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Recently Orrin Frink (see [2]) gave a neat internal characterization
of Tychonoff or completely regular 7\ spaces. This characterization was
given in terms of the notion of a normal base for the closed sets of a space
X. A normal base 2£ for the closed sets of a space X is a base which is a
disjunctive ring of sets, disjoint members of which may be separated by
disjoint complements of members of 3£. In a normal space the ring of closed
sets is a normal base.

To obtain the relationship between a normal base for a space X and
Tychonoff spaces Frink considered a Hausdorff compactification of X.
He showed that if X has a normal base, then the Wallman space <o(2£)
consisting of the JT-ultrafilters, is a Hausdorff compactification of X. It
follows that X is Tychonoff. Conversely, if X is Tychonoff then the zero
sets of real continuous functions over X form a normal base. Thus a space
is Tychonoff if and only if it has a normal base.

By choosing different normal bases 3? for a non-compact space X,
different Hausdorff compactifications of X may be obtained in the form of
Wallman spaces oi{2£). Frink raised the question as to whether every
Hausdorff compactification may be obtained in this way. He showed that
the Stone-Cech compactification always is a "WaUman-type" compactifica-
tion.

Olav Njastad ([4]) gave sufficient conditions for a compactification
to be of the Wallman-type. These were stated in terms of the embedding
of the space into the compactification. He then used them to show that
certain classes of compactifications are of the Wallman-type. In particular
he showed that this is the case for the Freudenthal compactification and
related compactifications (see [1]) and the bounding system compactifica-
tions of Gould ([3]). He also showed that a compactification is a Wallman-
type compactification if and only if the corresponding (unique) proximity
determined by the compactification has a productive base consisting of
closed sets. This relates WaUman-type compactifications to the proximity
aspects of the theory of compactifications and, in particular, to the Smirnov
compactification.
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In this note we give necessary and sufficient conditions for a Hausdorff
compactification to be a Wallman-type compactification. These are given
in terms of conditions imposed on the normal base 2£. These theorems
will show, in an easy manner, that several compactifications are of the
Walhnan-type.

DEFINITIONS. A base 2£ for the closed sets of a Tx space X is said to
be disjunctive if, given any closed set F and any point x not in F, there
exists a closed set A of 3£ which contains x and is disjoint from F. The base
is said to be separating if any two disjoint members A and B of 2? are
subsets respectively of disjoint complements X—C and X—D of members C
and D of 3T (that is, A C X-C, B C X-D, and (X-C) n (X-D) = 0).

A family of sets is called a ring of sets if it is closed under finite unions
and intersections.

A base 2£ for the closed sets of a 7 \ space X is a normal base if it is a
disjunctive ring of closed sets that is also separating.

A proper subset of a normal base Z is called a 2£-filter if it is closed
under finite intersections and contains every superset in 3£ of each of its
members. We also assume that no ^"-filter contains the empty set. A 2£-
ultrafilter is a maximal ^-filter.

If 2£ is a normal base for X, the Wallman space (a{2£) is obtained in the
following way. The points of <o(&) are the ^f-ultrafilters of X. For each
A in 2f we define the set A* to be the family of all ^"-ultrafilters having
A as a member. The collection of sets A* for A in 2£, is taken as a base for
the closed sets of co(Z). The space w{2£) is a compact Hausdorff space.
There is a natural embedding h of X into <a{2£) where h(x) is the ^"-ultra-
filter consisting of all .2^-sets that contain the element x. Equivalently we
could take as a base for the open sets of w{2£) the family of all sets U*
consisting of all ^-ultrafilters having at least one subset of U as a member,
where the complement of U is in 2S.

If A is a subset of X, we use clx A to denote the closure of A in X.
When there is no chance of confusion, we write cl A.

We first state three lemmas. The first two lemmas give some properties
of a normal base 2£ on X and its corresponding Wallman space o>{2£).
Then we state a characterization of a ^"-ultrafilter.

LEMMA 1. If 2£ is a normal base for X, then
(1) (A n B)* = A*nB* for all A, B in %,
(2) h{A) = h(X) n A* for all A in %,
(3) cl h(A) =A*.

PROOF. We omit the proofs of (1) and (2) which follow from the con-
struction of
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Since the collection of A*, A in %, is a base for the closed sets in
), it follows from (2) that cl h(A) is included in A*. If & is any member

of A* and U* is any open set containing it then A is in !F and there is a Z
in !F such that Z is included in U. Hence A n Z is in IF and we may choose
a point xinX from A n Z. Then h(x) is inh(A) and also in U* since Z is
in A (#) and Z is included in U. It follows that ^" is in cl h (A). This completes
the proof.

LEMMA 2. Let 3f be a normal base for X and h the natural embedding
of X into a>{&). If IF is any point of (o{2?) and if G* is any open set containing
it, then there is a Z in 3? such that cl h(Z) is a neighbourhood of F and cl h(Z)
is included in G*.

PROOF. Since <o{2£) is a compact Hausdorff space we can separate IF
and the complement of G* by disjoint open sets V* and V*. each of which
is a finite union of basic open sets. However, these basic open sets are just
complements of basic closed sets Z* where Z is in 3C. Let V* be the finite
union of basic open sets <o{!£)—Z* that covers (»{!%)—G*. Since 3? is
a ring, Lemma 1.1 implies that F* is just a set co(3f) —Z* for some Z
in 2£, and Lemma 1.2 implies that this Z* = cl h(Z). Hence !F is in
VI C cl h{Z) C G*. It follows that cl h(Z) is a neighbourhood of &".

LEMMA 3. Suppose that 2£ is a normal base for X and that !F is a 2£-
filter on X. Then IF is a 3£-ultrafilter if and only if for each Z in 2? either
Z is in SF or there is an A in fF such that A is included in the complement of Z.

PROOF. Let & be a ^f-ultrafilter and let Z be any member of 2£. If
for each A in IF', A is not included in the complement of Z, then Z meets
each A. The JT-ultrafilter IF must then be equal to the 3f-filter generated
by S? and Z. Consequently Z must be in IF.

Conversely, if the conditions are satisfied, let ^ be a J-filter properly
containing IF. If the .ST-set Z is in ^ and not in !F, then there is an A in
SP', and therefore in 'S, such that A is included in the complement of Z.
Hence A n Z = 0 and A n Z is in 'S which is a contradiction.

THEOREM 1. Let Y be a Hausdorff compactification of a 7\ space X,
let g be the embedding of X into Y, and let &'be a normal base on X that satis-
fies the following property.

(P) For each y in Y and each neighborhood V of y there is a Z in 2£ such
that y e cl g(Z) C V and cl g(Z) is a neighborhood of y. Then there is a {closed)
continuous map f of oi{2£) onto Y such that f\h{X) = g o hr1.

Conversely if f is a homeomorphism of <o{2£) onto Y, then condition P
is satisfied.

PROOF. For each ^ in w(^) let V{!F) be the family of all basic open
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sets U* of &, and let B{&) be the family of cl r g(U) for U* in
is a family of closed subsets of Y with the finite intersection property and
hence D = n B(!F) is not empty.

Suppose that there are distinct points a and b of Y in Z). Since Y is
Hausdorff, the condition asserts that we can separate the points a and b
by i2?-sets A and 5 whose closures cly g(.4) and clY g(B) are disjoint and are
neighborhoods of a and b respectively. Thus A* n 5 * = 0. If U* is any
basic open set containing $P', then c\g{U) is in S ( ^ ) . Hence the intersection
of cl g{A) with g(£7) and the intersection of clg(B) withg(C7) are both non-
empty. It follows that A nU and B n U are non-empty and therefore so
are A* n U* and J5* n U*. Hence IF is in A* n B* which is a contradic-
tion. Thus Z) consists of exactly one point y(3F).

We can define a map / of co(&) into Y by /(J^) = y(.F) for & in
co(^r). If & is in A(Z) then & is of the form h(p) = J*",,, the ^-ultrafilter
consisting of all i^-sets which contain the point p. The point g(p) is in
clg(U) for each U* in F(J^). Thus t{&r

v)=g(p)=g{h-1($r
v)) and

If / is continuous then it must also be a closed map since co(&) is
compact and Y is Hausdorff. Let V be any open set in Y that contains a
point /(^"). Since B{!F) is a filter base with a unique cluster point and
since Y is compact, B(&) converges to f(^) and it follows that there is a
U* in V(&) such that cl g(U) C V. If ^ ' is any ^-ultrafilter in U* then U*
is in F(J^'). so /(.F') is in clg(*7) C F. Thus J2" is in U*. and /([/*) C F,
and therefore / is continuous.

Since f{h(X)) = g{X) and since clY(g(X)) = y, clT(f{h(X))) = Y. But
/ is a closed continuous map, so Y = f(cla{s)(h(X))) =f[a>{&)) and /
is an onto map.

Conversely suppose that / is a homeomorphism of u>{2£) onto Y and
that f\h(X) = go h*1. Using an argument similar to that used to prove
Lemma 2, for each y in Y and each open set V in Y containing y, we can
obtain a set Z* such that y is in f(Z*) CV.Zin Z. Since Z* = cl h(Z) by
Lemma 1.3, /(Z*) = clY(f(h(Z))) =clYg(Z). This completes the proof
of the theorem.

THEOREM 2. Let Y be a Hausdorff compactification of X. Then Y is
homeomorphic to a Wallman-type compactification of X if and only if X has
a normal base 2£ that satisfies:

(a) clr (A nB) = clr A nclYB for all A, B in %.

(b) For each y in Y and each neighborhood V of y there is a Z in 3£ such
that y is in cl r ZCV.

PROOF. The necessity of the conditions for a normal base 2£ of X
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is immediate. Since, if / is a homeomorphism of Y onto a>(2?), then
/(clyZ) = c l ^ , (f(Z)) = Z* by Lemma 1.3. Then Lemma 1.1 yields con-
dition (a) and Lemma 2 yields condition (b).

Conversely, suppose that 3? is a normal base for X that satisfies con-
ditions (a) and (b), and let &'„ be the collection of all sets Z in 2£ such that
p is in cly Z. Clearly & v cannot contain the empty set and contains every
•2T-set that is a superset of any member of &'„. That &v is a ^-filter fol-
lows from condition (a) which says that & 9 is closed under finite inter-
sections. If #" is any 2£-filter that properly contains fF v then there is an
A in J*" such that p is not in the cly A. By condition (b) there is a Z in 2£
such that y is in cly Z C Y—cly A. Then Z is in 3Pv and therefore in &'.
It follows that A n Z is empty and is in 3? which is a contradiction. Hence
^ B is a ^T-ultrafilter.

Now J*",, are all the ^f-ultrafilters on X. For if & is any JT-ultrafilter
on X, then the collection of sets consisting of cly Z, for Z in !F, is a family
of sets closed in Y with the finite intersection property. Since Y is compact,
there is a point p which is in cly Z for each Z in J5". It follows that J2" C J2^
and hence !F must be equal to !F9.

We can now define a map / from Y onto co(^') by f(p) = J^,, for />
in Y. Since Y is compact and since a>(2£) is Hausdorff, it follows that / is
a closed map if / is continuous. To see that the mapping is continuous, let
U* be a basic open set containing f(p) = 3F'„. Then X—U is a member of
££. Since & p is in {7* there is an A in J5"„ such that 4̂ C U. If >̂ were in the
cly (X~U) then ^ would be in cl r (X-U) n c l y ^ = clr ({X-U) n A).
Thus (X—U) nA would be in 3?v which is a contradiction since the in-
tersection is empty. Hence p is in the open set G which is the complement in
Y of cly {X—U). We show that f(G) is included in U*. If g is any point of
G then X—U is not in ^ a . By Lemma 3 there is a Z in tFa such that Z is
included in U. Consequently &g is in U* and f{G) C U*.

The mapping is one-one since condition (b), in conjunction with the
fact that Y is Hausdorff, asserts that we can separate any two distinct
points a and b of Y by the closures in Y of ^-sets A and B respectively.
Thus A is in J^a and A is not in J*",, by condition (a). It follows that !Fa is
not equal to &h and / is one-one. This completes the proof.

Theorem 2 remains true if condition (b) is replaced by condition P.
In fact the proof would be extremely easy since we could then use Theorem 1.
However the conditions on Theorem 2 give more insight into the nature of
a normal base 2£ on X. This we hope will lead to an answer to the question
as to whether every Hausdorff compactification of X may be obtained as
a WaUman space co(3f).

It is interesting to note that in Theorem 1 we defined our map from
into Y, whereas in Theorem 2 we defined it from Y into a>(3£). For
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the sake of clarification we should mention that in Theorem 2 we had to
know that condition (a) held. Moreover, Theorem 2 gives us a representation
for the ^T-ultrafilters in (o(^).

If Y is the Alexandroff one point compactification of a locally compact
Hausdorff space X, then a normal base 2? for X is the collection of zero
sets of those continuous functions on X that are constant on the complement
of some compact subset of X.1 That for this 2£', co (J&) is homeomorphic to
Y, follows immediately from our Theorem 2. In fact suppose p is the ideal
point and p is in cl r Zx n cly Z2 but not in cl r (Zx n Z2) where Z{ is the
zero set of the function /,• that is constant on the complement of the compact
set Kit i = 1, 2. Let k{ be the constant associated with Kt. If kt is not
zero then Zi is included in the compact set Kt and must therefore be compact.
Hence p is in Zi = cly Zt which is included in X and this is a contradiction.
If k-L = k2 = 0 and if p is not in cly (Zx n Z2) then there is an open set G
containing p which is disjoint from Zxn Z2. Since Kx u K2 is compact,
its complement in Y intersected with G is an open set containing p.
Then there is a point a in (Y—K1 u K2) n G n Zx and hence in
(Y—Kt) n X = X—Kf which is included in Zit i = 1, 2. Consequently a is
in G n Zj n Z2 which is a contradiction. Thus cl r (Zx n Z2) = cl r Zx n clF Z2.
If G is any open set in Y containing p then there is an open set V such that p
is in V C cly V C G. We can separate cly V and X—G by a continuous
function / which is zero on c\Y V and one on G. Since /> is the ideal point,
Y—V = X—V is a compact subset of X. The restriction / 1 X of / to X is
constant on F. We take Z to be the zero set of /1X. If U is any open set
containing p, then U r\V n X is not empty; hence p is in cly Z and cl r Z
is included in G.

Using Theorem 2 we can also show that any Hausdorff compactification
of X which gives rise to a proximity that has a productive base (see Njastad
[4]) can be obtained as a Wallman space m{2£). Theorem 2 gives a very
simple proof of this fact since we take as our normal base 3£ finite unions
of members of the productive base for the proximity. It is immediately seen
that 3£ satisfies the conditions of our Theorem.

In particular, if Y is any Hausdorff compactification of X then there
is associated with it a (unique) proximity <5 defined as: A d B if and only if
cl r A n cly B ^0 (see [4] and [5]). We say that two subsets of X are far
if they are not members of the relation 8. A collection 0* of subsets of X
is a base for the proximity 8 if every two disjoint sets in 0> are far and if
every two far sets are contained in subsets of 0* which are far.

If a proximity 8 has a base 0> which is closed under finite intersections
(Njastad [4] called such families productive) then Njastad has shown that the

1 This example of a normal base is due to Ky Fan and N. Gottesman [7]. It also
appears in a paper 'On Wallman compactifications' by R. M. Brooks.
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ring 3£ generated by 3P is a normal base for X. We now show that 3?, which is
just finite unions of members of 0>, satisfies the conditions of Theorem 2.

If Zx and Z2 are members of 2£ and if x is in cly [Zx n Z2), then
x d (Zx n Z2). Hence x d Zt and x <5 Z2 which implies that x is in cl r Zx n cly Z%.
It follows that cly {Zx n Z2) = cly Zx n cly Z2.

If G is any open set in Y containing a point p then there are open sets
V1 and V2 such that p is in F1 ( Y—G C F2, and cl r Vx n cl r V2 = 0. Since
^ is dense in Y, it follows that cl r (X n cl r Vt) = c l r F<( i = 1, 2. This
implies that the sets X n cly Vit i = 1, 2, are subsets of X which are far.
Since 2£ is a base for the proximity (5, let Zx and Z2 be members of ^ such
that X n clF V( C Z< and cly Zx n cl r Z2 = 0. Then p is in

cl r Vx C cl r Zx C y - d r Z2 C Y-c ly F2 C G.

Thus there is a Z in ^ such that >̂ is in cly Z CG and the conditions of
Theorem 2 are satisfied.

This can now be applied to the compactifications mentioned in the
first part of this note. For example Njastad has shown that the compactifi-
cation of Fan and Gottesman has a productive base of closed sets for the
associated proximity. Our Theorem 2 is then applicable.
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