
7 
Supersymmetric strings 

The discussion of bosonic strings in the previous five chapters allowed 
us to uncover a great deal of the structure essential to understanding D­
branes and other background solutions, in addition to the basic concepts 
used in discussing and working with critical string theory. 

At the back of our mind was always the expectation that we would move 
on to include supersymmetry. Two of the main reasons are that we can 
remove the tachyon from the spectrum and that we will be able to use 
supersymmetry to endow many of our results with extra potency, since 
stability and non-renormalisation arguments will allow us to extrapolate 
beyond perturbation theory. 

Let us set aside D-branes and T-duality for a while and use the ideas we 
discussed earlier to construct the supersymmetric string theories which we 
need to carry the discussion further. There are five such theories. Three 
of these are the 'superstrings', while two are the 'heterotic strings '*. 

7.1 The three basic superstring theories 

7.1.1 Open superstrings: type I 

Let us go back to the beginning, almost. We can generalise the bosonic 
string action we had earlier to include fermions. In conformal gauge it is: 

where the open string world-sheet is the strip 0 < (J < 'IT, -00 < T < 00. 

* A looser and probably more sensible nomenclature is to call them all 'superstrings', 
but we'll choose the catch-all term to be the one we used for the title of this chapter. 
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156 7 Supersymmetric strings 

N.B. Recall that a' is the loop expansion parameter analogous to r~ 
on worldsheet. It is therefore natural for the fermions' kinetic terms 
to be normalised in this way. 

We get a modification to the energy-momentum tensor from before 
(which we now denote as TE , since it is the bosonic part): 

(7.2) 

which is now accompanied by a fermionic energy-momentum tensor: 

(7.3) 

This enlarges our theory somewhat, while much of the logic of what we 
did in the purely bosonic story survives intact here. Now, one extremely 
important feature which we encountered in section 4.7 is the fact that the 
equations of motion admit two possible boundary conditions on the world­
sheet fermions consistent with Lorentz invariance. These are denoted the 
'Ramond' (R) and the 'Neveu-Schwarz' (NS) sectors: 

R: 'ljJiL(O, T) = ~iL(O, T) 
NS: 1/;iL(O, T) = -~iL(O, T) 

1/;iL ( 'IT, T) = ~iL ( 'IT, T) 
1/;iL ( 'IT, T) = ~iL ( 'IT, T). (7.4) 

We have used the freedom to choose the boundary condition ~t, for exam­
ple the O"='IT end, in order to have a + sign, by redefinition of 1/;. The boun­
dary conditions and equations of motion are summarised by the 'doubling 
trick': take just left-moving (analytic) fields 1/;iL on the range ° to 2'IT and 
define ;j;iL(O", T) to be 1/;iL(2'IT - 0", T). These left-moving fields are periodic 
in the Ramond (R) sector and antiperiodic in the Neveu-Schwarz (NS). 

On the complex z-plane, the NS sector fermions are half-integer moded 
while the R sector ones are integer, and we have: 

'ljJiL 
n/,iL(z) - """ r where r E Z or r E Z + -21 
'f/ - ~ r+1/2' 

r z 
(7.5) 

and canonical quantisation gives 

{1/;~, 1/;~} = {;j;~, ;j;~} = ryiLV i5r+s' (7.6) 

Similarly we have 

as before, and 

""" Gr 1 TF(z) = ~ zr+3/2' where r E Z (R) or Z + "2 (NS). 
r 

(7.7) 
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7.1 The three basic superstring theories 157 

Correspondingly, the Virasoro algebra is enlarged, with the non-zero 
(anti)commutators being 

with 

[Lm, Lnl = (m - n)Lm+n + 1C~ (m3 - m)6m+n 
c 2 

{Gn Gs} = 2Lr+s + 12 (4r - 1)6r+s 

1 
[Lm, Grl = "2(m - 2r)Gm+n (7.8) 

1 1 
Lm = "2 L : am- n . am : +4 L(2r - m) : '!/Jm-r . '!/Jr : +a6m,0 

rn r 

Gr = Lan ·1/;r-n· 
n 

(7.9) 

In the above, c is the total contribution to the conformal anomaly, which 
is D + D /2, where D is from the D bosons while D /2 is from the D 
fermions. 

The values of D and a are again determined by any of the methods 
mentioned in the discussion of the bosonic string. For the superstring, it 
turns out that D = 10 and a = 0 for the R sector and a = -1/2 for 
the NS sector. This comes about because the contributions from the XO 
and Xl directions are cancelled by the Faddeev-Popov ghosts as before, 
and the contributions from the 1/;0 and 1/;1 oscillators are cancelled by the 
superghosts. Then, the computation uses the mnemonic/formula given in 
equation (2.80). 

NS sector: z.p.e = 8 ( - 214) + 8 ( - 418) = -1, 
R sector: z.p.e = 8 ( - 214) + 8 (214) = o. (7.10) 

As before, there is a physical state condition imposed by annihilating with 
the positive modes of the (super) Virasoro generators: 

Grl¢; = 0, r> 0; Lnl¢; = 0, n> 0; (Lo - a)I¢; = o. (7.11) 

The L o constraint leads to a mass formula: 

(7.12) 

In the NS sector the ground state is a Lorentz singlet and is assigned odd 
fermion number, i.e. under the operator (-l)F, it has eigenvalue -1. 
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158 7 Supersymmetric strings 

In order to achieve spacetime supersymmetry, the spectrum is pro­
jected on to states with even fermion number. This is called the 'GSO 
projectionm , and for our purposes, it is enough to simply state that this 
obtains spacetime supersymmetry, as we will show at the massless level. 
A more complete treatment - which gets it right for all mass levels -
is contained in the full superconformal field theory. The GSO projection 
there is a statement about locality with the gravitino vertex operator. 
Yet another way to think of its origin is as a requirement of modular 
mvanance. 

Since the open string tachyon clearly has (-l)F = -1, it is removed 
from the spectrum by GSO. This is our first achievement, and justifies 
our earlier practice of ignoring the tachyon's appearance in the bosonic 
spectrum in what has gone before. From what we will do for the rest of 
the this book, the tachyon will largely remain in the wings, but it (and 
other tachyons) do have a role to play, since they are often a signal that 
the vacuum wants to move to a (perhaps) more interesting place. 

Massless particle states in ten dimensions are classified by their SO(8) 
representation under Lorentz rotations, that leave the momentum invari­
ant: SO(8) is the 'little group' of SO(l, 9). The lowest lying surviving 
states in the NS sector are the eight transverse polarisations of the mass­
less open string photon, Aft, made by exciting the 'I/J oscillators: 

(7.13) 

These states clearly form the vector of SO(8). They have (_)F = 1 and 
so survive GSO. 

In the R sector the ground state energy always vanishes because the 
world-sheet bosons and their superconformal partners have the same mod­
ing. The Ramond vacuum has a 32-fold degeneracy, since the 'l/Ji{ take 
ground states into ground states. The ground states form a representa­
tion of the ten dimensional Dirac matrix algebra 

(7.14) 

(Note the similarity with the standard r-matrix algebra, {rft , rV} = 

2TJftv . We see that 'l/Ji{ == r ft / V2.) 
For this representation, it is useful to choose this basis: 

d± = _1_ (nl,2i ± inl,2i+l) 
t V2 'YO 'YO i=1, ... ,4 

± 1 (1 0) do = V2 'l/Jo =f>lj;o . 

In this basis, the Clifford algebra takes the form 

{ dt , dj} = l5ij . 

(7.15) 

(7.16) 
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7.1 The three basic superstring theories 159 

The dt, i = 0, ... ,4 act as creation and annihilation operators, generating 
the 210/ 2 = 32 Ramond ground states. Denote these states 

1 50,81,82,53, 54} = IS} 

where each of the Si takes the values ±~, and where 

dil- ~,-~, -~, -~, -~} = 0 

(7.17) 

(7.18) 

while dt raises 8i from -~ to ~. This notation has physical meaning: the 
fermionic part of the ten dimensional Lorentz generators is 

(7.19) 

(recall equation (2.124)). The states (7.17) above are eigenstates of So = 

iSOl , Si = S2i,2i+1, with Si the corresponding eigenvalues. Since by con­
struction the Lorentz generators (7.19) always flip an even number of Si, 

the Dirac representation 32 decomposes into a 16 with an even number 
of -~s and 16/ with an odd number. 

The physical state conditions (7.11), on these ground states, reduce to 
Go = (2o:/)1/2pp,'l/Jt;. (Note that G6 rv La.) Let us pick the (massless) frame 
po = pI. This becomes 

(7.20) 

which means that 80 = ~, giving a 16-fold degeneracy for the physical 
Ramond vacuum. This is a representation of SO(8) which decomposes 
into 8s with an even number of - ~s and 8e with an odd number. One 
is in the 16 and the 16/, but the two choices, 16 or 16/, are physically 
equivalent, differing only by a spacetime parity redefinition, which would 
therefore swap the 8s and the 8 e . 

In the R sector the GSO projection amounts to requiring 

4 

L Si = 0 (mod 2), 
i=1 

(7.21 ) 

picking out the 8s. Of course, it is just a convention that we associated 
an even number of ~s with the 8s; a physically equivalent discussion with 
things the other way around would have resulted in 8 e . The difference 
between these two is only meaningful when they are both present, and at 
this stage we only have one copy, so either is as good as the other. 

The ground state spectrum is then 8vEB8s, a vector multiplet of D = 10, 
N = 1 spacetime supersymmetry. Including Chan-Paton factors gives 
again a U(N) gauge theory in the oriented theory and SO(N) or USp(N) 
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160 7 Supersymmetric strings 

in the unoriented. This completes our tree-level construction of the open 
superstring theory. 

Of course, we are not finished, since this theory is (on its own) incon­
sistent for many reasons. One such reason (there are many others) is that 
it is anomalous. Both gauge invariance and coordinate invariance have 
anomalies arising because it is a chiral theory: e.g. the fermion Bs has 
a specific chirality in spacetime. The gauge and gravitational anomalies 
are very useful probes of the consistency of any theory. These show up 
quantum inconsistencies of the theory resulting in the failure of gauge 
invariance and general coordinate invariance, and hence must be absent. 
See insert 7.1 for more on anomalies. 

Another reason we will see that the theory is inconsistent is that, as we 
learned in chapter 4, the theory is equivalent to some number of space­
filling D9-branes in spacetime, and it will turn out later that these are 
positive electric sources of a particular 10-form field in the theory. The 
field equation for this field asks that all of its sources must simply vanish, 
and so we must have a negative source of this same field in order to cancel 
the D9-branes' contribution. This will lead us to the closed string sector 
i.e. one-loop, the same level at which we see the anomaly. 

Let us study some closed strings. We will find three of interest here. 
Two of them will stand in their own right, with two ten dimensional super­
symmetries, while the third will have half of that, and will be anomalous. 
This latter will be the closed string sector we need to supplement the 
open string we made here, curing its one-loop anomalies. 

7.1.2 Closed superstrings: type II 

Just as we saw before, the closed string spectrum is the product of two 
copies of the open string spectrum, with right- and left-moving levels 
matched. In the open string the two choices for the GSO projection were 
equivalent, but in the closed string there are two inequivalent choices, 
since we have to pick two copies to make a closed string. 

Taking the same projection on both sides gives the 'type lIB' case, 
while taking them opposite gives 'type lIA'. These lead to the massless 
sectors 

Type lIA: (Bv EEl Bs) Q9 (Bv EEl Be) 
Type lIB: (Bv EEl Bs) Q9 (Bv EEl Bs). (7.22) 

Let us expand out these products to see the resulting Lorentz (SO(8)) 
content. In the NS-NS sector, this is 

(7.23) 
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7.1 The three basic superstring theories 161 

Insert 7.1. Gauge and gravitational anomalies 

The beauty of the anomaly is that it is both a UV and an IR tool: UV 
since it represents the failure to be able to find a consistent regulator 
at the quantum level and IR since it cares only about the massless 
sector of the theory: Any potentially anomalous variations for the 
effective action r = In Z should be written as the variation of a local 
term which allows it to be cancelled by adding a local counterterm. 
Massive fields always give effectively local terms at long distance. 

An anomaly in D dimensions arises from complex representations 
of the Lorentz group which include chiral fermions in general but also 
bosonic representations if D = 4k + 2, e.g. the rank 2k + 1 (anti)self­
dual tensor. The anomalies are controlled by the so-called 'hexagon' 
diagram which generalises the (perhaps more familiar) triangle of 
four dimensional field theory or a square in six dimensions. 

The external legs are either gauge bosons, gravitons, or a mixture. 
We shall not spend any time on the details53 , but simply state that 
consistency demands that the structure of the anomaly, 

is in terms of aD-form i D , polynomial in traces of even powers of 
the field strength two-forms F = dA + A2 and R = dw + w2. (Recall 
section 2.8.) It is naturally related to a (D+2)-form polynomial iD +2 

which is gauge invariant and written as an exact form i D+2 = diD+1 . 

The latter is not gauge invariant, but its variation is another exact 
form: OiD+! = diD. A key example of this is the Chern-Simons three­
form, which is discussed in insert 7.3, p. 167. See also insert 7.2 on 
p. 162 for explicit expressions in dimensions D = 4k + 2. We shall 
see that the anomalies are a useful check of the consistency of string 
spectra that we construct in various dimensions. 
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162 7 Supersymmetric strings 

Insert 7.2. A list of anomaly polynomials 

It is useful to list here some anomaly polynomials for later use. In 
ten dimensions, the contributions to the polynomial come from three 
sorts of field, the spinors 8 s ,c, the gravitinos 56c,s, and the fifth rank 
antisymmetric tensor field strength with its self-dual and anti-self­
dual parts. The anomalies for each pair within each sort are equal 
and opposite in sign, i.e. j~2 = - j~2' etc., and we have: 

A8 Tr(F6 ) I12 = - --'------
1440 

Tr( F4 )tr( R2) Tr( p2)tr( R4) Tr( F2) [tr( R2)F 
+ 2304 - 23040 - 18432 

ntr(R6) ntr(R4)tr(R2) n[tr(R2)]3 
+ 725760 + 552960 + 1327104 ; 

A56 tr(R6) tr(R4)tr(R2) [tr(R2)]3 
I12 c = - 495 725760 + 225 552960 - 63 1327104 ; 

j35+ = + 992 tr(R6 ) _ 448 tr(R4)tr(R2) + 128 [tr(R2)p 
12 725760 552960 1327104 

and n is the dimension of the gauge representation under which 
the spinor transforms, for which we use the trace denoted Tr. We 
also have suppressed the use of 1\, for brevity. For D = 6, there are 
anomaly eight-forms. We denote the various fields by their transfor­
mation properties of the D = 6 little group SO(4) rv SU(2) x SU(2): 

j(1,2) _ Tr(p4) _ Tr(p2)tr(R2) ntr(R4) n[tr(R2)F. 
8 - + 24 96 + 5760 + 4608 ' 

j(3,2) = + 245 tr(R4) _ 43 [tr(R2)F . 
8 5760 4608' 

j(3,1) _ 2 tr( R4) _ [tr( R2) F 
8 - + 8 5760 8 4608 

Note that the first two are for complex fermions. For real fermions, 
one must divide by two. For completeness, for D = 2 we list the three 
analogous anomaly four-forms: 

]3/2 = -23 tr(R2) 
4 48 ' 

jO = tr(R2) 
4 48· 

It is amusing to note that the anomaly polynomials can be written 
in terms of geometrical characteristic classes. This should be kept at 
the back of the mind for a bit later, in section 9.5. 
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7.1 The three basic superstring theories 163 

In the R-R sector, the IIA and IIB spectra are respectively 

8s Q9 8e = [1] EEl [3] = 8v EEl 56t 

8s Q9 8s = [0] EEl [2] EEl [4]+ = 1 EEl 28 EEl 35+. (7.24) 

Here [n] denotes the n-times antisymmetrised representation of 50(8), 
and [4]+ is self-dual. Note that the representations [n] and [8 - n] are 
the same, as they are related by contraction with the eight dimensional 
E-tensor. The NS-NS and R-R spectra together form the bosonic compo­
nents of D = 10 IIA (nonchiral) and IIB (chiral) supergravity respectively; 
We will write their effective actions shortly. 

In the NS-R and R-NS sectors are the products 

8v Q9 8e = 8s EEl 56e 

8v Q9 8s = 8e EEl 56s · (7.25) 

The 56s ,e are gravitinos. Their vertex operators are made roughly by 
tensoring a NS field '1jJ1-' with a vertex operator Va = e-'P/2 S a , where the 
latter is a 'spin field', made by bosonising the diS of equation (7.15) and 
building: 

d . = e±iHi 
~ " . (7.26) 

(The factor e-'P/2 is the bosonisation (see section 4.7) of the Faddeev­
Popov ghosts (see insert 3.2), about which we will have nothing more to 
say here.) The resulting full gravitino vertex operators, which correctly 
have one vector and one spinor index, are two fields of weight (0,1) and 
(1,0), respectively, depending upon whether 1/J1-' comes from the left or 
right. These are therefore holomorphic and anti-holomorphic world-sheet 
currents, and the symmetry associated to them in spacetime is the super­
symmetry. In the IIA theory the two gravitinos (and supercharges) have 
opposite chirality, and in the IIB the same. 

Consider the vertex operators for the R-R states1 . This will involve a 
product of spin fields 74 , one from the left and one from the right. These 
again decompose into antisymmetric tensors, now of 50(9, 1): 

(7.27) 

with C the charge conjugation matrix. In the IIA theory the product is 
16 Q9 16' giving even n (with n ~ 10 - n) and in the IIB theory it is 
16 Q9 16 giving odd n. As in the bosonic case, the classical equations of 
motion follow from the physical state conditions, which at the massless 
level reduce to Go . V = Go . V = O. The relevant part of Go is just 
PI-'1/Jb and similarly for Go. The PI-' act by differentiation on G, while 1/Jb 
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acts on the spin fields as it does on the corresponding ground states: as 
multiplication by pt. Noting the identity 

(7.28) 

and similarly for right multiplication, the physical state conditions become 

dG=O d*G = O. (7.29) 

These are the Bianchi identity and field equation for an antisymmetric 
tensor field strength. This is in accord with the representations found: in 
the IIA theory we have odd-rank tensors of SO(8) but even-rank tensors 
of SO(9, 1) (and reversed in the IIB), the extra index being contracted 
with the momentum to form the field strength. It also follows that R­
R amplitudes involving elementary strings vanish at zero momentum, so 
strings do not carry R-R chargest . 

As an aside, when the dilaton background is nontrivial, the Ramond 
generators have a term iJ.>,{t chjJ{t, and the Bianchi identity and field strength 
pick up terms proportional to diJ.> /\ G and diJ.> /\ *G. The Bianchi identity 
is non-standard, so G is not of the form de. Defining G' = e-1>G removes 
the extra term from both the Bianchi identity and field strength. The field 
G' is thus decoupled from the dilaton. In terms of the action, the fields G 
in the vertex operators appear with the usual closed string e- 21> but with 
non-standard dilaton gradient terms. The fields we are calling G' (which 
in fact are the usual fields used in the literature, and so we will drop the 
prime symbol in the sequel) have a dilaton-independent action. 

The type IIB theory is chiral since it has different numbers of left mov­
ing fermions from right-moving. Furthermore, there is a self-dual R-R 
tensor. These structures in principle produce gravitational anomalies, and 
it is one of the miracles (from the point of view of the low energy theory) 
of string theory that the massless spectrum is in fact anomaly free. There 
is a delicate cancellation between the anomalies for the 8e and for the 
568 and the 35+. The reader should check this by using the anomaly 
polynomials in insert 7.2, (of course, put n = 1 and F = 0) to see that 

- 2]8 5 + 2]56c + ]35+ - 0 12 12 12 - , (7.30) 

which is in fact miraculous, as previously stated339 . 

t The reader might wish to think of this as analogous to the discovery that a moving 
electric point source generates a magnetic field, but of course is not a basic magnetic 
monopole source. 
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7.1 The three basic superstring theories 165 

7.1.3 T.1Jpe I from type JIB, the prototype orientifold 

As we saw in the bosonic case, we can construct an unoriented theory 
by projecting onto states invariant under world-sheet parity, O. In order 
to get a consistent theory, we must of course project a theory which is 
invariant under 0 to start with. Since the left and right moving sectors 
have the same GSa projection for type IIB, it is invariant under 0, so we 
can again form an unoriented theory by gauging. We cannot gauge 0 in 
type IIA to get a consistent theory, but see later. 

Projecting onto 0 = +1 interchanges left-moving and right-moving 
oscillators and so one linear combination of the R-NS and NS-R gravitinos 
survives, so there can be only one supersymmetry remaining. In the NS­
NS sector, the dilaton and graviton are symmetric under 0 and survive, 
while the antisymmetric tensor is odd and is projected out. In the R-R 
sector, by counting we can see that the 1 and 35+ are in the symmetric 
product of 8 s Q9 8s while the 28 is in the antisymmetric. The R-R state 
is the product of right- and left-moving fermions, so there is an extra 
minus in the exchange. Therefore it is the 28 that survives. The bosonic 
massless sector is thus 1 EEl 28 EEl 35, and together with the surviving 
gravitino, this give us the D = 10 N = 1 supergravity multiplet. 

Sadly, this supergravity is in fact anomalous. The delicate balance (7.30) 
between the anomalies from the various chiral sectors, which we noted pre­
viously, vanishes since one each of the 8e and 568 , and the 35+, have been 
projected out. Nothing can save the theory unless there is an additional 
sector to cancel the anomaly. 107 

This sector turns out to be N = 1 supersymmetric Yang-Mills theory, 
with gauge group 80(32) or Es xEs. Happily, we already know at least 
one place to find the first choice: We can use the low-energy (massless) 
sector of 80(32) unoriented open superstring theory. This fits nicely, since 
as we have seen before, at one loop open strings couple to closed strings. 
We will not be able to get gauge group Es x Es from perturbative open 
string theory (Chan-Paton factors can't make this sort of group), but we 
will see shortly that there is another way of getting this group, but from 
a closed string theory. 

The total anomaly is that of the gravitino, dilatino and the gaugino, 
the latter being charged in the adjoint of the gauge group: 

(7.31 ) 

Using the polynomials given in insert 7.2, it should be easily seen that 
there is an irreducible term 

tr(R6 ) 

(n - 496) 725760' (7.32) 
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which must simply vanish, and so n, the dimension of the group, must be 
496. Since SO(32) and Es x Es both have this dimension, this is encourag­
ing. That the rest of the anomaly cancels is a very delicate and important 
story which deserves some attention. We will do that in the next section. 

Finishing the present discussion, in the language we learned in sec­
tion 4.11, we put a single (space-filling) 09-plane into type IIB theory, 
making the type IIB theory into the unoriented N = 1 closed string 
theory. This is anomalous, but we can cancel the resulting anomalies by 
adding 16 D9-branes. 

Another way of putting it is that (as we shall see) the 09-plane has 
16 units of C lD charge, which cancels that of 16 D9-branes, satisfying the 
equations of motion for that field. 

We have just constructed our first (and in fact, the simplest) example 
of an 'orientifolding' of a superstring theory to get another. More compli­
cated orientifolds may be constructed by gauging combinations of D with 
other discrete symmetries of a given string theory which form an 'orien­
tifold group' Go under which the theory is invariant2s . Generically, there 
will be the requirement to cancel anomalies by the addition of open string 
sectors (i.e. D-branes), which results in consistent new string theory with 
some spacetime gauge group carried by the D-branes. In fact, these pro­
jections give rise to gauge groups containing any of U(n), USp(n) factors, 
and not just SO(n) sectors. 

7.1.4 The Green-Schwarz mechanism 

Let us finish showing that the anomalies of N = 1, D = 10 supergravity 
coupled to Yang-Mills do vanish for the groups SO(32) and Es xEs. 
We have already shown above that the dimension of the group must be 
n = 496. Some algebra shows that that the rest of the anomaly (7.31), 
for this value of n can be written suggestively as: 

I(n=496) 
12 

where 

(7.34) 
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Insert 7.3. The Chern-Simons three-form 

The Chern-Simons three-form is a very important structure which 
will appear in a number of places, and it is worth pausing a while to 
consider its properties. Recall from insert 2.5 that we can write the 
gauge potential, and the field strength as Lie Algebra-valued forms: 
A = ta A~d:x;IL, where the ta are generators of the Lie algebra. We 
can write the Yang-Mills field strength as a matrix-valued two-form, 
F = ta F:vdxIL 1\ dxv. We can define the Chern-Simons three-form as 

W3Y = Tr ( A 1\ F - t A 1\ A 1\ A) = Tr ( A 1\ dA + ~ A 1\ A 1\ A ) . 

One interesting thing about this object is that we can write: 

dW3Y = Tr (F 1\ F). 

Furthermore, under a gauge transformation 6A = dA + [A, A]: 

6W3Y = Tr(dAdA) = dW2, W2 = Tr(AdA). 

So its gauge variation, while not vanishing, is an exact three-form. 
Note that there is a similar structure in the pure geometry sector. 
From section 2.8, we recall that the potential analogous to A is 
the spin connection one-form wa b = wa blL dxIL , with a and b being 
Minkowski indices in the space tangent to the point xlL in spacetime 
and so w is an SO(D-1, 1) matrix in the fundamental representation. 
The curvature is a two-form Rab = dWab+Wacl\wcb = RabILVdxIL I\dxv, 
and the gauge transformation is now 6w = d8+[w, 8]. We can define: 

W3L = tr ( w 1\ dw + ~w 1\ w 1\ w ), 

with similar properties to W3Y, above. Here tr means trace on the 
indices a, b. 

On the face of it, it does not really seem possible that this can be cancelled, 
since the the gaugino carries gauge charge and nothing else does, and so 
there are a lot of gauge quantities which simply stand on their own. This 
seems hopeless because we have so far restricted ourselves to quantum 
anomalies arising from the gauge and gravitational sector. If we include 
the rank two R-R potential C(2) in a cunning way, we can generate a 
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mechanism for cancelling the anomaly. Consider the interaction 

BGS = 3 X 26~2'IT)5o:/ J C(2) /\ Xs. (7.35) 

It is invariant under the usual gauge transformations 

5A = dA + [A, Al; 5w = d8 + [w, 8], (7.36) 

since it is constructed out of the field strengths F and R. It is also invariant 
under the two-form potential's standard transformation 5C(2) = dA. Let 
us however give C(2) another gauge transformation rule. While A and w 

transform under (7.36), let it transform as: 

d (1 ) 5C(2) = 4 30 Tr(AF) - tr(8R) . (7.37) 

Then the variation of the action does not vanish, and is: 

5BGS = 3 X 2~(2'IT)5 J [310 Tr(AF) - tr(8R)] /\ Xs. 

However, using the properties of the Chern-Simons three-form discussed 
in insert 7.3, this classical variation can be written as descending via the 
consistency chain in insert 7.1 from precisely the 12-form polynomial given 
in the first line of equation (7.34), but with a minus sign. Therefore we 
cancel that offending term with this classical modification of the transfor­
mation of C(2). Later on, when we write the supergravity action for this 
field in the type I model, we will use the modified field strength: 

0(3) = dc(2) - ~ [310W3Y(A) - w3L(O)], (7.38) 

where because of the transformation properties of the Chern-Simons 
three-form (see insert 7.3), 0(3) is gauge invariant under the new trans­
formation rule (7.37). 

N.B. It is worth noting here that this is a quite subtle mechanism. 
We are cancelling the anomaly generated by a one loop diagram with 
a tree-level graph. It is easy to see what the tree level diagram is. 
The kinetic term for the modified field strength will have its square 
appearing, and so looking at its definition (7.38), we see that there 
is a vertex coupling C(2) to two gauge bosons or to two gravitons. 
There is another vertex that comes from the interaction (7.35) which 
couples C(2) to four particles, pairs of gravitons and pairs of gauge 
bosons, or a mixture. So the tree level diagram in figure 7.1 can mix 
with the hexagon anomaly of insert 7.1. 
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Fig. 7.1. The tree which cures the N = 1 D = 10 anomalies. A two-form 
field is exchanged. 

Somehow, the terms in the second line must cancel amongst themselves. 
Miraculously, they do for a number of groups, 80(32) and Es x Es in­
cluded. For the first group, it follows from the fact that for the group 
80(n), we can write: 

Tradj (t6 ) 

Tradj (t4 ) 

Tradj (t2 ) 

(n - 32)Trf(t6 ) + 15Trf(t2)Trf(t4 ); 

(n - 8)Trf(t4 ) + 3Trf(t2)Trf(t2); 

(n - 2)Trf(t2), (7.39) 

where the subscript 'f' denotes the fundamental representation. For E s, 
we have that 

Tradj (t6 ) 

Tradj (t4 ) (7.40) 

In checking these (which of course the reader will do) one should combine 
the traces as TrGlxG2 = TrGl + TrG2' etc. 

Overall, the results107 of this subsection are quite remarkable, and 
generated a lot of excitement which we now call the First Superstring 
Revolution. This excitement was of course justified, since the discovery 
of the mechanism revealed that there were consistent superstring theories 
with considerably intricate structures with promise for making contact 
with the physics that we see in Nature. 

7.2 The two basic heterotic string theories 

In addition to the three superstring theories briefly constructed above, 
there are actually two more supersymmetric string theories which live 
in ten dimensions. In addition, they have non-Abelian spacetime gauge 
symmetry, and they are also free of tachyons. These are the 'Heterotic 
Strings,2o. The fact that they are chiral, have fermions and non-Abelian 
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gauge symmetry meant that they were considered extremely attractive as 
starting points for constructing 'realistic' phenomenology based on string 
theory. It is in fact remarkable that one can come tantalisingly close to 
naturally realising many of the features of the Standard Model of particle 
physics by starting with, say, the Es x Es Heterotic String, while remaining 
entirely in the perturbative regime. This was the focus of much of the First 
Superstring Revolution. Getting many of the harder questions right led 
to the search for non-perturbative physics, which ultimately led us to the 
Second Superstring Revolution, and the realisation that all of the other 
string theories were just as important too, because of duality. 

One of the more striking things about the heterotic strings, from the 
point of view of what we have done so far, is the fact that they have non­
Abelian gauge symmetry and are still closed strings. The SO(32) of the 
type I string theory comes from Chan-Paton factors at the ends of the 
open string, or in the language we now use, from 16 coincident D9-branes. 

We saw a big hint of what is needed to get spacetime gauge symmetry 
in the heterotic string in chapter 4. Upon compactifying bosonic string 
theory on a circle, at a special radius of the circle, an enhanced SU(2)L x 
SU(2)R gauge symmetry arose. From the two dimensional world-sheet 
point of view, this was a special case of a current algebra, which we 
uncovered further in section 4.6. We can take two key things away from 
that chapter for use here. The first is that we can generalise this to a larger 
non-Abelian gauge group if we use more bosons, although this would seem 
to force us to have many compact directions. The second is that there were 
identical and independent structures coming from the left and the right to 
give this result. So we can take, say, the left hand side of the construction 
and work with it, to produce a single copy of the non-Abelian gauge group 
in spacetime. 

This latter observation is the origin of the word 'heterotic' which comes 
from 'heterosis'. The theory is a hybrid of two very different constructions 
on the left and the right. Let us take the right hand side to be a copy of 
the right hand side of the superstrings we constructed previously, and so 
we use only the right hand side of the action given in equation (7.1) (with 
closed string boundary conditions). Then the usual consistency checks give 
that the critical dimension is of course ten, as before: the central charge 
(conformal anomaly) is -26 + 11 = 15 from the conformal and supercon­
formal ghosts. This is cancelled by ten bosons and their superpartners 
since they contribute to the anomaly an amount 10 x 1 + 10 x ~ = 15. 
The left hand side is in fact a purely bosonic string, and so the anomaly 
is cancelled to zero by the - 26 from the conformal ghosts and there must 
be the equivalent of 26 bosonic degrees of freedom, contributing 26 x 1 to 
the anomaly. 
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How can the theory make sense as a ten dimensional theory? The an­
swer to this question is just what gives the non-Abelian gauge symmetry. 
Sixteen of the bosons are periodic, and so may be thought of as com­
pactified on a torus T16 '::::' (81)16 with very specific properties. Those 
properties are such that the generic U(I)16 one might have expected from 
such a toroidal compactification is enhanced to one of two special rank 16 
gauge groups: 80(32), or Es x E s , via the very mechanism we saw in 
chapter 4: the torus is 'self-dual'. The remaining ten non-compact bosons 
on the left combine with the ten on the right to make the usual ten 
spacetime coordinates, on which the usual ten dimensional Lorentz group 
80(1,9) acts. 

7.2.1 80(32) and Es x Es from self-dual lattices 

The requirements are simple to state. We are required to have a sixteen 
dimensional lattice, according to the above discussion, and so we can apply 
the results of chapter 4, but there is a crucial difference. Recalling what 
we learned there, we see that since we only have a left-moving component 
to this lattice, we do not have the Lorenzian signature which arose there, 
but only a Euclidean signature. But all of the other conditions apply: it 
must be even, in order to build gauge bosons as vertex operators, and it 
must be self-dual, to ensure modular invariance. 

The answer turns out to be quite simple. There are only two choices, 
since even self-dual Euclidean lattices are very rare (They only exist when 
the dimension is a multiple of eight). For sixteen dimensions, there is either 
rs x rs or r 16 . The lattice rs is the collection of points: 

with Li n; = 2. The integer lattice points are actually the root lattice of 
80(16), with which the 120 dimensional adjoint representation is made. 
The half-integer points construct the spinor representation of 80(16). 
A bit of thought shows that it is just like the construction we made of 
the spinor representations of 80(8) previously; the entries are only ±~ 
in eight different slots, with only an even number of minus signs appear­
ing, which again gives a squared length of two. There are 27 = 128 pos­
sibilities, which is the dimension of the spinor representation. The total 
dimension of the represetnation we can make is 120 + 128 = 248 which 
is the dimension of Es. The sixteen dimensional lattice is made as the 
obvious tensor product of two copies of this, giving gauge group Es xEs, 
which is 496 dimensional. 
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The lattice r I6 is extremely similar, in that it is: 

(nl,n2, ... ,nI6) or (nl+~,n2+~, ... ,nI6+~)' LniE22::, 

with Li nr = 2. Again, we see that the integer points make the root 
lattice of SO(32), but there is more. There is a spinor representation of 
SO(32), but it is clear that since 16 x 1/4 = 4, the squared length is twice 
as large as it need to be to make a massless vector, and so the gauge 
bosons remain from the adjoint of SO(32), which is 496 dimensional. 
In fact, the full structure is more than SO(32), because of this spinor 
representation. It is not quite the cover, which is Spin(32) because the 
conjugate spinor and the vector representations are missing. It is instead 
written as Spin(32)/2::2. In fact, SO(32) in the quotient of Spin(32) by 
another 2::2 . 

Actually, before concluding, we should note that there is an alternative 
construction to this one using left-moving fermions instead of bosons. This 
is easily arrived at from here using what we learned about fermionisation 
in section 4.7. From there, we learn that we can trade in each of the left­
moving bosons here for two left-moving Majorana-Weyl fermions, giving 
a fermionic construction with 32 fermions \[Ii. The construction divides 
the fermions into the NS and R sectors as before, which correspond to the 
integer and half-integer lattice sites in the above discussion. The difference 
between the two heterotic strings is whether the fermions are split into two 
sets with independent boundary conditions (giving Es x Es) or if they have 
all the same boundary conditions (SO(32)). In this approach, there is a 
GSO projection, which in fact throws out a tachyon, etc. Notice that in the 
R sector, the zero modes of the 32 \[Ii will generate a spinor and conjugate 
spinor 231 ttl 231 of SO(32) for much the same reasons as we saw a 16 ttl 16 
in the construction of the superstring. Just as there, a GSO projection 
arises in the construction, which throws out the conjugate spinor, leaving 
the sole massive spinor we saw arise in the direct lattice approach. 

7.2.2 The massless spectrum 

In the case we must consider here, we can borrow a lot of what we learned 
in section 4.5 with hardly any adornment. We have sixteen compact left­
moving bosons, Xi, which, together with the allowed momenta pi, define 
a lattice r. The difference between this lattice and the ones we considered 
in section 4.5 is that there is no second part coming from a family of right­
moving momenta, and hence it is only half the expected dimension, and 
with a purely Euclidean signature. This sixteen dimensional lattice must 
again be self-dual and even. This amounts to the requirement of modular 
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invariance, just as before. More directly, we can see what effect this has 
on the low-lying parts of the spectrum. 

Recall that the NS and R sector of the right hand side has zero point 
energy equal to -1/2 and 0, respectively. Recall that we then make, after 
the GSO projection, the vector 8v , and its superpartner the spinor 8 8 

from these two sectors. On the left hand side, we have the structure of the 
bosonic string, with zero point energy -1. There is no GSO projection on 
this side, and so potentially we have the tachyon, 10), the familiar massless 
states a~lIO), and the current algebra elements J11,lIO). These must be 
tensored together with the right hand side's states, but we must be aware 
that the level-matching condition is modified. To work out what it is we 
must take the difference between the correctly normalised ten dimensional 
lV£2 operators on each side. We must also recall that in making the ten 
dimensional }\;I2 operator, we are left with a remainder, the contribution 
to the internal momentum a' prj 4. The result is: 

, 2 { 1 a PL ---
--+N-1=N- 2 

4 ° ' 
where the choice corresponds to the NS or R sectors. 

Now we can see how the tachyon is projected out of the theory, even 
without a GSO projection on the left. The GSO on the right has thrown 
out the tachyon there, and so we start with N = ~ there. The left 
tachyon is N = 0, but this is not allowed, and we must have the even 
condition a'pfj2 = 2 which corresponds to switching on a current J11,l' 
making a massless state. If we do not have this state excited, then we can 
also make a massless state with N = 1, corresponding to a~lIO). 

The massless states we can make by tensoring left and right, respect­
ing level-matching are actually familiar. In the NS-NS sector, we have 
a~l 'ljJ~1/210), which is the graviton, G/LV antisymmetric tensor B/Lv and 
dilaton <I> in the usual way. We also have J11,1'1j;~1/210), which gives an 
Es x Es or 80(32) gauge boson, A/La. In the NS-R sector, we have a~lIO)a 
which is the gravitino, 'ljJ~. Finally, we have J11,lIO)a, which is the super­
partner of the gauge boson, A~. In the language we used earlier, we can 
write the left hand representations under 80(8) x G (where G is 80(32) 
or Es x Es) as (8 v , 1) or (1,496). Then the tensoring is 

(8v , 1) Q9 (8v + 88 ) = (1,1) + (35,1) + (28,1) + (568 ,1) + (8 8 ,1), 
(1,496) Q9 (8v + 88 ) = (8v , 496) + (88 ,496). 

So we see that we have again obtained the N = 1 supergravity multiplet, 
coupled to a massless vector. The effective theory which must result at low 
energy must have the same gravity sector, but since the gauge fields arise 
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at closed string tree level, their Lagrangian must have a dilaton coupling 
e2el>, instead of eel> for the open string where the gauge fields arise at open 
string tree level. 

7.3 The ten dimensional supergravities 

Just as we saw in the case of the bosonic string, we can truncate consis­
tently to focus on the massless sector of the string theories, by focusing on 
low energy limit ex' ----+ O. Also as before, the dynamics can be summarised 
in terms of a low energy effective (field theory) action for these fields, 
commonly referred to as 'supergravity'. 

The bosonic part of the low energy action for the type IIA string theory 
in ten dimensions may be written (d. equation (2.106)) as (the wedge 
product is understood) 1, 5, 75: 

BIIA = _1_ JdlOx( _G)1/2 {e-2el> [R + 4(\7<I»2 _ ~(H(3))2] 
2~6 12 

- ~(G(2))2 - ~(G(4))2} - _1_ J B(2)dC(3)dC(3). 
4 48 4~6 (7.41) 

As before GjJ,V is the metric in string frame, <I> is the dilaton, H(3) = dB(2) 
is the field strength of the NS-NS two form, while the Ramond-Ramond 
field strengths are G(2) = dC(l) and G(4) = dC(3) + H(3) 1\ C(1):!:. 

For the bosonic part in the case of type IIB, we have: 

BIIE = _1_ j'dlOx( _G)1/2 {e-2el> [R + 4(\7<I»2 _ ~(H(3))2] 
2~6 12 

_ ~(G(3) + C(O) H(3))2 _ ~(dC(0))2 _ _ 1_(G(5))2} 
12 2 480 

+ _1_ J (C(4) + ~ B(2) C(2)) G(3) H(3). (7.42) 
4~6 2 

Now, G(3) = dC(2) and G(5) = dC(4) + H(3)C(2) are R-R field strengths, 
and C(O) is the R-R scalar. (Note that we have canonical normalisations 
for the kinetic terms of forms: there is a prefactor of the inverse of -2 x p! 
for a p-form field strength.) There is a small complication due to the 
fact that we require the R-R four form C(4) to be self-dual, or we will 
have too many degrees of freedom. We write the action here and remind 
ourselves to always impose the self-duality constraint on its field strength 
F(5) = dC(4) by hand in the equations of motion: F(5) = *F(5). 

t This can be derived by dimensional reduction from the structurally simpler eleven di­
mensional supergravity action, presented in chapter 12, but at this stage, this relation 
is a merely formal one. We shall see a dynamical connection later. 
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Equation (2.109) tells us that, in ten dimensions, we must use 

o - e(<Po-<P)/2G 
IW - " IW 

175 

(7.43) 

to convert these actions to the Einstein frame. As before (see discussion 
below equation(2.111)), Newton's constant will be set by 

(7.44) 

where the latter equality can be established by (for example) direct ex­
amination of the results of a graviton scattering computation. We will see 
that it gives a very natural normalisation for the masses and charges of 
the various branes in the theory. Also gs is set by the asymptotic value 
of the dilaton at infinity: gs == e<po. 

Those were the actions for the ten dimensional supergravities with 
thirty-two supercharges. Let us consider those with sixteen supercharges. 
For the bosonic part of type I, we can construct it by dropping the fields 
which are odd under 0 and then adding the gauge sector, plus a number 
of cross terms which result from cancelling anomalies, as we discussed in 
subsection 7.1.3: 

81 = 2~6 J dlOx( _G)1/2 { e-2<P [R + 4 (\7 <I> )2] 

_~(0(3))2 _ 0' e-<PTr (F(2))2}. (7.45) 
12 8 

Here, 0(3) is a modified field strength for the two-form potential, defined 
in equation (7.38). Recall that this modification followed from the require­
ment of cancellation of the anomaly via the Green-Schwarz mechanism. 

We can generate the heterotic low-energy action using a curiosity which 
will be meaningful later. Notice that a simple redefinition of fields: 

G ftv (type I) = e - <P G ftv (heterotic) 

<I>(type I) = -<I>(heterotic) 

0(3) (type I) = H(3) (heterotic) 

Aft (type I) = Aft (heterotic), 

takes one from the type I Lagrangian to: 

(7.46) 

(7.47) 
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where (renaming C(2) ---+ B(2)) 

~ (3) (2) at [ 1 ] H = dB - 4 30W3y(A) - w3L(D) . (7.48) 

This is the low energy effective Lagrangian for the heterotic string theo­
ries. Note that in (7.47), at is measured in heterotic units of length. 

We can immediately see two key features about these theories. The 
first was anticipated earlier: their Lagrangian for the gauge fields have a 
dilaton coupling e- 2iP , since they arise at closed string tree level, instead 
of e- iP for the open string where where the gauge fields arise at open 
string tree level. The second observation is that since from equation (7.46) 
the dilaton relations tell us that g8 (type I) = g; 1 (heterotic), there is a 
non-perturbative connection between these two theories, although they 
are radically different in perturbation theory. We are indeed forced to 
consider these theories when we study the type I string in the limit of 
strong coupling. 

7.4 Heterotic toroidal compactifications 

Much later, it will be of interest to study simple compactifications of the 
heterotic strings, and the simplest result from placing them on tori174, 175. 

Our interest here is not in low energy particle physics phenomenology, as 
this would require us to compactify on more complicated spaces to break 
the large amount of supersymmetry and gauge symmetry. Instead, we 
shall see that it is quite instructive, on the one hand, and on the other 
hand, studying various superstring compactifications with D-brane sec­
tors taken into account will produce vacua which are in fact strong/weak 
coupling dual to heterotic strings on tori. This is another remarkable con­
sequence of duality which forces us to consider the heterotic strings even 
though they cannot have D-brane sectors. 

Actually, there is not much to do. From our work in section 7.2 and from 
that in section 4.5, it is easy to see what the conditions for the consistency 
of a heterotic toroidal compactification must be. Placing some of the ten 
dimensions on a torus Td will give us the possibility of having windings, 
and right-moving momenta. In addition, the gauge group can be broken 
by introducing Wilson lines (see insert 4.4 and section 4.9.1) on the torus 
for the gauge fields AIL. This latter choice breaks the gauge group to the 
maximal Abelian subgroup, which is U(1)16. 

The compactification simply enlarges our basic sixteen dimensional 
Euclidean lattice from rs EEl rs or r 16 by two dimensions of Lorentzian 
signature (1,1) for each additional compact direction, for the reasons we 
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already discussed in section 4.5. So we end up with a lattice with signature 
(16 + d, d), on which there must be an action of O(d, 16 + d) generating 
the lattices. Again, we will have that there is a physical equivalence be­
tween some of these lattices, because physics only depends on PL and PA, 
and further, there will be the discrete equivalences corresponding to the 
action of a T-duality group, which is O(d, 16 + d, Z). 

The required lattices are completely classified, as a mathematical ex­
ercise. In summary, the space of inequivalent toroidal compactifications 
turns out to be: 

MTd = [O(d) x O(d + 16)]\0(d, d + 16)/0(d, d + 16, Z). (7.49) 

Notice, after a quick computation, that the dimension of this space is 
d2 + 16d. So in addition to the fields GjW , BjLv and <I>, we have that number 
of extra massless scalars in the N = 2, D = 6 low energy theory. The first 
part of the result comes, as before from the available constant components, 
Gmn and Bmn , of the internal metric and antisymmetric tensor on Td. The 
remaining part comes from the sixteen generic constant internal gauge 
bosons (the Wilson lines), Am for each circle. 

Let us compute what the generic gauge group of this compactified model 
is. There is of course the U (1) 16 from the original current algebra sector. 
In addition, there is a U(l) x U(l) coming from each compact dimension, 
since we have Kaluza-Klein reduction of the metric and antisymmetric 
tensor. Therefore, the generic gauge group is U(1)16+2d. 

To get something less generic, we must tune some moduli to spe­
cial points. Of course, we can choose to switch off some of the Wilson 
lines, getting non-Abelian gauge groups from the current algebra sector, 
restoring an Es x Es X U(1)2d or 80(32) X U(1)2d gauge symmetry. We 
also have the possibility of enhancing the Kaluza-Klein factor by tun­
ing the torus to special points. We simply need to make states of the 
form exp(ikL . XL)?,b~l,dO), where we can have left-moving momenta of 
c/pU2 = 2 (we are referring to the components of PL which are in the 
torus T d ). This will give any of the A-D-E series of gauge groups up to 
a rank 2d in this sector. 

The reader will have noticed that we only gave one family of lattices for 
each dimension d of the torus. We did not have one choice for the Es x Es 
string and another for the 80(32) string. In other words, as soon as we 
compactify one heterotic string on a circle, we find that we could have 
arrived at the same spectrum by compactifying the other heterotic string 
on a circle. This is of course T-duality. It is worth examining further, and 
we do this in section 8.1.3. 
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7.5 Superstring toroidal compactification 

The placement of the superstrings on tori is at face value rather less 
interesting than the heterotic case, and so we will not spend much time 
on it here, although will return to it later when we revisit T-duality, and 
again when we study U-duality in section 12.7. 

Imagine that we compactify one of our superstring theories on the 
torus Td. We simply ask that d of the directions are periodic with some 
chosen radius, as we did in section 4.5 for the bosonic string. This does not 
not affect any of our discussion of supercharges, etc., and we simply have 
a (10 - d)-dimensional theory with the same amount of supersymmetry 
as the ten dimensional theory which we started with. As discussed in sec­
tion 4.4, there is a large O(d, d, Z) pattern of T-duality groups available 
to us. There are also Kaluza-Klein gauge groups U(l?d coming from the 
internal components of the graviton and the antisymmetric tensor. In ad­
dition, there are Kaluza-Klein gauge groups coming from the possibility 
of some of the R-R sector antisymmetric tensors having internal indices. 
Note that there aren't the associated enhanced gauge symmetries present 
at special radii, since the appropriate objects which would have arisen 
in a current algebra, J~ l' do not give masses states in spacetime, and in 
any case level matching would have forbidden them from being properly 
paired with 'ljJ~lL2 to give a spacetime vector. 

To examine the possibilities, it is probably best to study a specific 
example, and we do the case of placing the type IIA string theory on T5. 

Let us first count the gauge fields. This can be worked out simply by 
counting the number of ways of wrapping the metric and the various p­
form potentials (with p odd) in the theory on the five circles of the T 5 to 
give a one-form in the remaining five non-compact directions. From the 
NS-NS sector there are five Kaluza-Klein gauge bosons and five gauge 
bosons from the antisymmetric tensor. There are 16 gauge bosons from 
the dimensional reduction of the various R-R forms: the breakdown is 
10+5+ 1 from the forms C(3), C(5) and C(l), respectively, since, for ex­
ample, there are ten independent ways of making two out of the three 
indices of C(3) be any two out of the five internal directions, and so on. 
Finally, in five dimensions, one can form a two form field strength from 
the Hodge dual * H of the three-form field strength of the NS-NS B/Lv, 
thus defining another gauge field. 

So the gauge group is generically U(1)27. There are in fact a number 
of massless fields corresponding to moduli representing inequivalent sizes 
and shapes for the T5. We can count them easily. We have the 52 = 25 
components coming from the graviton and antisymmetric tensor field. 
From the R-R sector there is only one way of getting a scalar from C(5), 
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and five and ten ways from e(l) and e(3), respectively. This gives 41 
moduli. Along with the dilaton, this gives a total of 42 scalars for this 
compactification. 

By now, the reader should be able to construct the very same five 
dimensional spectrum but starting with the type IIB string and placing 
it on T5. This is a useful exercise in preparation for later. The same 
phenomenon will happen with any torus, Td. Thus we begin to uncover the 
fact that the type IIA and type IIB string theories are (T-dual) equivalent 
to each other when placed on circles. We shall examine this in more detail 
in section 8.1, showing that the equivalence is exact. 

The full T-duality group is actually 0(5,5; Z). It acts on the different 
sectors independently, as it ought to. For example, for the gauge fields, it 
mixes the first ten NS-NS gauge fields among themselves, and the 16 R-R 
gauge fields among themselves, and leaves the final NS-NS field invari­
ant. Notice that the fields fill out sensible representations of 0(5,5; Z). 
Thinking of the group as roughly SO(10), those familiar with numerology 
from grand unification might recognise that the sectors are transforming 
as the 10, 16, and l. 

A little further knowledge will lead to questions about the fact that lOEB 
16 EB 1 is the decomposition of the 27 (the fundamental representation) 
of the group E6 , but we should leave this for a later time, when we come 
to discuss U-duality in section 12.7. 

7.6 A superstring orbifold: discovering the K3 manifold 

Before we go any further, let us briefly revisit the idea of strings propagat­
ing on an orbifold, and take it a bit further. Imagine that we compactify 
one of our closed string theories on the four torus, T4. Let us take the 
simple case where there the torus is simply the product of four circles, Sl, 
each with radius R. Let us choose that the four directions (say) x 6 , x 7 , x 8 

and x 9 are periodic with period 27T R. The resulting six dimensional theory 
has N = 4 supersymmetry. 

Let us orbifold the theory by the Z2 group which has the action 

R: (7.50) 

which is clearly a good symmetry to divide by. We can choose to let R 
be embedded in the SU(2)L which acts on the JPi.4 (see insert 7.4). This 
will leave an SU(2)R which descends to the six dimensions as a global 
symmetry. It is in fact the R-symmetry of the remaining D = 6, N = 2 
model. We shall use this convention a number of times in what is to come. 
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Insert 7.4. SU(2)L versus SU(2)R 

It is well worth pausing here to note a nice way of writing things, for 
later use. The space JPi.4 with coordinates (X6,X7,xS,xg) = (T,X,y,Z) 
has an obvious SO(4) symmetry. Note that SO(4) rv SU(2)L X 

SU(2)R, where the 'L' and 'R' labels denote left and right. What 
is the meaning of this? To see it, present two new sets of coordinates. 
Write JPi.4 with a radial coordinate r = (T2 + x2 + y2 + z2) 1/2, and 
Euler angles on an S3 (r, e, ¢, 'lj;), where 0 < e < TI, 0 < ¢ < 2TI, 
o < 'lj; < 4TI. The metric is: 

r 2 
ds2 = dT2 + d:x;2 + dy2 + dz2 = dr2 +"4 (de2 + d¢2 + &1jJ2 + 2 cos e&ljJd¢ ). 

Further define an element 9 E SU(2): 9 = (Tl - iT' i!)/r for Pauli 
matrices Ti (given, e.g. in equation (13.1), where they're called O"i): 

= ~ (T + iz 
9 r y + ix 

There are natural independent actions of h E SU(2) on this on the 
left, 9 ---+ hg, or on the right, 9 ---+ gh. It is really useful to ex­
tract certain natural 'Maurer-Cartan' one-forms from this. They are 
O"a = -iTr(Tag-1dg) and are clearly invariant under the SU(2)L. The 
(ja = -iTr( Tadgg-1) are SU(2)R invariant. Explicitly: 

20"1 = - sin 'lj;de + cos'lj; sin ed¢; 

20"2 = cos 'ljJde + sin 'lj; sin ed¢; 20"3 = d'lj; + cos ed¢, 

and they satisfy dO"a = EabcO"b /\ O"c. Note also that 4(O"r + O"§) is the 
standard round unit radius S2 metric, while O"r + O"§ + O"§ gives the 
same for S3. (The (ji can be obtained by sending '1jJ f-7 ¢.) Now, our 
metric on JPi.4 can be written as ds 2 = dr 2 + r2(O"r + O"§ + O"§). 

7.6.1 The orbifold spectrum 

We can construct the resulting six dimensional spectrum by first working 
out (say) the left-moving spectrum, seeing how it transforms under Rand 
then tensoring with another copy from the right in order to construct the 
closed string spectrum. 

Let us now introduce a bit of notation which will be useful in the future. 
Use the label x rn , m = 6,7,8,9 for the orbifolded directions, and use xM, 
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/L = 0, ... , 5, for the remaining. Let us also note that the ten dimensional 
Lorentz group is decomposed as 

80(1, 9) ~ 80(1,5) x 80(4). 

We shall label the transformation properties of our massless states in the 
theory under the 8U(2) x 8U(2) = 80(4) little group. Just as we did 
before, it will be useful in the Ramond sector to choose a labelling of 
the states which refers to the rotations in the planes (xO,x1), (x2,x3), 
etc., as eigenstates 80,Sl, ... ,S4 of the operator 8 01 ,823 , etc., (see equa­
tions (7.17) and (7.19) and surrounding discussion). 

With this in mind, we can list the states on the left that survive the 
GSO projection. 

I sector I state R charge I 80(4) charge I 

NS 'l/i'l 10; k) + (2,2) 
-

2 
'ljJrn1 10; k) - 4(1,1) 

-"2 

R 18 18 28 384); 81 = +82, 83 = -84 + 2(2,1) 

18 18 28 384); 81 = -82, 83 = +84 - 2(1,2) 

Crucially, we should also examine the 'twisted sectors' which will arise, 
in order to make sure that we get a modular invariant theory. The big 
difference here is that in the twisted sector, the moding of the fields in 
the xrn directions is shifted. For example, the bosons are now half-integer 
moded. We have to recompute the zero point energies in each sector in 
order to see how to get massless states (see (2.80)): 

NS sector: 4 ( - 214) + 4 ( - 418) + 4 (418) + 4 (214) = 0, 

R sector: 4 ( - 214) + 4 (214) + 4 (418) + 4 ( - 418) = O. (7.51) 

This is amusing; both the Ramond and NS sectors have zero vacuum 
energy, and so the integer moded sectors will give us degenerate vacua. 
We see that it is only states IS1s2) which contribute from the R sec­
tor (since they are half-integer moded in the xrn directions) and the 
NS sector, since it is integer moded in the xrn directions, has states 
18 384). 

https://doi.org/10.1017/9781009401371.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.008


182 7 Supersymmetric strings 

N.B. It is worth seeing in equation (7.51) how we achieved this ability 
to make a massless field in this case. The single twisted sector ground 
state in the bosonic orbifold theory with energy 1/48, was multiplied 
by four since there are four such orbifolded directions. Combining this 
with the contribution from the four unorbifolded directions produced 
just the energy needed to cancel the contribution from the fermions. 

The states and their charges are as follows (after imposing GSO). 

I sector I state I R charge I SO(4) charge I 

NS 18 3 8 4); 83 = -84 + 2(1,1) 

R I S 1s2); Sl = -S2 - (1,2) 

Now we are ready to tensor. Recall that we could have taken the oppo­
site GSO choice here to get a left moving with the identical spectrum, but 
with the swap (1,2) +--+ (2,1). Again we have two choices: tensor together 
two identical GSO choices, or two opposite. In fact, since six dimensional 
supersymmetries are chiral, and the orbifold will keep only two of the four 
we started with, we can write these choices as (0,2) or (1,1) supersym­
metry, resulting from type IIB or IIA on K3. It is useful to tabulate the 
result for the bosonic spectra for the untwisted sector. 

sector 80(4) charge 

NS-NS (3,3) + (1,3) + (3,1) + (1, 1) 
10(1,1) + 6(1, 1) 

R-R (IIB) 
2(3,1) + 4(1, 1) 
2(1,3) + 4(1, 1) 

R-R (IIA) 
4(2,2) 
4(2,2) 

This is the result for the twisted sector. 

sector 

NS-NS 

R-R (IIB) 
R-R (IIA) 

80( 4) charge 

3(1,1) + (1,1) 

(1,3) + (1,1) 
(2,2) 

Recall now that we have two twisted sectors for each orbifolded circle, 
and hence there are 16 twisted sectors in all, for T 4/7/.,2. Therefore, to 
make the complete model, we must take sixteen copies of the content of 
the twisted sector table above. 

https://doi.org/10.1017/9781009401371.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.008


7.6 A superstring orbifold 183 

Now let identify the various pieces of the spectrum. The gravity multi­
plet G/1V + B/1V + <I> is in fact the first line of our untwisted sector table, 
coming from the NS-NS sector, as expected. The field B can be seen to 
be broken into its self-dual and anti-self-dual parts Btu and BMU , trans­
forming as (1,3) and (3,1). There are sixteen other scalar fields, ((1,1)), 
from the untwisted NS-NS sector. The twisted sector NS-NS sector has 
4x16 scalars. Not including the dilaton, there are 80 scalars in total from 
the NS-NS sector. 

Turning to the R-R sectors, we must consider the cases of lIA and lIB 
separately. For type lIA, there are eight one-forms (vectors, (2, 2)) from 
the untwisted sector and 16 from the twisted, giving a total of 24 vectors, 
and have a generic gauge group U(1?4. 

For type lIB, the untwisted R-R sector contains three self-dual and 
three anti-self-dual tensors, while there are an additional 16 self-dual ten­
sors (1,3). We therefore have 19 self-dual etu and three anti-self-dual 
eMU' There are also eight scalars from the untwisted R-R sector and 16 
scalars from the twisted R-R sector. In fact, including the dilaton, there 
are 105 scalars in total for the type lIB case. 

7.6.2 Another miraculous anomaly cancellation 

This type lIB spectrum is chiral, as already mentioned, and in view of 
what we studied in earlier sections, the reader must be wondering whether 
or not it is anomaly-free. It actually is, and it is a worthwhile exercise to 
check this, using the polynomials in insert 7.2. 

The cancellation is so splendid that we cannot resist explaining it in 
detail here. To do so we should be careful to understand the N = 2 
multiplet structure properly. A sensible non-gravitational multiplet has 
the same number of bosonic degrees of freedom as fermionic, and so it 
is possible to readily write out the available ones given what we have 
already seen. (Or we could simply finish the tensoring done in the last 
section, doing the NS-R and R-NS parts to get the fermions.) Either way, 
table 7.1 has the multiplets listed. 

The 16 components of the supergravity bosonic multiplet is accom­
panied by two copies of the 16 components making up a gravitino and a 
dilatino. These two copies are the same chirality for type lIB and opposite 
for type lIA. 

The next thing to do is to repackage the spectrum we identified earlier 
in terms of these multiplets. First, notice that the supergravity multiplet 
has one (1,1), four (2,1)s and one (1,3). With four other scalars, we 
can make a full tensor multiplet. (The other (3,1), which is an anti-self­
dual piece makes up the rest of BJLu,) That gives us 19 complete self dual 
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Table 7.1. The structure of the N = 2 multiplets in D = 6 

multiplet bosons fermions 

vector (2,2)+4(1,1) 2(1,2)+2(2,1) 
SD tensor (1,3)+5(1,1) 4(2,1) 

ASD tensor (3,1)+5(1,1) 4(2,1) 

su pergravi ty (3,3) + (3,1) + (1,3) + (1,1) 
2(3,2) + 2(2, 1) 

or 2(2,3) + 2(1, 2) 

tensor multiplets in total and two complete anti-self-dual ones since the 
last one is not complete. Since there are five scalars in a tensor multiplet 
this accounts for the 105 scalars that we have. 

So we can study the anomaly now, knowing what (anti- ) self-dual ten­
sors, and fermions we have. Consulting insert 7.2 (p. 162), we note that 
the polynomials listed for the fermions are for complex fermions, and so 
we must divide them by two to get the ones appropriate for the real com­
ponents we have counted in the orbifolding. Putting it together according 
to what we have said above for the content of the spectrum, we have: 

191(1,3) + 19 x 41(2,1) + 21(3,1) + 2 x 41(2,1) + 21(3,2) + 1(3,1) = 0 (752) 
8 8 8 8 8 8 ,. 

where we have listed, respectively, the contribution of the 19 self-dual ten­
sors, the two anti-self-dual tensors, the two gravitinos, and the remaining 
piece of the supergravity multiplet. That this combination of polynomials 
vanishes is amazing109. 

7.6.3 The K3 manifold 

Quite remarkably, there is a geometrical interpretation of all of those data 
presented in the previous subsections in terms of compactifying type II 
string theory on a smooth manifold. The manifold is K3. It is a four 
dimensional manifold containing 22 independent two-cycles, which are 
topologically two-spheres more properly described as the complex surface 
Cpl (see insert 16.1), in this context. Correspondingly the space of two­
forms which can be integrated over these two cycles is 22 dimensional. So 
we can choose a basis for this space. Nineteen of them are self-dual and 
three of them are anti-self-dual, in fact. The space of metrics on K3 is in 
fact parametrised by 58 numbers. 

In compactifying the type II superstrings on K3, the ten dimensional 
gravity multiplet and the other R-R fields gives rise to six dimensional 
fields by direct dimensional reduction, while the components of the fields 
in the K3 give other fields. The six dimensional gravity multiplet arises by 
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direct reduction from the NS-NS sector, while 58 scalars arise, parametris­
ing the 58 dimensional space of K3 metrics which the internal parts of 
the metric, G mn , can choose. Correspondingly, there are 22 scalars arising 
from the 19+3 ways of placing the internal components of the antisym­
metric tensor, Bmn on the manifold. A commonly used terminology is 
that the form has been 'wrapped' on the 22 two-cycles to give 22 scalars. 

In the R-R sector of type IIB, there is one scalar in ten dimensions, 
which directly reduces to a scalar in six. There is a two-form, which pro­
duces 22 scalars, in the same way as the NS-NS two-form did. The self­
dual four-form can be integrated over the 22 two cycles to give 22 two 
forms in six dimensions, 19 of them self-dual and three anti-self-dual. Fi­
nally, there is an extra scalar from wrapping the four-form entirely on K3. 
This is precisely the spectrum of fields which we computed directly in the 
type IIB orbifold. 

Alternatively, while the NS-NS sector of type IIA gives rise to the same 
fields as before, there is in the R-R sector a one-form, three-form and 
five-form. The one-form directly reduces to a one-form in six dimensions. 
The three-form gives rise to 22 one-forms in six dimensions while the 
five-form gives rise to a single one-form. We therefore have 24 one-forms 
(generically carrying a U(I) gauge symmetry) in six dimensions. This also 
completes the smooth description of the type IIA on K3 spectrum, which 
we computed directly in the orbifold limit. See insert 7.5 for a significant 
comment on this spectrum. 

7.6.4 Blowing up the orbifold 

The connection between the orbifold and the smooth K3 manifold is as 
follows 78 : K3 does indeed have a geometrical limit which is T4/7/.,2, and it 
can be arrived at by tuning enough parameters, which corresponds here 
to choosing the vev's of the various scalar fields. Starting with the T4 17/.,2, 
there are 16 fixed points which look locally like ]R4 17/.,2, a singular point of 
infinite curvature. It is easy to see where the 58 geometric parameters of 
the K3 metric come from in this case. Ten of them are just the symmetric 
Gmn constant components, on the internal directions. This is enough to 
specify a torus T 4 , since the hypercube of the lattice in ]R4 is specified by 
the ten angles between its unit vectors, em . en. Meanwhile each of the 
16 fixed points has three scalars associated to its metric geometry. (The 
remaining fixed point NS-NS scalar in the table is from the field B, about 
which we will have more to say later.) 

The three metric scalars can be tuned to resolve or 'blow-up' the fixed 
point, and smooth it out into the Cpl which we mentioned earlier. (This 
accounts for 16 of the two-cycles. The other six correspond to the six 7/.,2 
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Insert 7.5. Anticipating a string-string duality in D = 6 

We have seen that for type IIA we have an N = 2, D = 6 supergravity 
with 80 additional scalars and 24 gauge bosons with a generic gauge 
group U(l )24. The attentive reader will have noticed an apparent 
coincidence between the result for the spectrum of type IIA on K3 and 
another six dimensional spectrum which we obtained earlier. That 
was the spectrum of the heterotic string compactified on T 4 , obtained 
in section 7.4 (put d = 4 in the results there). The moduli space of 
compactifications is in fact 

0(20,4, :2:)\0(20, 4)/[0(20) x 0(4)] 

on both sides. We have seen where this comes from on the heterotic 
side. On the type IIA side it arises too. Start with the known 

0(19,3, :2:)\0(19, 3)/[0(19) x 0(3)] 

for the standard moduli space of K3s (you should check that this has 
57 parameters; there is an additional one for the volume). It acts on 
the 19 self-dual and three anti-self-dual two-cycles. This classical ge­
ometry is supplemented by stringy geometry arising from B/w , which 
can have fluxes on the 22 two-cycles, giving the missing 22 param­
eters. We will not prove here that the moduli space is precisely as 
above, and hence the same as globally and locally as the heterotic 
one, but it will become apparent later in chapters 12 and 16. 

Perturbatively, the coincidence of the spectra must be an accident. 
The two string theories in D = 10 are extremely dissimilar. One 
has twice the supersymmetry of the other and is simpler, having no 
large gauge group, while the other is chiral. We place the simpler 
theory on a complicated space (K3) and the more complex theory 
on a simple space T4 and result in the same spectrum. The theories 
cannot be T -dual since the map would have to mix things which are 
unrelated by properties of circles. The only duality possible would 
have to go beyond perturbation theory. This is what we shall see 
later in chapter 16. Note also that there is something missing. At 
special points in the heterotic moduli space we have seen that it is 
possible to get large enhanced non-Abelian gauge groups. There is 
no sign of that here in how we have described the type IIA string 
theory using conformal field theory. In fact, we shall see how to go 
beyond conformal field theory and describe these special points using 
D-branes in chapter 13. 
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invariant forms dXm /\ dXn on the four-torus.) The smooth space has a 
known metric, the 'Eguchi-Hanson' metric84 , which is locally asymptotic 
to JR4 (like the singular space) but with a global Z2 identification. Its 
metric is: 

ds' ~ (1 -(~n -1 dr' +,' (1- (~n a.l + r'(al + aD, (7.5:1) 

where the eri are defined in terms of the 53 Euler angles (e, ¢, ?j;) in in­
sert 7.4. From there we learn that 4( err + er~) = de2 + sin2 ed¢2. The point 
r = a is an example of a 'bolt' singularity. Near there, the space is topo­
logically JR;1j; x 5~¢, with the 52 of radius a/2, and the singularity is a 
coordinate one provided ?j; has period 27T. (See insert 7.6, (p. 188).) Since 
on 53, '1jJ would have period 47T, the space at infinity is 5 3/Z2, just like 
an JR4/Z2 fixed point. For small enough a, the Eguchi-Hanson space can 
be neatly slotted into the space left after cutting out the neighbourhood 
of the fixed point. The bolt is in fact the CCpl of the blow-up mentioned 
earlier. The parameter a controls the size of the CCpl, while the other two 
parameters correspond to how the JR2 (say) is oriented in JR4. 

The Eguchi-Hanson space is the simplest example of an 'Asymptoti­
cally Locally Euclidean' (ALE) space, which K3 can always be tuned to 
resemble locally. These spaces are classified85 according to their identifi­
cation at infinity, which can be any discrete subgroup86, r, of the 5U(2) 
which acts on the 53 at infinity, to give 5 3/r. These subgroups have been 
characterised by McKay87, and have an A-D-E classification which we 
shall study more in chapter 13. The metrics on the A-series are known 
explicitly as the Gibbons-Hawking metrics91 , which we shall display later, 
and Eguchi-Hanson is in fact the simplest of this series, corresponding92 

to A 1. We shallla ter use a D-brane as a probe of string theory on a JR 4/ Z2 
orbifold, an example which will show that the string theory correctly re­
covers all of the metric data (7.53) of these fixed points, and not just the 
algebraic data we have seen here. 

For completeness, let us compute one more thing about K3 using this 
description. The Euler characteristic, in this situation, can be written in 
two ways82 

(7.54) 

Even though no explicit metric for K3 has been written, we can compute X 
as follows80, 82. If we take a manifold lVI, divide by some group G, remove 
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Insert 7.6. A closer look at the Eguchi-Hanson space 

Let us establish some of the properties claimed in the main body of 
the text, while uncovering a useful technique. The S3 s in the met­
ric (7.53) are the natural 3D 'orbits' of the SU(2) action. The S2 of 
(B, ¢) is a special 2D 'invariant submanifold'. To examine the poten­
tial singularity at r = a, look near r = a. Choose, if you will, r = a+G 
for small G, and: 

ds2 = 4aG [dG2 + I~G2 (&1jJ + cos Bd¢)2] + ~(a2 + 2aG)dn~, 

which as G ---+ 0 is obviously topologically looking locally like 
lR;,1P x SJ,cf;' where the S2 is of radius a/2. (Globally, there is a fibred 
structure due to the d'ljJd¢ cross term.) Incidentally, this is perhaps 
the quickest way to see that the Euler number or 'Euler charachter­
istic' of the space has to be equal to that of an S2, which is two. 
There is a potential 'bolt' singularity at r = a. It is a true singularity 
for arbitrary choices of periodicity 6.1/; of 1/;, since there is a conical 
deficit angle in the plane. In other words, we have to ensure that as 
we get to the origin of the plane, G = 0, the 1/;-circles have circum­
ference 27T, no more or less. Infinitesimally, we make those measures 
with the metric, and so the condition is: 

which gives 6.1/; = 27T. So in fact, we must spoil our S3 which was a 
nice orbit of the SU(2) isometry, by performing an 2::2 identification 
on 1/;, giving it half its usual period. In this way, the 'bolt' singularity 
r = a is just a harmless artifact of coordinates83 , 82. Also, we are 
left with an SO(3) = SU(2)/2::2 isometry of the metric. The space at 
infinity is S3/2::2. 

some fixed point set F, and add in some set of new manifolds N, one at 
each point of F, the Euler characteristic of the new manifold is 

(7.55) 

Here, G = R == 2::2, and the Euler characteristic of the Eguchi-Hanson 
space is equal to two, from insert 7.6 (p. 188). That of a point is one, and 
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of the torus is zero. We therefore get 

16 
X(K3) = -2 + 16 x 2 = 24, (7.56) 

which will be of considerable use later on. 
So we have constructed the consistent, supersymmetric string propa­

gation on the K3 manifold, using orbifold techniques. We shall use this 
manifold to illustrate a number of beautiful properties of D-branes and 
string theory in the rest of these lectures. 

7.6.5 Some other K3 orbifolds 

We can construct K3 in its orbifold limits using other tlw group actions. 
We begin with the space ]]{4 == C2 , with complex coordinates zI = x 6 + ix 7 

and z2 = x 8 + ix9, upon which we make the identifications zi rv zi + 1 rv 

zi+i, for N=2 or 4, and zi rv zi+1 rv zi+ exp(TIi/3) for N=3 or 6. These 
lattices define for us the torus T 4 , upon which the discrete rotations 7lw , 
acts naturally as 

(7.57) 

for j3 = exp(2TIi/N). 
We may therefore define a new space by identifying points under the 

action of 7lw. This is the orbifold T4 /7lw, which is a smooth surface except 
at fixed points, which are invariant under tlw or some non-trivial subgroup 
of it. For N E {2, 3, 4, 6}, this procedure produces a family of compact 
spaces which are also orbifold limits of the K3 surface. 

The smooth K3 manifold is obtained from these limits by blowing up 
the orbifold points, removing each of the points and replacing it by a 
smooth space, just as we did in the previous section. The neighbourhood 
of a fixed point is ]]{4/ZM' where N 2: M E {2, 3, 4, 6}, which is the 
asymptotic region of the A-series ALE space with which we replace the 
excised point. Note that the Euler characteristic of the An ALE space is 
n+l. 

Let us denote the generator of ZN by aN The group elements are then 
the powers aN' for m E {a, 1, ... , N - I}. In fact the number, PM, of 

points fixed under the ZM subgroup of ZN, (generated by a~/M) is simply 
FM = 16 sin4 '!:t, where M is a divisor of N. 

For T 4 /Z2 , as we have already seen, we have 16 points fixed under 
the action of a2, each of which are replaced by the Al ALE space in 
order to resolve to smooth K3. For T 4 /Z3 there are nine fixed points of 
a3, which are each replaced by the A2 ALE space to make the blow-up. 
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From formula (7.55), we get 

9 
X(K3) = -3 + 9 x 3 = 24. 

The case T4 I7/.,4 has 16 fixed points. Four of them are fixed under the 
action of 0:4, while the other 12 are only fixed under o:~. Under 0:4, these 
12 7/.,2 points transform as six doublets. Consequently, the blow-up is car­
ried out by first constructing the 7/.,4-invariant region by identifying these 
pairs of fixed points. One can then replace each of the original four 7/.,4 
fixed points by an A3 ALE space and the six pairs by an AI. From for­
mula (7.55), we get 

16 
X(K3) = - 4 + 4 x 4 + 6 x 2 = 24. 

For T4 I7/.,6 the situation is similar. There are 24 fixed points altogether. 
There is only one point fixed under 0:6. It is replaced by the A5 ALE space 
to make the blow-up. There are eight points fixed under the 7/.,3 subgroup, 
generated by o:~, which transform as doublets under the action of 0:6. 

They are therefore replaced by four copies of the A2 ALE space. There 
are 15 points fixed under o:~, which transform as triplets under the action 
of 0:6. Consequently, they are replaced by five copies of the Al space in 
performing the blow-up surgery. Once again, we get the correct value of 
the Euler number: 

24 
X(K3) = -6 + 5 x 2 + 4 x 3 + 1 x 6 = 24. 

We can go a lot further and recover other geometric properties of the 
K3 in each case. For example, as we shall see later in chapter 13, the 
An ALE space is generically like n + 1 CpIs (i.e. S2s) intersecting in a 
particular pattern. There is in fact a self-dual cycle associated to n of 
these. So its contribution to the K3s count of (19,3) cycles is (n, 0). It s 

Table 7.2. Recovering some properties of the K3 geometry in orbifold limits 

T4 ALE T4 ALE 
case 

parameters forms forms parameters 
7/.,2 10 16 x 3 = 48 (3,3) 16 x (1,0) 
7/.,3 4 18 x 3 = 54 (1,3) 9 x (2,0) 
7/.,4 4 18 x 3 = 54 (1,3) 6 x (1,0) + 4 x (3,0) 
7/.,6 4 18 x 3 = 54 (1,3) (5,0) + 5 x (1,0) + 4 x (2,0 
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useful to combine this with the contribution from the torus to compute 
the result for K3, and table 7.2 has a list of the arithmetic in each case. 
The origin of the 58 metric parameters can similarly be computed, using 
the fact that some come from the torus and some from the parameters 
(three for each CCpl in fact) of the ALE spaces. This is also given in 
table 7.2. We've listed the :232 case which we already computed in the 
previous subsection. Notice that it is in some sense more special than the 
others. In both forms and metric parameters, the bare torus contributes 
more than in the other cases. This is because it is more symmetric than 
the others. This is traceable to the fact that the T4 is written naturally 
in terms of the complex parameters ZI = X6 + iX7 and Z2 = Xs + iXg, and 
the form of the action on it is given by equation (7.57). It is only for :232 

that ;3 = 1/;3, and thus there is more symmetry between the xms. 
Therefore of the 6 forms (made from dxm /\ dxn) and 10 scalars one 

can make, only four survive in each non-:232 case. (This can be worked 
out most easily by working directly with ZI and Z2. Then the forms are 
dZ1 /\ dz2 , dZ1 /\ dz2 , etc., but, for example, dZ1 /\ dZ2 is clearly not invariant 
since it transforms as ;32.) 

7.6.6 Anticipating D-manifolds 

We've just made some traditional superstring compactifications by in­
cluding in the internal space the pure geometry of K3, resulting in a six 
dimensional vacuum. Later we will see that it is possible to construct a 
whole new class of string 'compactification' vacua by including D-branes 
in the spectrum in such a way that their contribution to spacetime anoma­
lies, etc., combines with that of the pure geometry in a way that is crucial 
to the consistency of the model. This gives the idea of a 'D-manifold'116. 

An analogue of the orbifold method for making these supersymmet­
ric vacua is the generalised 'orientifold' construction already mentioned. 
There are constructions of 'K3 orientifolds' which follow the ideas pre­
sented in this section, combined with D-brane orbifold techniques to be 
developed in chapter 14131 . We shall also encounter K3 in its orbifold 
limits in chapter 16, where we use our knowledge gained here to ex­
plore properties of remarkable non-perturbative type IIB vacua made 
using F-theory. D-branes will be present there too, but in a somewhat 
different way. 
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