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PLANAR LATTICES 

DAVID KELLY AND IVAN RIVAL 

A finite partially ordered set (poset) P is customarily represented by drawing 
a small circle for each point, with a lower than b whenever a < b in P , and 
drawing a straight line segment from a to b whenever a is covered by b in P 
(see, for example, G. Birkhoff [2, p. 4]). A poset P is planar if such a diagram 
can be drawn for P in which none of the straight line segments intersect. 

The main result of this paper is the following characterization of planar 
lattices (answering Problem 9 of G. Grâtzer [4, p. 66]). Let 

Se = {K\n ^ 0} \J {B, B", C, Cd, D, Dd\ U {En, E / , Fn, G„, H > ^ 0} 

be the lattices of Figure 1. (The dual of a poset P is denoted by Pd.) 

THEOREM 1. A finite lattice is planar if and only if it does not contain any 
lattice inS£ as a subposet. Moreover,^ is the minimum such list; that is, if ^ is 
a set of lattices such that the first assertion remains true withS£ replaced by J^~, then 
S£ c JT 

Theorem 1 is analogous in its statement to K. Kuratowski's characterization 
of planar graphs [7] ; however, the corresponding proofs bear little resemblance 
to each other. C. R. Piatt has established a connection between planar lattices 
and planar graphs [8] ; this also will have no application in this paper. 

The basic concepts for planar lattices are developed in the first section. 
Section 2 recalls that planar lattices are dismantlable. Section 3 describes a 
procedure for obtaining all planar embeddings of a planar finite lattice from 
one fixed planar embedding. The purpose of Section 4 is to prove a technical 
lemma that guarantees the existence of particular subposets at various points 
in the proof of Theorem 1. 

Section 5 consists of the proof of Theorem 1, where essential use is made of 
our characterization of dismantlable finite lattices [6]. In the final section, 
Theorem 1 is extended to infinite lattices of dimension ^ 2; in addition, we 
show that in a dismantlable nonplanar finite lattice, there are at least three 
doubly irreducible elements which are pairwise incomparable. 

1. Geometry of planar lattices. Let P be a finite partially ordered set 
(poset). The relation a is covered by b (or b covers a) is denoted by a < b. TI and 
7T2 are the first and second projections of R2 onto R. A planar embedding e(P) 
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FIGURE 1 
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E„ (n ^ 0) 
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F„ (n ^ 0) 

FIGURE 1.—(Continued) 
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FIGURE 1.—(Concluded) 
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of P consists of 

(PI) an injection a >—> â from P to R2 such that ^ ( â ) < 7^(5) 
whenever a < b, and 

(P2) straight line segments ab, connecting a and b whenever a < b in P; 
these segments do not intersect, except possibly at their endpoints. 

P is planar if it has a planar embedding. 
We shall soon see the need to consider representations of P which allow 

more general connecting paths than the straight line segments of (P2). A 
planar representation e{P) of P consists of (PI) and 

(P2') paths y >-» (f(y), y ), denoted by ab, with endpoints â and b 
whenever a < b in P , where /:[TT2(Ô), 7r2(5)] —> R is a continuous 

function; these paths do not intersect except possibly at their endpoints. 

For a, b £ P such that a < 6, a is a /ower cover of & (or & is an upper cover 
of a). An element of P is doubly irreducible in P if it has at most one lower and 
at most one upper cover in P . A planar representation e(P) of P induces a 
planar representation of P — {c}, where c is a doubly irreducible element in P , 
and a •< c «< b, by defining a& to be a~c U c& if a < 6 in P — {c}, and deleting 
ac VJ cfr otherwise; this induced planar representation of P — {c} is denoted by 
e(P — {c}). The fact that this induced planar representation e(P — {c}) need 
not be a planar embedding of P — {c}, even if e(P) were a planar embedding, 
shows the need to consider planar representations. 

Actually, it is shown in D. Kelly [5] that the existence of a planar representa­
tion of P is equivalent to the planarity of P ; Theorem 2.5 will prove this 
equivalence in case P is a lattice. 

For each a G P , a planar representation e(P) of P induces a strict linear 
ordering on the set U{a) of upper covers of a defined by: for x, y £ U(a), 
x is to the left of y if and only if a~x(m) < a~y{m) where m = min 
\ir<i(x)\x £ £/(a)} ; the ordering of the lower covers of a point is defined dually. 
Two planar representations of P are similar if, for each a Ç P , the upper 
(lower) covers of a have the same ordering with respect to the two representa­
tions. 

In the remainder of this section, L is assumed to be a finite lattice with a 
planar representation e{L), All the geometric concepts to be introduced will 
depend on the choice of the planar representation e(L), although the depen­
dence will not always be stated explicitly. Most such concepts will, however, 
be invariant with respect to similar planar representations. 

A maximal chain from a to b (with a rg b in L) is a sequence a = x0, xi, . . . , 
xn = b of points of L with xt < xi+i (0 ^ i ^ n — 1); if a and b are not 
mentioned, a = 0 and b = 1 are understood. The function <p: [^(â) , 7r2(5)] —» 
R corresponding to such a maximal chain is defined by: ^(y) = /<(y) where/* 
is the function on [^(x^-i), 7^0*;*)] representing xf_ixz- and y is in this interval. 
(If a = b, <p is { <ir2(5), 7n(â) )}.) 
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The only result that we need from analysis is the following immediate conse­
quence of the intermediate value theorem. 

LEMMA 1.1. Let p, q Ç R, p < q, and let <p\, ^2 be continuous functions from 
[pi ç] into R- If <Pi(P) = <Pz(P) and <pi(q) ^ <P2(q), then there is r £ [p, q] such 
that cpi(r) — (piir). 

If C and D are two maximal chains between a and b, (a < b),in L such that 
C C\ D = {a, b}, and <p, \f/ are their corresponding functions then, by Lemma 
1.1, the infimum of {<p, \p) is y or \p since any crossing of <p and ^ would cor­
respond to a common element of C and D; in case inf {<p, \p) = cp, we call C 
the infimum, and D the supremum of C and Z) (of course, not to be confused 
with the join and meet in L). 

In general, for maximal chains C and D between a and b (a < b) in L, there 
are elements a = x0 < X\ < . . . < xn = 6 of L and maximal chains C* and Dt 

from Xf_i to xu (1 g i ^ w), such that C = U'UiC*, Z> = U"=i^i and 
Ctr\ Dt = \%i-\, %i). Let <p, 1// and <p*, ^ be the functions corresponding to C, 
D and Cu Du respectively, 1 S i S n. Clearly, (p = \Jni=i<Pu ^ = Ul=i^i and 
inf {<p, ̂ ) = Ul=i inf {<?*, ̂ 1} Î that is, inf {cp, \f/} is the function corresponding 
to the maximal chain U"=i inf {Cu Di). The region R defined by C and D is 
the subposet of L consisting of all elements of L in the area of the plane 
bounded by <p and \p; that is, x 6 R if and only if 7r2(â) S TT2(X) ^ T2(b) and 
(7r2(x), 7ri(x) ) lies between inf {(p, \p} and sup \<p, \p). The left {right) boundary 
of i? is inf {C, D) (sup {C, £>} ) ; the boundary of R is C U D, and the interior 
of Ris R - (CU D). 

Correspondingly, the left {right) boundary of L is the infimum (supremum) 
of all maximal chains in L. The left (right) side of a maximal chain C in L is 
the region defined by the left (right) boundary of L and C. An element x on the 
left (right) side of C is also said to be on the left (right) of C. Equivalently, 
x is on the left of C whenever ir\(x) ^ <p(7r2(x)), where <p is the function cor­
responding to the maximal chain C of L. Obviously, every element of L is 
either on the left of or right of C, and it is on both sides precisely when it is 
an element of C. 

LEMMA 1.2. Let x ^ y in L. If x and y are on different sides of a maximal chain 
C in L, then there is z £ C such that x ^ 2 ^ y. 

Proof. Suppose x and y are on the left and right, respectively, of C. Let <pi be 
the function corresponding to a maximal chain between x and y, and let <p2 

be the restriction to [T2(X), 7r2(;y)] of the function corresponding to C, and 
apply Lemma 1.1. 

LEMMA 1.3. / / , in a region R, a and b are the least and greatest elements of the 
boundary of R, then a and b are the least and greatest elements of R; that is, 
R Q [a, b]. 

Proof. Let <pi (cp2) be the function corresponding to the left (right) boundary 
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of R. For an element x Ç R, let \p be the function corresponding to a maximal 
chain between x and 1. Without loss of generality, we may assume that 
^2(^2(6)) ^ ^(TT2(&)). Since ^0r2(x)) ^ «^(^(x)), it follows from Lemma 1.1 
that x ^ b. 

For a region R and elements a, & £ i? as in Lemma 1.3 we call a and b the 
bounds of i?. A sublattice 5 of L is cover-preserving ii a < b in S implies a < b 
in L. 

PROPOSITION 1.4. 4̂ region of L is a cover-preserving sublattice of L. 

Proof. Let R be a region of L and suppose that x, y £ R but x V y Q R. 
We may assume that x V y is on the right of a maximal chain in L containing 
the right boundary of R. By Lemma 1.2, there are x', yf £ C such that x ^ 
x' < x V y and y ^ y' < x V y. Without loss of generality, x' ^ y', and 
therefore x, y ^ y < x V ;y, a contradiction. Thus, i£ is a sublattice of L. 
Furthermore, if x, y Ç i£, x < y, x < z < y for some z £ L, but (x, y) A 2? = 
0 then again by Lemma 1.2 there are zi, £2 on the right boundary of R, say, 
such that x ^ Zi < z < Z2 ̂  y. Then x = Zi and y = z2 which is impossible 
since the right boundary of a region is a maximal chain in L. 

It is evident from Proposition 1.4 that, for a region R} the association of each 
a in R to â in e(L), and of each cover a < b in R to ab in e(L) determines a 
planar representation of R; this induced representation of R is denoted by e(R). 

LEMMA 1.5. A closed interval of L is a region of L. 

Proof. Let a < b in L, let C(D) be the infimum (supremum) of all maximal 
chains from a to b, and let R be the region defined by C and D. Clearly, [a, b] C 
R, and by Lemma 1.3, R Q [a, b]. 

For x, y (E L, x is incomparable with y in L (x \\ y) whenever x ^ ;y and 
x ^ ;y. We define the relation X on L (with respect to e{L)) by: xXy if and 
only if x || y and there are lower covers x' and y' of x V y such that x ^ x', 
y ^ y , and x' is to the left of y' (with respect to e(L)). 

PROPOSITION 1.6. / / x\y, then x is on the left of any maximal chain through y. 
If x || y and x is on the left of some maximal chain through y, then x\y. 

Proof. First, let us observe that if x || y and x is on the left of a maximal 
chain C through y, then x is on the left of every maximal chain through y. 
Indeed, if x were on the right of some maximal chain D through y then x would 
be in the region defined by C P\ [y, 1] and D P\ [y, 1] or in the region defined 
by C H [0, y] and D C\ [0, y]. But then, in view of Lemma 1.3, x and y are 
comparable. 

If x\y then there are lower covers x', y' of x V y such that x ^ x', y ^ y' 
and x' is to the left of y'. Let <pi and <p2 be the functions corresponding to 
x' < x V y and C, where C is a maximal chain through y è y' < x V y. 
Since <pi(7r2(x V y)) = ^2(^2(x V y)) and <pi(m) < <p2(m), where m = max 
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{TT2(W)\W < z\, it follows from Lemma 1.1 that wi(x) = <pi(7r2(x)) < <p2(7r2(x)) 
so that x' is on the left of C. By Lemma 1.3, x is also on the left of C. 

Finally, let x || y, x', y' be lower covers of x V y with x ^ x', y ^ y', and 
let C be a maximal chain through y ^ y' < x V y. If x is on the left of some 
maximal chain through y, then x is on the left of C. Therefore, x' is on the left 
of C and x' is to the left of y'. 

Clearly, two planar representations of L are similar if and only if they 
induce the same X. 

It follows from Proposition 1.6 that we get the same relation X if we define 
x\y dually in terms of upper covers of x A y. In particular, two planar repre­
sentations of a lattice are similar if and only if the induced orderings on the sets 
of upper covers are identical. 

The next result is due to J. Zilber [2, p. 32, ex. 7(c)]. 

PROPOSITION 1.7. X is a strict partial order on L. Moreover, if x \\ y} then x\y 
or y\x. 

Proof. The preceding proposition shows that x \\ y implies that exactly one 
of x\y or y\x holds. It only remains to establish the transitivity of X. Let 
x\y and y\z, and let D be a maximal chain through z\ then y is on the left of D. 
In view of Proposition 1.4, there is a maximal chain C through y on the left 
side of D. Therefore, x is on the left of C, and in particular, on the left of D. 

Thus, if x and y are comparable, xXs, and y \\ z, then y\z. 
Since X is an order relation extending the ordering of the set of upper (or 

lower) covers of any element of L, it is reasonable to read x\y as x is "to the 
left of" y. 

A connection between elements c and d in a partially ordered set P is a 
sequence c = x0, Xi, . . . , xn = d of elements of P such that x*_i •< xt or 
Xi < Xi-\ for every i = 1, 2, . . . , n. A fence is a partially ordered set 
{xi, X2, . . . , xk\ in which the comparabilities that hold are precisely Xi < x2, 
x2 > x3, . . . , X2i-i < X2i, x2i > x2H-i, . . . or Xi > x2, x2 < x3, . . . , x2*_i > x2<, 
x2< < x2*+i, . . . . We usually denote a fence F by (xi, x2, . . . , xk) and use the 
terms down and up to indicate which comparability holds between Xi and 
x2(x*_i and x*); for example, F is down-up if Xi < x2 > x3 . . . > x^-i < xk. It 
is easy to verify that any connection between c and d contains (as a subposet 
of P) a fence (xi, x2, . . . , xk) with Xi = c and xk = d. 

Let a < b in L. An (a, b )-component of L is a connected component of the 
undirected graph corresponding to the covering relation in (a, b)\ that is, an 
(a, b )-component is a maximal subset of (a, b) in which, between every pair 
of elements, there is a connection in (a, b). In particular, if x and y are in 
different (a, b )-components, then x\\y. It is also obvious that an (a, b)-
component is a convex subset of L. An (a, b )-component is proper if whenever 
y ^ x(y ^ x) for some x £ C and 3̂  Ç L — C, then y f§ a(3; ^ 6). 
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Let C be an (a, b )-component of L. Although C U {a, b) is obviously not 
an (a, b )-component, we will, for brevity, call it a bounded (a, b )-component. 

LEMMA 1.8. A bounded component of L is a region of L. 

Proof. Let a < b in L and let C be a bounded (a, b )-component of L. 
Furthermore, let D{E) be the infimum (supremum) of all maximal chains 
from a to b contained in C, and let R be the region defined by D and E. Clearly, 
C Q R. If R Çt C, let x be a minimal element of R — C and let y be a lower 
cover of x in R. If y > a, then y £ C so that # Ç C Otherwise, a -< #. Let d 
and e be upper covers of a in D and £ respectively, let F be a maximal chain 
in R from a to b through x, and let d = z0t ziy . . . , zn = e be a. connection 
between d and e in (a, 6). Let £ be the least index i such that 2< is not in the 
region defined by D and F. Since zk £ C and C Q R,zk is not on the left side of 
a maximal chain extending F; thus, by Lemma 1.2, 2*_i £ F. Then d = 20, 
si, . . . , z,fc_i, yi, 3>2, . . . , yn = x is a connection between d and x, where z*_i > 
^i > y2 > . . . > yn = # (w ^ 0) ; therefore x 6 C, a contradiction. 

Since the intersection of two distinct bounded (a, 6 )-components is {a, 6}, 
the ordering of the functions corresponding to the left boundaries of the 
bounded (a, b )-components induces a strict linear ordering G \ C2X . . . \Cn 

on the (a, b )-components. This ordering can be defined by: Ĉ X Cj if and only 
if, for any x £ Ct and y G Cjy x\y. The left boundary of [a, b] is clearly the 
left boundary of C\ W {a, 6}. 

Let i? b e a region with bounds a < 6. A fe/f up-dangle {down-dangle) on R 
is an element z such that z\b(z\a) and 2 > ac (2 < x) for some x G i? — {a, è}. 
i?igfe/ dangles are defined analogously. The attachment point of an up-dangle 
{down-dangle) z is the greatest (least) element of R less (greater) than z; 
clearly, the attachment point is distinct from a and b. 

PROPOSITION 1.9. The attachment point of a left dangle on a region R always 
exists and is on the left boundary of R. 

Proof. Let s be a left up-dangle on R, let w be the greatest element on the 
left boundary C of R that is less than z, and let d be a maximal chain extending 
C. Let x Ç R be such that z > x. By Proposition 1.6, z is on the left of C\ ; 
since x in on the right of d , there is y G C such that x ^ y < z (by Lemma 
1.2). Then x ^ w, and therefore, if is the attachment point of z. 

COROLLARY 1.10 Let the (a, b)-components of L be G \ C2X . . . \Cn, where 
a < b but a is not covered by b in L, and let C / ( l ^ i ^ n) be the corresponding 
bounded components. The only bounded component that can have a left {right) 
dangle z is C\ {Cn'); the corresponding attachment point is z A b {z V a) if z is 
an up-dangle {down-dangle). In particular, all components Ci for i 9^ 1 or n 
are proper. 

Proof. A left up-dangle 2 on any bounded (a, b )-component is a left up-
dangle on [a, b]} and therefore, has attachment point w on the left boundary of 
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[a, b], which is the left boundary of C/ ; clearly, w = z A 6. For i ^ 1 and 
any x Ç Cu x \\w so that 2 cannot be a dangle on C<. 

A face is a region of Z, whose interior is empty and contains no paths of e(L), 
and whose bounds are the only elements common to both its left and right 
boundary. It is easy to verify that any two incomparable elements x and y in 
a face uniquely determine the face. In fact, if x\y, the left (right) boundary 
of any face containing x and y must be the supremum (infimum) of all maximal 
chains between x A y and x V y that pass through x(y). If the (a, b ^com­
ponents of L are dX C2X . . . \Cn, then the region defined by the right boundary 
of Ci U {a, b) and the left boundary of C<+i U {a, b\ is a face (for 1 ^ i < n). 
Indeed, if there were an element in the interior of this region it would be in 
(a, b) and therefore, in some (a, b )-component; if there were only a path in 
the interior of this region, then elements from different (a, b )-components 
would be comparable. 

LEMMA 1.11. If x, z £ [a, b] Ç L with x\z then there is y £ [a, b] such that x 
and y are in a common face with x\y. 

Proof. Since x is not on the right boundary of [a, b], there is a first maximal 
chain which a horizontal ray from x to the right intersects, and an element y 
on this maximal chain such that xX;y. Let C(D) be the supremum (infimum) 
of all maximal chains from x A y to x V y that pass through x(y). The region 
defined by C and D is a face containing both x and y. 

For a < b in L, b is visible from a (with respect to e(L)) if and only if there 
is a continuous function^: [7r2(â), 7r2(5)] —>Rsuch that the path 3; »-» (<p(y),y), 
y € [^(â) , 7T2(5)]), intersects e(L) only at â and 5; <p is called a visibility 
function (for a and 6). The next result will play an important role in the proof 
of Theorem 1. 

THEOREM 1.12. For a < b in L, b is not visible from a if and only if a is not 
covered by b, there is exactly one (a, b )-component, and [a, b] has both a left and 
a right dangle. 

Proof. Let p = 7r2(â) and a = 7^(5), and let us suppose that [a, b] has no 
right dangle. Let <pi be the function corresponding to the right boundary C of 
[a, b]. Define \p: [p} q] —> R by ^(x) = <pi(x) + (x — p)(q — x), and let <p2: 
[pi ?] -^ R be defined by <p2(x) = min {^(x),/(x)}, where/ is the restriction 
t° [p^ ç] of the function corresponding to the first maximal chain to the right 
of C (/(x) = 00 if both a and b are on the right boundary of L). A visibility 
function is \<pi + %<p2. 

If a is not covered by b and there are (a, b )-components G \ C 2 \ . . . XCn 

with n è 2, let <pi be the function corresponding to the right boundary of 
C\ U {a, b) and let <p2 be the function corresponding to the left boundary of 
d W {a, b}. A visibility function is \<pi + J<p2. 
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Let us now suppose that a is not covered by b and there is exactly one 
(a, b )-component such that [a, b] has both a left and a right dangle. Let 
p = 7r2(â), q = 7T2.(5), and let pi and p2 be the functions corresponding to the 
left and right boundaries C, D, respectively, of [a, b]. Let us, furthermore, 
assume that there is a visibility function \p for a and 6. 

Let z be a left up-dangle on [a, 6] with attachment point w, and let ô be 
the function corresponding to a maximal chain between w and 1 through 2. 
If \p(x) < <pi(x) for all x Ç (£, g), then \[/(r) < <5(r), where r = 7r2(w)> and 
5(g) < \p(q) imply that \p and ô cross between r and q, which is impossible. 

Thus, we may assume that <pi(x) < \p(x) < <p2(x) for all x £ (p, q). We 
now proceed as in the proof of Lemma 1.8. Let c and d be upper covers of a in 
C and Z), respectively, and let c = zo, Z\, . . . , zn = d be a connection between 
c and d i n (a, 6). Let k be the least index i such that ( ^ ( i ï ) , 7ri(il) ) is not 
between the functions pi and ^; then, (n^fe-i), 7rife_i) ) is between pi and ^. 
Let r — TT2(zk-i) and 5 = 7r2(^). We will consider only the case that r < s\ 
let ô be the function corresponding to zk_i < zk. Since d(r) g \f/(r) and 0(5) > 
1 (̂5), ô crosses ^, a contradiction. 

2. Distnantlability of planar lattices. Let P be a finite partially ordered 
set. P is dismantlable if P 1 « / V l , i v 2 j • • • J *^W 

} where xt is doubly irreducible in 
{ffi, x2, . . . , Xf} for 1 g i g n. The notion of dismantlability was first intro­
duced for finite lattices in I. Rival [9]. 

PROPOSITION. 2.1. A dismantlable finite bounded poset is a lattice. 
Proof. Let c be a doubly irreducible element of a dismantlable finite bounded 

poset P ; then P — \c) is a dismantlable bounded poset, and therefore a lattice 
by induction on \P\. It is then immediate that P is a lattice. 

We note that the concepts of "left (right) side of a maximal chain" and 
"left (right) boundary of a region" extend in the natural way to planar finite 
bounded posets, and that Lemmas 1.2 and 1.3 remain valid in this context. 

The first statement of the next result is due to K. A. Baker, P. C. Fishburn, 
and F. S. Roberts [1]. 

PROPOSITION 2.2. A planar finite bounded poset P with \P\ ^ 3 contains a 
doubly irreducible element c ^ O , 1 on the left boundary. Moreover, P — {c\ is 
planar. 

COROLLARY 2.3. A planar finite bounded poset is dismantlable. 

COROLLARY 2.4. A planar finite bounded poset is a lattice. 

Corollary 2.4 appears as an exercise in G. Birkhofï [2, p. 32, ex. 7(a)]. 
Proposition 2.2 is an immediate consequence of the following theorem which 
establishes the equivalence (for lattices) between planarity and the existence 
of a planar representation. This equivalence was already established by 
C. R. Piatt [8]. 
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THEOREM 2.5. Every finite bounded poset P with a planar representation e\(P) 
has a planar embedding e2(P) which is similar to e\{P). Furthermore, if \P\ è 3, 
then P contains a doubly irreducible element distinct from 0 and 1 on its left 
boundary. 

Proof. We may obviously assume that \P\ ^ 3. Let B be the left boundary 
of P , and let c be the maximum element of B — {1} which has a unique lower 
cover a in P . Let c < b in B and suppose that c also has an upper cover b\ 
distinct from b. In view of the choice of c, b has a lower cover c\ distinct from c. 
Now, let Bo — B C\ [0, c], B\ = B C\ [c, 1], and C be a maximal chain from 
c to 1 through b\. Since Ci || c we have, by Lemma 1.3, that c\ is not in the 
region denned by B\ and C; thus, C\ is on the right of B0 U C. But b is on the 
left of Bo U C; therefore, by Lemma 1.2, there exists x ^ 5 0 U C such that 
C\ < x < b which contradicts C\ < b. Thus, c is a doubly irreducible element 
in P . By induction on |P|, there is a planar embedding ez(P — {c}) similar to 
e\(P — {c)).\i a < b in P — {c}, choose £ as the midpoint of the line segment 
ab to obtain e2(P). Otherwise, since a and b are on the left boundary 
of e3(P — {c}), we can adjoin c to e3(P - jc}) to form a planar embedding 
e2(P) by taking 7r2(c) = §7r2(a) + |7r2(5), and TTI(C) a sufficiently small real 
number. 

PROPOSITION 2.6. If d is not on the left boundary B of a planar finite lattice L, 
there is a doubly irreducible element c £ B which is incomparable with d. 

Proof. Let u(v) be the greatest (least) element of B that is < d (> d), let 
C = B P\ [u, v], and let D be a maximal chain from M to ÎI through J. By 
Proposition 2.2, there is c G C — {u, v) which is doubly irreducible in the 
region R defined by Cand D; clearly c\\d. An application of Lemma 1.2 shows 
that, if x G L — R and x > c, then there is y G R such that x > y > c\ there­
fore, c is doubly irreducible in L. 

3. Transformations of planar lattice embeddings. The points of a 
planar embedding of a finite poset can be moved "slightly" without destroying 
the planarity of the embedding. 

LEMMA 3.1. If e{P) is a planar embedding of a finite poset P , there is e > 0 
such that if each point â of e(P) is replaced by a point a with \â — â\ ^ e, then 
joining each a and b by a straight line segment whenever a < b in P also defines 
a planar embedding. 

Proof. It suffices to take an e > 0 less than the e given by the next lemma and 
less than 1(^2(5) — 7r2(â)) whenever a < b in P . 

LEMMA 3.2. / / G is a finite planar graph in R2 with straight line edges, there is 
e > 0 such that if} for every vertex x of G, a point xf is chosen such that \xf — x\ ^ 
e, and the graph G consists of the vertices x' and straight line edges connecting x' 
and y' whenever x and y are connected by an edge in G, then Gf is a planar graph. 
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Proof. For each edge xy in G, choose 0 < exv < \\ôcy\ s u c r i that 
{p Ç R2| there is q on xy with \p — q\ S cXv\ contains no vertices of G except 
x and y, and no part of an edge unless it is incident with x or y. It is enough to 
take e = \ min {eXI/|ry in G). 

Let p and q be points in R2 with ir^ip) < ^"2(5). A diamond with bottom and 
top points p and q is the area of R2 bounded by two paths pr U rq and ps U sq 
intersecting only at p and q such that ^ ( r ) , ^ ( s ) € (^2^) , "̂2 (<?)), and each 
of £r, rq, ps and ig are straight line segments; p and q are also called the 
extreme points of the diamond. In other words, a diamond corresponds to a 
planar embedding of 22. 

LEMMA 3.3. Let L be a finite lattice with a planar embedding e(L), and let D 
be a diamond in R2 with bottom and top points p and q, respectively. There is a 
planar embedding ef (L) of L similar to e(L) and contained in D such that 0 = p 
and Ï = q. 

Proof. Actually, we shall show slightly more, namely, that all elements on 
the left boundary of L can be taken on the left boundary Di of D. Without loss 
of generality, \L\ ^ 3. Let c 9^ 0, 1 be a doubly irreducible element on the left 
boundary of L and let a < c < b. By induction on |L|, there is a planar embed­
ding ë'(L — {c}) with the desired properties which is similar to e(L — {c}). 
II a < b in L — \c), we can adjoin c to e'(L — {c}) by choosing I on ab\ if a is 
not covered by b in L — {cj,we can use Lemma 3.1 to shift any elements on D\ 
strictly between a and b slightly to the right, and then suitably place c on D\ 
so it can be joined to a and b with straight line segments in D\. 

PROPOSITION 3.4. Let a < b but a is not covered by b in a finite lattice L with a 
planar embedding e(L)} and let C1XC2X . . . \Cn ( n e 1) be the proper (a, b )-
components with respect to e(L). If a is a permutation of {1, 2, . . . , n) and 
T\ {1,2, . . . . n\ —•> {0,1}, then there is a planar embedding e'(L) of L with the uto 
the left of1 relation X' such that for x \\ y in L: 

x\'y if and only if xXy, whenever 
(i) x or y Q l/UiC*, or 

(ii) for some 1 ^ i, j ^ n, x G Cu y G Cjf and (i — j)(<r(i) — <r(j)) > 0, 
or 

(iii) x, y £ d and r{i) — 0 for some 1 ^ i ^ n; 
x\'y if and only if y\x, whenever 

(iv) for some 1 ^ i, j S n, x Ç Cu y G Cjt and (i — j){<r(i) — <r(j)) < 0, 
or 

(v) x, y £ d and r{i) = 1 for some 1 ^ i g n. 

Remark. Under the conditions of the proposition, C(r(i)X
,C(7(2)X/ . . . \'C„(n), 

and e'(d) is similar to e{Ct) if r(i) = 0, and similar to the reflection of e(C<) if 
r(i) — 1. We say that e'(L) is obtained (up to similarity) by permuting the 
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proper (a, b )-components of e(L) according to a, and reflecting them according 
to T. We also write e'(L) = TV* e(L) (using = to indicate similarity), and 
call Ta',bT an elementary transformation (with respect to L). 

Proof. As in the argument of Theorem 1.12, there are visibility functions for 
a and b, one on the left of C\ and one on the right of Cn. Adding one point to 
each of these paths gives a planar representation of the lattice L* = L W 
{a, f$) where a < a, f3 < b; let e*(L*) be a similar planar embedding. Then 
e*(L) is similar to e(L), and â, 0, â and b form a diamond £> in e*(L) which 
includes exactly the elements [a, b) U \J\=\Ci of L. We now delete all the 
lines and points in the interior of D, and draw n smaller diamonds inside D with 
extreme points â and b which intersect only a t â and b. Applying Lemma 3.3 
to the ith inner diamond, we obtain a planar embedding of Ca{x) ^J {a, b} 
inside this diamond similar to e(Ca(t) U {a, b\) if r(a(i)) = 0, and to its 
reflection if r(a(i)) = 1. Finally, deleting â, 0 and the edges of D yields a 
planar embedding e'(L) with the desired properties. 

I t is clear tha t any region R with bounds a < b and without dangles is the 
union of "consecutive" proper (a, b )-components Ck, Ck+i, . . . , Cm and the 
bounds a, b. A new planar embedding is obtained by reversing the order of 
Ck, Ck+i, . . . , Cm and reflecting each Ct (k ^ i g / ) . We say tha t this new 
planar embedding is obtained by reflecting R. 

T H E O R E M 3.5. Let L be a finite planar lattice. If e(L) and e' (L) are two planar 
embeddings of L, there are elementary transformations 7 \ , T2, . . . , Tn such that 

e'(L) = Tn...TtTxe(L). 

Proof. Let \L\ ^ 3 and let c be a doubly irreducible element in L such t ha t 
a < c < b. By induction on |L|, there is a sequence Si, 52, . • . ,Sm of elementary 
transformations (with respect to L — {c}) such tha t e''(L — {c}) = Sm . . . 
S2S1 e(L — [c]). We inductively define a sequence 7 \ , r 2 , . . . , Tn of elemen­
tary transformations with respect to L, with a corresponding sequence of 
planar embeddings e0(L)} e\(L), . . . em(L), where e0(L) = e(L) and et(L) = 
Tt et-i(L) for 1 ^ i^ m. If S, is T™ and {x, 3;} ^ {a, 6}, then 7 \ is Tx

a'
v
T. On 

the other hand, if St is 7^;*, if {c} is the 7th proper (a, &)-component of L with 
respect t o^ i_ i (L ) , and there are k proper (a, b )-components in L — {c} then 
r , is TÎ*T.t where ^ = aaor1 \J { (7, j ) } , r ' = a r a " 1 W { (7, 0 ) } , and 
a: {1, 2, . . . , fe} -> {1, 2, . . . , ife + 1} is defined by a(t) = t for t < j , and 
a ( 0 = / + 1 for t > j . By induction, it is easy to show tha t et(L — {c}) = 
Si . . . S2S1 e(L — {c}) for 0 ^ i ^ w. Therefore, ^m(L — {c}) = g r(L — {c}); 
hence, e'(L) = Ta

a'*Tem(L) for a suitable o- and a zero function r. Finally, if 
Tm+i = Ta

ff'iT, then e'(L) = r m + i . . . T2Ti e(L), which completes the proof. 

4. D a n g l e s o n i n d e c o m p o s a b l e in terva l s . A splitting element of apose t P 
is an element comparable with every element of P. P is (linearly) decomposable 
if it contains a splitting element which is not a universal bound of P ; otherwise, 
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P is {linearly) indecomposable. If 0 = d0 < d\ < . . . < dn = 1 are all the 
splitting elements of a nontrivial planar finite lattice L, then L = U^=i[^x-i, dt] 
and each [d<_i, d*] is indecomposable. If x Ç L is not on the left boundary of L, 
x is not a splitting element since there exists y G L such that ^Xx. Thus, the 
splitting elements of L are precisely those elements common to both boundaries 
of L. 

LEMMA 4.1. If [u, v] is an indecomposable interval in a join-semilattice S and 
w è w, w £ S, is incomparable with v, then [u, v V w] is indecomposable. 

Let 5 be a join-semilattice. We call a sequence 

*0, * 1 , 3>1, *2, 3̂ 2, . . . , ^n» 3V, *n+l ( » â 0 ) 

of elements of 5 a join-extension sequence if the following three conditions are 
satisfied: 

(i) Xo < x\\ 
(ii) xt \\yt (1 ^ i è «); 

(iii) x m = x* V y* (1 g i ^ n). 
We note that ;y* || y*+iandx i+2 = 3^ V yi+i (1 S i è n — 1). A meet-extension 
sequence is defined dually. 

LEMMA 4.2. Le£ L fre an indecomposable planar finite lattice and let a ^ 0 6# 
an element on the left boundary of L. Then there is a join-extension sequence 

x0 = 0, xi = a, yu x2, 3>2, . . . , xn, yn, xn+i = 1 

such that Xf is on the left (right) boundary of L for odd (even) i, and yt is on the 
left (right) boundary of L for even (odd) i. 

Proof. If Xi < 1 has been chosen and xt is, say, on the left boundary of L, 
then, since L is indecomposable, xt is not on the right boundary of L. We can 
now take xi+i to be the minimum element on the right boundary > xt and yt 

a lower cover of xi+\ on the right boundary. 

In a planar finite lattice, whenever there is a dangle on an indecomposable 
interval with a distinguished element on one boundary of this interval, then, 
as we show in the next lemma, one of a certain class of posets must occur. This 
result is applied repeatedly in the proof of Theorem 1. 

LEMMA 4.3. Let L be a planar finite lattice, let [u, v] C L be an indecomposable 
interval with a ^ u, v on the left boundary of [u, v], and let z be an up-dangle on 
[u, v] with attachment point w — z A v. Then one of the following six cases will 
occur; in each case, one of the posets of Figure 2 listed for that case will be iso­
morphic to a subposet of L containing z, a, u, and v. 

(i) z is left dangle and w ^ a: Poset (a). 
(ii) z is left dangle and w — a: Poset (a) for n = 0. 

(iii) z is left dangle and w < a: Poset (b), Poset (c). 
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n — 1 

Poset (a) 
(n ^ 0) 

u u 
Poset (d) 
(n ^ 0) 

Poset (e) Poset (/) 
in ^ 0) 

FIGURE 2 

https://doi.org/10.4153/CJM-1975-074-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-074-0


652 D. KELLY AND I. RIVAL 

(iv) z is right dangle and w > a: Poset (d). 
(v) z is right dangle and w\\a\ Poset (e). 

(vi) z is right dangle and w < a: Poset (f). 

Proof. One of these cases must occur for an up-dangle z because, if z is a left 
(right) dangle, then w is on the left (right) boundary by Proposition 1.9, and 
w 7e a for a right dangle because [u, v] is indecomposable. We now analyse 
each case separately to determine the posets which appear. 

(i) z is left dangle and w ^ a: In view of Lemma 4.2, there is a join-extension 
sequence Xo = u, Xi = a, yi, X2, y2, . . . , xni ynj xn+i = v such that x* is on the 
left (right) boundary of [u, v] for odd (even) i} and yt is on the left (right) 
boundary of [u, v] for even (odd) i. Since w is on the left boundary of [ut v], 
there is odd k such that w £ [xk, x*+2) (or w Ç [x*, x*+i) in case x^+i = v). Then 
{z, w, Xi, yi, X2, 3̂ 2, . . . , xk, ykt v) is isomorphic to Poset (a). For example, if 
w 6 [#*> tfjt+2), then z ^ yk is impossible because it would imply either yk g 
yk+i if z <; 3^+1, or 2 ^ 3/jt V 3̂ +1 = x*+2 if 2 è y*+i. 

(ii) z is Ze// dangle and w = a: This is trivial. 
(iii) z is left dangle and w < a: Let Xo = v, X\ = a, yi, X2, 3̂ 2, . . . , xn, 3>n, 

xn+i = u be a meet-extension sequence with x* on the left (right) boundary of 
[u, v] for odd (even) i, and yt on the left (right) boundary of [u, v] for even 
(odd) i. If w £ (X2, a) with X2 = w or w Ç (x3, a), then {2, w, w, a, 3̂ 1, z;} is 
isomorphic to Poset (b). Otherwise, there is odd k ^ 3 such that w Ç (x*+2, xk] 
(or w £ (xjt+i, x*] when xA+i = u) ; then {», xx, 3>i, x2, y 2 , . . • , xk-i, yk-U yk, w, u, z) 
is isomorphic to Poset (c), since, for example, w ^ yk and w ^ yk+i would 
imply w ^ xk+2. 

(iv) z is right dangle and w > a: Let x0, Xi, yu X2, 3̂ 2, . . . , xn, yn, xn+i be the 
join-extension sequence of (i). Since w is on the right boundary of [u, v], w ^ 
X2. If, for even k ^ 2, w G [x*, x*+2), o r ^ Ç [xA, x^+i) with x*+i = v, then 
{w, Xi, 3/1, X2, 3̂ 2, ••• , xkj yky v, z) is isomorphic to Poset (d). 

(v) z is right dangle and w \\ a: This is trivial. 
(vi) z is right dangle and w < a: Let x0, Xi, yu x2, y 2, . . . , xn, 3>n, xn+i be the 

meet-extension sequence of (iii). There is even k ^ 2 such that either w G 
(xjt+2, xk], or w £ (xk+i, xk] when xk+i = w. Then 

{v, xi, yi, x2, 3,2, • • • , ff*-i, y*-i, y*, w, w} 

is isomorphic to Poset (f). 

5. Proof of Theorem 1. It is easy to verify that AM (n ^ 0) is a lattice. 
Since An is not dismantlable, it follows from Corollary 2.3 that it cannot be 
planar. On the other hand, if P is one of the other posets of Figure 1, then there 
is a doubly irreducible element c in P such that L = P — {c} is planar; hence, 
by Corollary 2.3, P is dismantlable and, consequently, a lattice by Corollary 
2.4. In each such poset P , if c is chosen so that the diagram in Figure 1 given 
for P induces a planar embedding e(L) of the lattice L, then for all u < v in 
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L with u not covered by v, there is at most one proper (u, v )-component C; 
either Cconsists of a doubly irreducible element of L, or L = C U {w, v, 0, 1}. 
Therefore, by Theorem 3.5, any planar embedding of L is similar to e(L) or 
its reflection. If a < c < b in P , then & is not visible from a by Theorem 1.12; 
by the next lemma, this means that P is nonplanar. Therefore, every poset in 
Figure 1 is a nonplanar lattice. 

LEMMA 5.1. Let L be a planar finite lattice, a < b in L, and M = L U {c} be 
defined by setting a<c<binM.Mis planar if and only if there is a planar 
embedding of L in which b is visible from a. 

Proof. If e{M) is a planar embedding of M} then b is visible from a in 
e(M — {c}) with visibility path ac U cb. Now, let e(L) be a planar embedding 
of L in which b is visible from a. H a < b, add c on the midpoint of ab to give 
a planar embedding of L. Otherwise, add c to the visibility path for a and &, 
forming a planar representation of M, and take a similar planar embedding. 

Let M be a finite lattice which contains a poset P in Figure 1. In [5], it is 
shown that a finite poset which contains a nonplanar lattice is nonplanar; 
therefore, M is nonplanar, and the proof of one direction of Theorem 1 is 
complete. The nonplanarity of M also follows from a consideration of dimension 
2 lattices. The dimension of an arbitrary poset is the least number of linear 
orders whose intersection is the partial ordering of the poset (see B. Dushnik 
and E. W. Miller [3]). As observed in [1], the following characterization of 
planar lattices is a combination of results of J. Zilber [2, p. 32, ex. 7(c)] and 
B. Dushnik and E. W. Miller [3, Theorem 3.61]. 

PROPOSITION 5.2. Let L be a finite lattice. L is planar if and only ifdimension (L) 
^ 2. 

Therefore, dimension (M) ^ dimension (P) > 2 so that M is nonplanar. 
Now, let i f be a nonplanar finite lattice. We will show that M must contain 

one of the posets (or their duals) of Figure 1. To this end, we suppose that M 
does not contain any of these posets; it will eventually be shown that this is 
impossible. At various stages of the proof, certain hypotheses will be shown to 
be untenable by exhibiting an occurrence in M of one of these posets. 

By the characterization of dismantlable lattices established in D. Kelly and 
I. Rival [6], M is dismantlable since it does not contain An (n ^ 0). If M is 
dismantled (by removing doubly irreducible elements one at a time), a planar 
lattice will eventually be obtained; therefore, we can, without loss of generality, 
assume that M = LVJ {c}, where L is planar and a < c < b in M. By Lemma 
5.1, b is not visible from a with respect to any planar embedding of L. 

Let ei(L) be a planar embedding of L. In the course of the proof, various 
planar embeddings of L will be introduced; at any point of the proof, it is to be 
understood that all statements are with respect to the most recently intro­
duced planar embedding. 
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By Theorem 1.12, a is not covered by b, there is exactly one (a, b ^com­
ponent, and there are both left and right dangles on [a, b]. We first suppose 
t h a t there are left and right dangles %\ and z2 on [a, b] with a t t a ch men t points 
Wi and w2j respectively, such t h a t W\ \\ w2. Since W\ and w2 are in the same 
(a, b )-component, there is a fence F = (wi = Xi, x2, . . . , xk = w2) in (a, 6) 

with k ^ 3. 
Let both zi and z2 be up-dangles. P = FVJ {a, c, b, zi, z2, 1} is a subposet 

of M. We show tha t P contains C or En for some n as a subposet. If Wi /\ w2> 
a, then C = {a, Wi A w2, Wi, w2, c} b, Z\, z2, 1}. For example, Wi < z2 would 
imply tha t W\ ^ z2 A b = ze/2. We can now assume t h a t Wi f\ w2 = a. If i7 

is down-down, then, using the definition of an a t t a chmen t point and taking 
into account the incomparabilities t h a t hold in a fence, we have t h a t 

En ^ {a, xi, x2, . . . , xk, c, 6, zi, z2, 1} 

with n = \ (k — 3). If F is down-up, then 

En ^ {a, xi, x2, . . . , xjt-i, c, 6, zi, z2l 1} 

with « = §(& — 4) . If ^ is up-up, then fe ^ 5 since Wi Aw2 = a, and therefore, 

E n ^ {a, x2, x3, . . . , xk-i, c, ft, z lf z2, 1} 

with w = §(& - 5). 
By symmetry , we can now assume tha t z\ is an up-dangle and z2 is a down-

dangle. We show t h a t Q = F *U {0, z2} a, c, 6, Zi, 1} contains a poset in j£f. If 
F is down-up, then 

Fn ^ {0, z2, a, xi, x2, . . . , x*, c, b, zu 1} 

with n = \{k — 2). If F is up-up, then 

F n ^ {0, z2, a, x2, x3, . . . , x*, c, 6, zi, 1} 

with n = %(k — 3). The remaining case is tha t F is up-down; then 

F n ^ {0, z2, a, x2, x3, . . . , **_!, c, 6, Zi, 1} 

with n = \{k — 4) . Thus , we have shown tha t W\ and 7£;2 must be comparable. 
If £i(z2) were an up-dangle (down-dangle) on [a, b] with a t t achmen t point 

Wi(w2) such tha t W\ < w2, then F 0 = {0, z2, a, Wi, w2, c, b, z\, 1} ; for example, 
z2 < z\ would imply tha t w2 = z2 V a ^ z\ A b = ze/i. If Zi and z2 are up-
dangles on [a, b] with a t t achmen t points W\ ^ w2 and Zi V b \\ z2 V b, then 

D ^ {a, w1} c, b, Zi, Zi V b, z2, z2 V b, 1} ; 

if Wi < w2 and Zi V b < z2 V 6, then 

Fo ^ {a, c, wu w2, b, zi, Zi V b, z2, z2 V 6}. 

Therefore, there is an element d £ (a, &) such tha t if z is an up-dangle and 
z' is a down-dangle on [a, 5] then z > d > zf. Moreover, the set 

S = \[z A b, z V b]\z up-dangle on [a, b]} 
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is a chain (with respect to C) of closed intervals. Let [r, s] be the maximum 
element of S. 

We now show that there is a planar embedding e2(L), obtained from e\(L) 
by elementary transformations Tl% x, y ^ d, in which b is on the boundary 
of [r, s]. Let [u, v] be the minimum element of S such that b is not on the 
boundary of [u, v] with respect to e\(L). We show that there is a planar embed­
ding ei (L) obtained from e\(L) by elementary transformations Ta\v

rj x, y §; d 
in which b is on the boundary of [u,v]. Iteration of this procedure will provide 
the desired planar embedding e2(L). We can assume that b is on the left 
boundary of [uf, vf] with respect to e\(L) for every [u', v'] Ç 5 such that 
[uf, vf] C [u, v]. Let z be an up-dangle on [a, b] such that u — z A b and 
v = z V b. If ÔX2 for all such z, then b would be on the left boundary of [u, v]. 
Choose z so that z\b. By Lemma 1.11, there is z\ £ [u, v] such that z\\b and 
Z\ and b are in a common face. Clearly, z\ is an up-dangle on [a, b], Zi A b = u 
and Zi V b = v. Let C1XC2X . . . \Cn be the (w, v )-components. If z\ and b 
were in the same (u, v )-component, then, in any connection between z\ and b 
in (u, v), there would be two consecutive elements that are on different boun­
daries of the common face containing %\ and b. Since this is impossible, b (? G. 

We first consider the case that b Q Cn. Suppose that both C\ and Cn are not 
proper. Let Xi(x2) be a left (right) dangle on [u, v] with attachment point 
3/1(3/2). If both xi and Xi are up-dangles, then C = {a, u, yi, y2, c, v, X\, #2, 1} ; 
if both are down-dangles, then B = {0, u, c, b, Xi, yu x2, 3̂ 2, ^} ; if Xi is an up-
dangle and x2 is a down-dangle, then Cd ~ {0, u, c, b, x2, 3̂ 2, v, Xi, 1}. There­
fore, C\ (or Cn) is proper. Since b is on the left boundary of the (u, v ^com­
ponent B containing b, d (or Cn) can be permuted with (the reflection of) B, 
giving a planar embedding in which b is on the left (right) boundary of [u, v]. 

We can now assume that b G Cn. Let D be the maximum indecomposable 
subinterval of Cn' = Cn VJ \u, v) which contains b. Let p < q be the universal 
bounds of D\ obviously, p and q are consecutive splitting elements of Cn'. If 
there are no dangles on D, then, since b is on the left boundary of D, reflecting 
D will give a planar embedding of L in which b is on the right boundary of 
[u, v]. We complete the proof of the existence of the planar embedding e\(L) 
by showing that there can be no dangles on D. Let us suppose that there is 
an up-dangle z on D. If z < v, then z £ Cn and q would not be a splitting 
element of Cn'. Thus, z \\v, and z is a right up-dangle on [u, v]. Let w = z A v; 
since b is not on the right boundary of [u, v], w ^ b. If w > b, let P be Poset 
(d) of Figure 2 with a replaced by b. By Lemma 4.3, P is a subposet of L for 
some n ^ 0. Then, Gn = (P — {/>, g}) VJ {a, c, u, z\, v, 1). If w < b, then 
F0 = {0, c, p, w, b, zi, q, z, 1}. Therefore, w \ \ b ; let F be a fence in Cw connecting 
w and ô. In this case, we obtain the same subposets obtained previously for the 
bounded component [a, b] with left and right dangles having incomparable 
attachment points. (The poset Q introduced there is isomorphic to F U 
{0, c,p,zu q,z, 1}.) 

Now, suppose there is a down-dangle z on D. As above, z must be a right 
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down-dangle on [u, v). Let w = z V u. If w < b, let P be the subposet of L 
t ha t is isomorphic to the dual of Poset (d) for some n ^ 0 with a, u, and v 
replaced by b, q, a n d p , respectively. Then , Hn = (P — {p, q}) KJ {0,u, c, Zi, v). 
If w || b, we obtain the duals of the subposets t h a t we had for the case of a 
bounded component [a, b] with two up-dangles and incomparable a t t a ch men t 
points. (If P is the poset introduced there, Pd == F\J {0, c, z, p, zif q], where 
F is a fence in (p, q) t ha t connects b and w). Finally, if w > b, let P be the 
subposet of L t h a t is isomorphic to the dual of Poset (f) for some n ^ 0 with 
a, u, and v replaced by b, q, and p, respectively. In this case, H n = (P — [p, q] ) 
U {0, c, u, zi, v). Thus , we conclude t ha t D can have no dangles. 

We have now shown how to obtain a planar embedding e2(L) of L for which 
b is on the boundary of [r2, S2], the maximum element of 5 (which was pre­
viously denoted by [r, s]). Applying the dual of this procedure to e2(L) for 
the down-dangles on [a, b], we arrive a t a planar embedding e%(L) of L for which 
the following conditions are satisfied: 

(a) r\ S si ^ r2 S $2, where rx = zx A a, Si = zY V a, r2 = z2 A b, and 
s2 = z2 V b for some down-dangle Si (up-dangle z2) on [a, 6]; 

(b) all down-dangles on [a, b] are in \ru si\ and all up-dangles on [a, b] are 
in [r2, s2]; 

(c) a is on the boundary of [ru Si] and & is on the boundary of [r2, s2]. 
Clearly, both |>i, ^i] and [r2, 52] are indecomposable intervals. We now 

choose intervals [ui, Vi], [u2, v2] containing [>i, Si], [r2, s2] subject to the follow­
ing conditions: 

(1) U\ S ri ^ Si ^ Vi S u2 ^ r2 ^ ^2 5g y2; 
(2) [wi, z;i] and [u2, v2] are indecomposable; 
(3) U\ and w2(^i and v2) are minimal (maximal) with respect to (1) and (2). 
In fact, the following four properties are also satisfied: 
(4) all down-dangles (up-dangles) on [a, b] are in [ui, Vi] ([u2j v2]); 
(5) a is on the boundary of [ui, Vi] and b is on the boundary of [u2j v2] ; 
(6) there are no down-dangles on \u\, v^\ and no up-dangles on [u2, v2]; 
(7) if x is a down-dangle on [u2, v2] (up-dangle on [ui, Vi]), then x || v\ 

(x \\u2). 
Indeed, (4) follows trivially from (b) . If a is not on the left boundary of 

[ui, Vi], then there is z G [ui, Vi] with z\a. Since s is a left dangle on [a, b], 
z € [Vi, Si] which, in turn, implies t h a t a could not be on the left boundary of 
| / i , Si]; thus , (5) now follows by (c). If there were a down-dangle y on \u\, Vi], 
then [y A Ui, vi] would also be an indecomposable interval, contradict ing (3). 
Also, if x were a down-dangle on [u2, v2] with x comparable with Vi, then 
x ^ vi which, since [u2 A x, v2] is indecomposable, contradicts (3). 

If a and b were both on the left (right) boundary of [ui, Vi] and [u2, v2], 
respectively, then [a, b] would have no left (right) dangles; hence, b would be 
visible from a. Therefore, wi thout loss of generality, a is on the left boundary 
of [ui, Vi] and b is on the right boundary of [u2, v2]. Fur thermore , neither 
[#1, Vi] nor [u2, v2] can be reflected, since a and b would then be on the same 
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boundary of [u\, vi] and [u2, ^2], respectively. Thus , there must be a dangle 
on both [uij v\] and [u2, v2]. In view of (6), there must be an up-dangle on 
[ui, Vi] and a down-dangle on [u2, v%\. In order to complete the proof of the 
first assertion of Theorem 1, we show that , whichever way these dangles occur, 
M contains a lattice in ^ as a subposet. 

We first suppose tha t there is a left down-dangle z on [u2, v2] with w2 = 
z V ui and W\ = z A V\. 

(i) w2 ^ b: In this case « i i ^ a , since otherwise z would be a down-dangle 
on [a, b]. Let P be a subposet of L, guaranteed by Lemma 4.3, which is isomor­
phic to Poset (a) for n = k with u and v replaced by U\ and Vi, respectively; 
and let Q be a subposet of L which is isomorphic to Poset (d) for n = m with 
v deleted, and a and u replaced by b and v2, respectively. Note tha t P C\ Q = 
{z}. P U Q U {c} is a subposet of M which is isomorphic to Gk+m. 

(ii) 102 || b and z > a: U Wi > a, then z would be an up-dangle on [a, b]\ 
hence, W\ = a. Let P and Q be the subposets of L provided by Lemma 4.3 which 
correspond to Poset (a) for n = 0 and the dual of Poset (e), respectively, with 
the replacements and deletion as in (i). Then, D ~ P ^J QU {c}. 

(iii) w2\\b and u\ < W\ < a: Let Pi(P2) and Q be the subposets of L t ha t 
correspond to Poset (b) (Poset (c) for n = k) and the dual of Poset (e), 
respectively, with the replacements and deletion as in (i). Then, 

D ^ ( P - \a})\JQKJ{c\ ( G t _ ! ^ ( P - {»,}) U (Q - { 6 } ) U { c } ) . 

(iv) w2 > b and z > a: As in (ii), W\ = a. If P and Q are the subposets of L 
t h a t correspond to Poset (a) for n = 0 and the dual of Poset (f) for n = m, 
respectively, with the replacements and deletion as in (i), then Gm = 
P\J QVJ {c). 

(v) w2 > b and u\ < W\ < a: Let P\{P2) and Q be the subposets of L t ha t 
correspond to Poset (b) (Poset (c) for n = k) and the dual of Poset (f) for 
n = m, respectively, with the replacements and deletion as in (i). In this case, 

Gm ^ (Pl - {a}) U Q U {c} (Gk+m ^PKJQKJ[c}). 

We have shown tha t no left down-dangle on [u2, v2] satisfies any of the con­
ditions (i) to (v) , and, by duality, tha t no right up-dangle on [ui, Vi] satisfies 
any of the corresponding dual conditions. Let z2 be a left down-dangle on 
[u2y v2] with a t t achment point w2 = z2 V u2\ by (i), w2 ^ b. There is also an 
up-dangle zx on \u\, Vi] with a t tachment point W\ = zx A V\. 

We now show tha t z\ must be a right up-dangle on [^1,^1]. I t suffices to show 
tha t , if Z\ were a left up-dangle on \u\, Vi], then z\ ^ w2 because Z\ would then 
be a left down-dangle on [u2, v2] satisfying one of (i) to (v), contrary to assump­
tion. Let C be a maximal chain from 0 to w2 through z2, let Di be a maximal 
chain passing through the left boundaries of [uu Vi] and [u2, v2], and let D = 
D\ C\ [0, w2]. Suppose zx % w2\ then, by Lemma 1.3, z is not in the region 
defined by C and D. Since zx is on the left of Di, z\ is on the left of C\ ~ C VJ 
(Di C\ [w2, 1]). Let x (E C\ be such tha t z\ è oc è ^ i . Since zi £ w2 and 
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22 || W2, x || w2 ; x is thus a left down-dangle on [u2, v2] t h a t satisfies one of 
( i ) t o ( v ) . 

Since, by duali ty, we can assume t h a t w2 > b implies W\ < a, there are the 
following three cases to consider. 

(vi) w2 || b and Wi\\ a: Let P be Poset (e) with u, v, and z replaced by 0, 
Vu and z\, respectively, and let Q be the dual of Poset (e) with v deleted, and a, 
u and z replaced by b, 1 and z2j respectively, which, by Lemma 4.3, occur as 
subposets of L. P U (Q— {b}) U {c} i s a subpose to f M which is isomorphic to E 0 . 

(vii) w2\\ b and W\ < a: Let P and Q be the subposets of L t h a t correspond 
to Poset (f) for n = k and the dual of Poset (e), respectively, with the replace­
ments and deletion as in (vi). Then , H* ^ P - {v^ U (Q - \b}) U {c}. 

(viii) w2 > b and W\ < a: Let P and Q be the subposets of L t h a t correspond 
to Poset (f) for n = k and the dual of Poset (f) for n = m, respectively, with 
the replacements and deletion as in (vi). Then , H H m _ i — P U Q W (c(. 

We can now assume there are no right dangles on [ui, Vi] and no left dangles 
on [u2, vi]. Let z\ be a left up-dangle on [uu vi\ with a t t achmen t point W\ = 
Z\ A Vi and let z2 be a right down-dangle on [u2j v2] with a t t a chmen t point 
w2 = z2 V u2. For all x G [w2, ^2), z\ % x, since we have already observed 
t h a t z\ || u2} and otherwise Si would be a left dangle on [u2j v2]\ similarly, 
z2 £ x for all x 6 (ui, Vi]. It follows t h a t Wi ^ a and w2 ^ b since otherwise 
2i or z2 would be a dangle on [a, &]. By dual i ty, there are only three cases left 
to consider. 

(ix) w2 = b and wx — a: Let P and Q be the subposets of L t h a t correspond 
to Poset (a) for n = 0 and the dual of Poset (a) for n = 0, respectively, with 
the replacements and deletion as in (vi). Then , H o È P U Ç U j c ) . 

(x) w2 = b and W\ < a: Let Pi(P2) and Q be the subposets of L t h a t cor­
respond to Poset (b) (Poset (c) for n = k) and the dual of Poset (a) for n = 0, 
respectively, with the replacements and deletion as in (vi). Then , H 0 = 
(P> - {a})UQU{c} ( H ^ P Î U Ç U I C ) ) . 

(xi) w2 > b and W\ < a: Let P i ( P 2 ) and Qi(Q2) be the subposets of L t h a t 
correspond to Poset (b) (Poset (c) for n = k) and the dual of Poset (b) (the 
dual of Poset (c) for n = m), respectively, with the replacements and deletion 
as in (vi). By duali ty, M has one of the following subposets: H 0 = (Pi — 
{ a } ) U « 2 : - {b})U{c}; H* ^(P1 - {a})VQ2U{c}; or Hk+m ^ P 2 U 

This completes the proof of the fact t ha t a finite latt ice is planar if and only 
if it does not have a subposet isomorphic to a lattice in ££. Fur thermore , it is 
easy to verify t ha t no lattice is repeated in the list given forJ^f. 

Let ^ be a set of finite lattices such t ha t a lattice is planar if and only if 
it does not have a subposet isomorphic to a lattice in J^~. We will show t h a t 
££ Ç J^". Obviously, every lattice in J^~ is nonplanar . If L G -Sf, there is a 
subposet K ol L t ha t is isomorphic to a lattice in 3^. If we show tha t no 
proper subposet of L is a nonplanar lattice, it will follow t h a t K = L, and 
therefore, <if C # " . An element of a finite lattice will be called irreducible 

https://doi.org/10.4153/CJM-1975-074-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-074-0


PLANAR LATTICES 659 

if it is a join-irreducible element of the lattice distinct from 0, or a meet-
irreducible element distinct from 1. We will apply the following general 
observation. 

PROPOSITION 5.3. Let L be a finite lattice and K be a subposet of L which is a 
lattice. If K (Z L, then there is x £ L — K that is irreducible in L. Moreover, 
L — {x} is a lattice. 

Proofs Let y G L — K and suppose tha t K contains every irreducible ele­
ment of L. Then , y can be expressed as 

y = V L ( a , | l £iûm) = AL(bj\l g ; g n), 

where a<(l ^ i ^ m) are join-irreducibles of L distinct from 0, and 
6^(1 :g j ^ n) are meet-irreducibles of L distinct from 1. By assumption, all 
t h e a / s a n d fr/sare in K. Hence, VK(a>i\l ^ i ^ w) ^ y ^ /\^(Z?^11 ^ j ^ « ) . 
If both m and w are nonzero, then at g 6;- for all t and 7 which implies t ha t 
V * ( a * | l ^ i ^ m) è AK(bj\l g j ^ » ) . Therefore, y = V*(a< | l ^ i S m) G 
K, contrary to assumption. If m = 0, then y = 0 Ç L and w ^ 1. In this 
case, /\K(bj\l ^ j ^ n) ^ 0; since equality must hold, we again obtain a 
contradiction. The second s ta tement is trivial. 

For every lattice L in Figure 1, it is easy to check tha t L — {x} is planar for 
any irreducible element x of L. If the lattice K is a proper subposet of L £ =Sf, 
then, by the above proposition, i£ is a subposet of L — {x} for an irreducible x. 
Since L — {x} is planar, so is K. This completes the proof of Theorem 1. 

6. S o m e r e s u l t s re lated to T h e o r e m 1. For finite lattices, Proposition 5.2 
showed tha t planari ty and dimension ^ 2 are equivalent properties. Using 
the compactness proper ty of finite dimension, Theorem 1 can be extended to 
all lattices of dimension rg 2. 

T H E O R E M 6.1. A lattice has dimension ^ 2 if and only if it does not contain 
any lattice in J^ as a subposet. Moreover, ^£ is the minimum such list of lattices. 

Proof. Since the dimension of each lattice in Jzf exceeds 2 (in fact, equals 3) , 
one direction is immediate. If K is a lattice whose dimension exceeds 2, then 
there is a finite subset S of K whose dimension exceeds 2. The join-semilattice 
L of K generated by S U {/\S\ is a finite lattice of dimension > 2; hence, 
by Proposition 5.2, L is nonplanar. Since, by Theorem 1, L contains a lattice 
in ££ as a subposet, so does K. The second s ta tement of the theorem follows 
immediately from the corresponding s ta tement of Theorem 1. 

K. A. Baker has shown tha t the dimension of the lattice obtained by com­
pletion by cuts of a poset of dimension n also has dimension n (cf. [1, Theorem 
4.1]). 

fSimplified by B. Wolk. 
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COROLLARY 6.2. A poset has dimension ^ 2 if and only if its completion by 
cuts does not contain any lattice in f£ as a subposet. 

T h e following result is proved in R. Wille [10]. 

T H E O R E M 6.3. A modular lattice has dimension S 2 if and only if it does not 

contain A0, B , B d , C or Cd as a subposet. 

We will prove a more general theorem in which only four modular lattices 
are mentioned. In particular, this will show tha t the list in Theorem 6.3 is 
redundant since one of B or Bd can be omit ted. T o this end, let I and J be 
the modular lattices illustrated in Figure 3. Since I contains B (and Bd) and J 
contains C, both I and J are nonplanar. 

A sublattice 5 of a finite lattice L can be obtained by dismantling L if there is 

a sequence 

L = U D U D . . . D Ln = S 

of sublattices of L satisfying \Lt\ = \Li+1\ + 1 for 0 ^ i ^ n — 1. 

L E M M A 6.4. Let M be a finite modular lattice and let M\ be a sublattice of M 
that can be obtained by dismantling M. If P is a cover-preserving sublattice of M\ 
such that x and y are not both splitting elements of P whenever x < y in P, then 
P is a cover-preserving sublattice of M. 

Proof. By induction, we can assume tha t M — M\ U {c}, where c is doubly 
irreducible in M and a < c < b in M. Let P be a cover-preserving sublatt ice 
of Mi t ha t satisfies the condition of the lemma. The only cover of P t h a t c 
could destroy is a < b. Suppose t ha t a < b in P. Wi thou t loss of generality, 
there is a cover d of a in P with d ^ b; hence, {a, c, b, d, b V d) would be a 
nonmodular sublatt ice of M, a contradict ion. 

T H E O R E M 6.5. A finite modular lattice is planar if and only if it does not 
contain A0, I, J or id as a cover-preserving sublattice. Moreover, if J^~ is a set of 
finite modular lattices such that a modular lattice is planar if and only if it does 
not contain any lattice in &~ as a subposet, then &~ contains A0, I, J and Jd. 

Proof. As in the proof of Theorem 1, one direction is immediate since A0, I 
and J are nonplanar . 

Let M be a nonplanar finite modular lattice. If M does not contain A0 as 
a cover-preserving sublatt ice, then it follows from the proof of Theorem 3.5 
of [6] tha t M is dismantlable. M can be dismantled down to a nonplanar sub-
lattice Mi so tha t Mi = L U {c} for a planar lattice L. By Lemma 6.4, we 
can assume tha t M = Mi. If a < c < b in M, then, by vir tue of Lemma 5.1, 
b is not visible from a in any planar embedding of L. Since M is modular, there 
is d in L such tha t a < d < b. Let riXr2X . . . \rm (siXs2A . . . \sn) be all the 
lower (upper) covers of d in L with respect to a planar embedding e(L) of L. 
The join of any two distinct s/s is the same since otherwise A0 would be a 
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FIGURE 3 
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cover-preserving sublattice of M\ the dual statement holds for the r / s . If b is 
not si or sn, and there is both a left dangle z\ and a right dangle z2 on [d, Si V sn], 
then a cover-preserving sublattice of M is isomorphic to I, J or 3d. For example, 
if Ei and 22 are both down-dangles, they can be chosen so that z\ < Si and 
z2 < sn. If a = ri, then {a, zi, c, b, Si V sn] would be a nonmodular sublattice 
of M which is impossible; therefore, 

I = [ri A rm, rlt a, rmy d, zu c, z2, sh b, sn, Si V sn}. 

We now show that the above situation or its dual actually must occur. Other­
wise, a = ri 9e rmandô = sn ** si m some planar embedding of L. For example, 
if there is no right dangle on [d, si V sn] then b and sn can be interchanged, 
giving a planar embedding of L in which b is visible from a. If d were a splitting 
element of L, then b would be visible from a in some planar embedding of L, 
a contradiction. We can assume that there is y in L with y\d. By Lemma 1.11, 
there is a face containing d and some x in L with x\d. In order that this face 
be modular, x A d < x, d < x \/ d; then, since a = x A d, {a, x, cf b, si V b) 
is a nonmodular sublattice of M, a contradiction. 

None of the lattices A0 ,1, J or 3d contain one of the others as a subposet since 
each of the latter three consist of 12 elements and are dismantlable. The second 
statement now follows immediately. 

In order to extend Theorem 6.5 to infinité lattices, we need the following 
lemma. 

LEMMA 6.6. / / M is a modular lattice that does not contain A0, I, J or id as 
a subposet, then any finitely generated sublattice of M is finite. 

This lemma and its proof are based on an idea of R. Wille [10, Theorem 5]. 
The only real novelty here is Lemma 6.8. 

LEMMA 6.7 (cf. [10, Lemma 4]). Let M be a modular lattice with no subposet 
isomorphic to I. / / {a, c\, c2, c3, e) is a nondistributive sublattice of M with a < 
c{ < e, then a < ct < e (i = 1, 2, 3). 

Proof. If the conclusion were false, then, by modularity, there is b\ in M 
with a < bi < Ci. Let b2 = (&i V c3) A c2, bz = (bi V c2) A c3, c^ = (bi V c2) 
A (bi V Cs), and dt = ct V c4 for i = 1, 2, 3. As noted in Lemma 4 of [10], 
a < bt < ct and ct A cA = b{ for i = 1, 2, 3. Since for i = 2 or 3, dt = b\ V cu 

it follows similarly that ct < dt < e. Also, C\ < d\ < e since otherwise C\ V c± 
= e, implying that both c4 and d2 are comparable relative complements of 
C\ in [bi, e]. Therefore, {a, bi, b2, 63, Ci, c2, c3, C4, ̂ i, ^2, ^3, ̂ } is isomorphic to I. 

LEMMA 6.8. Let M be a modular lattice with no subposet isomorphic to A0. 
If a, bi, b2, c, zi and z2 are elements of M such that bi \\ b2, bi A b2 = «, &i V b2 = 
c, z\ A c = bi and z2 A c — b2, then z\ V c || z2 V c 

Proof. Note that z\ \\ b2 and z2 || &i. If Si A 22 || c, then 

{a, zi, bu c, b2, z2, z\ A z2, zx V z2 V c} 
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would be isomorphic to A0. Therefore, z\ A z2 ^ c\ hence, z\ A z2 = (zi A c) 
A (z2 A c) = bi A b2 = a. Suppose z\ V c ^ z2 V c. Then, s2 V 21 = s2 V 
Ô2 V zi V 61 = z2 V c, and z2 V &i = 22 V b2 V 61 = z2 V c. Hence, both &i 
and zi are comparable relative complements of z2 in [a, z2 V c], a contradiction. 

Proof of Lemma 6.6. If M5 = {a, &i, b2, b$, c) is a sublattice of M with 
a < bi < c (i = 1, 2, 3), then some bt is doubly irreducible in M. For example, 
if all the bt

Js are join-reducible, then there are Z\, z2j s3 in M such tha t zt A c = 
ô< (i = 1, 2, 3) . By Lemma 6.7, Z\ V c, z2 V c, and z3 V c are distinct pairwise 
incomparable elements; therefore, 

I = {a, i i , b2y bz, c, zi, z2, zh zx V c, s2 V c, s3 V c, zi V z2 V z3 V c}. 

The other cases are similar. 
Let 5 be a finite subset of M. Let T be the set of all elements x of S t ha t 

are doubly irreducible in M and appear as some bt in some sublattice of M of 
the form M5 as above; set x0 = a and Xi = c. Let 7^ = {xk\x Ç T} for ^ = 0 , 1 . 
By Lemmas 6.7 and 6.8, (S — T) VJ T0KJ T\ generates a distributive sub-
lattice N of Af. Then, the finite sublattice N \J T of M includes S. 

T H E O R E M 6.9. A modular lattice has dimension ^ 2 if and only if it does not 
contain one of the modular lattices A0, I , J or Jd as a subposet. Moreover, this is 
the minimum such list of modular lattices. 

Proof. The proof of Theorem 6.1 is used with Theorem 6.5 replacing Theorem 
1. The only other difference is tha t L is the sublattice generated by 5 ; L is finite 
by Lemma 6.6. 

In [6], we proved tha t every finite dismantlable lattice which is not a chain 
contains two incomparable doubly irreducible elements. We now show tha t 
this can be sharpened for nonplanar finite dismantlable lattices. To this end, 
we need the following lemma. 

LEMMA 6.10. Let S be a sublattice of a finite lattice L that can be obtained by 
dismantling L. If S contains n pairwise incomparable doubly irreducible elements, 
then so does L. 

Proof. Let au a2, . . . , an be n pairwise incomparable doubly irreducible 
elements in S. By induction, we can assume tha t L =z S W {c}} where c is 
doubly irreducible in L. All the elements ai, a2, . . . , an would be doubly 
irreducible in L unless c covers or is covered by one of them. Therefore, we can 
assume tha t a,\ < c\ a\ is thus the unique lower cover of c in L. I t follows from 
a,\ || at t ha t c \\ at for every i = 2, 3, . . . , n. Thus {a2, a3, . . . , an, c) is an 
n-element set of pairwise incomparable doubly irreducible elements in S U [c]. 

T H E O R E M 6.11. Any nonplanar finite dismantlable lattice contains at least 
three pairwise incomparable doubly irreducible elements. 

Proof. Let M be a nonplanar finite dismantlable lattice. By virtue of Lemma 
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6.10, we can assume that M — L U {c\, where c is doubly irreducible in M, 
a < c < b in M, b is not visible from a in L, and L is planar with a planar 
embedding e(L). We denote the left (right) boundary of a region R in L by 
*(*) (r(R)). 

Let 

C = /([0, a] U [a, 6] U [6, 1]), £> = r([0, a] U [a, 6] U [b, 1]), 

5 be the left side of C, and T be the right side of D. It suffices to show that 
SUT— ([0, a] U [6, 1]) contains two incomparable doubly irreducible 
elements x and y in L, since {x, y, c) would then consist of three pairwise 
incomparable doubly irreducible elements in M. We now carry out the proof in 
a sequence of simple steps, each of which we elaborate upon at most briefly, 

(i) 1{S) =l(L). 
(ii) There is d G {a, b} such that d G l(L). Since b is not visible from a, 

there is a left dangle on [a, b]. 
(iii) There is z G l(S) — C which is doubly irreducible in L. By Proposition 

2.6, there is z G l(L) such that z is doubly irreducible in L and z\\ d. 
Let u be a minimal such z and choose v analogously in r(T) — D. 

(iv) Without loss of generality, u > v. If u \\ v, we are done. 
Let E = r([v, u]), h G C H £ , and choose & maximal i n D H E . Let 

H = (cn [o, *]) w (£ n [A, «]) vj (/(L) n [u, i]) 

and 

x = (r(L) n [o, »]) w (£ n b, ft]) \J (Dn [ft, i]). 

(v) 6 > A è fe > a. 
(vi) /(L) = i7. If there were x £ H, x < u, and x ? /(I/), then there 

would be a y G /(S) — C, doubly irreducible in L, y \\ x, and ;y < w, contra­
dicting the minimality of u. 

(vii) Without loss of generality, r{L) — K. If r(L) ^ K, there is x G K 
such that x G r(L). Then x > z; and there is y G K? ) ~~ D, doubly irreducible 
in L, y \\ x, and y > v. H y \\ u, we are done. If y < u, then y G [v, u] which 
is impossible since y G K; if y > w, then a maximal chain from w to y crosses 
C at z ^ 5 so that u G [a, 6], which is impossible. 

(viii) Without loss of generality, [ft, b] is a chain. Otherwise, there is 
y G (ft, b) such that y G r([k, b]). By the proof of Proposition 2.6, there is 
a doubly irreducible element x of L such that x \\ y and x G r{L)\ thus, 
x G r([k, d]) C Z). Since x > ft, x \\ u by the choice of ft and we would be done. 

(ix) h is a splitting element of L; that is, L = [0, h] U [h, 1], 
Finally, by reflecting [h, 1] in e(L) we obtain a planar embedding of L in 

which b is visible from a, a contradiction which completes the proof. 
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