
Appendix D

Spinor fields

In this appendix we record the basics of spinor fields. We start with the
properties of Dirac matrices in Euclidean space–time. The four Dirac
matrices γµ, µ = 1, 2, 3, 4, are 4× 4 matrices with the properties

γµγν + γνγν = 2δµν11. (D.1)

So they anticommute: γµγν = −γνγµ, µ �= ν. They can be chosen
Hermitian and unitary, γ†µ = γµ = γ−1µ . The matrix

γ5 ≡ −γ1γ2γ3γ4 (D.2)

anticommutes with the γµ, γµγ5 = −γ5γµ, and it is also Hermitian
and unitary, γ5 = γ†5, γ

2
5 = 11. A realization can be given in terms

of tensor products of the 2 × 2 Pauli matrices σk, k = 1, 2, 3, and
σ0 ≡ 112×2: γk = −σ2 ⊗ σk, γ4 = σ1 ⊗ σ0, γ5 = σ3 ⊗ σ0. Usually
one does not need a realization as almost all relations follow from the
basic anticommutation relations (D.1). Other realizations are related by
unitary transformations, which preserve the Hermiticity and unitarity
of the Dirac matrices, but not the behavior under complex conjugation
or transposition. It can be shown that, in every such realization, there is
an antisymmetric unitary 4× 4 matrix C, called the charge-conjugation
matrix, which relates γµ to its transpose:

γTµ = −C†γµC, CT = −C, C†C = 11, (D.3)

⇒ γT5 = γ∗5 = C†γ5C. (D.4)

In the above realization a possible C is given by C = σ3 ⊗ σ2. The
matrices Γ = 11, γµ, (−i/2)[γµ, γν ], iγµγ5 and γ5 form a complete set of
16 independent Hermitian 4 × 4 matrices with the properties Γ2 = 11,
Tr Γ = 0 except for Γ = 11, Tr (ΓΓ′) = 0 for Γ �= Γ′. Useful relations are
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254 Appendix D. Spinor fields

furthermore γ5γκ = εκλµνγλγµγν , with εκλµν the completely antisym-
metric Levi-Civita tensor, ε1234 = +1, the trace of an odd number of
γµ’s is zero, Tr (γ5γµγν) = 0, and

Tr (γµγν) = 4δµν , (D.5)

Tr (γκγλγµγν) = 4(δκλδµν − δκµδλν + δκνδλµ), (D.6)

Tr (γ5γκγλγµγν) = −4εκλµν . (D.7)

More trace relations are given in most textbooks on relativistic field
theory.

The Dirac matrices are used to describe covariance under (in our case)
Euclidean rotations, which are elements of the group SO(4). A rotation
in the µ–ν plane over a small angle ωµν can be written as

Rµν = δµν + ωµν +O(ω2), ωµν = −ωνµ (D.8)

= δµν + i 12ωκλ(Mκλ)µν + · · ·, (D.9)

(Mκλ)µν = −i(δκµδλν − δκνδλµ). (D.10)

The antisymmetry of ωµν ensures that Rµν is orthogonal, RκµRλµ = δκλ,
with detR = 1. The Mκλ are the generators of SO(4) in the defining
representation. The structure constants Cρσ

κλµν defined by [Mκλ,Mµν ] =
Cρσ
κλµν Mρσ are easily worked out.
The 4 × 4 spinor representation of these rotations can be written in

terms of Dirac matrices as

Λ = ei
1
2ωµνΣµν = 11 + i12ωµνΣµν + · · ·, (D.11)

Σµν = −i 14 [γµ, γν ], (D.12)

where the Σµν are the generators in the spinor representation. They
satisfy the same commutation relations as the Mµν , as follows from the
basic relations (D.1). The matrices Λ are unitary,

Λ† = Λ−1, Euclid. (D.13)

They form a unitary representation up to a sign, e.g. for a rotation over
an angle 2π in the 1–2 plane, ω12 = −ω21 = 2π, and in the realization of
the Dirac matrices introduced above, Λ = exp(14ωµνγµγν) = exp(iπσ0⊗
σ3) = −11.

The representation Λ is reducible, as follows from the fact that Λ
commutes with γ5, [Λ, γ5] = 0. Introducing the projectors PR,L onto the
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eigenspaces ±1 of γ5,

PR = 1
2 (11 + γ5), PL = 1

2 (11− γ5), P 2
L = PL, P 2

R = PR,

PLPR = 0, PL + PR = 11, (D.14)

we can decompose Λ into two components ΛL and ΛR as

Λ = ΛPL + ΛPR ≡ ΛL + ΛR. (D.15)

The ΛL and ΛR are inequivalent irreducible representations (up to a sign)
of SO(4). They are essentially two-dimensional, because the subspace of
γ5 = 1 or−1 is two-dimensional, but we shall keep them as 4×4 matrices.
The Λ’s are real up to equivalence,

Λ∗ = e
1
4ωµνγ

∗
µγ

∗
ν = e

1
4ωµνγ

T
µ γT

ν = C†e
1
4ωµνγµγνC

= C†ΛC, (D.16)

Λ∗
L,R = C†ΛL,R C. (D.17)

The γµ are vector matrices in the sense that

Λ† γµ Λ = Rµνγν . (D.18)

This follows from the basic anticommutation relations between the γ’s,
as can easily be checked for infinitesimal rotations. Products γµγν · · ·
transform as tensors. Because γµPR,L = PL,Rγµ, the projected relations
have the form Λ†

R γµ ΛL = RµνγνPL, and similarly for L ↔ R. It follows
that

Rµν = 1
2 Tr (Λ†

RγµΛLγν), (D.19)

which illustrates the relation

SO(4) + SU(2)× SU(2)/Z2 (D.20)

(interpreted as 2 × 2 matrices, ΛL,R are elements of SU(2), and Z2 =
{1,−1} compensates for ΛL,R and −ΛL,R giving the same R).

We can enlarge SO(4) to O(4) by adding reflections to the set of R’s,
which have determinant −1. An important one is parity P ≡ diag(−1,
−1,−1, 1). Its spinor representation can be taken as ΛP = γ4, which has
the expected effect on the γµ:

γ4 γµ γ4 = Pµν γν , (D.21)

and it has therefore also the required effect on the generators Σµν , such
that we have a representation of O(4). Because γ4PL,Rγ4 = PR,L we
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256 Appendix D. Spinor fields

have γ4ΛL,Rγ4 = ΛR,L. So we need both irreps L and R in order to be
able to incorporate parity transformations.

Vector fields Vµ(x) transform under SO(4) rotations as

V ′
µ(x) = RµνVν(R−1x), (R−1x)µ = Rνµxν , (D.22)

which can be understood by drawing a vector field in two dimensions on
a sheet of paper and seeing how it changes under rotations. Spinor fields
ψ(x) transform according to

ψ′
α(x) = Λαβ ψβ(R−1x), (D.23)

where α and β are matrix indices (‘Dirac indices’). The fields can be
decomposed into irreducible components as

ψL(x) = PLψ(x), ψR(x) = PRψ(x). (D.24)

It is customary to introduce a separate notation ψ̄ for fields transforming
with the inverse Λ† as

ψ̄′(x) = ψ̄(R−1x) Λ† (D.25)

(so ψ is a column vector and ψ̄ a row vector in the matrix sense). Under
parity we have

ψ′(x) = γ4ψ(Px), ψ̄′(x) = ψ̄(Px)γ4. (D.26)

In general ψ and ψ̄ are independent fields, but with the help of the
charge-conjugation matrix C we can make a ψ̄-type object out of ψ and
vice-versa:

ψ̄(c) ≡ −(C†ψ)T = ψTC†, ψ̄(c)′(x) = ψ̄(c)(R−1x)Λ−1

ψ(c) ≡ (ψ̄C)T = −Cψ̄T, ψ(c)′(x) = Λψ(c)(R−1x). (D.27)

The fields ψ̄(c) and ψ(c) are called the charge conjugates of ψ and ψ̄,
respectively.

Note the standard notation for the projected ψ̄’s,

ψ̄L = ψ̄ PR, ψ̄R = ψ̄ PL. (D.28)

This looks unnatural here but it is natural in the operator formalism
where ˆ̄ψL,R ≡ ψ̂†

L,Rγ4 = ˆ̄ψPR,L. In the path-integral formalism (in real
as well as imaginary time) one introduces independent generators ψα(x)
and ψ+α (x) of a Grassmann algebra, which are related by Hermitian
conjugation, such that ψL,R = PL,R ψ implies ψ+L,R = ψ+ PL,R, and
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then ψ̄L,R ≡ ψ+L,R γ4 also gives (D.28). The fields ψ̄L,R transform in
representations equivalent to ΛR,L:

ψ̄L → ψ̄L Λ†
R ⇒ (ψ̄LC)T → ΛR (ψ̄LC)T, (D.29)

ψ̄R → ψ̄R Λ†
L ⇒ (ψ̄RC)T → ΛL (ψ̄RC)T, (D.30)

where we used (D.17) and for clarity used the arrow notation for trans-
formations, while suppressing the space–time index x.

An O(4) invariant action which contains all the types of fields intro-
duced so far with a minimum number (>0) of derivatives is given by

S = −
∫

d4x ψ̄(m+ γµ∂µ)ψ (D.31)

= −
∫

d4x
[
m(ψ̄LψR + ψ̄RψL) + ψ̄Lγµ∂µψL + ψ̄Rγµ∂µψR

]
.

Finally, we can get corresponding formulas for Minkowski space–time
by raising indices in contractions such that there is always a contraction
between an upper and a lower index, e.g. ωµνΣµν = ωµνΣµν (we do
not make a distinction between upper and lower indices in Euclidean
space–time), and substituting x4 = x4 → ix0 = −ix0, ω4k = ω4k →
iω0k = −iω0k. This implies that ∂4 → −i∂0, ∂0 = ∂/∂x0. It is then
also expedient to use γ0 = −γ0 = −iγ4. We have to be careful with
Hermiticity properties of Λ, because after the substitution it is no longer
unitary:

Λ−1 = βΛ†β, β ≡ iγ0, Minkowski. (D.32)

In Minkowski space–time µ = 0, 1, 2, 3 and indices are raised and lowered
with the metric tensor ηµν = ηµν = diag(−1, 1, 1, 1), e.g. ∂0 = −∂0,
∂k = ∂k = ∂/∂xk.
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