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Abstract

In this paper, we investigate properties of finite-order transcendental meromorphic solutions, rational
solutions and polynomial solutions of the difference Painlevé I equation

f (z + 1) + f (z) + f (z − 1) =
az + b

f (z)
+ c,

where a, b and c are constants, |a| + |b| , 0.
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1. Introduction and results

In this paper, we assume that the reader is familiar with the basic notions of
Nevanlinna’s value distribution theory (see [14, 19, 24]). In addition, we use the
notation σ( f ) to denote the order of growth of f (z); and λ( f ), λ(1/ f ) and τ( f ) to
denote, respectively, the exponents of convergence of zeros, poles and fixed points of
f (z). Note that the exponent of convergence of fixed points of f is defined as

τ( f ) = lim sup
r→∞

log N(r, 1/( f − z))
log r

.

Painlevé and his colleagues [21] classified all equations of Painlevé type of the form

d2y
dz2

= F
(
z; y,

dy
dz

)
,
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where F is rational in y and dy/dz and (locally) analytic in z. The first of these
is PI:

d2y
dz2

= 6y2 + z.

Differential Painlevé equations were discovered at the beginning of the last century.
Although they were discovered from mathematical considerations, they occur in many
physical situations—plasma physics, statistical mechanics, nonlinear waves, quantum
gravity, general relativity, quantum field theory, nonlinear optics and fibre optics.
Painlevé equations have attracted much interest as the reduction of soliton equations
which are solvable by inverse scattering transformations (see [1, 3, 17]), and so on. In
particular, Kudryashov [18] showed that the second Painlevé equation can be used as
a model for describing the electric field in a semiconductor.

In the past 20 years, discrete Painlevé equations have become important research
problems (see [9]). For example, the equation

yn+1 + yn−1 =
αn + β

yn
+ γ,

where α, β and γ are constants, n ∈ N, is known as the special discretization of PI .
Recently, a number of papers (including [2, 4, 6, 8, 10–13, 15, 16, 20]) have

focused on complex difference equations and difference analogues of Nevanlinna’s
theory. While investigating difference analogues of Nevanlinna’s theory, many results
on complex difference equations were rapidly obtained.

Some results on the existence of meromorphic solutions for certain difference
equations were obtained by Shimomura [22] and Yanagihara [23] during the early
1980s.

Ablowitz et al. [2] looked at difference equations of the type

w(z + 1) + w(z − 1) = R(z, w), (1.1)

where R is rational in both of its arguments, and showed the following theorem.

T A (See [2]). If the second-order difference equation

y(z + 1) + y(z − 1) =
a0(z) + a1(z)y + · · · + ap(z)yp

b0(z) + b1(z)y + · · · + aq(z)yq
,

where ai and bi are polynomials, admits a nonrational meromorphic solution of finite
order, then max(p, q) ≤ 2.

Halburd and Korhonen [11–13] used value distribution theory and reasoning related
to singularity confinement to single out difference Painlevé I equations from the
difference equation (1.1). They obtained that if (1.1) has an admissible meromorphic
solution of finite order, then either w satisfies a difference Riccati equation, or (1.1) can
be transformed by a linear change in w to some classical difference equations, which
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include the difference Painlevé I equations

f (z + 1) + f (z − 1) =
az + b

f (z)
+ c, (1.2)

f (z + 1) + f (z − 1) =
az + b

f (z)
+

c
f (z)2

, (1.3)

f (z + 1) + f (z) + f (z − 1) =
az + b

f (z)
+ c, (1.4)

where a, b and c are constants.
From the above, we see that the difference Painlevé I equation is the development of

the differential and discrete Painlevé I equation. So it is an important class of difference
equation. Besides, the Painlevé I equation is important because it creates a new
transcendental function. Therefore, it is important to investigate properties of finite-
order transcendental meromorphic solutions and rational solutions and polynomial
solutions of this difference Painlevé I equation.

Chen and Shon [7] investigated some properties of meromorphic solutions of the
difference Painlevé I equation, and proved the following theorem.

T B. Let a, b, c be constants with a , 0. If f (z) is a finite-order transcendental
meromorphic solution of the difference Painlevé I equation (1.2), then:

(1) f has at most one nonzero finite Borel exceptional value;
(2) λ(1/ f ) = λ( f ) = σ( f );
(3) f (z) has infinitely many fixed points and satisfies τ( f ) = σ( f ).

In [7], they also consider properties of rational solutions of (1.2).

T C. Let a, b, c be constants where a, b are not both equal to zero.

(1) If a , 0, then (1.2) has no rational solution.
(2) If a = 0, and b , 0, then (1.2) has the nonzero constant solution f (z) = A,

where A satisfies 2A2 − cA − b = 0. The other rational solution f (z) satisfies
f (z) = A + P(z)/Q(z), where P(z) and Q(z) are relatively prime polynomials and
satisfy deg P(z) < deg Q(z).

Chen [5] considered the other form of the difference Painlevé I equation, that is,
Equation (1.3), and proved the following two theorems.

T D. Let a, b, c be constants with ac , 0. Suppose that f (z) is a finite-order
transcendental meromorphic solution of the difference Painlevé I equation (1.3). Then:

(1) f has no any Borel exceptional value;
(2) if p(z) is a nonconstant polynomial, then f (z) − p(z) has infinitely many zeros

and λ( f − p) = σ( f ).
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T E. Let a, b, c be constants with c , 0 and |a| + |b| , 0. Then:

(1) if a = 0, then (1.4) has nonzero constant solution f (z) = B, where B satisfies

2B2 − bB − c = 0;

the other rational solution f (z) satisfies f (z) = B + S (z)/H(z), where S (z) and
H(z) are relatively prime polynomials satisfying deg S (z) < deg H(z);

(2) if a , 0 and f (z) = S (z)/H(z) is a rational solution of (1.3), where

S (z) = szk + sk−1zk−1 + · · · + s0, H(z) = hzt + ht−1zt−1 + · · · + h0,

where s, sk−1, . . . , s0 and h, ht−1, . . . , h0 are constants such that sh , 0, then

t = k + 1 and s = −
ch
a
.

The main aims of this paper are to consider the properties of finite-order
transcendental meromorphic solutions, rational solutions and polynomial solutions of
the difference Painlevé I equation (1.4), and obtain the following results.

T 1.1. Let a, b, c be constants such that |a| + |b| , 0. If f (z) is a finite-order
transcendental meromorphic solution of the difference Painlevé I equation (1.4), then:

(1) λ(1/ f ) = λ( f ) = σ( f );
(2) if p(z) is a nonconstant polynomial, then f (z) − p(z) has infinitely many zeros

and λ( f − p) = σ( f );
(3) if a , 0, then f (z) has no Borel exceptional value; if a = 0, then the Borel

exceptional value of f (z) can only come from a set E = {z | 3z2 − cz − b = 0}.

R 1.2. Taking P(z) = z in Theorem 1.1, we immediately obtain the correspond-
ing result that f (z) has infinitely many fixed points and satisfies τ( f ) = σ( f ).

T 1.3. Let a, b, c be constants such that |a| + |b| , 0.

(1) If a , 0, then (1.4) has no rational solution.
(2) If a = 0, then (1.4) has nonzero constant solution f (z) = B, where B satisfies

3B2 − cB − b = 0. Furthermore:

(i) if c2 + 12b , 0, then (1.4) has no nonconstant rational solution;
(ii) if c2 + 12b = 0, and f (z) = B + S (z)/H(z) is a nonconstant rational

solution of (1.4), where S (z) and H(z) are relatively prime polynomials
satisfying deg S (z) < deg H(z),

S (z) = szm + sm−1zm−1 + · · · + s0, H(z) = hzn + hn−1zn−1 + · · · + h0,

where s, sm−1, . . . , s0 and h, hn−1, . . . , h0 are constants such that sh , 0,
then

n = m + 2 and s = −
ch
3
.

R 1.4. From Theorem 1.3, we see that if a, b, c are constants and |a| + |b| , 0,
then (1.4) has no nonconstant polynomial solution.
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E 1.5. The nonzero constant solution f (z) = B = 1/3 satisfies the difference
Painlevé I equation (1.4)

f (z + 1) + f (z) + f (z − 1) =
1/6
f (z)

+
1
2

and
a = 0, 3B2 − cB − b = 0.

E 1.6. The nonconstant rational solution

f (z) = B +
S (z)
H(z)

= 1 +
−2

z2 + 3z + 2
=

z2 + 3z
z2 + 3z + 2

satisfies the difference Painlevé I equation (1.4)

f (z + 1) + f (z) + f (z − 1) =
−3
f (z)

+ 6

and

a = 0, 3B2 − cB − b = 0, c2 + 12b = 0,

B =
p
q
, n = m + 2 and s = −

ch
3
.

2. Lemmas for proofs of theorems

L 2.1 (Valiron–Mohon’ko lemma (see [19])). Let f (z) be a meromorphic
function. Then for all irreducible rational functions in f ,

R(z, f (z)) =

∑m
i=0 ai(z) f (z)i∑n
j=0 b j(z) f (z) j

,

with meromorphic coefficients a j(z), b j(z) (ambn . 0), the characteristic function of
R(z, f (z)) satisfies

T (r, R(z, f (z))) = dT (r, f ) + o(Ψ(r)),

where d = max{m, n}, and Ψ(r) = maxi, j{T (r, ai), T (r, b j)}. In particular, if

T (r, ai) = S (r, f ) (i = 0, 1, . . . , m), T (r, b j) = S (r, f ) ( j = 0, 1, . . . , n),

then we have
T (r, R(z, f (z))) = dT (r, f ) + S (r, f ).

L 2.2 (See [20]). Let w(z) be a nonconstant finite-order meromorphic solution of

P(z, w) = 0,

where P(z, w) is a difference polynomial in w(z). If P(z, a) . 0 for a meromorphic
function a satisfying limr→∞(T (r, a)/T (r, w)) = 0, then

m
(
r,

1
w − a

)
= S (r, w)

outside of a possible exceptional set of finite logarithmic measure.
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L 2.3 (See [20]). Let f be a transcendental meromorphic solution of finite order
σ of a difference equation of the form

H(z, f )P(z, f ) = Q(z, f ),

where H(z, f ) is a difference product of total degree n in f (z) and its shifts, and where
P(z, f ), Q(z, f ) are difference polynomials so that the total degree of Q(z, f ) is at
most n. Then, for each ε > 0,

m(r, P(z, f )) = O(rσ−1+ε) + S (r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

L 2.4 (See [12, 13, 20]). Let f (z) be a nonconstant finite-order meromorphic
function. Then

N(r + 1, f ) = N(r, f ) + S (r, f )

outside of a possible exceptional set of finite logarithmic measure.

3. Proofs of theorems

3.1. Proof of Theorem 1.1. Assume that f (z) is a finite-order transcendental
meromorphic solution of (1.4).

(1) First, we prove that λ( f ) = σ( f ). By (1.4), we obtain that

P(z, f ) := f (z)( f (z + 1) + f (z) + f (z − 1)) − (az + b) − c f (z) = 0. (3.1)

By (3.1) and |a| + |b| , 0, we see that

P(z, 0) := −(az + b) . 0. (3.2)

Then by Lemma 2.2 and (3.2), we get that

m
(
r,

1
f

)
= S (r, f )

outside of a possible exceptional set of finite logarithmic measure. Thus

N
(
r,

1
f

)
= T (r, f ) + S (r, f ) (3.3)

outside of a possible exceptional set of finite logarithmic measure. Hence, by (3.3),
we have λ( f ) = σ( f ).

Secondly, we show that λ(1/ f ) = σ( f ). By (1.4), we obtain that

f (z)G(z, f ) = H(z, f ), (3.4)

where

G(z, f ) = f (z + 1) + f (z) + f (z − 1), (3.5)

H(z, f ) = az + b + c f (z). (3.6)
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By (3.4)–(3.6) and Lemma 2.3, we see that for any given ε > 0, there is a subset
H ⊂ (1,∞) having finite logarithmic measure such that for |z| = r < [0, 1] ∪ H,

m(r,G) = O(rσ−1+ε) + S (r, f ), (3.7)

where σ = σ( f ). By (1.4),

G(z, f ) = f (z + 1) + f (z) + f (z − 1) =
az + b

f (z)
+ c. (3.8)

By Lemma 2.1 (Valiron–Mohon’Ko lemma), and (3.8), we see that

T (r,G) = T (r, f ) + S (r, f ). (3.9)

Thus, (3.7) and (3.9) give

N(r,G) = T (r, f ) + O(rσ−1+ε) + S (r, f ). (3.10)

On the other hand, if f (z) has a pole of multiplicity m at z0 and |z0| ≤ r − 1, then
f (z + 1) and f (z − 1) have poles z0 − 1, z0 + 1 of multiplicity m, respectively. So

N(r,G) ≤ 3N(r + 1, f ). (3.11)

By Lemma 2.4,
N(r + 1, f ) = N(r, f ) + S (r, f ). (3.12)

Hence, by (3.10)–(3.12) we obtain that

λ
( 1

f

)
= σ( f ). (3.13)

(2) Suppose that p(z) is a nonconstant polynomial. We use a similar method to the
above to prove that λ( f − p) = σ( f ). Set

p(z) = dkzk + · · · + d0,

where dk, . . . , d0 are constants, dk , 0 and k ≥ 1, and

g1(z) = f (z) − p(z).

Then λ(g1) = λ( f − p), σ(g1) = σ( f − p). Substituting f (z) = g1(z) + p(z) into (1.4),
we obtain that

g1(z + 1) + g1(z) + g1(z − 1) + p(z + 1) + p(z) + p(z − 1) =
az + b

g1(z) + p(z)
+ c. (3.14)

By (3.14), we obtain that

P1(z, g1) := (g1(z + 1) + g1(z) + g1(z − 1)

+ p(z + 1) + p(z) + p(z − 1))(g1(z) + p(z))

− (az + b) − c(g1(z) + p(z)) = 0.

(3.15)
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By (3.15), we see that

P1(z, 0) := (p(z + 1) + p(z) + p(z − 1))p(z) − (az + b) − cp(z)

= 3d2
k z2k + · · · . 0.

Continuing to use the same method as above, we obtain that λ( f − p) = σ( f ).

(3) We prove that if a , 0, then f (z) has no Borel exceptional value.
We show that for any finite value α, we have λ( f − α) = σ( f ). Set g2(z) = f (z) − α.

Substituting f (z) = g2(z) + α into (1.4), we obtain that

g2(z + 1) + g2(z) + g2(z − 1) + 3α =
az + b

g2(z) + α
+ c. (3.16)

It follows from (3.16) that

P2(z, g2) := (g2(z + 1) + g2(z) + g2(z − 1) + 3α)(g2(z) + α)

− (az + b) − c(g2(z) + α) = 0.

By (3.16) and a , 0,

P2(z, 0) := 3α2 − (az + b) − cα . 0. (3.17)

Thus by Lemma 1.3 and (3.17), we get that

m
(
r,

1
g2

)
= S (r, g2)

outside of a possible exceptional set of finite logarithmic measure. Thus

N
(
r,

1
f − α

)
= N

(
r,

1
g2

)
= T (r, g2) + S (r, g2) = T (r, f ) + S (r, f ),

(3.18)

outside of a possible exceptional set of finite logarithmic measure. Hence, by (3.18),
we have λ( f − α) = σ( f ). Combining with (3.13), we see that f (z) has no Borel
exceptional value.

If a = 0 and α < E, then

P2(z, 0) := 3α2 − cα − b . 0.

Using a similar method to the above we obtain λ( f − α) = σ( f ). Hence, the Borel
exceptional value of f (z) can only come from a set E = {z | 3z2 − cz − b = 0}.

Thus Theorem 1.1 is proved. �

3.2. Proof of Theorem 1.3. Assume that f (z) is a nonzero rational solution of (1.4),
and has poles t1, . . . , tk. Consequently, we suppose that

d js j

(z − t j)s j
+ · · · +

d j1

z − t j
( j = 1, . . . , k)
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are the principal parts of f (z) at t j respectively, where d js j , . . . , d j1 are constants,
d js j , 0. Thus, f (z) can be represented as

f (z) =

k∑
j=1

[ d js j

(z − t j)s j
+ · · · +

d j1

z − t j

]
+ a0 + a1z + · · · + amzm, (3.19)

where a0, a1, . . . , am are constants.
We affirm that am = · · · = a1 = 0. Assume that am , 0 (m ≥ 1). For sufficiently large

z, by (3.19),

f (z) = amzm(1 + o(1)); (3.20)

f (z ± 1) = am(z ± 1)m(1 + o(1)). (3.21)

By (1.4), we obtain that

( f (z + 1) + f (z) + f (z − 1)) f (z) = az + b + c f (z). (3.22)

Substituting (3.20), (3.21) into (3.22), we obtain that

3a2
mz2m(1 + o(1)) = az + b + camzm(1 + o(1)). (3.23)

Clearly, (3.23) is a contradiction since am , 0. Hence am = 0 (m ≥ 1).
(1) Suppose that a , 0. Above we have am = 0 (m ≥ 1). Now assume that a0 , 0.

Then for sufficiently large z, by (3.19), we see that

f (z) = a0 + o(1), f (z ± 1) = a0 + o(1). (3.24)

By (1.4) and (3.24), we obtain that

(3a0 + o(1))(a0 + o(1)) = az + b + c(a0 + o(1)).

This is a contradiction since a , 0. Hence a0 = 0.
Thus, f (z) can be rewritten by (3.19) as

f (z) =
P(z)
Q(z)

, (3.25)

where

P(z) = pzk + pk−1zk−1 + · · · + p0, Q(z) = qzt + qt−1zt−1 + · · · + q0, (3.26)

where p, pk−1, . . . , p0 and q, qt−1, . . . , q0 are constants such that pq , 0 and k < t.
Then substituting (3.25) into (1.4), we obtain that

P(z + 1)P(z)Q(z − 1)Q(z) + P(z)2Q(z + 1)Q(z − 1) + P(z − 1)P(z)Q(z + 1)Q(z)

= (az + b)Q(z + 1)Q(z)2Q(z − 1) + cP(z)Q(z + 1)Q(z)Q(z − 1).
(3.27)

Thus, since k < t and a , 0, we see that the degree of the left-hand side of (3.27) does
not exceed 2k + 2t, but the degree of the right-hand side of (3.27) is equal to 1 + 4t.
This is a contradiction.

Hence, if a , 0, then (1.4) has no nonzero rational solution.
(2) Suppose that a = 0. By observation for (1.4), we see that f (z) = B is a nonzero

rational solution of (1.4), where B satisfies 3B2 − cB − b = 0. Since am = 0 (m ≥ 1),
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we now suppose that f (z) is a nonconstant rational solution of (1.4). Then f (z) can be
rewritten by (3.19) as the form (3.25), where P(z) and Q(z) satisfy (3.26) with k ≤ t.
Suppose that k < t. Then, substituting (3.25) into (1.4), we obtain that

P(z + 1)P(z)Q(z − 1)Q(z) + P(z)2Q(z + 1)Q(z − 1) + P(z − 1)P(z)Q(z + 1)Q(z)

= bQ(z + 1)Q(z)2Q(z − 1) + cP(z)Q(z + 1)Q(z)Q(z − 1).
(3.28)

Thus, in (3.28) there only exists one term bQ(z + 1)Q(z)2Q(z − 1) such that its degree
is highest. This contradiction shows that k = t. Then, by (3.26) and (3.28), we obtain
that

p(z + 1)k + pk−1(z + 1)k−1 + · · · + p0

q(z + 1)t + qt−1(z + 1)t−1 + · · · + q0
+

pzk + pk−1zk−1 + · · · + p0

qzt + qt−1zt−1 + · · · + q0

+
p(z − 1)k + pk−1(z − 1)k−1 + · · · + p0

q(z − 1)t + qt−1(z − 1)t−1 + · · · + q0

=
b(qzt + qt−1zt−1 + · · · + q0)
pzk + pk−1zk−1 + · · · + p0

+ c.

(3.29)

By (3.29), we obtain that as z→∞,

3B2 − cB − b = 0,

where B = p/q. Hence, f (z) can be rewritten as

f (z) = B +
S (z)
H(z)

(3.30)

where S (z) and H(z) are relatively prime polynomials and satisfy deg S (z) < deg H(z),
B is a constant satisfying 3B2 − cB − b = 0,

S (z) = szm + sm−1zm−1 + · · · + s0, H(z) = hzn + hn−1zn−1 + · · · + h0,

where s, sm−1, . . . , s0 and h, hn−1, . . . , h0 are constants such that sh , 0.
Furthermore, we consider the existence of nonconstant rational solutions for (1.4).
(i) We prove that if c2 + 12b , 0, then (1.4) has no nonconstant rational solution.

Suppose that f (z) is a nonconstant rational solution of (1.4). Then f (z) can be
rewritten by (3.30), where S (z) and H(z) are relatively prime polynomials and satisfy
m = deg S (z) < deg H(z) = n. Substituting (3.30) into (1.4), we obtain that

(4B − c)S (z)H(z)H(z + 1)H(z − 1) + BS (z + 1)H(z)2H(z − 1)
+ BS (z − 1)H(z)2H(z + 1)

= −(S (z)2H(z + 1)H(z − 1) + S (z)S (z + 1)H(z)H(z − 1)
+ S (z − 1)S (z)H(z)H(z + 1)).

(3.31)

Comparing coefficients and degrees of all terms of (3.31), by n > m, we get that
(6B − c)sh3zm+3n is the highest-degree term of (3.31).
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Since 3B2 − cB − b = 0 and c2 + 12b , 0, it follows that B , c/6. Thus (3.31) is a
contradiction for sufficiently large z. Therefore, if a = 0 and c2 + 12b , 0, then (1.4)
has no nonconstant rational solution.

(ii) If c2 + 12b = 0, then by 3B2 − cB − b = 0, we have B = c/6. We divide this
proof into three cases.

Case 1: n = m + 1. When n = m + 1, we have 3n + m − 1 = 2m + 2n. Comparing
coefficients of the highest-degree terms of (3.31), we obtain that the highest-degree
term of (3.31) is

((18B − 3c)sh2hn−1 + (6B − c)sm−1h3 + 3s2h2)zm+3n−1.

Since B = c/6 and sh , 0, (3.31) is a contradiction. Therefore, if a = 0, c2 + 12b = 0
and n = m + 1, (1.4) has no nonconstant rational solution.

Case 2: n = m + 2. When n = m + 2, we have m + 3n − 2 = 2m + 2n. Comparing
coefficients of the highest-degree terms of (3.31), we obtain that

(2Bsh3(n2 −C2
n + C2

m −C1
nC1

m) + 3s2h2)zm+3n−2 = (6Bsh3 + 3s2h2)zm+3n−2

is the highest-degree term of (3.31). Since c2 + 12b = 0, a = 0 and |a| + |b| , 0, it
follows that b , 0 and c , 0. Then by B = c/6, c , 0 and sh , 0, we obtain that

s
h

= −
c
3
.

Therefore, if c2 + 12b = 0, (1.4) has a nonconstant rational solution f (z) satisfying
f (z) = B + S (z)/H(z). Let

S (z) = szm + sm−1zm−1 + · · · + s0, H(z) = hzn + hn−1zn−1 + · · · + h0,

where s, sm−1, . . . , s0 and h, hn−1, . . . , h0 are constants such that sh , 0. Then

n = m + 2, s = −
ch
3
.

Case 3: n > m + 2. When n > m + 2, again comparing coefficients of the highest-
degree terms of (3.31), we obtain that

2Bsh3(n2 −C2
n + C2

m −C1
nC1

m)zm+3n−2

is the highest-degree term of (3.31). Since

n2 −C2
n + C2

m −C1
nC1

m =
1
2

((n − m)2 + n − m)

=
1
2

((
n − m +

1
2

)2

−
1
4

)
> 3 , 0

and sh , 0, it follows that B = c/6 = 0. So c = 0. If c = 0, by c2 + 12b = 0, we have
b = 0. This contradicts the fact that |a| + |b| , 0 since a = 0.

Therefore, if a = 0, c2 + 12b = 0 and n > m + 2, (1.4) has no nonconstant rational
solution.

Thus Theorem 1.3 is proved. �
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