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THE AXIOM OF CHOICE IS FALSE INTUITIONISTICALLY
(IN MOST CONTEXTS)

CHARLES McCARTY†, STEWART SHAPIRO, AND ANSTEN KLEV

Abstract. There seems to be a view that intuitionists not only take the Axiom of Choice
(AC) to be true, but also believe it a consequence of their fundamental posits. Widespread or
not, this view is largely mistaken. This article offers a brief, yet comprehensive, overview of
the status of AC in various intuitionistic and constructivist systems. The survey makes it clear
that the Axiom of Choice fails to be a theorem in most contexts and is even outright false in
some important contexts. Of the systems surveyed, only intensional type theory renders AC a
theorem, but the extent of AC in that theory does not include, for instance, real analysis. Only
a small amount of extensionality is required in order for the obvious proof an intuitionist
might offer for AC to break down.

§1. An illusion? There may be an illusion, even among philosophical
friends of mathematical constructivism and intuitionism, that intuitionists
not only take familiar Axiom(s) of Choice (AC) to be true, but also believe
them a consequence of their fundamental posits. This may be due to remarks
like these:1

This axiom is unique in its ability to trouble the conscience of the
classical mathematician, but in fact it is not a real source of the
unconstructivities of classical mathematics. A choice function exists
in constructive mathematics, because a choice is implied by the very
meaning of existence. [9, p. 9]

To be sure, unqualified sentiments like this are not often expressed in
print, and our impression that the view is widespread is anecdotal, based
on offhand remarks that should not be quoted. Nevertheless, a survey of
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constructive mathematics. Bishop is speaking here of what we (and Bishop himself later) call
“operations,” not functions.
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the state of AC in intuitionistic and constructive mathematics may be in
order. Our purpose here is to demonstrate that, whether it is widespread
or not, the perspective is largely mistaken. An array of articles, books,
and research reports show that, in general, AC is false, and intuitionists
know that. Its falsity follows directly from precepts reasonably basic to
the mathematics of the movement(s). This was as much the case for the
primordial Dutch intuitionists, L. E. J. Brouwer and Arend Heyting, as
it is for the intuitionists and constructivists of today—despite a wide
range of differences among intuitionists and constructivists on a variety
of mathematical and philosophical matters.

None of the results presented here are new. All are known in sundry parts
of the field. In constructive and intuitionistic mathematics today, there is an
extensive literature on axioms of choice, and a large range of formal theories
that either include or exclude forms of those axioms. Without claiming to
be comprehensive, we draw a battery of results together to lodge some
general points to dispel any illusion that AC in general is—and must be—
unqualifiedly true intuitionistically.2

The phrase “in most contexts” in our title is a nod to certain facts.
First, the general version of AC before us is, as in classical mathematics,
multiply extensional—applying to extensional collections and relations, and
employing extensional functions required to preserve identity. There are
forms of AC that are, in one way or several, intensional. As we shall see, such
forms of AC may at times hold intuitionistically when extensional AC fails.

Accordingly, the arguments of the early sections in this article rely upon
a variety of what may be called “extensionality assumptions.” Without
those assumptions, the arguments usually will not go through. One way
of understanding the nature of such extensionality assumptions will be
presented in Section 7. See also Bell’s book [8], which contains a painstaking
analysis of the situation.

Moreover, there are effective versions of AC, such as intuitionistic
Church’s Thesis, in which the relevant functions are computable. We will
take some of these up in the penultimate section.

§2. What is “the” Axiom of Choice? In both classical and intuitionistic
or constructive mathematics, there are many genera and species of Axioms
of Choice: local, global, for sets, for classes, for types, over whole universes,
countable, uncountable, dependent, relativized dependent, intensional,
extensional, and so on. For immediate purposes, we focus on one particular
statement of the axiom. It covers a goodly range of the contested territory,
though not all of it.

2All of the mathematical reasoning in this paper is fully constructive. See [2, 4, 8, 36, 42,
47, 48] for related results.
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In these definitions, we apply the term “collection” in as neutral a way
as possible to cover classes, sets, species, and types, at least. Differences
between these kinds of collections will become apparent as we go.

Definition (A⇒ B , Axiom of Choice or AC, base, choice function).

1. For collections A and B, A⇒ B is the collection of all total functions
mapping A into B.

2. The Axiom of Choice (AC) is the statement that, for all collections A
and B, and all suitable relations R(x, y),

if ∀x ∈ A ∃y ∈ B R(x, y), then there is a functionf ∈ (A⇒ B)
such that ∀x ∈ A R(x,f(x)).

3. If a collection A satisfies AC for all B and all suitable R, then A is
called a base. Consequently, one can express AC by asserting that
every collection is a base.

4. When a function f ∈ (A⇒ B) satisfies the consequent of AC, f is
known as a choice function.

When focus is on a first-order theory, AC is often expressed as a scheme:

if ∀x ∈ A ∃y ∈ B φ(x, y), then there is a function f ∈ (A⇒ B) such
that ∀x ∈ A φ(x,f(x)),

where φ(x, y) is a suitable formula.
We assume that we have a notion of identity on the elements of any

collection. We may therefore formulate the condition of functionality, or
single-valued-ness, which every function f ∈ (A⇒ B) must satisfy: for
all a, b ∈ A, if a = b, then f(a) = f(b). Functions thus preserve identity.
Following Bishop, we call a transformation from one collection to another
that need not preserve identity an operation. The difference between the
notions of function and operation will loom quite large.

§3. Traditional Brouwerian intuitionism and AC. An old-time intuitionist,
perhaps an early disciple of Brouwer, would easily have been able to recognize
that AC is false in general—that some collections essential to intuitionism
cannot be bases.

We shall take for granted the definition of real numbers in terms of Cauchy
sequences going back to Méray and Cantor that is standardly assumed in
constructive mathematics.

Definition (Real number, less than).

1. A real number is an equivalence class of Cauchy sequences r of rational
numbers with moduli functions �: for each natural number k, for all
m, n ≥ �(k), |r(m) – r(n)| < 2–k . The pertinent equivalence relation is
that of co-convergence. The associated equivalence class of r is [r].
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2. The collection of all real numbers, denoted R, is

{[r] : r is a Cauchy sequence}.
3. A real number [r] is less than a real number [s], in symbols, [r] < [s],

whenever there is a k and an m such that, for all n ≥ m, s(n) – r(n) >
2–k . This definition is independent of the choice of representatives r
and s.

We thus intend our use of the term “collection” to be such that the natural
numbers and the real numbers both form a collection, denoted N and R,
respectively.

Note that traditional intuitionists did indeed countenance a collection
embracing all real numbers:

All real numbers form a species ... This species is the (one-
dimensional) continuum (of real numbers). [25, p. 38]

We then call upon a simple consequence of Brouwer’s Continuity Theorem
([13, p. 66], [25, p. 46]), which is a hallmark of traditional intuitionism. The
Continuity Theorem states that

every total function from R into R is continuous.

Because N carries the discrete topology, it follows at once that

every total function from R into N is constant.

For a natural number n we write −→n for the sequence that is constantly n,
i.e., −→n (m) = n for all m. Using −→n , we can make sense of relations between
real numbers and natural numbers. For instance, x < n can be taken to mean
x < [−→n ].

Lemma. For each real number [r], there is a natural number n such that
[r] < n.

Proof. Let Cauchy sequence r have modulus �. Let k be 1, and calculate
�(1). Since r is a Cauchy sequence, r(�(1)) is a rational number. From the
definition of Cauchy sequence, we know that, for all m > �(1), |r(�(1)) –
r(m)| < 1/2. So after �(1), the value of r(m) never leaves the open interval
between r(�(1)) – 1

2 and r(�(1)) + 1
2 , no matter how large m gets. The terms

of any Cauchy sequence co-convergent with r can be bounded similarly. Now,
take n to be any natural number that is at least two larger than r(�(1)).
Plainly, [r] < n. �

Theorem. The collection of real numbers R is not a base. Hence, AC is false
in general.

Proof. The argument is sketched by Troelstra and van Dalen [51, pp.
189–190]. Assume that AC holds or, at minimum, that the collection of real
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numbers, R, is a base. By the above Lemma, the formula ∀x ∈ R ∃n ∈ N x <
n holds, and hence by AC there is a choice function f ∈ (R ⇒ N) with the
property that, for each [r] in R, we have [r] < f([r]).

Since [
−−−→
f([r])] is a real number, we may apply f to it, obtaining

[r] < f([r]) < f([
−−−→
f([r])]).

This shows that f is not a constant function, contradicting Brouwer’s
Continuity Theorem. Hence, R is not a base, and AC is false. �

From the Lemma and AC we are thus led to assert the existence of a
function f ∈ (R ⇒ N) such that x < f(x) holds for every x ∈ R. In the
proof of the Lemma, we prove the existence of a function g ∈ (Cauchy ⇒ N)
such that [r] < g(r) holds for every r ∈ Cauchy. Since the existence of f
contradicts Brouwer’s Continuity Theorem, one might well wonder why
the existence of g does not? It does not, since g is a function on Cauchy
sequences, whereas Brouwer’s Continuity Theorem concerns functions
on R.

The proof of the Theorem in effect shows that the intuitionist cannot
hope that the function g constructed in the Lemma induces a function
g ∈ (R ⇒ N). In particular, she cannot hope to prove that g(r) = g(s)
whenever r and s are co-convergent Cauchy sequences. Nor would it be
acceptable for her to define a function g ∈ (R ⇒ N) as a composition,

x 	→ u(x) 	→ g(u(x)),

where u(x) is a unique representative from the equivalence class x of co-
convergent Cauchy sequences. The principle that unique representatives may
always be picked out from equivalence classes is itself an extensional choice
principle [30, 36].

In Bishop’s terminology, the function g constructed by the Lemma induces
an operation on R, but not a function. The Axiom of Choice, however,
requires a function.

§4. Intuitionistic set theory and AC. Constructivists who are not intuition-
ists avoid LEM in their mathematical work, but refrain from affirming its
out-and-out invalidity. In contrast, intuitionists who trace their intellectual
lineage back to Brouwer insist that LEM is invalid, in symbols:

¬∀p (p ∨ ¬p).

Given this, any intuitionist who accepts even a tiny dose of set theory can
prove in a moment that AC is false. By a result in topos theory of Diaconescu
[17], AC entails LEM in the so-called internal language of toposes, which
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is a form of higher-order intuitionistic logic.3 Goodman and Myhill [22]
proved the more concrete result that, in a set theory containing the axioms
of extensionality and pairing, φ ∨ ¬φ follows constructively from AC for
every formula φ such that the formula x = 0 ∧ φ can be used for separating
out a subset from a given set. In particular, in a set theory containing the
axioms of extensionality and pairing and admitting full separation, AC
entails LEM.

The strategy of the Goodman–Myhill proof is to use AC to show that
identity between sets is decidable and then note that every formula φ is
equivalent to an identity, a = b, between sets. We take it for granted that
the natural numbers 0 and 1 exist, with 0 �= 1.

Theorem (Goodman and Myhill). For any sets a and b, {a, b} is a base if
and only if identity is decidable on {a, b}, i.e., a = b or a �= b.

Proof. Assume that {a, b} is a base. Let R(x, y) be the binary relation
where

R(x, y) if and only if (x = a and y = 0) or (x = b and y = 1).

Clearly,

∀x ∈ {a, b} ∃y ∈ {0, 1} R(x, y).

Since {a, b} is a base, there is a choice function f with domain {a, b} such
that

∀x ∈ {a, b}
(
f(x) ∈ {0, 1} ∧R(x,f(x))

)
.

Since identity is decidable on {0, 1}, there are four possible cases:

1. f(a) = 0 and f(b) = 0,
2. f(a) = 1 and f(b) = 1,
3. f(a) = 0 and f(b) = 1,
4. f(a) = 1 and f(b) = 0.

In cases 1 and 2, use the definition of R(x, y) to find a = b. In cases 3
and 4, use the functionality of f to find a �= b.

Since the cases are exhaustive, it follows that a = b or a �= b.
The converse—that {a, b} is a base provided that identity is decidable on

{a, b}—follows immediately: when identity is decidable on {a, b}, then the
latter set is in bijective correspondence with the finite set {0, 1}. �

3A similar result was proved by Penk [40]. Lawvere [31, p. 330] had already pointed out
that AC does not hold in all elementary toposes. Even earlier, Bishop [9, p. 58] had set for
his readers, as Problem 2, the task of proving a result tantamount to the intuitionistic failure
of AC.
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Under minimal assumptions, an intuitionist may now infer the following
corollary.

Corollary. AC is false.

Proof. Assume AC. There are at least two ways for an intuitionist to
derive a contradiction.

First, assume that we may form the unordered pair {r, s} of real numbers
r and s. By the Theorem, identity on {r, s} is decidable. This, however,
allows us to define a discontinuous function on R, contrary to Brouwer’s
Continuity Theorem (see Section 3).

Second—the way of Goodman and Myhill—let φ be a formula such that

{x ∈ {0, 1} |x = 0 ∧ φ}
is a set. Whenever φ is a formula in the signature {∈,=} this will be a set
according to any set theory that admits full separation. Let us call the set in
question Aφ. Since Aφ and {0} are sets (the latter by pairing), we may form
the set {Aφ, {0}} by pairing and use the Theorem together with AC to find
that

Aφ = {0}
is decidable. Owing to the equivalence

φ ↔ (Aφ = {0}),

it follows that also φ is decidable. If φ is allowed to be arbitrary, LEM
therefore holds in the set-theoretical universe. But, as already noted, LEM
is false for an intuitionist. �

The only set-theoretic principle used in the proof of the Theorem is
that of unordered pairing (and, of course, that 0 �= 1), which is certainly
intuitionistically acceptable, if any set-theoretic principle is. An intuitionist
therefore needs only the admission that an unordered pair {r, s} of real
numbers exists to conclude that AC is false. This is the first of the two proofs
of the Corollary.

The second proof—Goodman and Myhill’s—also uses unrestricted
separation. Call a formula in the signature {∈,=} restricted if all of its
quantifiers are bounded, i.e., of the form ∀x ∈ a or ∃x ∈ a. As we shall see
in the next section, some well-known constructive set theories admit only
restricted formulas in instances of the Axiom of Separation. In such systems,
the Goodman–Myhill proof delivers LEM for restricted formulas. Tennant
[47, 48] argues that a constructivist must restrict separation to decidable
properties: for φ(x) to be used in separating out a subset of a, the formula
φ(b) ∨ ¬φ(b) must be derivable for every b ∈ a. Under this restriction,
the Goodman–Myhill proof yields only the tautology that LEM holds for
decidable formulas. This point is nicely illustrated by the intuitionistic small
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set theory ofM cCarty, Shapiro, and Rathjen [38], where AC is a theorem,
but only decidable separation is provable.

Again it is essential that the choice function f invoked in the proof of the
Theorem is indeed a function and not an operation: the functionality of f
is appealed to, not only when we infer a �= b from f(a) �= f(b), but also
when we claim that the four cases 1–4 are exhaustive. In the presence of the
Axiom of Extensionality, an operation on sets is a transformation that need
not preserve extensional equivalence. Bell [7, 8] studies variations of both
the Goodman–Myhill proof and Diaconescu’s proof in a set theory without
extensionality.

The role of extensionality in the Goodman–Myhill proof becomes espe-
cially clear in an intensional framework such as Martin-Löf’s intuitionistic
type theory, where a form of AC is a theorem, but where the addition of
any of a number of extensionality principles—including what is there called
extensional AC—yields LEM. We shall return to this in Section 7.

§5. Notions of set. Here, we present, at least in brief, four influential
constructive and intuitionistic notions of set: axiomatic, Brouwer’s original,
Bishop’s, and Kleene–Kreisel–Troelstra. On all of these accounts, sets are
suitably extensional entities. As we will show, none of these requires AC,
even when they are coupled with apposite intuitionistic mathematics and
commensurate understandings of the logical signs.

5.1. Axiomatic. There is a full range of axiomatic constructive and
intuitionistic set theories, extending from the proof-theoretically weak, e.g.,
Harvey Friedman’s B, all the way to IZF, intuitionistic Zermelo–Fraenkel set
theory, which is equiconsistent with full classical ZF. Each of these theories
is inspired, in large part, by the familiar idiom and axioms of ZF. The first
formalized and specifically intuitionistic set theory may have been Heyting’s
[24]; more recent research was stimulated by Myhill’s ideas in [39]. All of
them endeavor to capture a conception of set already on view, namely, that
a set is a coin with two foundational sides. As a class, it is on the one side
the extension of a mathematical predicate (perhaps with parameters); on
the other side, as an object of set theory, its internal structure is a register of
its locus, within a universe of sets, determined by the combinatorics of the
membership relation.

Friedman’s [21] constructive set theory B was intended to formalize the
constructive mathematics of Bishop within sets of finite rank over N. With
its restricted forms of induction over the natural numbers, separation,
replacement, and exponentiation (the latter standing in for the familiar
powerset axiom), B is relatively weak proof-theoretically. Beeson [5, 6] shows
that B is conservative over Heyting Arithmetic, HA. It features a restricted
form of AC—withN a base—as an axiom. However, without such an axiom,
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no general form of AC is derivable in the reduced B, since the latter is a
subtheory of classical ZF.

The intuitionistic small set theory SST in [38] has as its standard model the
collection of pure cumulative sets of finite rank. It is definitionally equivalent
to HA. In SST, AC is a theorem, but this is because the intended objects of
the theory are all finite and decidable.

Aczel’s [1] contains axioms for CZF, a constructive version of Zermelo–
Fraenkel set theory, as well as an interpretation of CZF in Martin-Löf’s
intuitionistic type theory (see Section 7). Although CZF is consistent with
the statement that N is a base, it does not derive it.

We shall need the following special case of AC, called ACN,N:

∀x ∈ N ∃y ∈ N R(x, y) → ∃f ∈ (N ⇒ N) ∀x ∈ N R(x,f(x)).

The strongest of the set theories listed above is IZF. It is relatively
consistent with the invalidity of LEM [23], with Brouwer’s Theorem [20],
and with intuitionistic Church’s Thesis [37]. As a subtheory of classical ZF,
IZF fails to derive AC, and even ACN,N. In IZF, as well as in its subtheories
CZF and B, it is consistent that ACN,N fails. The Goodman–Myhill proof
can be carried out in IZF, but not in its full generality in CZF and B, which
feature restricted, rather than full, separation. Since both of these contain
pairing as an axiom, however, the proof that {a, b} is a base just in case
identity on it is decidable can be carried out in either system.

5.2. Brouwer’s original. Brouwer published repeatedly on an intuitionistic
set theory, e.g., [12], but never offered, in his published works at least, a full
axiomatic treatment of sets. He did, however, describe at least two concepts
of sets or set-like collections: species in general and species arising from
spreads. Neither of these demonstrates, or even suggests, that AC should be
true.

First, a Brouwerian species is the extension of an extensional mathematical
predicate, provided that the predicate does not employ any impredicative
specification. Species are to be individuated extensionally, in the sense that
species with the same members are the same:

Two species are said to be equal, or identical, if for each element of
either of them, an element of the other equal to it can be indicated.
[14, p. 9]

Moreover, elementhood in a species is to be extensional, in the sense that if
a belongs to species S and a = b, then b belongs to S, too:

properties supposable for mathematical entities previously acquired,
satisfying the condition that if they hold for a certain mathematical
entity, they also hold for all mathematical entities that have been
defined to be ‘equal’ to it. [14, p. 8]
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Brouwer explicitly allowed there to be species of higher type—species whose
members are other species.

Brouwerian spreads are trees of sequences. In particular, a spread T is
an inhabited, decidable collection of finite sequences of natural numbers
satisfying two conditions:

1. It is closed under predecessor: if a sequence s belongs to T, then so does
every initial subsequence t of s.

2. Each sequence s in T has at least one immediate successor: if s ∈
T , then there is at least one sequence t ∈ T extending s by a single
component.

The species of members of a spread T consists of all the sequences each of
whose initial segments belongs to T.4

Both these conceptions—species and spread—can be elaborated and
developed theoretically ad infinitum, without lending any support either
to AC in general or even to ACN,N. For instance, an intuitionistic theory of
species satisfying full comprehension can be constructed over any model of
the intuitionistic set theory IZF and then proven to be independent of AC
for any sets and classes in the conjoint universe. Were AC assumed to hold
for classes, it would also hold for sets and, by the Goodman–Myhill proof,
would imply LEM.

5.3. Bishop. Bishop adopted a distinctively constructivist concept of set,
writing,

The totality of all mathematical objects constructed in accord with
certain requirements is called a set ... Each set A will be endowed with
a relation = of equality. This relation is a matter of convention, except
that it must be an equivalence relation. [9, p. 13]

Bishop elaborated on the conception—with its double specification, one for
membership and one for equality—several pages later:

[A] set is defined by describing what must be done to construct an
element of the set, and what must be done to show that two elements
of the set are equal. [9, p. 63]

Bridges and Vîţă, distinguished followers of Bishop, explain why, on this
“double specification” notion of set, one should not expect AC to hold
generally over sets.5 They use the subscripted sign =X to denote an equality
allied with a set X.

4We ignore the further idea of dressing a spread, inessential to our purposes here.
5See also Richman’s [43] critique of the use of countable choice in constructive

mathematics.
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[T]he hypothesis

∀x ∈ X ∃y ∈ Y (〈x, y〉 ∈ S)

of AC means that we have an algorithm that, applied to each element x
of X and the data showing that x belongs to X, constructs an element y
of Y and demonstrates that 〈x, y〉 ∈ S. This much is clear. However,
there is no guarantee that the algorithm will respect the equality
relation on X—in other words, that if x =X x′, and the algorithm
constructs y and y ′ in Y such that 〈x, y〉 ∈ S and 〈x′, y ′〉 ∈ S, then
x′ =Y y ′. Indeed, we should expect that the computation of y might
use data that are associated with properties intrinsic to x that do not
apply intrinsically to x′. [11, p. 17]

Bridges and Vîţă do allow that N is a base, but, in their mathematical
work, that assumption features as a separate postulation and not as a direct
or indirect consequence of Bishop’s conception of set itself. The assumption
that N is a base is consistent with the background set theory, since it holds
in the Kleene realizability universe for IZF.

Once again, the foregoing argument against AC depends upon a plain
extensionality requirement: that functions on sets preserve identity.

5.4. Kleene–Kreisel–Troelstra. The concept of realizability, crucial to
the current metatheoretic understanding of intuitionism at every level,
originated in a brilliant paper by Kleene [28]. Kleene’s interpretation of
the formulas of intuitionistic arithmetic associates those formulas with
collections of natural numbers generally treated as codes or indices of Turing
machines. The association is specified recursively by laying down conditions,
retracing the structures of formulas, under which a natural number n realizes
formula φ or, in symbols, n � φ. For instance, for the material implication,
n � (φ → �) just in case

∀m (if m � φ, then {n}(m) is defined and {n}(m) � �),

that is, for any m that realizes the antecedent φ, the Turing machine n
computing the function �x.{n}(x) applies to m and outputs a realizer (or a
realizability witness) for the consequent �.

A premier way to extend Kleene’s original idea to set theory and higher-
order systems is by working with a two-part concept of set introduced by
Kreisel and Troelstra [29]. First, realizability sets are defined: a realizability
set S is any set of pairs 〈n, x〉 wherein the n’s are natural numbers and the
x’s are members of some set A. In other words, a realizability set is a subset
of the Cartesian product N× A. When 〈n, x〉 belongs to the realizability set
S, we write

n � x ∈ S.
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Second, when it comes to quantification over all realizability sets, we say
that

n � ∀s φ(s) if and only if ∀s n � φ(s).

In short, quantification over realizability sets exerts no effect—or, in the
jargon, is “uniform”—over the realizability relation �.

A formula φ of the set-theoretic language holds under realizability just
in case ∃n n � φ. The entire set theory IZF is sound with respect to this
concept of realizability for sets: provably within IZF, for all sentences φ in
the language of set theory, if IZF � φ, then ∃n n � φ. The law of excluded
middle fails outright under the realizability interpretation:

∃n n � ¬∀p (p ∨ ¬p).

Consequently, by Goodman–Myhill, AC is false in the realizability interpre-
tation of IZF.

§6. Brouwer–Heyting–Kolmogorov. Scholars of the subject often refer to
a Brouwer–Heyting–Kolmogorov, or BHK, explanation of the connectives
and quantifiers of intuitionistic mathematics. Like most semantic treat-
ments, it is compositional. Some investigators, such as Michael Dummett,
seem to have maintained that the truth of a general choice principle follows
directly from the clauses of the BHK explanation governing the quantifier
combination ∀∃ in the antecedent of AC (see Section 8).

Since the BHK explanation is informal, any conclusions drawn from its
clauses regarding the validity of a rule or principle will depend on how those
clauses are formulated. We begin with the formulation given by Troelstra
and van Dalen [51, p. 9] in terms of abstract proofs of some sort. Here are
the relevant clauses:

(1) A proof of ∀x C (x) is a construction that transforms a proof of a ∈ A
(A being the intended range of the variable x) into a proof of C (a).

(2) A proof of ∃x C (x) is given by providing an element a ∈ A and a
proof of C (a).

(3) A proof of C → D is a construction that permits us to transform any
proof of C into a proof of D.

On this understanding of the BHK explanation, there is no short and
simple argument to the conclusion that AC is valid. Consider the antecedent
of an instance of AC,

∀x ∈ A ∃y ∈ B R(x, y).

According to clauses (1) and (2), any proof of such a statement must be a
construction c that transforms each a ∈ A and each proof p of a ∈ A into
the provision of a b ∈ B and a proof of R(a, b).
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By contrast, according to (2) and (3), a proof of the consequent of AC,

∃f ∈ (A⇒ B) ∀x ∈ A R(x,f(x)),

must provide a function f with domain A and co-domain B such that, for all
a ∈ A, R(a,f(a)) is proven. According to (3), such an f as well as a proof
of ∀x ∈ A R(x,f(x)) must somehow arise from a hypothetical proof c of
the antecedent. That it will not, however, in general do.

A proof c of the antecedent is a construction taking an object a together
with a proof p of a ∈ A into a proof of ∃y ∈ B R(x, y). Such a construction
will not, in general, give rise to a function on A itself. We cannot simply forget
about the second argument to c, since there may be two distinct proofs, p1

and p2, of a ∈ A. Nor will it do to choose a distinguished proof qA(a) of
a ∈ A in a uniform way, since such a q will itself be a choice function.

In short, under this reading of BHK, the antecedent of AC will yield a
choice operation—a transformation that need not preserve identity—on A,
but not, in general, a choice function.

On another reading of BHK, the clause for the universal quantifier has
the construction operating directly on the members of the domain, and not
on proofs thereof:

A proof of ∀x C (x) is a construction that for any element a ∈ A
yields a proof of C (a).

The motivation for this reading is that the notion of elementhood should
be simple enough not to require proof—at most it requires computation.
For instance, no proof is required for us to see that 2 + 2 is an element of N.
It suffices to compute 2 + 2 to successor form, s(s(s(s(0)))), in order for
us to see that it can be generated by continued application of the successor
function beginning from 0 (whence it is an element of N according to the
first two Peano axioms).

Under this reading of BHK—which thus does not require a so-called
“second clause” proving elementhood6 —the argument above that a ∀∃
quantifier combination guarantees at most a choice operation, but not a
choice function, breaks down. We cannot yet infer, however, that BHK in
this formulation validates AC, since we still have no guarantee that the
construction c taking every a ∈ A to a proof c(a) of C (a) is indeed a
function. Again, over N we might be able to extract a function from c,
namely by first evaluating any given n ∈ N to zero or successor form and
then applying c to the latter. Since n has a unique zero or successor form,
this procedure yields a function. Over R, by contrast, we should not expect
to be able to extract a function in this way. The method described clearly
presupposes that identity over the underlying domain is decidable, which is

6On second clauses, see [16, 44].
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not the case with R. In general, therefore, also this formulation of BHK fails
to justify AC for all domains that intuitionists are interested in.

In conclusion we may therefore say that the BHK explanation validates
AC only to the extent that the construction that according to it serves as a
proof of a universally quantified proposition is a function, and not merely
an operation, on the domain of quantification.

§7. Intuitionistic type theory. We now turn to Per Martin-Löf’s intuition-
istic, or constructive, type theory, where an intensional version of AC is a
theorem. A correspondending extensional version of AC can be formulated
and seen not to be constructively valid. We end the section by considering
Aczel’s Presentation Axiom, which may be regarded as an attempt to capture
intensional AC inside an extensional set theory.

7.1. Intensional Axiom of Choice. Howard [27] indicated how the corre-
spondence between propositions and types that would later be called the
Curry–Howard correspondence yields a choice function from an assumed
proof of ∀x ∈ N ∃y ∈ N R(x, y). The formal language studied by Howard
was, however, not rich enough to provide for the definition of such a
function. Only with the more thoroughgoing implementation of the Curry–
Howard correspondence by Martin-Löf in [34] did a choice function become
formally definable, and then not only over N, but over any quantificational
domain of Martin-Löf’s type theory.

The Curry–Howard correspondence correlates notions of logic with
notions of type theory. In particular, propositions are identified as types:
proposition A is identified as the type of proofs of A. By a proof of a
proposition A one then understands an object making A true and not
an act by means of which one convinces oneself of the truth of A. It is
natural to think of a proof in this sense as a truthmaker of A, as noted by
Sundholm [45]. Indeed, that a proposition is true means, under the Curry–
Howard correspondence, that it is inhabited as a type, that a proof of it exists.

Just as one can define a type by saying what it is to be an object of that
type, so one can define a proposition by saying what it is to be a proof of
that proposition. Explaining propositions in this way is, in effect, just what
the BHK explanation does; hence one sees the close relationship between
it and the Curry–Howard correspondence. Curry–Howard, however, adds
precision by laying down how a (canonical) proof of a proposition is
formed from its parts. In particular, a proof of an existential proposition,
∃x ∈ A C (x), is stipulated to be a pair 〈a, p〉 where a is an element of
the domain of quantification, A, and p is a proof of C (a). A proof of a
universal proposition, ∀x ∈ A C (x), is stipulated to be a lambda term,
�x.p(x), where p(a) is a proof of C (a) for every a in the domain of
quantification, A.
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When defining a type A in intuitionistic type theory, it is in fact not enough
just to say what it is to be an object of type A. In addition, one must say what
it is to be identical objects of type A. In a terminology sometimes used by
philosophers: to define a type one must give both a criterion of application
and a criterion of identity (cf. Bishop’s notion of set, Section 5.3). Every
type therefore comes equipped at birth with a notion of identity, which is
usually expressed in the form a = b : A (this could be read as “a is the same
A as b”). It then makes sense to speak of functions on types: a function,
f(x), from A to B is a transformation such that f(a) = f(b) : B whenever
a = b : A. All open terms in intuitionistic type theory are functions in this
sense. It follows that if p(a) is a proof of C (a) for every a in the domain of
quantification, A, then p(a) = p(b) : C (a) whenever a = b : A.

Under the Curry–Howard correspondence, the formation of �x.p(x) as a
proof of ∀x ∈ A C (x) corresponds to an application of the ∀-introduction
rule in natural deduction. Corresponding to an application of the ∀-
elimination rule is the formation of a term of the form ap(c, a), whenever c
is a proof of ∀x ∈ A C (x) and a is an element of A. Whereas the �-operator
is primitive, the ap-operator is defined, namely by the equation

ap(�x.p(x), a) = p(a) : C (a).

Under the Curry–Howard correspondence, this equation corresponds to the
∀-reduction rule of natural deduction introduced by Prawitz [41].

The BHK clauses for implication, A→ B , and the universal quantifier,
∀x ∈ A C (x), both invoke the idea of a transformation, in the former case
from A to B, in the latter case from any a in A to C (a). In intuitionistic type
theory, implication comes out as a special case of universal quantification,
namely the case where each C (a) is one and the same proposition, B. In
particular, the �-operator can be used to construct a proof, �x.p(x), of
A→ B provided p(a) is a proof of B whenever a is a proof of A.

In light of the ap-operator and the functionality of open terms, we
may think of �x.p(x) as a function from A into the family of types (or
propositions) {C (x)}x∈A. At the end of the previous section we noted that
for the BHK explanation to justify AC, the construction that serves as a proof
of a universally quantified proposition must be a function. This requirement
is now met. To obtain a choice function from a proof of the antecedent,
∀x ∈ A ∃y ∈ B R(x, y), of AC, however, also projection functions are
required.

Just as ∀-elimination corresponds to the ap-operator, so ∃-elimination
corresponds to a certain operator. We shall not describe the precise workings
of this operator here—suffice it to say that from it, one can define first and
second projection functions,

fst(〈a, b〉) = a snd(〈a, b〉) = b.
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Given a proof c of an existential proposition, ∃x ∈ A C (x), fst(c) is an
element of the domain of quantification, A, and snd(c) is a proof of the
proposition C (fst(c)). It was in specifying the type of snd(c) that Howard
hit the limits of his formal system. One needs for that purpose to have access
to the notion of a propositional function over the proofs of a proposition.
In particular, one needs access to the propositional function C (fst(z))
over proofs z of ∃x ∈ A C (x). This clearly requires a thoroughgoing
implementation of the Curry–Howard correspondence.7

Suppose c is a proof of an instance of the antecedent of AC, that is,
of a proposition ∀x ∈ A ∃y ∈ B R(x, y), and let a be an element of the
domain A. Then ap(c, a) is a proof of ∃y ∈ B R(a, y). Using the two
projection functions, we find

snd(ap(c, a)) ∈ R(a, fst(ap(c, a))).

By means of the �-operator, we can then form a choice function

�x.fst(ap(c, x)) ∈ (A⇒ B).

Given these ingredients, it is now an easy exercise to construct the full
proof of AC (for details, see [35]). The proof goes through also if the
co-domain of the choice function is a family of types, B(x), depending
on the domain, A, or more precisely, if the choice function belongs to
the generalized Cartesian product

∏
x∈A B(x). This more general form of

the Axiom of Choice includes, as a special case, the formulation that the
Cartesian product of a family of non-empty types is non-empty.

Any type that may serve as the domain of the universal quantifier in
intuitionistic type theory is therefore a base. Included among these are N as
well as any type that can be formed from N by means of product, disjoint
union and exponentiation, such as N× N, N ⇒ N, and (N ⇒ N) ⇒ N. The
domainR of real numbers, however, remains out of reach. A domain Cauchy
of Cauchy sequences of fractions can be defined as a type (the canonical
elements of this type will be pairs 〈s, p〉, where s is a sequence of fractions
and p is a proof that s is Cauchy). The construction needed to obtain R from
Cauchy, however, is not among the type-forming operations of (standard)
intuitionistic type theory.

We obtain the domain R from Cauchy by, in effect, identifying certain
Cauchy sequences that are not identical according to the identity relation
native to the type Cauchy. A standard way of implementing this construction
is by the formation of a quotient structure. Another way is to let co-
convergence simulate identity on Cauchy. The type Cauchy will continue

7In developing a type theory where AC is not a theorem, Maietti and Sambin [33] chose,
precisely, to restrict the Curry–Howard correspondence so that the second projection from a
proof of an existentially quantified proposition is not definable.
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to have its native identity relation, but we require that all functions defined
on Cauchy must respect co-convergence, so that co-convergence in effect
plays the role of identity on Cauchy. Martin-Löf follows the latter course in
clarifying why there is no contradiction between the provability of AC in his
system and results such as Diaconescu’s Theorem.8

7.2. Extensional Axiom of Choice. It may be difficult to pin down in
the abstract just what extensionality amounts to, beyond a certain family
resemblance among certain principles. In intuitionistic type theory it is
natural to say that an extensionality principle is a principle that identifies
elements of a type A that are not identical according to the identity relation
native to A. Likewise, an extensional construct is a construct that renders
elements of A identical that are not identical according to the identity
relation native to A.

Function extensionality, according to which �x.p(x) and �x.q(x) are
identical elements of A⇒ B if and only if p(a) and q(a) are identical for
every a ∈ A, is one example of an extensionality principle. Another example
is the principle according to which propositions are identical if and only if
they are materially equivalent. The type R, regarded as the type Cauchy
equipped with co-convergence as the identity relation is an extensional
construct, and so is Aczel’s constructive version of the cumulative hierarchy
of sets serving as a model of CZF [1–3]. The model consists of a type V
together with a relation ∼V of extensional equality. From the definition
of V, it is clear that it contains infinitely many empty sets. The relation ∼V
identifies all of these and, more generally, any two sets a and b such that
∀x ∈ a ∃y ∈ b (x ∼V y) and ∀y ∈ b ∃x ∈ a (x ∼V y).

In light of this understanding of extensionality, we see that it was natural
for Martin-Löf to call an extensional set a type A equipped with an
equivalence relation that is to simulate identity on A.9 Where ∼ is the
equivalence relation in question, the extensional set may be written as the
pair (A,∼). Sets in the sense of set theory are extensional, not only in the
sense that the set-theoretical Axiom of Extensionality holds for them, but
also in the sense that extensional constructs, such as quotient formation and
naive separation,10 preserve sethood.

8Tait [46] takes a different, albeit related, approach by distinguishing a type A from sets
of elements taken from A. Sets in this sense are extensional constructs. Tait suggests that,
whereas AC holds for types, it does not hold in general for sets.

9Following Hofmann [26], extensional sets are also called setoids.
10An element of the subtype of A separated out by P(x) is standardly taken to be a pair

〈a, p〉 where a ∈ A and p is a proof ofP(a). The elements of the corresponding naive subtype
are just the elements a of A such that P(a) is true.
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With the notion of extensional set in hand, we can formulate the
extensional axiom of choice, ExtAC, which requires that the choice function
respects the equivalence relations∼A and∼B simulating identity on A and B:

∀x ∈ A ∃y ∈ B R(x, y) → ∃f :
(
(A,∼A) ⇒ (B,∼B)

)
∀x ∈ A R(x,f(x)).

By the notation f :
(
(A,∼A) ⇒ (B,∼B)

)
we mean that f is a function from

A to B that respects the equivalence relations ∼A and ∼B in the sense that
∀x, y ∈ A (x ∼A y → f(x) ∼B f(y)) is true. Since we are in the setting of
extensional sets, it is natural to require that R be an extensional relation,
that is, thatR(x, y) andR(x′, y ′) be materially equivalent whenever x ∼A x′
and y ∼B y ′ hold.

As Martin-Löf [36] makes clear, it is ExtAC that corresponds in
intuitionistic type theory to the Axiom of Choice in set theory. Apart
from the conceptual argument that a set in the sense of set theory is better
understood as an extensional set (A,∼) than as a type A, there is also a
compelling technical argument: when ExtAC is assumed, Aczel’s model V
validates (set-theoretical) AC.

The constructive unacceptability of ExtAC is borne out by Carlström
[15], who shows that, in intuitionistic type theory, it entails the Law of
Excluded Middle.11 Indeed, we have no reason to expect that the choice
function constructed from a proof of ∀x ∈ A ∃y ∈ B R(x, y) is extensional
in the sense required by ExtAC. That extensionality is the culprit here is
nicely illustrated by the fact that ExtAC is just one of many extensionality
principles which when added to intuitionistic type theory yields classical
logic [30, 32, 52].

Although ExtAC is constructively unacceptable, it is a theorem of
intuitionistic type theory that a choice operation always exists: this is just
what intensional AC becomes in the setting of extensional sets. An operation,
O, between extensional sets (A,∼A) and (B,∼B) is here simply a function
from A to B: it respects the identity relations native to A and B, but need
not respect the equivalence relations ∼A and ∼B .

7.3. The Presentation Axiom. On each type, A, there is a binary
propositional function of identity, =A, defined as the smallest reflexive
relation on A. In the setting of extensional sets, where an arbitrary
equivalence relation on A may serve as identity, we may call the relation
=A the true identity relation on A. Let us call an extensional set of the form
(A,=A) an intensional-extensional set. All intensional–extensional sets are
bases. Moreover, any extensional set (A,∼) is the surjective image of an

11See also pages 9 and 10 of Lacas and Werner [30], who prove the same result for
an alternative, but equivalent formulation of the extensional axiom of choice: for any
equivalence relation R on a type A, there is a class containing a unique representative from
each equivalence class [a]R. For the equivalence, see [36].
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intensional–extensional set, namely the image of (A,=A) under the identity
function on A. (If (A,∼) is regarded as a quotient structure, then the map
in question is the natural one.) Extensional sets known to be bases—the
intensional–extensional sets—thus form a subdomain of all extensional sets,
and every extensional set is the surjective image of an extensional set from
this subdomain.

Abstracting this situation from the type-theoretical framework, we arrive
at the so-called Presentation Axiom, PAx: every set is the surjective image
of a base.12 The axiom holds in Aczel’s V, and hence it is consistent with
CZF and, moreover, constructively acceptable. It is not, however, a theorem
of CZF. Indeed, it is not even a theorem of classical ZF plus the axiom
of dependent choices [42]. Aczel’s proof [2] shows, more concretely, that,
in V, (i) sets formed by means of set-theoretical correlates of the standard
type-forming operations of intuitionistic type theory are all bases and (ii)
every set is the surjective image of such a set. The proof thus gives expression
to the idea that the quantificational domains of type theory—all of which
are bases—form a subdomain of all sets, some of which fail to be bases.

§8. Dummett. We cannot, with utter certainty, lay a finger on the ultimate
origin of the thought that intuitionists are somehow obliged to accept a
general form of AC, but Dummett [18] has been especially influential, at
least among philosophers, and certain passages in that work pertaining to
AC are at least misleading in their phrasing. Here is one of them.

It might at first seem surprising that in a system of constructive
mathematics we should adopt as an axiom the Axiom of Choice,
which has been looked at askance on constructive grounds. The fact
is, however, that the axiom is only dubious under a half-hearted
platonistic interpretation of the quantifiers. [18, p. 52]

We will not take up the question whether there is such a thing as a
platonistic interpretation of the quantifiers, of which, presumably, classical
mathematicians are guilty. Dummett’s language here seems to suggest
that intuitionists accept AC generally, “when we interpret the quantifiers
intuitionistically.”

What follows the passage just cited is a sketch of an argument to the
conclusion that, in our terms, the collection N of natural numbers is a base,
not that AC holds generally:

[T]he antecedent of ACn,m [our ACN,N] expresses not merely that for
each n we can effectively find an m for which we can prove A(n,m),
but that we have a single effective procedure which we can recognize

12In a classical setting, Blass [10] considered the same axiom, though in the category-
theoretic formulation that there are enough projective sets.
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as yielding, for each n, such an m: the consequent merely makes this
explicit, the constructive function ... being that which, when applied
to n gives a suitable m. [18, p. 53]

As we have explained in Section 5 and 6, the truth of AC on an intuitionistic
vision is nowise obvious a priori, even on some BHK-style interpretations of
the quantifiers. Furthermore, it is not an understanding of quantifiers alone
that might require the truth of AC, but, at best, only an understanding of
quantifiers together with an account of sets generally.

Dummett does construe the quantifiers, when ranging over natural
numbers, in a way roughly in accord with the BHK explanation, but he
never seems to say much about what that explanation would yield when the
quantifiers are meant to range over arbitrary sets or species of numbers—
which he allows do exist.

In particular, Dummett (ibid., p. 39) demands that there be a full hierarchy
of species, generated by predicative comprehension at each level. Therefore,
he would have to allow that, for any species S1 and S2 of the same level α
in the hierarchy, there is an unordered pair species {S1, S2} of level α + 1,
since unordered pairs are specifiable predicatively. This conception of species
would then be open to the Goodman–Myhill argument of Section 4. So, if
Dummett insists upon full AC, he must also hold that, within any level,
identity over all species of that level is decidable. Furthermore, according to
Dummett (ibid., p. 39), “a real number is a species”; consequently, among
the real numbers of any given level, {0} would be decidable. 13

Finally, if there is a species of all real numbers, Dummett appears to have
no ready defense against the argument of Section 3, since it is so easy to
prove that every real number is majorized by some natural number. Again,
from AC, it follows that there are discontinuous functions.

Dummett takes up the issue of AC once again when introducing N ⇒ N—
conceived by him as a collection of Brouwerian choice sequences:

In particular, we may consider a statement of the form

∀α∃n. B(α, n),

whereB(α, n) is extensional [and α ranges over choice sequences]. As
always, a form of Axiom of Choice holds good: the statement involves
that there must be a uniform effective procedure for finding, for each
given α, an n such that B(α, n). [18, p. 64]

13To repeat, intuitionists usually allow that there is a set or species of all real numbers.
How such a collection could be constructed within a predicative type hierarchy of finite
levels remains unclear, since each level α of the hierarchy beyond a certain level will contain
predicatively specified real numbers of level α not appearing at any lower level.
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It is not merely to the flippant “as always, a form of Axiom of Choice
holds good” that we object. There is little or no reason here, in talking
of sequences, to think that the “effective procedure for finding” amounts
to a function on real numbers, rather than an operation—especially in
view of the fact that, in general, choice sequences are often presented
intensionally, in terms of descriptions or rules, rather than extensionally (see,
e.g., [50]).

A consistent defender of Dummett cannot here rescue him by “going
operational” and claiming that the “uniform effective procedure” that arises
from the interpretation of the antecedent of AC was really meant by him
to be an operation rather than a function. Dummett refers to the effective
method he thinks to underlie the antecedent of AC as yielding

[a] constructive function a being that which, when applied to n,
gives a suitable m ... the variables a ... being taken to range over
constructive (effectively calculable) functions of natural numbers.
Unary constructive functions of natural numbers may be identified
with lawlike sequences of natural numbers. [18, p. 53]

In a lecture from 1992 that has only recently been published [19], Dummett
qualifies his previous apparently unconditional acceptance of AC:

Bishop’s remark that the validity of the axiom of choice is “implied
in the very meaning of existence”, as constructively understood, has
in some sense to be true; but it is true generally only if the identity
relation on the domain of the choice function is strict (i.e. intensional).
[19, p. 496]

From the context it appears that it was the Goodman–Myhill argument that
had forced Dummett to rethink his stance. For finitely presented objects,
such as the natural numbers, AC is unproblematic. A natural number
evaluates to a unique zero or successor form; hence we can extract a function
from a construction c witnessing the truth of a universally quantified
proposition by considering its values on these canonical forms, i.e., c(0),
c(0′), c(0′′), etc. This method is, according to Dummett, no longer available
for infinitely presented objects; hence for a domain A of such objects, AC
will be validated by a BHK-like semantics only if identity on A is “strict
(i.e., intensional).” Dummett admits that species may be intensional, but he
argues at length that real numbers and infinite sequences are not. He thus
accepts, albeit only implicitly, that AC fails for R and for domains of infinite
sequences.

§9. Some formal theories, Church’s thesis, and AC. There are far too many
intuitionistic formal theories of numbers, functions, sets, and types for us
to attempt a full survey here of their respective deductive relations with
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prominent forms of AC. Even so, we would like to remark on the standing
of AC and formalized Church’s Thesis (CT—see definition below) within
three of the theories better known to logicians and philosophers who are
not specialists in this subject.

Definition.

1. A formal theory T is constructively consistent just in case T does not
derive the validity of LEM—when that validity is standardly expressed
in the language of T.14

2. Let T be Kleene’s computation predicate and U his upshot function,
taking the code of a complete computation and returning the output
thereof. The following principle is called intuitionistic Church’s Thesis,
Church’s Thesis, or CT for short:

∀n∃m A(n,m) → ∃e∀n∃p∃m
(
T (e, n, p) ∧U (p,m) ∧ A(n,m)

)
. (CT)

The principle CT is clearly recognizable as an effective form of ACN,N.
It says, in effect, that for every binary relation A(n,m) on N satisfying
∀n∃m A(n,m), a Turing computable choice function exists.

First-order Heyting Arithmetic, or HA, formalized with the axioms of
Peano Arithmetic within intuitionistic predicate logic, has no variables for
(unencoded) sets. Kleene’s realizability shows that HA is constructively
consistent with CT, written as a first-order scheme, as well as with certain
generalizations of CT [51, pp. 195–203].

Second-order Heyting Arithmetic, or HAS, formalized with the axioms of
second-order Peano Arithmetic within second-order intuitionistic predicate
logic, features variables for sets of numbers explicitly. Kleene–Kreisel–
Troelstra realizability shows that HAS is constructively consistent with CT,
as well as with second-order generalizations of it [49, pp. 203–204]. Every
finite set is provably a base, but N cannot be shown to be a base in HAS.

In the intuitionistic Zermelo–Fraenkel set theory IZF, every finite set is
provably a base. The set of natural numbers,N, is not provably a base, but it is
constructively consistent with IZF to assume that it is. Church’s thesis and
various set-theoretic generalizations thereof are constructively consistent,
but—as we have seen repeatedly—full AC itself is not constructively
consistent with IZF.

§10. Conclusion. To dispel any illusion that an unrestricted AC holds
generally for intuitionists, readers are advised to keep in mind the relevant
differences between:

14Plainly, any constructively consistent theory is also consistent.
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• sets and types,
• extensional and intensional contexts, and
• functions and operations.

As understood here, AC concerns (extensional) sets and functions defined
on them. Sets in this sense are individuated by an axiom of extensionality
and admit of extensional constructs such as quotients and naive separation
(see footnote 10 for an explanation of this notion). A function on such sets
preserves equality—unlike an operation, which need not preserve equality.
In the consequent of AC,

∃f ∈ (A⇒ B) ∀a ∈ A R(a,f(a)).

A and B are (extensional) sets, and f ranges over functions on such sets. If
A and B are types instead, and objects are individuated intensionally, as in
intuitionistic type theory, then a version of AC holds, but this intensional
AC must be distinguished from the extensional AC. When transported to
an extensional setting, intensional AC guarantees the existence of a choice
operation, but not the existence of a choice function.

Unless a set theory is tightly constrained, say with respect to the Axiom
of Separation, as in, for example, Friedman’s B, Aczel’s CZF of the small set
theory in [38], AC will not hold over entire universes of sets intuitionistically.
Some sets may be assumed to be bases. The universe may look, for instance,
as set out in the Presentation Axiom, PAx, according to which each set is
the surjective image of a base.

The logical situation within intuitionistic mathematics of general, exten-
sional AC is broadly analogous to that of LEM. Proofs such as that of
Brouwer’s Continuity Theorem demonstrate that LEM fails in general: it
is false that, for any statement φ, φ either holds or it does not. That said,
LEM (or restricted versions of it) might be seen to hold locally, for one
(mathematical) reason or another. For instance, identity for natural and for
rational numbers satisfy LEM, while identity for real numbers does not. As
we have seen, within intuitionistic real analysis and set theory, AC cannot
hold in general, but some particular sets or other, such as N, could be bases.
One could say that, intuitionistically, AC sometimes holds locally, but it
cannot hold globally.
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