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ON UNIFORMLY DISTRIBUTED SEQUENCES OF
INTEGERS AND POINCARE RECURRENCE III

R. NAIR

Let S be a semigroup contained in a locally compact Abelian group G. Let G
denote the Bohr compactification of G. We say that a sequence k = (kn)p2,
contained in S is Hartman uniform distributed on G if

llm — Z x(kn) =

for any character x in G. Suppose that (Ty),cs is a semigroup of measurable
measure preserving transformations of a probability space (X,,4) and B is an
element of the o-algebra § of positive 4 measure. Foramap T7: X — X and a
set AC X let T7'A denote {z € X : Tz € A}. In an earlier paper, the author
showed that if k is Hartman uniform distributed then

-1 2
A}gnw—Zu BN(Tk,)"'B) > u(B).
n=1

In this paper we show that > cannot be replaced by =. A more detailed discussion
of this situation ensues.

Let G be a locally compact Abelian group and let k = (k,),., be a sequence
contained in a semigroup S contained in G. We say that k = (kn);o, is Hartman
uniform distributed if for each non-trivial character x in the dual group G of G we
have

N—»oo—]\?EX(k )—0

For a set X let B denote a o-algebra of its subsets and let x be a proBability
measure defined on them. We say that a measurable map T from X to itself is measure
preserving if for any element A of 3, denoting by T-1A the set {r € X : Tz € A},
we have pu(T~'A) = p(A) for all 4 in B. In [1] the following is shown.
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346 R. Nair 2]

“THEOREM A. Suppose that k = (Ic:,-);‘;1 is Hartman uniformly distributed on a
locally compact Abelian group G, containing a semigroup S containing k. Suppose
that (T,) ges 8 a semigroup of measurable measure preserving transformations of a
probability space (X, 8, u) and that B is an element of 8 of positive u measure. Then

‘M
. 1 -1 2
dm, 57 2 #(B0 (@) B) > w(B)”

The existence of the limit is part of the conclusion to Theorem A. We however have
the following theorem.

THEOREM B. The > in the statement of Theorem A can’t be replaced by =.

PROOF: Suppose otherwise and we shall specialise to the case G = Z. Recall that
a sequence of real numbers (z,)a., is said to be uniformly distributed modulo one, if
for each interval I that is closed on the left and open on the right we have

N
. 1
A,y 2 xa(fea)) = 11

Here {z} denotes the fractional part of the real number =, x; denotes the characteristic
function of the interval I and |I| denotes its Lebesgue measure. As no ambiguity should
arise, for a finite set F' we denote its cardinality also by |F|. We say that a sequence
of natural numbers k = (kj);';l is uniformly distributed on Z if for each integer m in
N and each integer ! in [0,m — 1]NZ we have

. 1¢,. 1
JPMﬁI{JG[ﬂ,N—l)ﬂZ:k,-Elmodm}l: —.

In [1] it is shown that k = (k,)oe, is Hartman uniform distributed on Z if k is
uniformly distributed on Z and for each irrational number a, the sequence (kna),.,
is uniformly distributed modulo one. Also in [1] it is shown that there are many
sequences with this property. Suppose (X, 3, u) is any probability space, T : X —» X
is any measurable, measure preserving transformation of X and B is a T invariant
set in B in the sense that T-'B = B. Then for any sequence of natural numbers
k = (kn)n, and any natural number M

1 M
37 2 #(BNT™*B) = u(B),

n=1
for each M > 1. Hence if
1 M 1 2
3 kn)~ —
(1) A}l_lfxw—ﬂ,;p(Bﬂ(T ) 'B) = u(B)>.
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then
w(B) = u(B)”.

Therefore u(B) is either zero or one. Now set X = [0,1), p is equal to the Lebesgue
measure, Tz = (z+1/2) and B = [0,(1/4))U[(1/2), (3/4)). Then T preserves p and
B is obviously T invariant while u(B) = 1/2. This is a contradiction. 1]

Recall that a measurable, measure preserving map T : X — X of a probability
space (X, B, u) is ergodic if given any B in 8 with T~1B = B then u(B) is either zero
or one. Plainly our example above works because T is not ergodic. It is unclear to the
author whether Theorem A remains true with > replaced by = under the additional
assumption that T is ergodic.

We need to establish some standard notation. We say that a statement is true
1 almost everywhere if the subset of X on which it is true has full x measure. We
also say that two functions f and g are equivalent if f — g =0 p almost everywhere.
Let [Ifll = (fx Iflzdu)l/2 and let L? = L%(X,B,u) denote the space of equivalence
classes for ¢ measurable functions such that the norm || f|| is finite. Given a sequence
of functions (fn)j._, defined on a probability space (X,B,u) we say that (fn)y—;
converges to a function g defined on (X,8,u) in L? norm if Nli_x}noo lfn —gll = 0.

We say that (fwn)j_, converges almost everywhere to g if u({:l: € X: Nlim fn(z)
—300

= g(z)}) = 1. In [2] it is shown that if k = (kn),5, is Hartman uniformly distributed

on Z then this is equivalent to the statement that if f € L?(X,8,u) and T: X - X
is measurable and measure preserving, then

@ Jin [%32 1) - 5(s 19|

Here E(f | I) is the projection of f onto the subspace of L? of T invariant func-
tions. Suppose that instead of being Hartman uniform distributed on Z the sequence k
= (kn),»1 has the property that if f € L?(X,8, ) and T : X — X is measurable and
measure preserving then

(3) MNZJ‘ (T*z) = B(f | 1),

almost everywhere with respect to p. Note that hypothesis (2) says that if f is in
N [ ]

L?*(X,B,u) then the sequence (l/N S f (T’“"a:)) converges to E(f | I)(z) in
n=1 N=1

L? norm and (3) says the convergence is almost everwhere. In general convergence
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almost everywhere does not necessarily imply convergence in norm, nor vice-versa. The
hypothesis (3) does however imply the hypothesis (2). See [4, Lemma 4] for a proof
of this. Also, in the case where G = Z, to prove (3) we need a much more refined
condition on k than (1). See [3] for details of this. A number of families of sequences
of natural numbers for which (3) is true can also be found in [3]. In [2] it is shown that
in the presence of (3) the ergodicity of T is equivalent to

M
@) Jim %;MAOT"‘"B) = u(B)u(A),
for each pair A,B € B. This of course implies (1) for the particular transformation
T. In the absence of (3) condition (4) still implies the ergodicity of T. For ergodic
T, property (1) for k = (kn),5,, is not obviously implied by (2) but is implied by
(3). It is however possible to establish (1) for particular k = (kn),,5, for ergodic T
without recourse to (3) as the following Theorem demonstates. This suggests that (1)
for ergodic T is not equivalent to either (2) or (3).

THEOREM C. For a sequence of integers k = (ki)so, suppose that the system of
neighbourhoods A,, =[1,n]Nk (n= 1,2,--.) satisfies

|An & (h+ 4q)| = 0(14n]),

for any h in N, where /A denotes the symmetric difference of two sets, and the set
h+ A, denotes {h+ k: k € Ap}. Then (3) follows if for each set A in the o-algebra
B we have

N TN, 2
(5) Nli?‘wﬁg”(T kAN A) = p(A)>
PROOF: Recall that L? is a Hilbert space under the inner product (f,g)
= [y fgdu, where g is the complex conjugate of g. Let Uf(zx) = f(Tz). Then
HUfIl = ||f]| because T is measure preserving.
In the special case where for A in 3 we set a = x4 (the characteristic function of
A) the hypothesis (5) may be rewritten

N
(5" Jim =™ (U%a,0) = (a,1)(1,a).

i=1

By taking linear combinations of characteristic functions, this statement is also seen to
remain true for simple functions a. For arbitrary L? functions f given € > 0 we can
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find simple functions a such that ||f — al|, < €. Further by (5') we can find a natural
number n = n(e) such that if N > n(e) then

1 N
,N Y (U*a,a) —{a, 1)(1,a)| <e
i=1

Thus, also if N > n(e) then

'-}Vi(U’“‘f,f)—(f,l)(l,f)l IN (U"'f,f)—_Zg]k.a f>|
i=1

4 '% Z;(Uk-'a, - %gwkia, f>{

N

(U kiq, a) — {a,1){(1,a)

i=1
+ (e, 1)(1,@) — (£, 1)(1,0)|
I(f, 1(1,a) — (£,1)(1, a)|

< NZ|(U’°"(f—a),f)|
i=1

-+

L&
+5 §|(U'°"a,f —a)|
+e+ |(f — a,l)(l,a)| + |(f, {1, f - a)l.
Using the fact that ||f|| = (f, f)'/? and Cauchy’s inequality this is

<ellfll+e(llfll +e) +e+e(lfll +e) +ellfll.

Thus we have shown that if f € L? then
(6) Jim = Z(U* £,5) =100 1)

o
Now L? = H® H' where H = (| U"L?(X, 3, 1) and note that if
n=1

V=L*eUL*={fec L*(X,B,p): f LL*(X,T7'B,1n)}

where T-!8 is the o algebra generated by {A =T"'B: B € 8}, then

[0 o]
=guv.
n=0
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Since the spaces are mutually orthogonal it is clear that for f € U*V and g € UV
with 7 # j different we have

7) lim % S (Ukif,g) = 0.

By taking linear combinations of such f and g and using approximation arguments in
the L2(X, B, 1) norm, we must have (7) for all f and g in HL. Of course for f in
H and g in H* or vice versa then (7) is still true and we see that in order to prove
Theorem C it suffices to show (7) assuming that [, f(z)dp = 0. This is the only point
at which we need to use the hypothesis on the sequence of integers k. We first note
that UH = H and therefore U is a unitary operator on H, that is, in particular it
has an inverse there. Let S(f) = {U"f :n € Z}, and let Z(f) be the ||.|| closure of
the linear span of S(f). Now by (6) for arbitrary positive integers ¢

N
o1 kit p 77l ey _
Jim ;w £ U =0.

Also by the hypothesis on the sequence k we have

N

N
D (URHEULF) =Y (UXF,US) + o(N).

i=1 i=1
Taking linear combinations of the U%f and then taking limits completes the proof. [
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