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PUSHING THE LIMITS OF AMS RADIOCARBON DATING WITH IMPROVED 
BAYESIAN DATA ANALYSIS

V Palonen1 • P Tikkanen
Accelerator Laboratory, P O Box 43, FIN-00014 University of Helsinki, Finland.

ABSTRACT. We present an improved version of the continuous autoregressive (CAR) model, a Bayesian data analysis
model for accelerator mass spectrometry (AMS). Measurement error is taken to be Poisson-distributed, improving the anal-
ysis for samples with only a few counts. This, in turn, enables pushing the limit of radiocarbon measurements to lower con-
centrations. On the computational side, machine drift is described with a vector of parameters, and hence the user can examine
the probable shape of the trend. The model is compared to the conventional mean-based (MB) method, with simulated mea-
surements representing a typical run of a modern AMS machine and a run with very old samples. In both comparisons, CAR
has better precision, gives much more stable uncertainties, and is slightly more accurate. Finally, some results are given from
Helsinki AMS measurements of background sample materials, with natural diamonds among them.

INTRODUCTION

The novel continuous autoregressive (CAR) model for accelerator mass spectrometry (AMS) data
analysis attains slightly better accuracy and more reliable uncertainties than the conventional mean-
based (MB) method (Palonen and Tikkanen 2007a,b). The standard level is taken into account using
a random walk process that adapts to the drift in the measurement. Correlations between the mea-
surements due to drift, correlations due to the use of the same standard measurements, non-Gaussian
probability density functions (PDFs) due to unknown variances, and non-Gaussian PDFs due to nor-
malization with the standards are taken properly into account. The inferred type of the drift deter-
mines how the standards are used. Measurements of unknown samples can be used to estimate the
machine drift when there is more than 1 measurement per sample, thereby improving the accuracy
of the results.

Here, we develop the CAR model further by introducing Poisson-distributed measurement error.
This will improve the results for very old samples. Also, in this work the variables representing the
standard level are no longer integrated out (marginalized) but instead introduced as additional
parameters, enabling one to see the shape of the trend. We present the tests of the model with simu-
lated measurements representing a typical run of a modern AMS machine. We also compare the
results of the present model to the result from a conventional mean-based (MB) method for very old
samples. Lastly, we describe the CAR analysis of Helsinki AMS measurements of several back-
ground sample materials. We limit our discussion to radiocarbon measurements, but we note that the
model can also be used for the measurement of other isotopes.

THE CAR MODEL FOR AMS DATA ANALYSIS

An AMS measurement consists of sequential measurements of isotope ratios for unknown samples
and standards. The standards are used to normalize out unknown effects or unpredictable changes in
the machine throughput. Because the standards are not measured at the same time as the unknown
samples, standard measurements are interpolated between the standards to get an overall standard
level, to which the unknown measurements are then normalized.

In this section, we will develop a probabilistic model that relates the unknown isotope concentra-
tions of the samples to the measurement data. We first obtain a predicting probability distribution,
called the likelihood, for the measurements, given the concentrations and the throughput. (That is,
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given that the concentrations were such-and-such and the standard level changed so-and-so, the
probability distribution for the measurements would be such-and-such.) With Bayes’ theorem, we
will then invert that PDF to obtain the PDF we really want, namely the PDF for the concentrations
and the standard level, given the measurements. 

Some of the following equations we have introduced previously (Palonen and Tikkanen 2007a,b)
but are also included here to help the reader get a complete picture of the model. We will start by
introducing most of the symbols needed.

We will represent the measured 14C-count to 13C-current ratios with a size N vector R = (R1, ..., RN)
measured at times T = (t1, ..., tN). The vector of the ratios R has been calculated from the measured
14C counts, c = (c1, ..., cN), the corresponding 14C counting times, τ = (τ1, ..., τN), and the 13C cur-
rents, I = (I1, ..., IN), by using Ri = ci /(Iiτi). (Note that we could just as well have used the 12C current
instead of the 13C current.) In the following, the vectors I and τ will be used as background informa-
tion and will be dropped from the equations for brevity.

Let also the number of samples in the measurement be M, and O = (O1, ..., OM) be the true unknown
fraction modern values for each sample. Inferring the O from the data R(c,τ,I) is then the goal of our
analysis. Further, let the function n(i) give the corresponding sample number for each measurement
i, so we can map each measurement i to the corresponding fraction modern value On(i) of the sample.
We will take the uncertainty of the 13C current to be negligible. The error of Ri will then result from
the 14C counting statistics, which is a Poisson distribution.

Let L = (L1, ..., LN) be the standard level, including a sufficient constant for unit conversion to go
from 14C concentrations to measured ratios. Now, given the standard level and the 14C concentration
of a sample, the expected number of counts in a single measurement of the sample is λi = On(i)LiIiτi,
which is also the mean of the Poisson distribution for the 14C counts. On the other hand, the mea-
sured number of counts is ci = RiIiτi. The predicting probability for the measured isotope ratio is,
from the Poisson distribution for the 14C counts,

(1)

The standard level or throughput L is assumed to follow a CAR(1) process x(t) around a mean m, 

Li = x(ti) + m (2)

The CAR(1) process is a generalization of the discrete-time AR(1) process to the continuous time
domain. It is a solution to the stochastic differential equation (Jones 1993; Broemeling and Cook
1997):

dx(t) + αx(t)dt = σdW(t) (3)

where W(t) is a continuous random walk process (Wiener process) with W(t1) – W(t2) ~ N(0, |t1–t2|).
The correlation coefficient α ∈[0, ] is small for a highly correlated process. The parameter
σ ∈[0, ] describes roughly the variance of the CAR(1) process. For a CAR(1) process, a useful
difference equation (Broemeling and Cook 1997) is:

(4)

p Ri On i( ) Li,( ) Iiτi
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where ∆ti = ti – ti–1, νi ~ N(0,  σ2). From Equation 4, we get the probability density for x(t).
Denoting x = (x1, ..., xN), we have,

(5)

where we take the limit , resulting in x1 ~ N(0, σ2/(2α)) for the first data point.

Figure 1 gives the hierarchy of the different parameters in the model.

Table 1 gives the priors used in the model. We are using uniform priors for the most important
parameters Oi. For a normally distributed measurement error, the uniform prior is a Jeffreys’ rule
prior for the Oi, calculated by holding other parameters fixed. Jeffrey’s priors have been noted to
perform well in most situations (Kass and Wasserman 1994). For typical AMS measurements, the
choice of priors is justified by the accurate results from CAR for simulated data shown in the next
section. In general, when the amount of data increases, the contribution from the prior diminishes.
The uniform prior for the Oi values gives zero bias for very old samples, for which the contribution
of the prior is most significant. We have also made tests with different priors for the other parame-
ters. For typical AMS measurements, reasonable priors seem to give effectively the same results.

Figure 1 The hierarchy of the different parameters
in the model. Solid arrows represent directional
probabilistic dependencies between the parameters.
A deterministic dependence is represented with a
dashed line and the symbol δ, which denotes Dirac’s
delta function. In general, when writing down the
terms in the joint PDF, a parameter at the arrow’s
source (parent) is needed as background information
in the PDF for the arrow’s target parameter (child)
(Jensen 1996).

Table 1 Priors for the model parameters.

Parameter Symbol Prior type Prior range

CAR correlation coefficient α uniform [0,∞]
CAR standard deviation σ σ–1 [10–20,∞]
Standard level mean µ uniform [0,∞]
Sample fraction modern Oi uniform [0,∞]
Standard fraction modern Oi

a

aThe values of Fs and σs are known for a standard, e.g. Fs = 1.3407 fraction modern and
 for a OX-II standard when using 13C currents. To the extent that 14C calibration

has been established using the above value, one might take the limit .
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We now have both the probabilistic relations between the entities in Figure 1 (the arrows) and the
prior probabilities for the parameters without parents. This enables us to write down the joint PDF
for all the parameters and data p(α,σ,m,O,x,R) = p(α,σ,m,O)p(x|α,σ)p(R|m,O,x) (see e.g. the chain
rule for Bayes nets [Jensen 1996]). We can now write down the full posterior, the probability for all
the parameters given the data, by using the definition of conditional probability, p(A|B) = p(A,B)/
p(B), in a way similar to the Bayes’ theorem (Sivia 1996; Gelman et al. 2003; Jaynes 2003):

(6)

In the third line, we dropped out the marginalization constant p(R). The first product in Equation 6
is the product of the priors of the standard samples (see Table 1). Fs is the known fraction modern
value of the standard and σs is the uncertainty of the standard value. This product effectively fixes
the value of the CAR process at the points of standard measurements. With the posterior at hand, we
are now ready to move on to the more practical things.

COMPUTATION

Inferences from the posterior are made with an MCMC code, an algorithm that gives parameter
space points distributed according to the posterior given in Equation 6 (Gilks et al. 1996). An adap-
tive Metropolis-Gibbs hybrid sampler was used in this work. The Metropolis guess for most param-
eters is adaptive Gaussian, the exception being that the guessing-distributions for the trend compo-
nents are drawn from approximated full conditional distributions (hence the Gibbs part).

The convergence of the MCMC chain to the target PDF was checked both by looking visually at the
trace plots and by using the PSRF and MPRSF convergence diagnostics developed by Gelman and
Brooks (Gelman and Rubin 1992; Brooks and Gelman 1998). Packages ready for implementing the
methods are mcmcdiag (Särkkä and Vehtari 1999) for MATLAB® and BOA (Smith 2005) for R. In
this method, multiple independent chains with random starting values are simulated and total poste-
rior variance and the within-chain variance are compared. When their ratio  is near unity, it is
taken that convergence has been attained. The common constraint  < 1.2 is used as a requirement
for convergence. A convergence plot using 4 chains for the analysis of background sample measure-
ments (described below) is shown in Figure 2. With the present code, convergence is usually
attained after a burn-in of 108 MCMC points, taking a couple of hours per chain on a modern 3 GHz
PC.
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RESULTS

Typical AMS Data

Measurement data was simulated in order to compare the current Bayesian CAR model with a con-
ventional mean-based (MB) method. In the MB method used here, the measurements are normal-
ized to 4 nearby standards and the final results are the means of the individual normalized measure-
ments for each sample. The standard errors of the means

are used as uncertainties. The standard level at the point of a sample was taken to be a mean of the
4 nearby standard measurements, weighted inversely according to the distance between the mea-
surements. We will also use the MB method with the assumption of a constant standard level
(MBCSL method). In this case, the standard level is taken to be the mean of all the standard mea-
surements. Each simulated measurement was drawn from a Poisson distribution whose expectation
value was a product of the known 14C concentration and Gaussian ARα=1 (random walk) noise rep-
resenting the drift. Six measurements were simulated per sample and 9 unknown samples were mea-
sured once between standard samples. So, every tenth measurement was done on a standard. Alto-
gether, 40 × 6 × 4000 measurements were simulated with MATLAB. Because the analysis time of
CAR is long, only 40 × 6 × 30 measurements with CAR were analyzed for each trend strength.

Figure 3 shows the means of true errors of the estimated 14C concentration as a function of increas-
ing machine drift for both methods. Note that the simulated data represents runs of a modern high-
precision AMS machine with the drift varying from zero to being clearly noticeable. Because a sam-

Figure 2 MPSRF (the thick dashed line) and PSRF (thin lines) convergence diagnostics for a typical mea-
surement analysis run. PSRF lines are drawn for the parameters α, σ, m, and for a couple of Oi and xi val-
ues. Convergence is taken to be attained when  < 1.2.
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ple was measured only once between standards, the correlations between the measurements were
minimized. Had this choice not been made, the performance of the MB model would have been
worse (Palonen and Tikkanen 2007a,b). It is seen that for the no-drift case, the CAR model is more
accurate than MB and as accurate as MBCSL. With increasing drift, the errors made by MBCSL
increase heavily, while CAR continues to give accurate results.

Old Samples

To ascertain the performance of the methods for old samples, no-drift measurements of old samples
were simulated and analyzed with both methods. The number of counts were drawn from Poisson
statistics with λ, the mean number of counts for 1 measurement, being 0.1, 0.5, 1.0, 1.5, 2.0, 3.5, 5.0,
or 10 for “unknown” samples. The standards had λ = 18,000. Again, 6 measurements were made per
sample. Note that in this case, the counting statistical uncertainty will be so large that many of the
previously noted advantages of CAR will not show up.

As an example of CAR results for very old samples, Figure 4 shows 4 PDFs for the parameter On,
which represents the 14C concentration. Due to Poisson statistics, the PDFs are tailed for measure-
ments with only a few total counts. The samples of the solid PDFs represent the rather extreme case
where the total count average λ was 0.6. Here, the solid PDFs represent samples with 1 count and
zero counts. Despite the difference in the amount of counts, both PDFs give a reasonably high value
for the true value 5.6 × 10–6 fraction modern. This is to be expected because, by taking into account
the 14C measurement time, the 13C current, and the underlying Poisson statistics, the CAR model is
able to give a reliable PDF for the true 14C concentration in spite of the randomness in the measure-
ment result.

Figure 3 The mean absolute values of the differences between a method’s results and the true concen-
tration as a function of increasing machine drift. The graph is drawn for modern samples. The trend
strength is the random walk step std of the machine drift relative to the mean of the standard level. The
CAR model is more accurate than MB for a typical run of a modern high-precision AMS. MBCSL
(where the standard level is assumed to be constant and the same value is used for all measurements)
is as accurate as CAR in the case optimal for MBCSL.
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Figure 5 shows the means of relative deviations between each method’s results and the known true
values as a function of the mean of the total counts from the sample. The location of highest poste-
rior density was used as a point estimate for CAR. MBCSL is not included because the uncertainty
from of the counting statistics is much larger than the error from the handling of the standard level.
Based on point estimates, the CAR model may be just slightly more accurate for very old samples.
Contrary to our preliminary claim (Palonen and Tikkanen 2007b) (which was the unfortunate result
of a coding error and was noted upon further verification of the results), the MB method does not
suffer from a significant bias for very old samples. (Note that MB has some bias when the result is
converted to an age for very old samples. This is because the change of variable is not done for the
whole probability distribution.)

Figure 6 gives the uncertainties from the methods relative to the (normally approximated) counting
statistical uncertainty. The uncertainties from CAR are given as 68.3% highest posterior density
regions and the uncertainties from MB as 1-σ intervals. For very old samples, CAR gives uncertain-
ties slightly above the counting statistical uncertainties, approaching the counting statistical uncer-
tainty. MB gives erroneously low uncertainties, with the mean of the uncertainties below the count-
ing statistical uncertainty. (The reason for the underestimation of the uncertainty is that while the
sampling variance is “unbiased,” the corresponding sampling standard deviation is not.) Note also
that the uncertainty estimates from MB are much more unstable (the light gray area) than the uncer-
tainties given by CAR (the dark gray area). The difference in stability comes from the fact that CAR
uses the information about the underlying counting statistics in addition to the sampling variance,
resulting in stable uncertainties, whereas the MB method’s standard error of the mean from 6 data
points has random scatter. It is noted that the difference in the stability of the uncertainty estimate is
larger when more modern samples are measured or when fewer measurements are made per sample.

Figure 4 PDFs for the fraction modern values On of 4 very old samples from a CAR model analysis of
a simulated measurement. Two samples were selected from 2 (the count average λ = 0.6 and λ = 9.0)
groups each. The 2 groups correspond to the fraction modern values of 6 × 10–6 and 8 × 10–5. Due to the
underlying Poisson statistics, the distributions are tailed.
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Figure 5 The mean absolute values of the differences between a method’s results and the true con-
centration as a function of total counts from the sample. The differences are given in percent of the
true concentration. The mean number of counts in the simulated measurements was 0.1, 0.5, 1.0, 1.5,
2.0, 3.5, 5.0, or 10, with 6 measurements for each sample.

Figure 6 Ratio of the uncertainty estimate (for the 14C concentration of the sample) given by the
method to the (normally approximated) counting statistical uncertainty as a function of the mean
number of total counts. Overall, CAR gives more reliable uncertainties. Especially for the very old
samples, MB gives erroneously low uncertainties. Importantly, the random scatter in the uncertain-
ties is much lower for CAR (dark gray area) compared to MB (light gray area). The scatter was cal-
culated as the sample standard deviation of the uncertainties given by each method.
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Figure 7 shows the relative amount of results that do not contain the true value for both methods. The
expected fraction of true values outside the given uncertainties is 31.7% for both methods. CAR
delivers reliable uncertainties with roughly the ideal 31.7% fraction falling outside the given uncer-
tainties, except for the samples with very low amount of counts, for which CAR uncertainties are
“too safe.”

Analysis of Actual AMS Measurements

About a dozen background samples were prepared for AMS measurements as preliminary tests for
both the sample treatment background and the AMS machine background in the Helsinki AMS
facility (Palonen et al. 2004; Tikkanen et al. 2004). Several materials were measured without sample
preparation by simply pressing the material (e.g. diamond, graphite, or anthracite) to the sample
holder. To see the effect of sample preparation, some graphite and anthracite samples were put
through different sample treatment steps. Figure 8 gives the inferred probability distributions for the
14C concentrations of the measured samples. Sample materials and pretreatments done are given in
the figure. Figure 9 gives the corresponding probability distributions for the 14C ages. Table 2 gives
the points of maximum posterior density and the 68.3% central posterior interval for the 14C concen-
trations and ages for each sample. During the measurements, our standard MC-SNICS ion source
had a maximum 12C current of 40 µA. For the diamonds, the current was roughly 20 µA.

Because the samples could have been measured longer and since at present we are losing some of
the carbon during the slow switching of the injector magnet’s field, even lower concentrations are
expected to be measurable. If one takes the lowest measured concentration as background level, it
should be possible to attain 14C ages up to 80 kyr BP for some samples. The background sample 14C
concentration is of course also given as a PDF and the subtraction of the background can be done
probabilistically, taking both uncertainties into account correctly.

Figure 7 Fraction of true values that are outside the uncertainties given by the methods. A 68.3% high-
est posterior density region is used for CAR and a 1-σ interval is used for MB. (Uncertainties for CAR
were calculated from the corresponding binomial distribution.)
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Figure 8 Probability density distributions (PDFs) of the 14C concentrations for the different back-
ground samples measured with the Helsinki AMS. The dashed line represents short measurements
done in April 2006 and solid lines represent longer measurements done in November 2006 for the
same sample wheel. The thick horizontal solid lines give the 68.3% central posterior intervals for
each PDF. Sample pretreatments were done in the Dating Laboratory, University of Helsinki.

Figure 9 As for Figure 8, but the PDFs here are for conventional 14C ages for the different back-
ground materials.
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CONCLUSIONS

The continuous autoregressive (CAR) model was improved by representing the AMS machine drift
with hidden variables instead of assuming a normal distribution for the measurement error and mar-
ginalizing over the trend. The use of hidden variables enables the use of more realistic Poisson dis-
tribution for the measurement error.

With simulated measurement data, it has been shown that the CAR model gives slightly more accu-
rate results compared to the mean-based (MB) method even for typical measurements from modern
AMS machines and measurement sequences favorable to MB. MB with the assumption of a con-
stant standard level is as accurate as CAR when the measurements have no machine drift, enough
14C counts, and no correlations due to the use of the same standard measurements. While CAR uses
the data to learn how to handle the standards, MB would seem to need a tool rather similar to CAR
to ascertain for certain when the assumption of a constant standard level can safely be made.

The inclusion of the Poisson-distributed measurement error improves the performance of AMS data
analysis for very old or very small samples. It seems that when the number of total counts from a
sample is very small, the conventional MB method has unreliable uncertainties. MB uncertainties
also seem to be somewhat unstable even for more modern samples. In contrast, due to the correct
handling of the counting statistics, CAR is able to give reliable and stable uncertainties even for the
samples with very few 14C counts.

Analyses of real measurements of background samples indicate that 14C ages as old as 80 kyr BP can
be measured for some samples. Of course, in many cases significant improvement of sample treat-
ment is also needed in order to attain the low intrinsic 14C levels.

Table 2 Measured 14C concentrations and corresponding 14C ages for different background mate-
rials. The value given is the point of maximum posterior density, and the limits represent the 68.3%
central posterior interval.

Sample

14C concentration
(pMC)

14C age
(kyr BP)

Industrial graphite, AAA + combustiona 2.04 +0.19/–0.13 31,180 +560/–670
Anthracite, CO2 LN cleaned twice 0.801 +0.076/–0.085 38,740 +910/–710
Anthracite, AAA + combustion 0.743 +0.079/–0.051 39,220 +710/–670
Anthracite 0.684 +0.067/–0.054 40,010 +660/–750
Anthracite, CO2 LN cleaned 3 times 0.528 +0.063/–0.043 42,030 +750/–840
Industrial graphite 0.492 +0.066/–0.043 42,630 +760/–990
Industrial graphite, AAA 0.481 +0.066/–0.047 42,820 +840/–1000
Spectroscopic graphite 0.461 +0.061/–0.044 42,990 +990/–790
Graphite from VERA 0.078 +0.064/–0.023 55,200 +4700/–2700
Ceylon graphite 0.020 +0.014/–0.007 67,000 +4200/–3200
Diamond, gray 0.0041 +0.0043/–0.0013 78,600 +5100/–3400
Diamond, white 0.0028 +0.0046/–0.0008 79,500 +6700/–3400

aCombusted with an experimental high-temperature setup.

https://doi.org/10.1017/S0033822200043174 Published online by Cambridge University Press

https://doi.org/10.1017/S0033822200043174


1272 V Palonen & P Tikkanen

REFERENCES

Broemeling LD, Cook P. 1997. A Bayesian analysis of
regression models with continuous errors with appli-
cation to longitudinal studies. Statistics in Medicine
16:(4)321–2.

Brooks SP, Gelman A. 1998. General methods for moni-
toring convergence of iterative simulations. Journal of
Computational and Graphical Statistics 7(4):434–55.

Gelman A, Rubin DB. 1992. Inference from iterative
simulation using multiple sequences. Statistical Sci-
ence 7(4):457–511.

Gelman A, Carlin JB, Stern HS, Rubin DB. 2003. Baye-
sian Data Analysis. 2nd edition. Boca Raton: Chap-
man & Hall/CRC. 668 p.

Gilks WR, Richardson S, Spiegelhalter DJ, editors. 1996.
Markov Chain Monte Carlo in Practice. Boca Raton:
Chapman & Hall/CRC.

Jaynes ET. 2003. Probability Theory: The Logic of Sci-
ence. Cambridge: Cambridge University Press. 758 p.

Jensen FV. 1996. An Introduction to Bayesian Networks.
London: UCL Press. 178 p.

Jones RH. 1993. Longitudinal Data with Serial Correla-
tions: A State-Space Approach. London: Chapman &
Hall/CRC. 240 p.

Kass RE, Wasserman L. 1994. Formal rules for selecting
prior distributions: a review and annotated bibliogra-

phy. Technical report #583, Carnegie Mellon Univer-
sity, Pennsylvania, USA.

Palonen V, Tikkanen P. 2007a. An information-efficient
Bayesian model for AMS data analysis. Radiocarbon
49(2):369–77.

Palonen V, Tikkanen P. 2007b. A shot at a Bayesian
model for data analysis in AMS measurements. Nu-
clear Instruments and Methods in Physics Research B
259(1):154–7.

Palonen V, Tikkanen P, Keinonen J. 2004. Ion-optical
modelling of the Helsinki AMS tandem. Nuclear In-
struments and Methods in Physics Research B 223–
224:227–32.

Särkkä S, Vehtari A. 1999. MCMC diagnostics toolbox
for MATLAB [software]. URL: http://www.lce.hut.fi/
research/mm/mcmcdiag/.

Sivia DS. 1996. Data Analysis: A Bayesian Tutorial. Ox-
ford: Clarendon Press. 240 p.

Smith BJ. 2005. Bayesian Output Analysis (BOA) pro-
gram, version 1.1.5 [software]. URL: http://www.pub-
lic-health.uiowa.edu/boa.

Tikkanen P, Palonen V, Jungner H, Keinonen J. 2004.
AMS facility at the University of Helsinki. Nuclear
Instruments and Methods in Physics Research B 223–
224:35–9.

https://doi.org/10.1017/S0033822200043174 Published online by Cambridge University Press

https://doi.org/10.1017/S0033822200043174

