth system research

ESDCs offer promising opportunities for advancing Earth system research, particularly with recent AI
developments. This is exemplified for Deep Learning (DL) by the spatio-temporal nature of ESDCs in a
tensor-like structure. In this context, several key subjects emerge as highly relevant for Earth system
research. We present three pertinent topics where the potential of ESDCs can be leveraged for advancing
Earth system research: Physics-Informed Machine Learning (PIML), the adoption of complex sampling
strategies, and the quantification of uncertainties.

4.1. Adding factual knowledge via PIML

A great addition to Machine Learning (ML) modelling is combining the pure data-driven approach with
factual knowledge of the system under investigation (Karniadakis et al., 2021). PIML leverages domain
knowledge (typically mechanistic models or differential equations) and flexible data-drivenMLmethods
(typically neural networks). Consequently, PIML models respect physical boundaries more faithfully
while being flexible enough to approximate arbitrarily complex non-linear functions from data
(cf. discussion and references in Reichstein et al., 2019). ESDCs provide a unique structure to access
multiple Earth system data streams, and the equation-based model describes the underlying process.
Thanks to this ready availability of data and equations, exploring PIML models using a wide array of
baseline models would be far easier and faster. The equations detailing a given variable could be added to
the cube as a sub-field of the variable of interest in the same way that space and time are. The eventual
implementation should consider the multi-platform and multi-language nature of ESDCs. As illustrated
above, this requires a unified and robust approach that suits multiple use cases.

4.2. Sampling for AI in a complex system

Sampling on ESDCs is essential for learning the concrete interactions of drivers, spatial conditions,
timing, and other determinants of specific processes and their implications. This involves strategically

34 https://api.openeo.org/v/0.3.0/processgraphs/
35 https://docs.xarray.dev/en/stable/user-guide/weather-climate.html
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selecting a manageable subset from the ESDC. This selection process is particularly important for ML
algorithms, as they rely on these subsets to establish a foundational understanding of the process to be
analysed (Atkinson et al., 2022; Nikparvar and Thill, 2021). Pseudo-random sampling facilitates a broad
and diverse data selection, while regionalised sampling uses specific patterns within the data for a more
targeted analysis. The latter proves particularly advantageous when the research goal is to comprehend
specific phenomena.

Constructing representative samples in Earth system processes must ensure an unbiased representation
of the target variable. The multidimensional nature of Earth system processes poses sampling challenges
across multiple variables. Consider, for instance, a study that aims at understanding the effects of climate
extremes on the terrestrial biosphere usingAI (Sippel et al., 2018).We know that climate extremes such as
heatwaves, droughts, extreme precipitation, flooding, etc., are typically associated withmultiple variables
(Flach et al., 2021). Additionally, such events can co-occur in unfavourable sequences, i.e., compounding
heatwaves, droughts, or floods following droughts (Zscheischler et al., 2020). To understand such
circumstances, one should consider the full spatio-temporal extended in all relevant dimensions, includ-
ing derived meta-variables that describe the characteristics of these events, such as timing, duration,
extent, and intensity (Flach et al., 2017). Often, additional factors gain significance. For example,
ecosystem responses to extremes vary in space depending on ecosystem conditions (Mahecha et al.,
2017), land-cover types (Flach et al., 2021), and associated impacts, e.g., on the carbon cycle (Sippel et al.,
2018). Building suitable AImodels that predict such impacts requires including static data (e.g. vegetation
type).

Yet, the critical question is then: how to obtain adequate and balanced training and validation data?
Earth system processes often involve rare events of extreme conditions, which may occur sporadically
over time and space. This rarity can lead to imbalanced datasets, where certain classes of the target
variable or ranges of continuous values are underrepresented. This also applies to ranges of continuous
values in an imbalanced distribution. Imbalanced datasets affect the performance and generalisation of
models trained on these samples. Achieving spatio-temporal representativeness in this context can be
challenging. To train ML algorithms for effective recognition and understanding of these events, it is
crucial to include additional sampling within the specific domains where these events occur. For example,
when constructing datasets for global flood (Li et al., 2023) or cloud detection (Aybar et al., 2022), the
methodology involves initiating automatic sampling that covers a broad spectrum of ecosystem condi-
tions. Simultaneously, manually selected events are introduced. This approach ensures a balanced
representation of different classes in the dataset, thereby enhancing the algorithm’s capability to
accurately predict such events. Figure 4 showcases a potential workflow where event detection is
performed based on global ESDCs, and samples for high-resolution ML are extracted based on a
systematic sampling strategy (e.g. Ji et al., 2024). Here, analysing land cover purity is an option
(a relatively homogeneous land cover dominated by a single vegetation type allows for easier compari-
sons and subsequent analyses), as well as incorporating mixed land covers (which introduces heterogen-
eity and interactions among land cover types), providing more comprehensive information for model
training.

Finally, the selection of samples with the necessary data dimensions must align with the chosen
algorithm. For instance, tabular-based algorithms like tree-based methods require 2-dimensional batches
(sample and variable), which are selected as individual points from the spatio-temporal domain. DL
methods like Transformers (Vaswani et al., 2017) or RNNs, e.g., LSTMs (Hochreiter and Schmidhuber,
1997), which consider sequence (or positional) dependencies, require 3-dimensional batches (e.g. sample,
timestep, variable) and extract samples usually as subsets of time series from the spatial domain.
Convolutional Neural Networks (CNNs, LeCun et al., 1989) may be used with 4-dimensional batches
(e.g. sample, height, width, variable) by taking spatial subsets or grids from the temporal domain. DL
methods accounting for both spatio-temporal dependencies, such as 3DCNNs or Convolutional LSTMs
(ConvLSTMs, Shi et al., 2015), require 5-dimensional batches (e.g. sample, height, width, timestep,
variable) and extract samples as subsets of ESDCs.
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4.3. Quantifying uncertainties

Uncertainty quantification is crucial to Earth science, providing a comprehensive assessment of the
reliability and confidence associated with scientific predictions, model simulations, and observational
data. Capturing and modelling uncertainty is a complex task as it arises from various sources such as data
limitations, model approximations, and the inherent complexity of Earth system dynamics.

Uncertainty can be broadly categorised into two types: epistemic uncertainty and aleatoric uncer-
tainty (Kiureghian and Ditlevsen, 2009). Epistemic uncertainty refers to the model’s confidence in its
predictions and is related to the choice of model parameters. Techniques such as Bayesian inference or
Dropout can estimate epistemic uncertainty (Srivastava et al., 2014; Gal and Ghahramani, 2016).
Bayesian methods assign probability distributions to model parameters, directly quantifying uncer-
tainty. In DL, dropout-based methods create model ensembles by randomly dropping out units during
training, providing a measure of uncertainty based on the variability among the ensemble members.
While these techniques may not completely capture the underlying uncertainty due to assumptions
made during modelling or training, they are practical and can be employed to estimate uncertainty.
These methods can be computationally demanding and time-consuming, mainly when applied to real-
time applications. However, advancements in cloud platforms and the Monte Carlo (MC)-Dropout
technique have enabled reliable uncertainty estimates, even when working with massive amounts of
data (Martínez-Ferrer et al., 2022). On the other hand, aleatoric uncertainty is associated with the noise
or variability present in the data (e.g. data affected by natural variability, measurement errors, or other
sources of noise) and cannot be reduced. Instead, it can be identified and quantified as part of the
uncertainty characterisation.

Figure 4. Abstract representation illustrating the process of sampling high-resolution mini cubes for
further analysis by considering vegetation land covers and extreme events detected via a global ESDC.
Note that sample mini cubes are specified in the spatial and temporal ranges of the detected extreme
events (also considering their occurrence).
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ESDCs involving measurements or modelled data can be accompanied by associated uncertainty
values. Data assimilation techniques are key in incorporating data into ESDCs while considering the
associated uncertainties. Approaches such as Kalman filtering, variational data assimilation, or ensemble-
based assimilation can effectively merge different data sources and quantify the resulting uncertainties
(Mathieu and O’Neill, 2008).

5. Challenges in ESDC analysis

While ESDCs present significant opportunities, it’s crucial to approach them with a well-informed
strategy to avoid naive applications of analytical methods. In this section, we describe challenges
associated with ESDC analysis, focusing on two key issues: addressing geometric distortions
(introduced during the cubing process) and spatio-temporal autocorrelation problems.

5.1. Geometric challenge on planet Earth

Most ESDCs covering the whole globe use a simple longitude-latitude plate-carrée projection, which fits
the ESDCmodel very well. The approach also allows for efficient storage and subsetting of cubes to user-
generated subsets corresponding to a bounding box. However, for advanced data analysis, equirectan-
gular projections have two main drawbacks: 1) grid cells differing in latitude do not have equal area, and
2) the distances to nearest neighbours are not constant.

The first drawback introduces a sampling bias towards high latitudes in the data. This bias can affect the
representativeness and accuracy of analyses (cf. Section 5.2), particularly for regions located closer to the
equator. The most trivial cases are computations of scalars, like global means (e.g. Figure 5), which need
to be weighted or approaches like principal component analyses that require area-weighed covariance
matrices. Effects of this kind have been known for decades and are considered climate textbook
knowledge (Storch et al., 2000). However, they remain a challenge, as we find them often ignored in
ESDC analytics. Issues of this kind can be alleviated using area-weighted statistics, suitable for most
linear algorithms, or by performing weighted sampling from grid cells. For advanced, often non-linear
data science methods, considering the spherical geometry is much more challenging, and careful
consideration is advised before naive applications are performed. Even when applying area-weighted
statistics correctly, oversampled areas lead to unnecessary increases in storage requirements and com-
putation time.

The second drawback is particularly significant when applying spatial convolutions or moving
window operations. To address this, several approaches can be employed. One option is to use Spherical
Harmonics for simple convolutions, providing a transformation that respects the spherical nature of the
data (Wieczorek and Meschede, 2018). Spherical Harmonics can also be used as coordinate embeddings

Figure 5. Comparison of air temperature at 2 m from ERA5 with and without weighting on the global
mean time series computation. This rather trivial example shows how radically wrong any computation
can be if the spherical nature of planet Earth is ignored.
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for neural networks (Rußwurm et al., 2023). Another approach involves graph convolutions that consider
varying distances to neighbours.

5.2. Spatio-temporal representativeness for an accurate model evaluation

Diagnostics on predictive modelling with ESDCs can be challenged by the representativeness and spatio-
temporal structure of training data (Tobler, 1970; Meyer and Pebesma, 2021; Ploton et al., 2020;
Kattenborn et al., 2022). Assessing the accuracy of a prediction is statistically straightforward as long
as reference data is available for the entire population or if a respective sample represents the spatio-
temporal structure of the population (Wadoux et al., 2021; Brus, 2021). However, many modelling tasks
build on observations not representative of underlying temporal dynamics or an entire land surface
variability (e.g. upscaling functional ecosystem properties from sparse and clustered FLUXNET sites).
Such an imbalance in reference data may not necessarily lead to a bias in model coefficients (Pabon-
Moreno et al., 2022). However, it may lead to inflated prediction accuracy estimates, given the commonly
limited capacities of ML to extrapolate into the unknown, where the predictor-response relationship may
depart (Ludwig et al., 2023). Thus, the accuracy assessment of a prediction estimated from clustered
samples will not represent the factual accuracy of predictions beyond the reference data availability. This
is critical for assessing the quality of a prediction itself and potential error propagation in subsequent
analysis (Yates et al., 2018; Meyer and Pebesma, 2021; Mila et al., 2022). It is advised that predictions
should inform on the area of applicability (Meyer and Pebesma, 2021), i.e., the area inwhich the predictor-
space is covered by the reference data and obtained predictive accuracies thereof are assumed to hold.

However, assessing the predictive performance of a model inside the area of applicability may be
challenged by the spatio-temporal structure of the training and test data. Commonly, adjacent observa-
tions (both in time and space) aremore similar (autocorrelated in space and time), and therefore accuracies
determined from test observations near the training data will be more accurate (Roberts et al., 2017;
Dormann et al., 2007). For instance, seasonal effects can inflate model performance when using test
observations near training data in the temporal dimension. Dependence among training and reference data
results in any case on optimistic estimates of model performance, meaning that such accuracies do not
reflect the actual transferability of the model to unseen areas or time steps (Roberts et al., 2017). For
instance, Ploton et al. (2020) showed that ML-based models found accurate in the presence of spatial
dependent training and validation data may learn spatial data structures instead of transferable relation-
ships between a response (biomass) and the predictors (environmental variables and optical reflectance).
This may not only lead to erroneous model transferability and extrapolation to new spatial or temporal
domains but also prevent an adequate interpretation of model functioning and attribution to variables and
processes (Sweet et al., 2023). Therefore, model performance and interpretation should be performed by
minimising spatio-temporal dependence of observations via cross-validation strategies (cf. Roberts et al.,
2017; Meyer et al., 2018; Ploton et al., 2020; Kattenborn et al., 2022).

6. Technical considerations for managing ESDCs

Managing ESDCs throughout their entire life cycle is complex and resource-intensive. This
section outlines the technical considerations and limitations associated with the current state-of-the-art
technological resources for ESDCmanagement. This encompasses aspects such as computing resources,
software tools, and scalable solutions that are crucial for effectively handling the challenges involved in
ESDC management.

6.1. Computing resources

The data size and available computing resources determine data processing feasibility throughout the
ESDC life cycle. Computing resources vary from a single laptop to a local cluster with multi-threaded or
distributed processing capabilities and can extend to cloud computing environments composed of
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multiple clusters. Modern computers are equipped with high-speed Solid-State Drives (SSDs) featuring
fast random access and the potential for multiple Gigabytes per second throughput. However, the
challenge lies in their limited capacity. In data centres, this is solved by using arrays of disks, but this
introduces additional challenges, including latency, throughput, reliability, and security. Computation on
local systems typically involves single-threaded or lightly multi-threaded computations with a higher
level of interactivity. In High-Performance Computing (HPC) environments, the software operates in a
multi-threaded or multi-core manner and is usually installed by a local system administrator. HPC
environments are well-suited for extensive processing tasks but offer reduced interactivity due to the
involvement of job schedulers formanaging computation resources. Cloud computing environments offer
a promising solution for managing vast amounts of Earth system data. These environments can be further
improved in terms of scalability by utilising technologies like Kubernetes and Argo, which allow for
specialised workflows. Platforms such as GEE, the European Open Science Cloud (EOSC)36, Google
Colaboratory37, Amazon SageMaker38, DeepESDL39, Copernicus Data Space Ecosystem (CDSE)40, and
Kaggle41 provide opportunities for efficient data storage, processing, and collaboration in scientific
research. However, it is essential to note that these platforms often impose certain limitations on the users.
These limitations include storage capacity, computational resources, available tools for ESDC manage-
ment, access permissions, and usage restrictions.

6.2. Software capabilities

In the context of managing ESDCs, diverse tools are available. Here, we present a compendium of useful
tools for processing Earth system data within the ESDC life cycle in three prominent programming
languages: Python, R, and Julia.

Python, arguably the most used language for ESDC management, offers xarray with labelled
multidimensional arrays (Hoyer and Hamman, 2017), built on top of numpy (Harris et al., 2020), and
supporting on-disk reading and parallel processing via dask (Rocklin, 2015) (a Python library for
parallel computing, enhancing array objects by employing data partitioning into chunks and employing
dynamic task scheduling). Multiple tools are tailored to construct and process xarray datasets, which
represent ESDCs. For data collection, rasterio (Gillies et al., 2013), rioxarray42, satpy
(Raspaud et al., 2023), or EOreader (Maxant et al., 2022) are instrumental for reading GeoTIFFs
and COGs, returning xarray objects. Xarray excels in reading NetCDF files and cloud-based data via
zarr as dask-arrays. Vector data can be converted into xarray objects using geocube (Snow et al.,
2023). Data sourced from STAC catalogues can be sought through pystac-client and directly
transformed into xarray objects via stackstac43, odc-stac44, or cubo (Montero et al., 2024).
These tools support data collection and immediate cubing, including the temporal dimension. GEE
enables data retrieval as numpy arrays through its API, which can be directly converted into xarray
objects using Xee orwxee. GEE’s API (Gorelick et al., 2017) and extensions (Montero, 2021) allow data
curation before cubing. Xcube has various data stores for data acquisition and xarray object
generation45. XDGGS (Kmoch et al., 2024) simplifies working with different DGGS in xarray. The
curation, harmonisation, and transformation stages, being subjective and application-dependent, can be
accomplished through xarray or numpy processing. Libraries like scipy (Virtanen et al., 2020), built

36 https://eosc-portal.eu/
37 https://colab.research.google.com/
38 https://aws.amazon.com/sagemaker/
39 https://www.earthsystemdatalab.net/
40 https://dataspace.copernicus.eu/
41 https://www.kaggle.com/
42 https://github.com/corteva/rioxarray
43 https://github.com/gjoseph92/stackstac
44 https://github.com/opendatacube/odc-stac
45 https://xcube.readthedocs.io/en/latest/plugins.html
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on top of numpy, offer additional resources leveraging ESDCs as multidimensional arrays. The analysis
phase leverages a plethora of tools. ESDCs as multidimensional arrays are compatible with numpy,
scipy, and related tools. Moreover, ESDCs represented as tensors interface effectively with tensor-
flow (Abadi et al., 2016) or pytorch (Paszke et al., 2019). Furthermore, developments that aren’t
designed for direct ESDC use can also be leveraged using tensors in the representation of ESDCs
(e.g. torchgeo, Stewart et al., 2022, GeoTorchAI, Chowdhury and Sarwat, 2022, pytorch-
metric-learning, (Musgrave et al., 2020) and TorchIO, (Pérez-García et al., 2021)).

R, a widely used programming language for statistical analysis, has assumed increasing significance in
geospatial data processing and management. Raster data sourced from image collections can be managed
seamlessly, progressing from data collection to study, with the assistance of libraries like raster46 or its
more recent counterpart, terra47. ESDCs can be collected and analysed through dedicated tools like
gdalcubes (Appel and Pebesma, 2019) and stars (Pebesma and Bivand, 2023). Regionalised
sampling using geospatial data can be conducted using stpp (Gabriel et al., 2013) and spatstat
(Baddeley et al., 2015). Recent developments have introduced the capability for lazy on-disk reading of
Zarr files48. Furthermore, data can be sourced and cubed directly from STAC catalogues using rstac
(Simoes et al., 2021b) in combination with gdalcubes. Another comprehensive package for ESDC
management is sits (Simoes et al., 2021a), offering an end-to-end solution that additionally includes
various tools for AI-related tasks, encompassing sampling, tuning, prediction, and the computation of
uncertainty values.

Julia, a high-speed programming language, has gained popularity in scientific computing, making it an
excellent choice for processing the large volumes of data found in ESDCs. Julia offers tools that cover
crucial parts of the ESDC life cycle. These tools include YAXArrays.jl49 and Rasters.jl50 for
multidimensional labelled array operations, GriddingMachine.jl (Wang et al., 2022) for data
acquisition, and experimental libraries like STAC.jl51 for data discovery within STAC catalogues.
For analysis, Julia provides specialised tools such as EarthDataLab.jl52 for the direct processing of
the Earth System Data Cube (Mahecha et al., 2020). Moreover, data distortions introduced during the
cubing process can be addressed using libraries like OnlineStats.jl53 (Day and Zhou, 2020) and
WeightedOnlineStats.jl54 (Kraemer et al., 2020). Julia’s ecosystem also includes ML tools like
Flux.jl (Innes, 2018), DiffEqFlux.jl (Rackauckas et al., 2019), and ReservoirComputing.jl
(Martinuzzi et al., 2022), enabling advanced data analysis, including novel techniques like PIML.

6.3. Scalability obstacles

The size of ESDCs poses several challenges for analysis. Generally, in most programming languages for
data science (e.g. Python, Julia, R), data has to be completely loaded into memory before calculating a
simple statistic (e.g. median). However, ESDCs often surpass the memory limit, hindering computations
or resulting in significant slowdowns due to frequent disk read-write operations. Instead, users can apply
specialised algorithms that calculate statistics iteratively (Welford, 1962; Schubert and Gertz, 2018).
memory algorithms allow the user to track statistics (e.g. mean, sums, and standard deviations) iteratively.
They give the user complete control (and responsibility) over the order of the data reads. Because of the
spherical nature of the Earth and the resulting differences in the area covered by pixels, these computations

46 https://github.com/rspatial/raster
47 https://github.com/rspatial/terra
48 https://www.r-bloggers.com/2022/09/reading-zarr-files-with-r-package-stars/
49 https://github.com/JuliaDataCubes/YAXArrays.jl
50 https://github.com/rafaqz/Rasters.jl
51 https://github.com/JuliaClimate/STAC.jl
52 https://github.com/JuliaDataCubes/EarthDataLab.jl
53 https://github.com/joshday/OnlineStats.jl
54 https://github.com/gdkrmr/WeightedOnlineStats.jl
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require weighted versions of the statistics (cf. Section 5.1). Errors arising from floating-point arithmetic
must be minimised, including the potential for catastrophic cancellation (Kahan, 1965; Goldberg, 1991).

Often, analyses can be performed independently on timesteps, maps, or any other discrete chunks of an
ESDC (e.g. dimensions, periods, spatial slices). First, users split the data into those chunks, and then apply
the transformation. In the end, users combine the elements back together into a new ESDC (see Figure 6).
Many analyses can be expressed in terms of split-apply-combine (Wickham, 2011; Mahecha et al., 2020),
such as calculating mean seasonal cycle maps from a time axis to a day-of-year axis, or a global mean
temperature time series that collapses latitude and longitude into a scalar value per timestep. This method
is also known as map-reduce in distributed data processing. Still, in contrast, it is made for array-like or
tabular data (and the reduce step always consists in concatenating the results of themap step, cf.Wickham,
2011). Implementations of split-apply-combine can trade-off between memory consumption and per-
formance by adjusting the amount of data being loaded into memory simultaneously. They may also take
advantage of parallel reading, processing, and writing of data, which is especially important if the data is
not stored on local storage but on object stores with high access latency.

Storage in the form of compressed chunks typically employed by ESDCs, where reading a single
element requires loading an entire chunk into memory, presents an opportunity for optimising sampling
during ML training. Reading points individually is inefficient, as sampling two points from the same
chunk necessitates reading the entire chunk twice. To mitigate this, reordering the points within a batch
enables reading points from the same chunk jointly, reducing the number of reading operations. Adopting
this approach makes it possible to limit the need to read the entire ESDC only once per batch, optimising
the data access process.

Ensuring that scalability obstacles are transparent for end users during Earth system data analysis is
essential.While experienced usersmaybe able to address scalability issues effectively, less experienced users
may struggle with the process if it is not fully transparent. It is important to provide a user-friendly interface
that hides the complexities of scalability, allowing users to focus on their analysis tasks. Not all users can
access sufficient computing resources for scaling processes, resulting in additional processing costs.
Therefore, providing accessible and cost-effective solutions for scalability, such as cloud-based platforms,
is crucial to enable a broader range of users to harness the benefits of scaling in Earth system data analysis.

7. Visual interaction with ESDCs

Data and process visualisation are critical for communicating Earth system science because big data are
often hard to understand intuitively based on metadata alone, especially for non-expert audiences
(Hibbard et al., 2002; Kendall et al., 2008; Kehrer andHauser, 2012). The gap between analytic capability
and the means to effectively visualise results slows our progress in understanding complex Earth system
phenomena. Specialised tools are needed to visualise ESDCs and address their specific needs. Helbig
et al. (2017) defined the key challenges of data visualisation for advancing Earth system sciences. Their
ambition was to use ESDC visualisation for visual data exploration, facilitating multidisciplinary and
collaborative research and also emphasising their educational role.

Figure 6. Split-apply-combine: split an ESDC along arbitrary axes, apply a function f to each sub-cube,
and then combine the results along the same axes that have been used to split the original ESDC.
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Much progress has been made in visualising ESDCs in Earth system research. Several viewers now
have provided researchers with the means to explore and visualise multidimensional environmental
datasets and generate scientific illustrations for publications55,56. However, most approaches still rely on
the classical geographical interpretation of georeferenced data and are restricted to displaying maps,
extracting singular time series, or Hovmöller diagrams. Little advances have been made to visualise
ESDCs, particularly multivariate ESDCs, for a better data understanding (cf. static attempts, Mahecha
et al., 2010; Mahecha, 2017; Mahecha et al., 2020). The long-standing challenge is the trade-off between
data interactions not designed for ESDCs and reliance on standard libraries that generate only static
visualisations. Recent developments like Lexcube (Söchting et al., 2023, cf. Interactions in Figure 7)57

and xcube-viewer58 enable interactive and barrier-free visualisation, allowing users to inspect any ESDC
dimension (especially space, time, and variable) interactively. Enabling interactions on large-scale spatio-
temporal data on the web is key to democratising our science (Steed et al., 2014).

A significant challenge will be the integration of data analytics with interactive visualisations through
visual analytics (cf. the review of Cui, 2019). The existing suite of methods is only partially suited for
dealing with highly multivariate ESDCs, and most sophisticated visual analytic tools depend on a highly
developed local computing infrastructure. There is a pressing need for web-based solutions to address this
limitation. The goal should be to incorporate visualisations into any complex workflow to enhance
comprehension of data inputs, monitor intermediate outcomes, and observe spatiotemporally structured
results. One approach could be the tight integration of visualisation in developer workflows, particularly
in popular environments like Jupyter Notebooks.

Integrating analytics tools with visualisation frameworks would allow researchers to dynamically
explore, analyse, and visualise ESDCs in a unified environment in real-time. This would empower
researchers to gain immediate insights into the relationships and patterns within the data. Additionally,
incorporating visualisation into developerworkflowswould facilitate seamless visualisation generation at

Figure 7. Interactions within an example ESDC in Lexcube, showcasing a geographical map on the front
side and Hovmöller diagrams depicting temporal changes on the lateral sides. The ESDC allows for
interactive subset operations on any side.

55 https://github.com/carbonplan/maps
56 https://cfs.climate.esa.int/
57 https://www.lexcube.org/
58 https://github.com/dcs4cop/xcube-viewer
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any stage of the ESDC life cycle, allowing researchers to visualise intermediate and final results and
facilitating a more intuitive, iterative exploration of Earth system data.

ESDC visualisation extends its potential beyond the scientific community to engage and inform a
wider audience. Nevertheless, this is particularly effective when accompanied by expert guidance such as
tutorials, workshops, or annotations. Interactive open-access visualisations, exemplified by tools like
Lexcube, allow political stakeholders and the general public to directly access and examine climate data
(e.g. global or regional climate anomalies and trends). Open-access interactive visualisations enable
scientifically literate individuals and those with less technical expertise to delve into ESDCs easily and
rapidly by visualising anomalies, trends, and the interplay of variables. Such accessibility encourages a
broader understanding and appreciation of Earth system research among diverse stakeholders, fostering a
more informed and constructive dialogue about climate-related issues.

8. Conclusions and perspective

This paper reviews and explores the challenges and opportunities of leveraging ESDCs for Earth system
research. This becomes particularly important in developing Earth Digital Twins (i.e. “a digital replication
of the state and temporal evolution of the Earth system”, Bauer et al., 2021b). In this sense, the topics
discussed here are of significance in initiatives like Destination Earth (DestinE)59. The inherent simplicity
and versatility of ESDCs enable a comprehensive exploration of the complex Earth system, facilitating a
deeper understanding of intricate processes and phenomena. For advancing our understanding of the
Earth system, the following key considerations emerge and need to be addressed by the research
community to tap into the full potential of ESDCs:

1. Artificial Intelligence on ESDCs: The abundance of large-scale Earth system data, coupled with
recent advancements in AI methods, compels the application of the latest developments in deep
learning to ESDCs. Capitalising on the tensor-like structure of ESDCs in DL and incorporating
factual knowledge through Physics-Informed Machine Learning approaches promise great
advances in modelling and understanding. Recent advancements in AI, particularly in attention
mechanisms, have opened up new possibilities for Earth system research. Techniques such as
LLMs, generative image models (e.g. Stable Diffusion, Rombach et al., 2021), as well as recent
image and video segmentation models (e.g. Segment Anything Model, SAM and SAM 2, Kirillov
et al., 2023; Ravi et al., 2024), may hold the potential to significantly advance our understanding of
the Earth system (Wu andOsco, 2023; Osco et al., 2023). The ability to ‘communicate’ to ESDCs to
extract valuable insights (e.g. Lobry et al., 2020) is within reach (e.g. using text prompts to extract
variable anomalies from a specific land cover over a particular region). Furthermore, there is
potential to generate ESDCs using text prompts, images, videos, or additional data inputs
simultaneously by leveraging the power of multi-modal mechanisms (e.g. ImageBind, Girdhar
et al., 2023), e.g., simulating the impact on vegetation due to an extreme event over a real ESDC
using text prompts and geographical data. However, caution must be exercised when applying AI
methods to ESDCs to avoid erroneous predictions and interpretations. Factors such as spatio-
temporal auto-correlation, the spherical nature of the Earth, and biased sampling in the spatio-
temporal and multivariate domains pose risks. Still, the abstract nature of ESDCs provides an
opportunity to establish a de facto standard for AI in Earth system science, benefiting from
optimised data access and technical enhancements. To ensure reliable outcomes, standardised
methods are needed to address spatial dependency, the model’s area of applicability, and model
uncertainty within ESDC structures.

2. InteractingwithESDCs:The heterogeneity, size, andmultivariate nature of datasets alsomay imply
that using ESDCs’ is unintuitive, which hampers interpretation. Effective communication

59 https://digital-strategy.ec.europa.eu/en/policies/destination-earth
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opportunitieswith suchdata are crucial throughout theESDC life cycle, both for scientists and awider
audience. Visualisation plays a key role in this regard. While visualisation tools are available to
support the analysis process and scientific dissemination, there is still considerable potential for
further exploration and development of visualisations. We believe that interactive visualisations are
one key, as demonstrated by Lexcube. One promising avenue is the integration of visualisation
directly into the analytics workflow (e.g. within Jupyter Notebooks or similar environments), and
another is enablingvisual analytics ofESDCs. In both cases, the challenge ismaking such interactions
possible during the analysis process to enable the scientific exploitation of large ESDCs.

3. Technical challenges of large ESDCs: The multidimensional nature, varying spatio-temporal
scales and resolutions, and applicability of ESDCs imply a series of technical challenges. These
include interoperability issues, different geographical projections, interpolation and aggregation
questions, and varying readiness levels for further analyses. Ensuring data integrity and interpret-
ability while making Earth system data analysis-ready and interoperable requires tracing and
encoding all data transformations and modifications in ESDC metadata. To address these chal-
lenges, developing guidelines and standards for geospatial datacubes is crucial for promoting FAIR
and Open Earth System Science. The ever-increasing size and complexity of datasets demand
scalable solutions to tackle associated challenges. The ongoing efforts of the open-source software
community are commendable in this regard, as they contribute to the advancement of tools and
frameworks tailored to handle big Earth system data. Furthermore, cloud environments present a
possible solution to quickly scale workloads when processing data within the ESDC life cycle.
They offer the advantages of on-demand resource allocation and scalability, allowing researchers to
access the necessary computational power and storage capacity when needed.

4. Integrating (geospatial) data beyond cubes:ESDCs already offer the potential for advancing Earth
system research and analysis in multiple domains. However, ESDCs can benefit from integrating
different methodological approaches or data sources at different scales. One example is the integra-
tion of Unoccupied Aerial Vehicle (UAV)- and Light Detection and Ranging (LiDAR)-based data.
This data provides a means to collect highly localised and high-resolution measurements, making
themparticularly suitable for localised studies and gaining valuable insights into fine-scale processes.
Another example is the integration of vector data60, which typically represents categorical informa-
tion and carries great importance in multiple Earth system spheres (e.g. socioeconomic features).
Additionally, in-situ collections of any process (e.g. via ecological monitoring data) are essential.
Today, the quest is that users request the integration of any additional data sources while remaining
fully valid. Yet, it poses a challenge as it raises important questions regarding interoperability and the
encapsulation of multi-resolution cubes that incorporate multi-scale raster data and the combination
of raster and vector data within a unified framework.

5. Towards flexible cube-based structures: To advance ESDCs’ benefits, it is essential to advance
the standards of ESDC structures and start considering hierarchical data structures, including
ESDCs as “leaves” (e.g. xarray’sDataTree structure) or even unstructured grid systems (e.g. Project
Raijin61 with uxarray62). Given the abundance of insightful (but heterogeneous) datasets, this
would enhance Earth system research, regardless of their resolution or dimensionality. Neverthe-
less, this implies that we must ensure data traceability and interpretability as heterogeneity
increases in the resolution or dimensionality domains. A prime example lies in integrating AI
models’ predictions within ESDCs. In such instances, additional dimensions must be incorporated
to capture uncertainties (or quality flag systems) associated with AI-based predictions. This
provides valuable insights into the reliability and robustness of the data. Leveraging the power
of ESDCs in diverse fields can drive innovation, advance scientific knowledge, and enable more
informed decision-making in a wide range of domains.

60 https://r-spatial.org/r/2022/09/12/vdc.html
61 https://raijin.ucar.edu/
62 https://github.com/UXARRAY/uxarray
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