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Abstract

We compute the kernel of cup product of 1-dimensional cohomology classes for a group G acting
trivially on Z or F2 , by means of the naturality of cup product and the 5-term exact sequence of low
degree of a suitable LHS spectral sequence. We determine thereby when cup product is injective, and
when it is null.
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We shall relate the kernel of cup production of 1-dimension cohomology classes
for a finitely generated group G acting trivially on R = Z or F2 to the dual of the
second stage of a descending central series for G. In [2] we used explicit
calculations with cochains to compute this kernel when E = Q, F2 or F ,̂; here we
shall use instead the naturality of cup product and the exact sequence of low
degree for an LHS spectral sequence to reduce the case when G = Rb for some b.

Let Gn be the «th term of the lower central series for G (defined inductively by
Gt = G and Gn+1 = [G, Gn]) and let Xk(G) be the verbal subgroup generated by
all kth powers of elements of G. If R is a ring let G(R) = Piker X, where the
intersection is taken over all homomorphisms X of G into the underlying additive
group of R. Then we shall show

THEOREM 1. Cup product determines a homomorphism from Hl(G; Z) A HX(G; Z)
to H2(G; Z) with kernel naturally isomorphic to Hom(G(Z)/[G, G(l)], Z).
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[21 The kernel of integral cup product 11

COROLLARY [3, 5, 6]. The kernel of cup product with coefficients Q is isomorphic
/oHom(G2/G3,Q).

THEOREM 2. Cup product determines a homomorphism from HX{G; ¥2)
QH 1(G; F2) to H2(G; F2) with kernel naturally isomorphic to
Uom(X2(G)/[G, X2(G)]X\G),F2).

When our argument is applied in the case R — ¥p with p odd, we obtain easily
an " upper bound" for the kernel, but to recover the full result of [2] we are faced
with cochain calculations seemingly worse than those of that paper, and we shall
merely quote its result, that cup product from H\G; ¥p) A H\G; ¥p) to
H\G; ¥p) has kernel isomorphic to Hom(G2XP(G)/G3X

P(G), ¥p).
As applications of our main results, we determine when cup product (with

coefficients Z, Q or F^) is injective, and when it is null. In particular if G2 = G3

(for example, if G is abelian) then cup product with coefficients Z, Q or F (/»
odd) is always injective; likewise for F2 if G does not map onto Z/4Z. If G/G3 is
free nilpotent of class 2 then cup product with any (trivial) coefficients is null.
(Wood [6] obtains sufficient conditions for injectivity with these coefficients, in
the more general situation of cup product of k > 2 classes of degree n > 1.
However his assertion for coefficients F2 is wrong, even for G = Z/4Z. Dwyer [1]
relates nullity to relative freeness of certain nilpotent quotients of G.)

In Section 1 we describe the cup product homomorphism and give an exact
sequence containing the kernel of cup product. The argument is essentially the
same for each choice of coefficients. In the later sections we apply this exact
sequence to the cases Z (and Q), F2 and ¥p (p odd) in turn.

1. An exact sequence

Recall that the low dimensional cohomology groups of G with coefficients in
the trivial G-module R are H°(G; R) = R, H\G; R) = Hom(G, R) and
H\G; R)={F: G2 -» R\ F(h, j) - F(gh, j) + F(g, hj) - F(g, h) = 0 for all
g, h, j in G)/B where B = {3/: (g, h) -»/(g) + f(h) - f(gh) for all g, h in
G\f: G-> R}. (We shall henceforth abbreviate H*(G; R) as H*(G).) The cup
product of two elements fx, f2 in H1^) is represented by the function fxf2:
(g, h) - A(g)/2(A) for all g, h in G. Since A(g)/2(A) + f2(.g)fiW =
-fi(g)Mg) -/i(*)/2(*) " i-fi(gh)f2(gh)), cup product U: H\G) x H\G)^
H2{G) is anticommutative (/x ^ /2 = -/2 ^ fx) and so induces a homomorphism
D(H\G)) -» H\G), where D(M) = M ®R M/(m ® n + n ® m | w , n in M>
for any /t-module M. If 2 is invertible in R, in particular if R is a field of
characteristic * 2, then D(M) = M A M (the alternating product). This is
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also the case if R = Z. For if / is a homomorphism: G -> Z then F(h) =
/(/z)(l - f(h))/2 for all h in G defines a function JF: G -> Z such that F(g) +
F(/i) - F(g/i) = f(g)f(h) for all g, /i in G, so / U / = 0. Thus if R = Z or Fp

with p odd, cup product gives rise to a i?-homomorphism (which we shall also
call cup product) from H\G) A H\G) to H2(G). If fl = F2 then D(M) = MOM
(the symmetric product) and so there is a cup product homomorphism from
H\G; ¥2)QH\G; F2) to #2(G; F2).

Let G = G/G(R). Then the epimorphism G ^ G induces an isomorphism
H\G) -* H\G). Moreover if R = Z or F,, and if G (or merely G) is finitely
generated, then G is isomorphic to Rb for some ft. The 5-term exact sequence of
low degree for the LHS cohomology spectral sequence of the extension 1 -» G(R)
-> G -» G -* 1 then gives an exact sequence 0 -> H°(G; H\G(R))) ^
H2(G) -* H2(G), where r is the transgression homomorphism. (Note that the
G-module H\G(R)) is in general nontrivial, and that H°(G; i?1(G(/?))) =
Hom(G(J?)/[G, G(R)], R).)

If R = Z or Fp (p odd) we then have a commutative diagram

0 -> 0 • H^G) A H\G) Z Hl(G) A H\G) -» 0

0 -» H°(G; Hl(G(R))) ^H2(G) >H2{G)

where the (right hand) vertical maps are given by cup product. For R = F2 we
have a similar diagram, using instead the symmetric product. The snake-lemma
then gives us an exact sequence

0 -> ker(f%) -» ker([/G) -» ^°(G; H^GiR))) -• coker(C/c) -* coker(t/G).

2. Coefficients Z and Q

Suppose first that R = Z. Then G is free abelian, G = Z* say, and H*(G; Z)
is the exterior algebra generated by H\G; Z). (For by the Klinneth theorem
H*(G;Z) is the (graded commutative) ft-fold tensor product of copies of
H\Z;T), which in turn is isomorphic to Z[x]/(x2), where x = idz generates
H\Z; Z).) In particular ker(l%) = 0 = coker(f%) and so by the exact sequence
above ker(C/c) = H\G; H\G{Z))) = {/ in Hom(G(Z),Z) | /(ghg-1) = f(h) for
all g in G and h in G(Z)} = Hom(G(Z)/[G, G(Z)], Z). This proves Theorem 1.

Let G2 = [G, G] and G3 = [G, G2]. Since G/G2 is finitely generated, so is
^, and the inclusion of G2 into G(Z) induces a map of abelian groups:

-* G(Z)/[G, G(Z)] which has finite kernel and cokernel. Since Q is a flat
Z-module, we may then identify the kernel of cup product with coefficients Q
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(41 The kernel of integral cup product 13

with Hom(<j2/G3,Q), giving the Corollary. (This result was given by Sullivan in
[5]. He dualized the skew symmetric commutator pairing: G/G2 X G/G2 -* G3,
and this idea was used in [2] for all prime fields.) In particular cup product with
coefficients Z or Q is injective if and only if GJ /GJ is finite.

On the other hand, let 0 be a map from a free group F to G which induces an
isomorphism 6*: H\G; Z) -> H\F; Z). Then cup product with coefficients
R = Z or Q is identically 0 if and only if the induced map from
Hom(G(R)/[G, G(R)], R) to Hom(F2/F3, R) is an isomorphism. (For there is a
commutative diagram

0 • Hom(G(R)/[G, G(R)],R) * H\G) A H\G) - ^ H2(G)

\ I
0 > Hom(F2/F3, R) • H^F) A H^F) —<• 0

where the right hand vertical map is an isomorphism by assumption and the lower
horizontal map is an isomorphism since H2(F-) = 0.) In particular if R = Z and
G/G2 is torsion free or if it = Q this is so if and only if the induced map 83:
F/F3 -* G/G3 is a monomorphism. (See also Proposition 4.3 of [1], which more
generally relates the vanishing of higher Massey products to the relative freeness
of the nilpotent quotients G/Gn.)

3. Coefficients F2

Suppose next that R =_¥2. Then G(R) = X2(G), and G * (Z/2Z)' say. We
may again compute H*(G) via the Kiinneth theorem. Since H*(Z/2Z) = F2[w]
where w = id z / 2 Z generates //1(Z/2Z), the cohomology ring of G is the poly-
nomial algebra generated in degree 1 by H\G). In particular U^. Hl(G)OHl(G)
-» H\G) is an isomorphism, and so ker(C/G) = Hom(A'2(G)/[G, A"2(G)],F2) =
Hom(^2(G)/[G, *2(G)] • X\G), F2). This proves Theorem 2.

To relate this to the more complicated description of ker(I/G) given in [2], note
that the F2-vector space Ar2(G)/[G, X2(G)\ • X4(G) contains
G2X\G)/[G, X\G)} • X\G) as a subspace, with quotient X2(G)/G2X\G).
Therefore ker(i/G) maps onto Hom(G2X

4(G)/[G, X2(G)] • X\G),¥2), with
kernel Hom(*2(G)/G2A:4(G), F2). Now let A = G/G2X\G), so A is an abelian
group of exponent 4, with subgroup 2A = X2(A) » X2(G)/G2X

4(G). Then
restriction induces a homomorphism from Hom(^4,Z/4Z) to Hom(2^4,2Z/4Z)
* Hom(2v4, F2) which is easily seen to be onto, and whose kernel is the kernel of
reduction modulo (2), p: Hom(^4, Z/4Z) -» Hom(A, F2). Therefore
Hom(Ar2(G)/G2A

r4(G),F2) is isomorphic to the image of Hom(G,Z/4Z)«
Hom(/l,Z/4Z) in H\G) » Hom(^4,Z/4Z) under reduction modulo (2), which
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is also the kernel of the mod-2 Bockstein map /?2: Hl{G) -* H2(G), and so we
recover the result of [2]. (This argument shows also that when G is abelian the
kernel of cup product with coefficients F2 is isomorphic to the kernel of the
mod-2 Bockstein.)

In particular cup product with coefficients F2 is injective if and only if G2/G3

is finite of odd order and G does not map onto Z/4Z. For if these conditions
hold then X2(G) = G2X\G) and G2X\G)/[G,X2(G)]XA(G) is a quotient of
G2X

4(G)/G3X
4(G) = 0, since in any case [G, X2(G)] contains G3. Conversely, if

cup product is injective then X2(G) = [G, X2(G)]X\G), so G/G2 « (Z/2Z)a e
(odd). Since G2/G3 is finitely generated and G2X

2(G2) c G2, it shall suffice to
assume that G3X

2(G2) = 1 and show that G must be abelian. But then G2 is
central and of exponent 2, so G is a finite nilpotent group. Thus G « T X (odd)
where T is a finite group of exponent 4. We may assume G = T. But then
X2(G) = [G, X2(G)]X\G) = [G, X\G)] implies that X\G) = 1 and so G is
abelian. (Note that we have shown that if a 2-group has injective cup product it
must be elementary abelian.)

On the other hand let 6: F -* G be any map that induces an isomorphism of
F/X2(G) with G/X2(G). Then cup product with coefficients F2 is identically 0 if
and only if the induced map from Hom(X2(G)/[G, X2(G)]X\G),¥2) to
Hom(X2(G)/[F, X2(F))X\F),F2) is an isomorphism. This is so if and only if
the induced map from F/[F, X2(F)]X\F) to G/[G, X2(G)]X\F) is an iso-
morphism.

4. Coefficients F^ (p odd)

Suppose now that' R = Fp with p an odd prime. Then G(R) — G{p) = G2 •
XP(G), and G « (Z/pZ)r say. We may again use the Klinneth theorem to
compute H*{G). Since H*(Z/pZ) = Fp[x, y]/(x2) where x generates H\Z/pZ)
and y = Ppx is the Bockstein of x in H2(Z/pZ), the cohomology ring of G is the
tensor product of an exterior algebra generated in degree 1 by H\G) and a
polynomial algebra generated in degree 2 by f}pH\G). Explicitly, if {xr,..., xr]
is a basis for H\G) then {*,. U x} \\ < / <j < r) U {Ppxk\l < k < r) is a
basis for H2(G), and so cup product for G is again injective. (In fact it is not
hard to show directly, by a calculation with cocycles as in the introductory section
of [2], that cup product with coefficients Fp is injective for any abelian group.)
Thus we have an exact sequence

0 - ker(f/G) -» Hom(G(p)/[G, G(p)],Fp) Z coker(UG) - coker(l/G),

and PpH
l(G) maps isomorphically onto coker(t/G). By the naturality of the

Bockstein operation, ft H\G) also maps onto /} H\G) C H2(G) and the kernel
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(61 The kernel of integral cup product 15

of the last map in the above sequence is isomorphic to {/ in Hl(G) \ flpf is in
Im[/}. However any attempt to compute the map to seems to lead to cochain
calculations even less pleasant than those of [2], and so we shall merely quote
from there the result that the kernel of cup product with coefficients ¥p is
isomorphic to Hom(G2X

p(G)/G3X
p(G), ¥p) = Uom(G(p)/G3X»(G), ¥p),

which is easily seen to be naturally a subspace of Hom(G(p)/[G, G(p)],¥p).
(Curiously, it was the case of F2 rather than that of F^ (p odd) that seemed the
most difficult in [2].)

Thus cup product with coefficients ¥p (p odd) is injective if and only if
G2 c G3X

P(G). For instance this is so if G2/G3 is a finite group of order not
divisible by p. However the group P presented by (x, y, x\xp = yp = zp = 1 ,
[x, y] = zp, [x, z] = [x, y] = 1) has injective cup product, although P-i/P3 ~
~L/p~L. On the other hand cup product with these coefficients is identically 0 if
and only if there is an isomorphism F/F3X

P(F) ~ G/G3X
P(G).
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