
1
Preliminaries

This chapter is dedicated to establishing the notation and terminology that we
will use throughout this book. More specific concepts and definitions will be
introduced as and when needed. None of the material in this chapter is intended
to be of an expository nature. Rather, it collects together basic notions and facts
from linear algebra, real analysis, and fundamentals of computation that are
required for our study in later chapters. No proofs of these facts are provided
here, and instead we refer the reader to the references listed at the end of this
chapter. The handful of exercises in this chapter are included primarily because
they will be relevant later. They are in no way meant to be a comprehensive
test of familiarity with these subjects.

We will use N,Z,Q,R to denote the set of natural numbers (starting at 1),
the set of integers, the set of rational numbers, and the set of real numbers,
respectively. Z+,Q+,R+ will denote the nonnegative integers, rationals, and
reals, respectively. For any real number r ∈ R, |r| will denote the absolute
value of r . We denote the greatest integer smaller than or equal to r by �r�, the
smallest integer greater than or equal to r by �r	, {r} will be used to denote
r−�r�, and �r	 will denote the integer closest to r in absolute value. ln(r) will
denote the natural logarithm of r , and log(r) will denote the logarithm of r in
base 2. Logarithms in any other base b will be explicitly denoted by logb(r).

δij will denote the standard Kronecker delta function, i.e., δij = 1 if i= j

and 0 otherwise (the range of the indices i,j will be clear from context).
For any set X, #(X) will denote the cardinality, i.e., number of elements
in X (possibly +∞).1 2X will denote the power set of X. We will also
use the following standard asymptotic notations of O(·) and Ω(·): Given
two functions F(p1, . . . ,pk),G(p1, . . . ,pk) of nonnegative, real-valued

1 We will not worry about different cardinal numbers beyond countable and uncountable sets.
When referring to cardinality, +∞ will be used for both countable and uncountable sets.

1

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

2 Preliminaries

parameters p1, . . . ,pk , we say F =O(G) (informally, “F is asymptotically
upper bounded by G”) and G=Ω(F) (informally, “G is asymptotically
lower bounded by F ”) if there exist constants C > 0,M > 0 such that
|F(p1, . . . ,pk)| ≤ C|G(p1, . . . ,pk)| for all p1, . . . ,pk ∈ R+ with pi > M

for all i ∈ {1, . . . ,k}.2 We mention here that while this version of asymptotic
notation for functions with multiple arguments will suffice for our purposes,
there are other ways to tackle asymptotics with multiple parameters; see [79]
and [144] for a discussion of the subtleties that can arise.

1.1 Euclidean Spaces

All of the action in this book will be in finite-dimensional Euclidean spaces.
For any d ∈ N, we use Rd to denote the d-dimensional Euclidean space,
i.e., Rd is the set of all d-tuples x = (x1, . . . ,xd) of real numbers; these are
also called vectors or points in Rd . Vectors will be boldface and scalars will be
nonbold italics. Subscripts will be used to denote the coordinates, i.e., xi := xi .
We will use the notation Rd+ to denote the set of all vectors with nonnegative
coordinates. The symbol ei , i = 1, . . . ,d, will denote the ith unit vector, i.e.,
the vector which has 1 in the ith coordinate and 0 in every other coordinate;
to emphasize the dimension we will sometimes use ei

d . 0 and 1 will denote
the vector of all zeros and all ones, respectively; to emphasize the dimension
we will sometimes use 0d and 1d . 0 is also called the origin. We will use the
coordinate-wise addition operation

x+ y := (x1 + y1, . . . ,xd + yd) for any x,y ∈ Rd,

and the operation of scalar multiplication

αx := (αx1, . . . ,αxd) for any α ∈ R and x ∈ Rd .

These operations impose a vector space structure on Rd . Correspondingly, a
subset L ⊆ Rd is called a linear subspace if L is closed under the above
operations of addition and scalar multiplication. It is a convention to not
consider the empty set as a subspace. Thus, the smallest linear subspace is {0}.
Definition 1.1.1 A norm on Rd is a function N : Rd → R+ satisfying the
following properties:

2 Sometimes, it is more convenient to present asymptotic arguments when some parameters
approach 0 as a limit, instead of +∞ as in the definition above. This should be clear from
context.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.1 Euclidean Spaces 3

1. N(x) = 0 if and only if x = 0,
2. N(αx) = |α|N(x) for all α ∈ R and x ∈ Rd ,
3. N(x+ y) ≤ N(x)+N(y) for all x,y ∈ Rd . (Triangle inequality)

Example 1.1.2 For any real number p ≥ 1, define the �p norm on Rd as

‖x‖p = (|x1|p + |x2|p + · · · + |xd |p)
1
p . p = 2 is also called the standard

Euclidean norm; we will drop the subscript 2 to denote the standard norm:

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
d . The �∞ norm is defined as ‖x‖∞ = maxd

i=1 |xi |.

The following is an important result that shows that in many situations, the
specific choice of a norm does not matter.

Theorem 1.1.3 (Equivalence of norms) Let N,N ′ be any two norms on Rd .
There exists a constant C > 0 (depending on N and N ′) such that N ′(x) ≤
C ·N(x) for all x ∈ Rd .

Definition 1.1.4 Any norm on Rd defines a distance between points in x,y ∈
Rd as dN(x,y) := N(x − y). This is called the metric or distance induced by
the norm. Such a metric satisfies three important properties:

1. dN(x,y) = 0 if and only if x = y,
2. dN(x,y) = dN(y,x) for all x ∈ Rd ,
3. dN(x,z) ≤ dN(x,y)+ dN(y,z) for all x,y,z ∈ Rd . (Triangle inequality)

We will often identify the set Rn × Rd with the Euclidean space Rn+d by
“concatenation,” i.e., given x ∈ Rn and y ∈ Rd , we will associate the vector
(x1, . . . ,xn,y1, . . . ,yd) ∈ Rn+d with the tuple (x,y) ∈ Rn × Rd . Given two
norms N on Rn and N ′ on Rd , (x,y) �→ N(x)+ N ′(y) can be verified to be a
new norm on Rd × Rd ≡ Rn+d .

Definition 1.1.5 We also utilize the (standard) inner product of x,y ∈ Rd :
〈x,y〉= x1y1+ x2y2+ · · · + xdyd . (Note that ‖x‖22=〈x,x〉). We say x and
y are orthogonal if 〈x,y〉 = 0. A set of vectors x1, . . . ,xk is said to be
orthonormal if 〈xi,xj 〉 = δij for all i,j ∈ {1, . . . ,k}.
Theorem 1.1.6 (Cauchy–Schwarz inequality) For any x,y ∈ Rd , |〈x,y〉| ≤
‖x‖ · ‖y‖.
Definition 1.1.7 For any norm N and x ∈ Rd , r ∈ R+, we will call the set
BN(x,r) := {y ∈ Rd : N(y−x) ≤ r} as the ball around x of radius r . BN(0,1)

will be called the unit ball for the norm N . We will drop the subscript N when
we speak of the standard Euclidean norm and there is no chance of confusion
in the context.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

4 Preliminaries

A subset X ⊆ Rd is said to be bounded if there exists R ≥ 0 such that
X ⊆ B(0,R).

Definition 1.1.8 (Set operations) Given any set X ⊆ Rd and a scalar α ∈ R,

αX := {αx : x ∈ X}.
Given any two sets X,Y ⊆ Rd , we define the Minkowski sum of X,Y as

X + Y := {x+ y : x ∈ X,y ∈ Y }.
We will write X + t if Y = {t} is a singleton; this is called the translate of
X by t.

The characteristic function3 of X is defined as 1X(x) :=
{

1 if x ∈ X,

0 otherwise.

1.2 Linear Algebra

An important tool in linear algebra is the notion of linear independence.

Definition 1.2.1 Let x1, . . . ,xk ∈ Rd . A linear combination of x1, . . . ,xk is
any point of the form λ1x1 + · · · + λkxk where λ1, . . . ,λk ∈ R. The set of all
linear combinations of x1, . . . ,xk will be denoted by span(x1, . . . ,xk).

A collection of points x1, . . . ,xn ∈ Rd is said to be linearly independent if
there is no i ∈ {1, . . . ,n} such that xi can be expressed as a linear combination
of the remaining xj , j �= i. If there exists such an index i, then x1, . . . ,xn are
said to be linearly dependent.

Similarly, a set X ⊆ Rd (possibly infinite) is said to be linearly independent
if no x ∈ X can be expressed as a linear combination of (finitely) many points
in X \ {x}; otherwise, X is said to be linearly dependent.

According to the above definition, any set containing the origin and another
nonzero vector is linearly dependent. We adopt the standard convention that
even the singleton set containing the origin is a linearly dependent set. Then
we have the following equivalent formulation of linear independence, which is
very useful.

Proposition 1.2.2 Points x1, . . . ,xk ∈ Rd are linearly independent if and only
if λ1x1 + · · · + λkxk = 0 implies λ1 = λ2 = · · · = λk = 0.

A fundamental object of study in linear algebra is the notion of a linear
transformation.

3 The alternative terminology “indicator function” will be used for a different but related concept
in this book (Example 3.1.11), in line with the practice in convex analysis.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.2 Linear Algebra 5

Definition 1.2.3 A linear map or transformation or function is a function
T : Rd → Rm between two Euclidean spaces such that T (λx+γy) = λT (x)+
γT (y) for all x,y ∈ Rd and λ,γ ∈ R.

The above definition is “coordinate free,” and so it can be extended to maps
T : L→ L′ where L ⊆ Rd and L′ ⊆ Rm are arbitrary subspaces. This will be
useful at a few places in the book (e.g., projections onto linear subspaces).

Any linear transformation between Rd and Rm can be represented by an
m × d matrix. In other words, for any linear transformation T : Rd → Rm,
there exists an m × d matrix A such that T (x) = Ax for all x ∈ Rd , where
we view x as a matrix with a single column and Ax denotes standard matrix
multiplication. In particular, Aij := T (ej)i . Conversely, any m × d matrix
A gives a linear transformation x �→ Ax. This also leads to the observation
that the matrix corresponding to a composition of linear transformations is the
product of the matrices corresponding to the individual transformations. We
will also consider “translated” versions of linear transformations.

Definition 1.2.4 An affine map or transformation or function is a function
T : Rd → Rm of the form T (x) = Ax + b, where A is an m × d matrix and
b ∈ Rm.

Given a set X ⊆ Rd , we will use the notation T (X) to denote the image
of this set under the affine map T ; similarly A(X) := {Ax : x ∈ X}. The set
of all m × d matrices will be denoted by Rm×d . We use the notation 0m×d to
denote the m × d matrix with all zero entries. The rank of a matrix A will be
denoted by rk(A) – it is the maximum number of linearly independent rows
of A, which is equal to the maximum number of linearly independent columns
of A. A matrix is said to have full row rank (respectively, full column rank) if
its rank equals the number of rows (respectively, the number of columns). Any
affine transformation Ax+b is also said to have rank rk(A). The transpose AT

of A ∈ Rm×d is defined by AT
ij = Aji for all i ∈ {1, . . . ,d} and j ∈ {1, . . . ,m}.

The following characterization of the transpose will be important for us.

Proposition 1.2.5 Let A ∈ Rm×d and B ∈ Rd×m. Then 〈y,Ax〉 = 〈By,x〉 for
all x ∈ Rd and y ∈ Rm if and only if B = AT .

The above also shows that (AB)T = BT AT for any two matrices with the
appropriate dimensions.

When m = d, we say that the matrix is square. For a square matrix, Aii are
called the diagonal entries. A diagonal matrix is a square matrix A such that
Aij = 0 if i �= j ; We use Id to denote the d× d identity matrix, i.e., the matrix
where the diagonal elements are 1 and all other entries are 0. The function

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

6 Preliminaries

det(A) :=
∑

Permutations
σ : {1, . . . ,d} → {1, . . . ,d}

sgn(σ)

d∏
i=1

Aiσ(i)

defined on the space of all d × d square matrices is called the determinant of
A, where sgn(σ) is the signature of the permutation σ.4 The following formula
for computing determinants of products of matrices is very useful.

Theorem 1.2.6 (Cauchy–Binet formula) Let m,d ≥ 1 and let A ∈ Rm×d and
B ∈ Rd×m. Then

det(AB) =
∑

S ⊆ {1, . . . ,d}
#(S) = m

det(AS) det(BS),

where AS is the m × m submatrix of A with columns indexed by S and BS is
the m×m submatrix of B with rows indexed by S.

Theorem 1.2.7 Let T : Rd → Rd be a linear transformation, and let A ∈
Rd×d be the corresponding matrix. The following are equivalent.

1. T is injective, i.e., T (x) = T (y) implies x = y.
2. T is onto, i.e., T (Rd) = Rd .
3. T is bijective and T −1 is a linear map as well.
4. There exists a matrix B ∈ Rd×d such that AB = BA = Id . B is denoted

by A−1 and is called the inverse matrix of A.
5. det(A) �= 0.

A matrix satisfying part 4. of Theorem 1.2.7 is called an invertible matrix.
Theorem 1.2.7 also shows that A−1 is the matrix corresponding to the linear
map T −1, and (AB)−1 = B−1A−1. The following formula relating the inverse
and transpose is useful.

Proposition 1.2.8 Let A ∈ Rd×d . Then A is invertible if and only if AT is
invertible. Moreover, (AT)−1 = (A−1)T . We will use the shorthand A−T to
denote this matrix.

The following theorem singles out a special class of matrices that are
important in various contexts.

Theorem 1.2.9 Let A ∈ Rd×d be a square matrix. The following are all
equivalent.

4 The signature of a permutation is +1 if it has an even number of inversions, and −1 if it has an
odd number of inversions.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.2 Linear Algebra 7

1. The columns of A are orthonormal.
2. The rows of A are orthonormal.
3. A−1 = AT .
4. 〈Ax,Ay〉 = 〈x,y〉 for all x,y ∈ Rd .
5. ‖Ax‖ = ‖x‖ for all x ∈ Rd .

Matrices satisfying the conditions in Theorem 1.2.9 are called orthonormal
matrices.

We now come to a fundamental theorem of linear algebra.

Theorem 1.2.10 Let X ⊆ Rd . The following are equivalent.

1. X is a linear subspace.
2. There exists 0 ≤ m ≤ d and linearly independent vectors v1, . . . ,vm ∈ X

such that, X = span({v1, . . . ,vm}).
3. There exists 0 ≤ m ≤ d and orthonormal vectors v1, . . . ,vm ∈ X such

that, X = span({v1, . . . ,vm}).
4. There exists 0 ≤ m ≤ d and a matrix A ∈ R(d−m)×d with full row rank

such that X = {x ∈ Rd : Ax = 0}.
Definition 1.2.11 The number m showing up in items 2., 3., and 4. in
Theorem 1.2.10 is called the dimension of X. The set of vectors {v1, . . . ,vm}
are called a basis for the linear subspace.

1.2.1 Singular Value and Eigen Decompositions

Theorem 1.2.12 (Singular Value Decomposition (SVD)) Let A ∈ Rm×d with
rk(A) = r . There exist scalars σ1, . . . ,σr > 0, and orthonormal sets of vectors
v1, . . . ,vr ∈ Rd and u1, . . . ,ur ∈ Rm such that

Ax = σ1〈v1,x〉u1 + · · · σr 〈vr,x〉ur .

In other words, A = UΣV T, where Σ is an r×r diagonal matrix with σ1, . . . ,σr

on the main diagonal, and V and U are the matrices with v1, . . . ,vr and
u1, . . . ,ur as columns, respectively. Such a factorization of the matrix is known
as a singular value decomposition (SVD). σ1, . . . ,σr are called the singular
values, v1, . . . ,vr are called right singular vectors, and u1, . . . ,ur are called
left singular vectors.

Up to permutations, σ1, . . . ,σr are unique, i.e., any SVD of A has the same
Σ up to permutations of the diagonal entries. However, there may exist two
distinct SVDs UΣV T and U ′ΣV ′T such that U and U ′ do not have the same
set of columns and/or V and V ′ do not have the same set of columns.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

8 Preliminaries

Definition 1.2.13 A square matrix A ∈ Rd×d is called symmetric if Aij =
Aji for all i,j ∈ {1, . . . ,d}, i.e., A = AT .

Definition 1.2.14 Let A ∈ Rd×d . A vector v ∈ Rd is called an eigenvector
of A if there exists λ ∈ R such that Av = λv. λ is called the eigenvalue
of A associated with v. λmax(A) and λmin(A) will denote the maximum and
minimum eigenvalues of A, respectively.

Theorem 1.2.15 If A ∈ Rd×d is symmetric then it has d orthogonal eigen-
vectors v1, . . . ,vd all of unit Euclidean norm, with associated eigenvalues
λ1, . . . ,λd ∈ R. Moreover, if S is the matrix whose columns are v1, . . . ,vd

and Λ is the diagonal matrix with λ1, . . . ,λd as the diagonal entries, then
A = SΛST .

Moreover, rk(A) equals the number of nonzero eigenvalues.

Theorem 1.2.16 Let A ∈ Rd×d be a symmetric matrix of rank r . The following
are equivalent.

1. All eigenvalues of A are nonnegative.
2. There exists a matrix B ∈ Rr×d with linearly independent rows such that

A = BT B.
3. uT Au ≥ 0 for all u ∈ Rd .

Definition 1.2.17 A symmetric matrix A ∈ Rd×d satisfying any of the three
conditions in Theorem 1.2.16 is called a positive semidefinite (PSD) matrix. If
rk(A) = d, i.e., all its eigenvalues are strictly positive, then A is called positive
definite. Any matrix B satisfying condition 2. in Theorem 1.2.16 is called a
square root of A.

The following relationship between the SVD of a matrix A and the
eigenvectors and eigenvalues of AAT and AT A is useful.

Proposition 1.2.18 Let A ∈ Rm×d . The following are true.

1. σ is a singular value of A if and only if it is the square root of a positive
eigenvalue of AAT and AT A. In particular, for positive semidefinite
matrices, singular values and eigenvalues coincide.

2. u is a left singular vector of A if and only if it is an eigenvector of AAT.
3. v is a right singular vector of A if and only if it is an eigenvector of AT A.

1.2.2 Matrix Norms

It is sometimes useful to consider the space Rm×d matrices as a Euclidean
space in its own right. This can be done explicitly by “vectorizing” the matrix,

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.2 Linear Algebra 9

i.e., thinking of A ∈ Rm×d as a vector in Rmd . There are several ways one
can do this, depending on how the matrix entries are ordered as coordinates
of the corresponding vector. This choice of ordering will not matter at all for
what follows. What is important is that the operations of matrix addition and
multiplication by a scalar coincide with the standard vector space structure
on the corresponding Euclidean space. The notion of a norm and the distance
induced by this norm are then well-defined concepts on Rm×d (or Rmd). The
following particular class of norms will be useful.

Definition 1.2.19 Let N be a norm on Rd and N ′ be a norm on Rm. The
induced norm on Rm×d is defined as

‖A‖N,N ′ := sup
x∈Rd\{0}

N ′(Ax)

N(x)
.

When N = �p and N ′ = �q for some p,q ≥ 1, this will be abbreviated to
‖A‖p,q , and when p = q, to simply ‖A‖p. The special case of p = q = 2 has
the name spectral norm of A.

The following is a straightforward consequence of the definitions.

Theorem 1.2.20 The spectral norm of A is given by the largest singular value
of A.

1.2.3 Exercises

1. Show that any positive definite matrix A ∈ Rd×d defines a norm on Rd via
NA(x) =

√
xT Ax. This norm is called the norm induced by A. (When A is

the identity matrix Id , this gives the standard Euclidean norm.)
2. Let A ∈ Rd×d be a positive definite matrix. Show the generalized Cauchy–

Schwarz inequalities: |yT Ax| ≤ NA(x) · NA(y) and |yT x| ≤ NA(x) ·
NA−1(y).

3. Show that a function T : Rd → Rm is an affine transformation if and only
if T (λx+ γy) = λT (x)+ γT (y) for all x,y ∈ Rd and all λ,γ ∈ R such that
λ+ γ = 1.

4. Let A ∈ Rk×k . Show that for any x ∈ Rk ,

σmin(A)‖x‖2 ≤ ‖Ax‖2 ≤ σmax(A)‖x‖2,

where σmin(A) and σmax(A) are the smallest and largest singular values of
the matrix A, respectively, with the convention that if A is not invertible
then we take the smallest singular value to be 0.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

10 Preliminaries

1.3 Real Analysis

For any subset of real numbers S ⊆ R, we denote the infimum by inf S and
the supremum by sup S. The following are useful properties of infimums and
supremums (we use the set operations from Definition 1.1.8 applied to Rd with
d = 1).

Theorem 1.3.1 Let A,B ⊆ R and t ≥ 0. The following are all true.

1. inf(tA) = t inf(A).
2. inf(A+ B) = inf(A)+ inf(B).
3. If A ⊆ B then inf(A) ≥ inf(B).
4. inf(−A) = − sup(A), where −A = {−x : x ∈ A}.
Definition 1.3.2 Fix a norm N on Rd . A set X ⊆ Rd is called open (with
respect to N) if for every x ∈ X, there exists r ∈ R+ such that BN(x,r) ⊆ X.
A set X is closed (with respect to N) if its complement Rd \X is open.

By Theorem 1.1.3, a set X ⊆ Rd is open with respect to a norm N if and
only if X is open with respect to every norm on Rd . Thus, we can drop the
qualification “with respect to a norm” for referring to open and closed sets.

Theorem 1.3.3 The following all hold:

1. ∅,Rd are both open and closed.
2. An arbitrary union of open sets is open. An arbitrary intersection of closed

sets is closed.
3. A finite intersection of open sets is open. A finite union of closed sets is

closed.

Definition 1.3.4 A sequence in Rd is a countable ordered set of points,
namely x1,x2,x3, . . ., and will often be denoted by {xi}i∈N. We say that the
sequence converges or that the limit of the sequence exists if there exists a
point x such that for every ε > 0, there exists M ∈ N such that N(x− xn) ≤ ε
for all n ≥ M , for some norm N on Rd . x is called the limit point, or simply
the limit, of the sequence and will also sometimes be denoted by limn→∞ xn.

By Theorem 1.1.3, the concept of a limit does not depend on the choice of
the norm: x is the limit of a sequence {xi}i∈N under some norm if and only if
it is the limit under every norm.

Theorem 1.3.5 A set X ⊆ Rd is closed if and only if for every convergent
sequence in X, the limit of the sequence is also in X.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.3 Real Analysis 11

Definition 1.3.6 We introduce three important notions:

1. For any set X ⊆ Rd , the closure of X is the smallest (with respect to set
inclusion) closed set containing X and will be denoted by cl(X).

2. For any set X ⊆ Rd , the interior of X is the largest (with respect to set
inclusion) open set contained inside X and will be denoted by int(X).

3. For any set X ⊆ Rd , the boundary of X is defined as bd(X) := cl(X) \
int(X).

Definition 1.3.7 Let X′ ⊆ X ⊆ Rd be two subsets. X′ is said to be dense in
X if X ⊆ cl(X′).

Definition 1.3.8 A set in Rd that is closed and bounded is called compact.

Theorem 1.3.9 (Heine–Borel theorem) Let C ⊆ Rd be a compact set, and
let {Uλ : λ ∈ Λ} be any (possibly infinite) family of open subsets of Rd such
that C ⊆ ⋃

λ∈Λ Uλ. Then there exists a finite subfamily Λ′ ⊆ Λ such that
C ⊆⋃

λ∈Λ′ Uλ.

Theorem 1.3.10 Let C ⊆ Rd be a compact set. Then every sequence {xi}i∈N
contained in C (not necessarily convergent) has a convergent subsequence.

Theorem 1.3.11 Let Cλ, λ ∈ Λ be any family of closed sets in Rd such that at
least one of them is compact.

⋂
λ∈Λ Cλ = ∅ if and only if there is a finite set of

indices λ1, . . . ,λk ∈ Λ such that Cλ1 ∩ · · · ∩ Cλk
= ∅.

Definition 1.3.12 A function f : Rd → Rn is continuous at x ∈ Rd if
for every convergent sequence {xi}i∈N ⊆ Rd with limn→∞ xi = x, we have
limi→∞ f (xi) = f (x). A function is said to be continuous if it is continuous
at every x ∈ Rd .

Let N1 be a norm on Rd and N2 be a norm on Rn. f is said to be Lipschitz
continuous (with respect to these norms) over a domain D ⊆ Rd if there exists
a constant L such that dN2(f (x),f (y)) ≤ L · dN1(x,y) for all x,y ∈ D. L is
called the Lipschitz constant of f over D with respect to these norms.

It can be verified that a Lipschitz continuous function is continuous.

Theorem 1.3.13 (Weierstrass’ theorem) Let f : Rd → R be a continuous
function. Let X ⊆ Rd be a nonempty, compact subset. Then inf{f (x) : x ∈ X}
is attained, i.e., there exists xmin ∈ X such that f (xmin) = inf{f (x) : x ∈ X}.
Similarly, there exists xmax ∈ X such that f (xmax) = sup{f (x) : x ∈ X}.

A generalization of the above theorem is the following.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

12 Preliminaries

Theorem 1.3.14 Let f : Rd → Rn be a continuous function, and C be a
compact set. Then f (C) is compact.

We will also need to speak of differentiability of functions f : Rd → Rn.

Definition 1.3.15 We say that f : Rd → Rn is differentiable at x ∈ Rd if
there exists a linear transformation A : Rd → Rn such that

lim
h→0

‖f (x+ h)− f (x)− Ah‖
‖h‖ = 0.

If f is differentiable at x, then the linear transformation A is unique. It is
commonly called the differential or total derivative of f at x and is denoted
by f ′(x). When n = 1, f ′(x) is a linear functional and can therefore be
represented by an inner product, i.e., there exists a vector v ∈ Rd such that
f ′(x)(u) = 〈v,u〉 for all u ∈ Rd . The vector v is commonly called the gradient
of f and is denoted by ∇f (x).

If f : Rd → R is differentiable everywhere, and the gradient function
∇f : Rd → Rd is differentiable at x, then its differential at x is a linear
map from Rd to Rd . The corresponding matrix (see Section 1.2) is called
the Hessian of f at x, and it is denoted by ∇2f (x). f is said to be twice
differentiable if ∇f is differentiable everywhere.

Definition 1.3.16 Let f : Rd → R be any function and let x ∈ Rd , r ∈ Rd .
We define the directional derivative of f at x in the direction r as

f ′(x;r) := lim
t→0+

f (x+ tr)− f (x)

t
(1.3.1)

if that limit exists. Note that we consider the limit as t approaches 0 from the
right. We will be speaking of f ′(x;·) as a function from Rd → R.

For any coordinate i ∈ {1, . . . ,d}, if f ′(x;ei) = −f ′(x,− ei) then the limit

lim
h→0

f (x+ hei)− f (x)

h

exists and is called the partial derivative of f : Rd → R at x in the ith
direction. It will be denoted by f ′i (x).

Theorem 1.3.17 If f : Rd → R is differentiable at x, then the partial
derivatives exist at x for all i = 1, . . . ,d and the i-coordinate of ∇f (x) is
precisely f ′i (x). Conversely, if the partial derivatives all exist at x and they are
continuous functions at x, then f is differentiable at x.

Definition 1.3.18 For any subset X ⊆ Rd , vol(X) will denote the volume of
X, i.e., vol(X) := ∫

X
dx.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.4 Models of Computation 13

The following limit property of volumes will be used.

Theorem 1.3.19 Let X1,X2, . . . be a sequence of sets in Rd such that Xi ⊆ Xj

for all i ≤ j . Then vol
(⋃∞

i=1 Xi

) = limi→∞ vol(Xi).
Similarly, if X1,X2, . . . be a sequence of compact sets in Rd such that Xi ⊇

Xj for all i ≤ j . Then vol
(⋂∞

i=1 Xi

) = limi→∞ vol(Xi).

1.3.1 Exercises

1. Show that if X is compact and Y is closed, then X + Y is closed. Find an
example with closed sets X,Y such that X + Y is not closed.

2. Show that if f is differentiable everywhere, it is also continuous every-
where.

1.4 Models of Computation

The second part of this book deals with mathematical optimization, with a
heavy emphasis on algorithmic aspects. This necessitates a discussion of a
model of computation in which we will carry out all the operations for solving
an optimization problem.

We will not enter into a very detailed and formal discussion of computation
models. At an intuitive level, an algorithm is simply a piece of computer code
that takes as input an instance of an optimization problem and outputs the
solution to it. However, there are two related issues that require clarification.
First, one has to formalize what it means to “input an instance of an
optimization problem.” For example, we will discuss at length optimization
using functions defined over Rd and subsets of Rd . We have to define more
precisely how we can “input” a function or a subset to a computer. Second,
since we will be dealing with functions over Rd and subsets of Rd , we may
have to deal with irrational numbers in R. How are we to represent arbitrary
real numbers on a “finite memory” computer?

These two issues bring us face-to-face with two distinct approaches to
computation within mathematical optimization. The continuous or numerical
optimization community, with its very close connection to scientific com-
putation and numerical analysis, typically works in the arithmetic model of
computation. On the other hand, the discrete or combinatorial optimization
community, due to a more significant overlap with computer science, primarily
uses the Turing machine model of computation. We discuss both of these
models in a little more detail below.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

14 Preliminaries

1.4.1 Arithmetic Model of Computation

Here one assumes that one can perform addition, subtraction, multiplication,
and division of any two real numbers, as well as compare two real numbers
to tell whether the first one is lesser than, greater than, or equal to the second
number. In some situations, one also allows the possibility of taking square
roots. These operations are called elementary operations. Thus, this model of
computation is over the ordered field of real numbers: arbitrary real numbers
can be given as input, be stored in memory, and be outputs. An algorithm in this
model of computation is a piece of computer code (with the standard notions of
programming variables, iteration loops, branchings, etc.) with the idealization
just mentioned: one can store arbitrary real numbers in memory and perform
computations on them using the elementary operations. Different algorithms
will have different formats for their inputs, but in the end it is simply a list of
real numbers that encodes the input.

Given an algorithm in this model, and any input to the algorithm, the
running time or time complexity of the algorithm on this input is the total
number of elementary operations performed by the algorithm. Similarly, the
space complexity of the algorithm is the maximum amount of memory used
(i.e., the number of real numbers stored) at any given point during the
algorithm’s execution.

1.4.2 Turing Machine Model of Computation

Here, one breaks down the notion of computation to even more basic compo-
nents. For instance, the addition of two numbers is not an elementary operation:
intuitively, more computation is needed to add larger numbers compared to
smaller numbers. The main difference from the arithmetic model is that every-
thing – inputs, outputs, and intermediate objects in memory – must be stored
as finite-length binary strings and one can perform three simple operations:
read a bit stored in a particular location in memory (and check if it equals 0
or 1), change the bit stored in a particular location in memory, or write a bit
into a new memory location. There are many equivalent ways of formalizing
what an algorithm is in this model, which we will not get into here; see the
references at the end of the chapter. It suffices for our purposes to think of an
algorithm in this model of computation as a piece of computer code (with the
standard notions of programming variables, iteration loops, branchings, etc.)
with elementary operations restricted to the above operations involving bits.

Given an algorithm in this model, and any input to the algorithm, the
running time or time complexity of the algorithm on this input is again the

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.4 Models of Computation 15

total number of elementary operations performed by the algorithm. Similarly,
the space complexity of the algorithm is the maximum amount of memory
used (i.e., the number of bits stored) at any given point during the algorithm’s
execution.

In our opinion, both of these approaches have their advantages and dis-
advantages and no one approach captures all the subtleties of what it means
to solve an optimization problem. Discrete or combinatorial optimization has
traditionally been concerned with objects that have a natural encoding as
finite binary strings, and so the Turing machine model of computation is a
natural way to analyze such algorithms. However, continuous optimization,
by its very nature, deals with the ordered set of reals in its computations
and the arithmetic model becomes the obvious model. The Turing machine
model, with its finitary nature, cannot (exactly) represent the set of all real
numbers. From a mathematical perspective, one could argue that the arithmetic
model is more general, since it can simulate any computation performed
in the Turing machine model, since finite binary strings are simply a list
of 0’s and 1’s, and the elementary operations of a Turing machine can be
simulated by the elementary operations of the arithmetic model. In fact, under
standard computational complexity assumptions and depending on exactly
which programming instructions are allowed, it can be shown rigorously that
the arithmetic model is significantly more powerful than the Turing machine
model; see Section 1.5 for more on the comparisons between these two models
of computation. However, currently, no real (physical) computing machine
can implement the arithmetic model. Thus, one could counterargue that the
Turing machine model is the one that can actually be implemented and thus
more authentic as a mathematical model of computation. We personally think
this counterargument is a bit narrow. First, we cannot predict what physical
machines may or may not be invented in the future; perhaps, some analog
machines will be able to implement the arithmetic model. Second, valuable
mathematical insights into numerical optimization can be derived from the
arithmetic model of computation, which is impossible to express in the Turing
machine model.

We do not mean to enter into a deep philosophical debate on the pos-
sibilities and limitations of different computational models. This inevitably
leads to foundational questions in mathematics (e.g., the nature of existence
of an irrational number) and computation (e.g., designing an algorithm for
adding arbitrary real numbers) which is not the focus of this book. Instead,
we will adopt a third approach, outlined in Section 1.4.3, that interpolates
between these two models and is very convenient for discussing optimization
algorithms.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

16 Preliminaries

Before we proceed, we point out that Turing machines can perform
computations over rational numbers using a standardized encoding which
represents any integer using its binary representation and a rational number
as a pair of (binary representations of) integers (numerator and denominator).
The encoding size of any rational number is the size of the binary string used
to represent it. We generalize this notion to both models of computation.

Definition 1.4.1 Let X be an arbitrary set. We say that X has a representation
in the arithmetic model of computation if there is an injective map from X

to the set of finite sequences of real numbers. Similarly, we say that X has
a representation in the Turing machine model of computation if there is an
injective map from X to the set of finite binary strings. These maps give
“labels” or encodings for the elements of X so that they can be stored in
memory if needed and an algorithm can process them in its computations. The
encoding size of any x ∈ X is the length of the sequence that encodes it.

1.4.3 Oracle-Based Computation

1.4.3.1 Turing Machines Augmented with Real Number Oracles
The tension noted above between the two models led to a hybrid approach that
tries to retain the richness of the arithmetic model while staying close to the
principle of physical realizability of the Turing machine model. It traces its
roots to the constructive philosophy of mathematics [40, 46], and considers
the Turing machine model augmented with oracles. What this means is that
an algorithm can query certain oracles at any point during its execution and
use the responses in its computations. The responses from the oracle must be
binary strings so that they can be processed by the Turing machine. The most
basic kind of an oracle is that representing a set of real numbers.

Definition 1.4.2 Let I ⊆ R be a subset of real numbers. A rational
oracle representing I is a set of functions {qε}ε∈Q+\{0} indexed by the positive
rationals with qε : I → Q such that for any α ∈ I, |qε(α)− α| ≤ ε.

Real number oracles are sometimes equipped with a “size”: for every α ∈ I,
there exists a constant Kα ≥ 1 such that for every ε > 0, the encoding size of
the rational number qε is at most Kα times the encoding size of ε. Additionally
if α is rational, Kα must be at least the encoding size of α. This ensures
that any algorithm in the standard Turing machine model has a comparable
implementation in the oracle-based model. See [168, Section 1.4] for this
important point.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.4 Models of Computation 17

1.4.3.2 General Oracles
In Part II of this book, we will encounter other oracles, e.g., those representing
functions on Rd and subsets of Rd , that generalize the basic real number
oracles from Definition 1.4.2. This will also tie into a formalization of the
idea of giving an optimization problem as “input” to an algorithm. In this
context, it will be useful to extend the notion of oracle-based computation to
the arithmetic model as well.

Definition 1.4.3 Let I be an arbitrary set. An oracle representing I is given
by a set Q of possible queries and a set H of possible answers or responses.
Each query q ∈ Q is a function q : I → H . We say that q(I) ∈ H is the
answer (or response) to the query q on the element I ∈ I. The oracle is said
to be unambiguous if for every I,I ′ ∈ I with I �= I ′, there exists some q ∈ Q
such that q(I) �= q(I ′).

An oracle is compatible with a model of computation (arithmetic or Turing
machine) if Q and H both have representations in that model (Definition
1.4.1).

An oracle-based algorithm for processing I in either of these two models
of computation that uses an oracle (Q,H) compatible with that model of
computation is an algorithm that has the additional ability to query any q ∈ Q
and use the response in its computations. Such algorithms do not have an
explicit input I ∈ I , but rather the input is revealed implicitly by the responses
q(I) it receives from the queries to the oracle.

In the traditional view of computation the set of possible inputs I to
the algorithm has an encoding itself, i.e., I has a representation in the
model of computation (Definition 1.4.1). One can then associate a natural
unambiguous oracle compatible with this model of computation: Q = {q}
is a singleton and q(I) is the encoding of I ∈ I. Algorithms processing I
can then simply query q at the beginning of their computation (equivalent to
“receiving the input”) and then never make any other oracle queries. Therefore,
oracle-based computation strictly expands the scope of computation from the
traditional view of “inputs processed to give outputs.” In fact, adaptively posing
the queries will be a crucial feature of several mathematical optimization
algorithms we discuss in Part II. We will see concrete examples of oracles for
different kinds of optimization problems (cf. Example 5.2.2 and Section 6.1.1).

The arithmetic model often leads to the most concise and elegant descrip-
tion of algorithmic ideas in optimization and we will mostly use this model
in our discussions. Moreover, for some of the algorithms we discuss it
is not known if a version in the Turing machine model (with or without
oracles) exists. Nevertheless, we will provide references to implementations

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

18 Preliminaries

in the (oracle) Turing machine model for all the algorithms where such
implementations are known in the literature.

1.5 Notes and Related Literature

Euclidean spaces and their linear algebraic and real analytic properties are
well-studied topics, with many books covering them that fill several shelves in
an academic library. We recommend [219] for the linear algebra of Euclidean
spaces. Halmos’ text [132] is a superb reference for a “coordinate-free” study
of finite-dimensional vector spaces and linear algebra. Two classic references
for real analysis (both in Euclidean spaces and more generally) are [204, 206].
These three books cover everything that we surveyed in Sections 1.1, 1.2,
and 1.3, and much more.

The Turing machine model of computation has been studied for almost a
century now. A good introduction is [5, chapter 1], which includes a discussion
of related models like (integer) random access machines (RAMs), and [13]
dives into the subject in depth.

The arithmetic model has its roots in attempts to formalize numerical
algorithms such as Newton’s method for finding roots of nonlinear equations. It
seems hard to formulate such classical computational procedures in numerical
analysis and scientific computation in the Turing machine model, simply
because such procedures assume operations over the entire ordered field of
real numbers which is impossible to capture in the finitary world of the Turing
machine model. Several proposals have been put forward to address this issue;
see [1, 53, 56, 118, 123, 129, 155, 158, 168, 189, 191, 224, 230] as a repre-
sentative list. The arithmetic model, as described in Section 1.4, is essentially
the same as the computational models from [56, 191], very closely related to
the model in [53], and is also sometimes referred to as the real RAM model.
As mentioned in Section 1.4.2, it has been shown rigorously that the real RAM
model is significantly more powerful, unless one restricts the programming
instructions or arithmetic operations [43, 133, 153, 190, 211]. For instance, it
can be shown that if something called indirect indexing (an operation which
is present in every modern programming language) is allowed in the real
RAM model, it can solve in polynomial time all problems solvable by Turing
machines with polynomial amount of memory. This represents a significant
increase in power because if polynomial time is the same as polynomial space
for Turing machines, the so-called polynomial hierarchy would collapse, and
among other things, the class P would equal NP [13]. See [115] for some
recent work on the real RAM model that addresses this issue.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

1.5 Notes and Related Literature 19

The oracle Turing machine model has a long history going back to the
original work of Turing [224, 225], and developed further in [129, 158]. We
refer to [155, 230] as good textbook expositions. Using this model in the realm
of (discrete) optimization seems to have been first explored in [123, 168].
In particular, Definition 1.4.2 is taken directly from [168].

Our definition of a general oracle and oracle-based algorithms in this
general setting is not explicitly stated anywhere in the literature. However,
these concepts and their use in Part II are very much inspired by the beautiful
monograph [222], as well as work in the oracle Turing machine model cited
above. Definitions 1.4.1 and 1.4.3 are made with respect to the arithmetic
model and the Turing machine model of computation, but they can be easily
adapted to any other model of computation, including the ones cited above.
This makes the view presented here of algorithmic computation very flexible
and general, as well as especially useful for discussing diverse kinds of
mathematical optimization algorithms (combinatorial and numerical) under a
unifying umbrella in Part II.

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

https://doi.org/10.1017/9781108946650.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108946650.002

