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Symmetric tensors on the intersection of two

quadrics and Lagrangian fibration

ArnaudBeauville , AntoineEtesse , AndreasHöring , Jie Liu and ClaireVoisin

Abstract

Let X be an n-dimensional (smooth) intersection of two quadrics, and let T ∗X be its
cotangent bundle. We show that the algebra of symmetric tensors onX is a polynomial
algebra in n variables. The corresponding map Φ : T ∗X→Cn is a Lagrangian fibration,
which admits an explicit geometric description; its general fiber is a Zariski open subset
of an abelian variety, which is a quotient of a hyperelliptic Jacobian by a 2-torsion
subgroup. In dimension 3, Φ is the Hitchin fibration of the moduli space of rank 2
bundles with fixed determinant on a curve of genus 2.
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1. Introduction

Let X ⊂ P
n+2
C

be a smooth n-dimensional complete intersection of two quadrics, with n≥ 2, and
let T ∗X be its cotangent bundle. The C-algebra H0(T ∗X,OT ∗X) is canonically isomorphic to
the algebra of symmetric tensors H0(X, S•TX). Recall that T

∗X carries a canonical symplectic
structure. Our main result is the following theorem:

Theorem 1.1.

(a) The vector space W :=H0(X, S2TX) has dimension n, and the natural map S•W →
H0(X, S•TX) is an isomorphism.

(b) The corresponding map, Φ : T ∗X→W ∗ ∼=Cn, is a Lagrangian fibration.
(c) When X is general, the general fiber of Φ is of the form A�Z, where A is an abelian

variety and codim Z ≥ 2.

We will give a precise geometric description of the map Φ and of the abelian variety A in
Sections 4 and 5.

1.1 Comments

(1) For n= 2, (a) follows from Theorem 5.1 in [DOL19], while (b) and (c) are proved in [KL22].
The proof is based on the isomorphism TX ∼=Ω1

X(1). The theorem also follows from the fact that
X is a moduli space for parabolic rank 2 bundles on P1 [Cas15], so Φ : T ∗X→C2 is identified to
the Hitchin fibration (see [BHK10]).

For n= 3, X is isomorphic to the moduli space of vector bundles of rank 2 and fixed deter-
minant of odd degree [New68]; again, the theorem follows from the properties of the Hitchin
fibration (see Section 2). It would be interesting to have a modular interpretation of Φ for n≥ 4.
Note that the Hitchin map for G-bundles is homogeneous quadratic only when G is SL(2) or a
product of copies of SL(2), so this limits the possibilities of using it.

(2) The map Φ is an example of an algebraically completely integrable system; see Remark
5.1. There is an abundant literature on such systems; see, for instance, [A96].

A classical example, the geodesic flow on an ellipsoid, is discussed in detail in [K80]. The
corresponding Lagrangian fibration takes place on the cotangent bundle of one quadric; it is not
related to our Φ. However, some of the tools we use in Sections 4 and 5, in particular the variety
X and the family of planes F, appear already in [K80] (with a different purpose).

(3) Such a situation is rather exceptional: Most varieties do not admit nonzero symmetric ten-
sors (for instance, hypersurfaces of degree≥ 3 [HLS22]); when they do, even for varieties as simple
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as quadrics, the algebra of symmetric tensors is fairly complicated (see, for instance, [BLi24]).
We do not have a conceptual explanation for the particularly simple behavior in our case.

(4) For n= 2 or 3, the generality assumption on X in (c) is unnecessary. It seems likely that
this is the case for all n, but our method does not allow us to make that conclusion.

1.2 Strategy

We will first treat the case n= 3, which is independent of the rest of this article (Section 2). For
the general case, we will develop two different approaches. In the first one we exhibit a natural
n-dimensional subspace W ⊂H0(X, S2TX), from which we deduce a map Φ : T ∗X→W ∗ ∼=Cn

(Section 3). We then show that Φ has the required properties, which implies (a), (b) and (c) for
general X (5.1). In the second approach (Section 7), we directly prove (a) for all smooth X , by
realizing X as a double covering of a quadric.

1.3 Notations

Throughout this article, X will be a smooth complete intersection of two quadrics in Pn+2, with
n≥ 2. We denote by T ∗X its cotangent bundle and by PT ∗X its projectivisation in the geometric
sense (not in the Grothendieck sense). If V is a vector space, we denote by P(V ) the associated
projective space V � {0}/C∗ parametrising 1-dimensional subspaces of V .

2. The case n=3

In this section we show how our general results can be obtained in the case n= 3 by interpreting
X as a moduli space.

As in Section 4.1 below, we associate to X a genus 2 curve C such that the variety of lines
in X is isomorphic to JC. Let us fix a line bundle N on C of degree 1; then X is isomorphic
to the moduli space M of rank 2 stable vector bundles on C with determinant N [New68].
The cotangent bundle T ∗M is naturally identified with the moduli space of Higgs bundles ; that
is, pairs (E, u) with E ∈M and u :E→E ⊗KC a homomorphism with Tru= 0. The Hitchin
map Φ : T ∗M→H0(K2

C) associates to a pair (E, u) the section det u of K2
C . It is a Lagrangian

fibration [Hit87].
Let ω ∈H0(K2

C). We assume in what follows that ω vanishes at 4 distinct points . Let Cω
be the curve in the cotangent bundle T ∗C defined by z2 = ω. The projection π :Cω →C is a
double covering branched along div(ω), and Cω is a smooth curve of genus 5. Let P be the Prym
variety associated to π, that is, the kernel of the norm map Nm : JCω → JC; it is a 3-dimensional
abelian variety.

Proposition 2.1. The fibre Φ−1(ω) is isomorphic to the complement of a curve in P .

Proof. Recall that the map L �→ π∗L establishes a bijective correspondence between line bundles
on Cω and rank 2 vector bundles E on C endowed with a homomorphism u :E→E ⊗KC such
that u2 = ω · IdE or, equivalently, Tru= 0 and det u= ω (see, for instance, [BNR89]). To get
(E, u) in Φ−1(ω), we have to impose detE =N and E stable. Since det π∗L=Nm(L)⊗K−1

C ,
the first condition means that L belongs to the translate PN := Nm−1(KC ⊗N) of P .

Then the vector bundle π∗L is unstable if and only if it contains an invertible subsheaf
M of degree 1; this is equivalent to saying that there is a nonzero map π∗M →L; that is,
L= π∗M(p) for some point p∈Cω. The condition L∈ PN means that M2(π(p)) =KC ⊗N , so
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M is determined by p up to the 2-torsion of JC. Thus the locus of line bundles L∈ PN such
that π∗L is unstable is a curve. �

Let ρ :C→ P1 be the canonical double covering, with B ⊂ P1 its branch locus. Since the
homomorphism S2H0(KC)→H0(K2

C) is surjective, the divisor of ω is of the form ρ∗(p+ q), for
some p, q ∈ P1; by assumption, we have p 	= q and p, q /∈B.

Proposition 2.2. Let Γ be the double covering of P1 branched along B ∪ {p, q}. There is an
exact sequence

0→Z/2→ JΓ→ P → 0 .

Proof. Let χ : P1 → P1 be the double covering branched along {p, q}. Since div(ω) = ρ∗(p+ q),
there is a cartesian diagram of double coverings

Cω
ξ

π

P1

χ

C ρ P1

which gives rise to two commuting involutions σ, τ of Cω, exchanging the two sheets of π and ξ,
respectively. The field of rational functions on Cω is

C(x, y, z) with y2 = f(x), z2 = g(x),

where f and g are polynomials with divf =B and divg= {p, q}. Then σ and τ change the sign
of y and z, respectively.

The involution στ is fixed-point free, so the quotient Γ :=Cω/〈στ〉 has genus 3; its field of
functions is C(x, w), with w= yz and w2 = f(x)g(x). We have again a cartesian square

Cω
ϕ

π

Γ

ψ

C ρ P1.

Let α∈ JΓ. We have Nmπϕ
∗α= ρ∗Nmψα= 0; hence, ϕ∗ maps JΓ into P ⊂ JCω. Since ϕ is étale,

we have Kerϕ∗ =Z/2; since dim JΓ= dim P = 3, ϕ∗ is surjective. �

3. Definition of Φ

Let Y be a smooth degree d hypersurface in PN , defined by an equation f = 0. Recall that one
associates to f a section hf of S2Ω1

Y (d), the hessian or second fundamental form of f [GH79]: at
a point y of Y , the intersection of Y with the tangent hyperplane H to Y at y is a hypersurface
in H singular at y, and hf (y) is the degree 2 term in the Taylor expansion of f|H at y.

Now let X ⊂ Pn+r be a smooth complete intersection of r hypersurfaces of degree d; let

V ⊂H0(Pn+r,OP(d))

be the r-dimensional subspace of degree d polynomials vanishing on X. By restricting hf , for
f ∈ V , to X, we get a linear map
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V ⊗OX −→ S2Ω1
X(d),

which gives at each point x∈X a linear space of quadratic forms on the tangent space Tx(X).
Note that when d= 2, the corresponding quadrics in P(Tx(X)) can be viewed geometrically as
follows: The projective space P(Tx(X)) can be identified with the space of lines in Pn+r passing
through x and tangent to X; then for each q ∈ V , the quadric defined by hq(x) parameterises
the lines passing through x and contained in the quadric {q= 0}.

Now we want to consider the ‘inverse’ of the quadratic form hf (x) on Tx(X); that is, the form
on T ∗

x (X) given in coordinates by the cofactor matrix. Intrinsically, each f ∈ V gives a twisted
symmetric morphism

hf : TX −→Ω1
X(d),

which induces a twisted symmetric morphism on (n− 1)-th exterior powers, namely,

∧n−1hf :
∧n−1

TX −→
∧n−1

Ω1
X((n− 1)d) .

We now observe that KX =OX(−n− 1− r+ dr); hence
∧n−1

TX ∼=Ω1
X(n+ 1− r(d− 1)) and

∧n−1
Ω1
X
∼= TX(−n− 1 + r(d− 1)) ,

so ∧n−1hf induces a symmetric morphism from Ω1
X(n+ 1− r(d− 1)) to TX((n− 1)d− n− 1 +

r(d− 1)), hence provides a section

∧n−1hf ∈H0(X, S2TX(d(n+ 2r− 1)− 2(n+ r+ 1))).

Being locally given by the cofactor matrix, ∧n−1hf is homogeneous of degree n− 1 in f . Hence,
we have constructed a linear map

α : Sn−1V −→H0(X, S2TX(d(n+ 2r− 1)− 2(n+ r+ 1))) such that α(fn−1) =∧n−1hf .

From now on, we restrict to the case d= 2, r= 2, so X is the complete intersection of two
quadrics, and the previous construction gives a linear map

α : Sn−1V −→H0(X, S2TX) .

Using the canonical isomorphism H0(T ∗X,OT ∗X) =H0(X, S•TX), we deduce from α a
morphism

Φ : T ∗X −→ Sn−1V ∗ ∼=C
n .

We have Φ(λv) = λ2Φ(v) for v ∈ T ∗X, λ∈C, so Φ induces a rational map

ϕ : PT ∗X ��� Pn−1,

whose indeterminacy locus Z is the image of Φ−1(0).

Proposition 3.1.

(1) α is injective.
(2) Φ is surjective.
(3) The image of Z by the structure map p : PT ∗X→X is a proper subvariety of X.

Proof. Let x be a general point of X. We claim that the base locus in P(Tx(X)) of the pencil
of quadratic forms {hq(x)}q∈V is smooth. Indeed, this locus can be viewed as the variety Fx of
lines in X passing through x. Let F be the Fano variety of lines contained in X, and let

G⊂ F ×X = {(�, y) | y ∈ �} .
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Then F and therefore G are smooth [Reid72, Theorem 2.6], hence Fx, which is the fibre above x
of the projection G→X, is smooth since x is general. It follows that in an appropriate system
of coordinates (k1, . . . , kn) of Tx(X), the forms {hq(x)} can be written as

t
∑

k2i +
∑

αik
2
i with αi distinct in C, t∈C .

Then ∧n−1hq(x) is given by the diagonal matrix with entries βi :=
∏
j �=i

(t+ αj) (i= 1, . . . , n).

These polynomials in t are linearly independent; hence, they generate the space of quadratic
forms on T ∗

x (X), which are diagonal in the basis (ki). This linear system has dimension n, so α
is injective; it has no base point, so ϕ induces a finite, surjective morphism P(T ∗

x (X))→ Pn−1.
Thus, Φ is surjective, and Z ∩ P(T ∗

x (X)) =∅, which gives (2) and (3). �

We want to give a geometric construction of the rational map ϕ : PT ∗X ��� Pn−1. A point
of PT ∗X is a pair (x, H), where x∈X and H is a hyperplane in Tx(X). Restricting the pencil
{hq(x)}q∈V to H gives a pencil of quadrics on H, which for general(x, H) contains n− 1 sin-
gular quadrics q1, . . . , qn−1. The subset {q1, . . . , qn−1} of P(V ) corresponds to a point ϕx,H of
P(Sn−1V ∗); namely, the hyperplane in Sn−1V spanned by qn−1

1 , . . . , qn−1
n−1.

Proposition 3.2. ϕ(x, H) =ϕx,H .

Proof. We can assume that x is general. We have seen that the restriction of ϕ to P(T ∗
xX) is

the morphism given by the linear system of quadratic forms W ∼= Sn−1V spanned by the forms
∧n−1hq(x), for q ∈ V ; in other words, ϕ maps the point H of P(T ∗

x (X)) to the hyperplane of
forms in W vanishing at H.

On the other hand, ϕx,H is the hyperplane of Sn−1V spanned by the qn−1 for those q ∈ V
such that hq(x)|H is singular; this condition is equivalent to saying that the form ∧n−1hq(x)
on T ∗

xX vanishes at H. Therefore, ϕx,H is spanned by quadratic forms vanishing at H, hence
coincides with ϕ(x, H). �

Corollary 3.3. codimZ ≥ 2.

Proof. Suppose that Z contains a component Z0 of codimension 1; since p(Z) 	=X, we have
Z0 = p−1(p(Z0)). We claim that this is impossible; in fact, Z cannot contain a fibre p−1(x).
Indeed, its doing this would mean that for q ∈ V , the form hq(x) is singular along all hyperplanes
H ⊂ Tx(X); that is, hq(x) has rank ≤ n− 2. But the rank of hq(x) is the rank of the restriction
of q to the projective tangent subspace to X at x. Restricting a quadratic form to a hyperplane
lowers its rank by up to two. Since a general q in V has rank n+ 3, its restriction to a codimension
2 subspace has rank ≥ n− 1. �

4. Fibers of ϕ

In an appropriate system of coordinates (x0, . . . , xn+2), our variety X is defined by the equations
q1 = q2 = 0, with

q1 =
∑

x2i q2 =
∑

μix
2
i , with μi ∈C distinct.

Let Π= P(V ) (∼= P1) be the pencil of quadrics containing X. We choose a coordinate t on Π so
that the quadrics of Π are given by tq1 − q2 = 0. Then the singular quadrics of Π correspond to
the points μ0, . . . , μn+2.
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The goal of this section is to describe the general fibre of the rational map ϕ : PT ∗X ���
Sn−1Π (∼= Pn−1). For λ= (λ1, . . . , λn−1)∈ Sn−1Π, let Cμ,λ denote the hyperelliptic curve y2 =∏
(t− μi)

∏
(t− λj), of genus n. We will then prove the following:

Proposition 4.1. For λ general in Sn−1Π, the fibre ϕ−1(λ) is birational to the quotient of the
Jacobian JCμ,λ by the group Γ := {±1JC} × Γ+, where Γ+ ∼= (Z/2Z)n−2 is a group of translations
by 2-torsion elements.

4.1 Odd-dimensional intersection of 2 quadrics

We briefly recall here the results of Reid’s thesis ([Reid72]; see also [DR76]). Let Y ⊂ P2g+1 be
a smooth intersection of 2 quadrics, and let Ξ (∼= P1) be the pencil of quadrics containing Y .
Let Σ⊂Ξ be the subset of 2g+ 2 points corresponding to singular quadrics, and let C be the
double covering of Ξ branched along Σ; this is a hyperelliptic curve of genus g. The intermediate
Jacobian JY of Y is isomorphic to JC (as principally polarized abelian varieties). The variety F
of (g− 1)-planes contained in Y is also isomorphic to JC, but this isomorphism is not canonical.

In an appropriate system of coordinates, the equations of Y are of the form∑
x2i =

∑
αix

2
i = 0, with αi ∈C distinct;

then Σ= {α1, . . . , α2g+2}. The group Γ := (Z/2Z)2g+1 acts on Y (hence also on F ) by changing
the signs of the coordinates. Let Γ+ ⊂ Γ be the subgroup of elements that change an even number
of coordinates. Choose an element γ ∈ Γ� Γ+; there is an isomorphism F

∼−→ JC such that γ
corresponds to (-1JC). Then the image of Γ+ in Aut(JC) is the group T2 of translations by
2-torsion elements of JC, and the image of Γ is T2 × {±1JC} [DR76, Lemma 4.5].

4.2 An auxiliary construction

We consider the projective space P2n+1 equipped with the system of homogeneous coordinates

x0, . . . , xn+2; y1, . . . , yn−1

and the affine space An−1 equipped with the affine coordinates λ1, . . . , λn−1. Let

X⊂ P
2n+1 ×A

n−1

be the complete intersection of the two quadrics with equations

Q1 =Q2 = 0 with Q1 =

n+2∑
i=0

x2i +

n−1∑
j=1

y2j , Q2 =

n+2∑
i=0

μix
2
i +

n−1∑
j=1

λjy
2
j .

The second projection, X→An−1, gives a family of complete intersections of two quadrics Xλ of
dimension 2n− 1 parameterised by An−1. Note that X is the intersection of X with the subspace
Pn+2 ⊂ P2n+1 defined by y1 = . . .= yn−1 = 0.

Let p :F→An−1 be the family of (n− 1)-planes contained in the Xλ; that is

F= {(P, λ) | λ∈A
n−1, P (n− 1)-plane⊂Xλ} .

For λ general, the fibre Fλ is isomorphic to the Jacobian of the hyperelliptic curve Cμ,λ (4.1).
Let (P, λ) be a general point of F. Then P ∩ Pn+2 is a point x ofX. Let π : P2n+1 ��� Pn+2 be

the projection (xi, yj) �→ (xi). Since the π∗ differentials of Qi and qi coincide at x, the differential
π∗ maps Tx(P )⊂ Tx(X) into Tx(X). Since P is general, π∗Tx(P ) is a hyperplane in Tx(X); this
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will follow from the proof of Proposition 4.2, (1) below, where we explicitly construct pairs (P, λ)
with this property.

Therefore, we have a rational map

ψ :F ��� PT ∗X (P, λ) �→ (x= P ∩ P
n+2 , π∗Tx(P )) .

The symmetric group Sn−1 acts on P2n+1 by permuting the yj and acts on the group (Z/2Z)n−1

by changing their signs; this gives an action of the semi-direct product G := (Z/2Z)n−1 �Sn−1.
We make G act on An−1 through its quotient Sn−1, by permutation of the λi. This induces an
action of G on X and therefore on F, which is compatible via p with the action on the base. The
map ψ is invariant under this action; hence, it factors through the quotient F/G. By passing to
the quotient, we get a map p� :F/G→An−1/Sn−1.

Proposition 4.2. (1) ψ induces a birational map ψ� :F/G ��� PT ∗X.
(2) There is a commutative diagram

F/G
ψ�

p�

PT ∗X

ϕ

An−1/Sn−1 σ
∼

An−1 ⊂ Pn−1

where p� is deduced from p and where σ is the isomorphism given by symmetric functions.

Proof. (1) Let (x, H)∈ PT ∗X; we want to describe the pairs (P, λ) such that P ∩ Pn+2 = {x}
and π∗Tx(P ) =H. The latter condition says that via the decomposition

Tx(P
2n+1) = Tx(P

n+2)⊕Ker π∗ ,

Tx(P ) identifies with the graph of a linear map

α :H→Ker π∗ .

Using the basis ( ∂
∂y1
, . . . , ∂

∂yn−1
) of Ker π∗, we have α= (α1, . . . , αn−1), where the αi are linear

forms on H. The condition P ⊂Xλ implies that the hessians hQ1
(x) and hQ2

(x) vanish on Tx(P ),
which gives

hq1(x)|H =−
∑
i

α2
i hq2(x)|H =−

∑
i

λiα
2
i . (1)

This is a simultaneous diagonalisation of the quadratic forms hq1(x)|H and hq2(x)|H ; when they
are in general position, this determines the λi up to permutation and the αi up to sign and
permutation, which proves (1).

(2) Let (P, λ)∈F, and let (x, H) :=ψ(P, λ). According to Proposition 3.2, ϕ(x, H) is given
by the (n− 1)-uple of quadrics q ∈Π such that the form hq(x)|H is singular. Using (α1, . . . , αn−1)
as coordinates on H, we see from (1) that this (n− 1)-uple is given by (λ1, . . . , λn−1), which
proves (2). �

4.3 Proof of Proposition 4.1.

Let λ be a general element of An−1. Let us denote by Γ the subgroup (Z/2Z)n−1 of G. From
Proposition 4.2 and the cartesian diagram

8

https://doi.org/10.1112/mod.2024.3
Downloaded from https://www.cambridge.org/core. IP address: 18.218.251.71, on 11 Jan 2025 at 00:45:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/mod.2024.3
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Symmetric tensors on the intersection of two quadrics and Lagrangian fibration

F/Γ

p

F/G

p�

An−1 An−1/Sn−1

we see that the fibre ϕ−1(λ) is birational to the quotient Fλ/Γ. By (4.1) there is an isomorphism
Fλ

∼−→ JCμ,λ such that Γ acts on JCμ,λ as {±1J} × Γ+, where Γ+ is a group of translations by
2-torsion elements. This proves the proposition.

5. Fibres of Φ

5.1 Results

We keep the settings of the previous section. Recall that our parameter λ lives in An−1 ⊂ Sn−1Π∼=
Pn−1. For λ in An−1, we denote by λ̃ a lift of λ in Cn for the quotient map Cn � {0}→ Pn−1.

Theorem 5.1. Assume that X is general. For λ∈An−1 general, the fibre Φ−1(λ̃) is isomorphic
to A�Z, where:

• A is the abelian variety quotient of JCμ,λ by a 2-torsion subgroup, isomorphic to
(Z/2Z)n−2 ;

• Z is a closed subvariety of codimension ≥ 2 in A.

Corollary 5.2. For every smooth complete intersection of two quadrics X ⊂ Pn+2, the
fibration Φ : T ∗X→Cn is Lagrangian.

Proof. Assume first thatX is general. The symplectic form on T ∗X is dη, where η is the Liouville
form. By Theorem 5.1 and Hartogs’ principle, the pull-back of η to a general fibre of Φ is the
restriction of a 1-form on an abelian variety, hence is closed. This implies the result.

Let p :X→B be a complete family of smooth intersection of two quadrics in Pn+2. The
constructions of §3 can be globalised over B: we have a rank 2 vector bundle V over B whose
fibre at a point b∈B is the space of quadratic forms vanishing on Xb. We get a homomorphism
Sn−1V→ p∗TX/B, which thus gives rise to a morphism Φ : T ∗(X/B)→ Sn−1V∗ over B which
induces over each point b∈B our map Φ. There is a natural Liouville form η on T ∗(X/B):
Since dη vanishes on a general fibre of Φ, it vanishes on all fibres. �

Corollary 5.3. Assume that X is general. The multiplication map S•H0(X, S2TX)→
H0(X, S•TX) is an isomorphism.

(We will give in Section 7 a proof that is valid with no generality assumption.)

Proof. Theorem 5.1 implies that every function on a general fibre of Φ is constant; hence,
the pull-back Φ∗ :H0(Cn,OCn)→H0(T ∗X,OT ∗X) is an isomorphism. The right-hand space is
canonically isomorphic to H0(X, S•TX); hence, we get an algebra isomorphism C[t1, . . . , tn]

∼−→
H0(X, S•TX). By construction, the ti are mapped to elements of H0(X, S2TX), so the Corollary
follows. �

Remark 5.4. Let V1, . . . , Vn be the Hamiltonian vector fields on T ∗X that are associated to the
components of Φ. For λ general in Cn, let us identify Φ−1(λ) to A�Z as in the theorem. Then
by Hartogs’ principle the Vi linearise on A; that is, they extend to a basis of H0(A, TA). In
principle, this allows to write explicit solutions of the Hamilton equations for Φi in terms of
theta functions.
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5.2 Proof of the theorem: lemmas

We fix a general point λ∈An−1. We denote by Fo the open subset of F where the rational
map ψ is well-defined and denote by Fo

λ its intersection with the fibre Fλ. Since λ is general,
the complement of Fo

λ in Fλ has codimension ≥ 2. The rational map ψ induces a morphism
ψo :Fo → PT ∗X; we denote by ψo

λ its restriction to Fo
λ. Let Z ⊂ PT ∗X be the indeterminacy

locus of ϕ (§ 3), and let Fbad
λ := (ψo

λ)
−1(Z)⊂Fo

λ.

Proposition 5.5. Fbad
λ has codimension ≥ 2 in Fλ.

We postpone the proof of Proposition 5.5 to the next section; here we show how it implies
Theorem 5.1.

Let 0X ⊂ T ∗X be the zero section, and let q : T ∗X � 0X → PT ∗X be the quotient map. Let
ϕo : PT ∗X �Z→ Pn−1 be the morphism induced by ϕ. We thus have q(Φ−1(λ̃)) = (ϕo)−1(λ),
and the restriction

qλ : Φ
−1(λ̃)→ (ϕo)−1(λ)

is an étale double cover, with Galois involution ι induced by (−1T ∗X).
We put Foo

λ :=Fo
λ �Fbad

λ and consider the restriction

ψo
λ :F

oo
λ → (ϕo)−1(λ) of ψo .

Lemma 5.6. The fibre Φ−1(λ̃) is Lagrangian, and has a trivial tangent bundle.

Proof. The étale double cover qλ induces by fibred product an étale double cover

π : F̃
oo

λ →Foo
λ

such that ψo
λ lifts to a morphism ψ̃o

λ : F̃
oo

λ →Φ−1(λ̃).
By Proposition 5.5, the complement of Foo

λ in Fλ has codimension ≥ 2, so π extends to

an étale double cover F̃λ→Fλ, where F̃λ is an abelian variety or the disjoint union of two
abelian varieties. The morphism ψ̃o

λ : F̃
oo

λ →Φ−1(λ̃) is generically of maximal rank. Again by

Proposition 5.5, the holomorphic 1-forms on F̃
oo

λ are closed; hence by pull-back, the same holds
for the holomorphic 1-forms on Φ−1(λ̃). As in the proof of Corollary 5.2, this implies that Φ−1(λ̃)
is Lagrangian. The second assertion is a basic property of Lagrangian fibres. �

Lemma 5.7 The morphism ψo
λ lifts to a morphism ψ̃o

λ :F
oo
λ →Φ−1(λ̃).

Proof. It suffices to show that the double covering π : F̃
oo

λ →Foo
λ splits.

Assuming the contrary, F̃λ is an abelian variety. By Lemma 5.6 H0(Φ−1(λ̃),Ω1) has dimen-

sion n. It follows that the pull-back (ψ̃o
λ)

∗ :H0(Φ−1(λ̃),Ω1)→H0(F̃
oo

λ ,Ω
1) is bijective. Since the

Galois involution of the double covering π acts trivially on holomorphic 1-forms, the same holds
for the Galois involution ι of the double covering qλ : Φ

−1(λ̃)→ (ϕo)−1(λ).
Now we observe that the 1-forms on Φ−1(λ̃) are ‘pure’; that is, they extend to any smooth

projective compactification of Φ−1(λ̃). This follows from the fact that this holds after pull-back

to F̃
oo

λ . But the quotient Φ−1(λ̃)/ι is isomorphic to a Zariski open subset of ϕ−1(λ), which, by
Proposition 4.1, has no nonzero holomorphic 1-forms, so any Zariski open subset has no nonzero
closed pure holomorphic 1-forms. This contradiction proves the lemma. �
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5.3 Proof of Theorem 5.1

Lemma 5.7 gives a factorisation,

ψo
λ :F

oo
λ

ψ̃o
λ−−−→Φ−1(λ̃)

qλ−−→ (ϕo)−1(λ) .

By Proposition 4.1, ψo
λ induces a birational morphism,

ψo
λ,Γ :Foo

λ /Γ−→ (ϕo)−1(λ)

it follows that for some subgroup Γ′ ⊂ Γ of index 2, the morphism ψ̃o
λ :F

oo
λ →Φ−1(λ̃) factors

through a birational morphism,

ψ̃o

λ,Γ′ :F
oo
λ /Γ

′ −→Φ−1(λ̃) .

By Lemma 5.6, the cotangent bundle of Φ−1(λ̃) is trivial. Therefore, the cotangent bundle of
Foo
λ /Γ

′ is generically generated by its global sections. This implies that Γ′ acts trivially on
holomorphic 1-forms and, hence, is the subgroup Γ+ of Γ generated by translations, isomorphic
to (Z/2Z)n−2; thus Fλ/Γ

′ is an abelian variety A.
To simplify notation, we write Ao :=Foo

λ /Γ
′ and u := ψ̃o

λ,Γ′ . The rational map u−1 :

Φ−1(λ̃) ���A is everywhere defined (e.g. [BL92, Theorem 4.9.4]), so we have two morphisms

Ao u−−→Φ−1(λ̃)
u−1−−−→A

whose composition is the inclusion Ao ↪→A. Since the tangent bundles of A and Φ−1(λ̃)
are trivial, the determinant of Tu : TAo → u∗TΦ−1(λ̃) is a function on Ao, hence constant by
Proposition 5.5. Therefore, u is étale and birational, hence an open embedding. This implies
that every function on Φ−1(λ̃) is constant (because its restriction to Ao is constant). Then the
previous argument shows that u−1 is also an open embedding, hence Φ−1(λ̃) is isomorphic to an
open subset of A containing Ao. This proves the theorem.

6. Proof of Proposition 5.5

We keep the notations of Section 4.2. Recall that we have coordinates (x0, . . . , xn+2; y1, . . . , yn−1)
on P2n+1 and subspaces Pn+2 and Pn−2 in P2n+1 defined by y= 0 and x= 0.

Let q1(x) = q2(x) = 0 be the equations defining X in Pn+2, and let R be the vector space of
quadratic forms in y= (y1, . . . , yn−1). We define an extended family Xe ⊂ P2n+1 ×R2 as

Xe = {((x, y); (r1, r2))∈ P
2n+1 ×R2 | q1(x) + r1(y) = q2(x) + r2(y) = 0} .

The fibre Xe
r at a point r= (r1, r2) of R2 is the intersection in P2n+1 of the two quadrics

q1(x) + r1(y) = q2(x) + r2(y) = 0. Let G be the Grassmannian of (n− 1)-planes in P2n+1; we
define as before

Fe := {(P, r)∈G×R2 | P ⊂Xe
r}

and the extended rational map ψe :Fe ��� PT ∗X, which maps a general P ⊂Xe
r to the pair

(x, H), with {x}= P ∩ Pn+2 and H = π∗Tx(P ).
We observe that a general pair r= (r1, r2) of R2 is simultaneously diagonalisable, so the

restriction of ψe to Fe
r coincides, for an appropriate choice of the coordinates (yi), with the map

ψλ that we want to study.
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Proposition 6.1. Assume that X is general.
1. Let Γ⊂Fe be the locus of points (P, r) such that either dim P ∩ Pn+2 > 0, or P ∩ Pn−2 	=

∅. Then Γ has codimension ≥ 2 in Fe.
2. There exists no divisor in Fe � Γ that dominates R2 and that is mapped to the base locus

Z ⊂ PT ∗X by ψe.

We claim that this implies Proposition 5.5. Indeed, as just explained above, it suffices to
prove the analogue of Proposition 5.5 for ψe. Next, it is clear that the indeterminacy locus of
ψe is contained in Γ, so ψe is well-defined on Fe � Γ. By Proposition 6.1, (1), it now suffices
to prove the analogue of Proposition 5.5 for the restriction of ψe to Fe � Γ. This is exactly the
statement of Proposition 6.1, (2).

Proof of Proposition 6.1: (1) Let Q be the vector space of quadratic forms on P2n+1 of the form
q(x) + r(y) for some quadratic forms q and r. For each pair of integers (k, l) with k≥ 0, l≥−1,
let Gk,l be the locally closed subvariety of (n− 1)-planes P ∈G such that

dim(P ∩ P
n+2) = k dim(P ∩ P

n−2) = l .

(We put, by convention, l=−1 if P ∩ Pn−2 =∅.) Let

FQ := {(P, (Q1, Q2))∈G×Q2 | Q1|P =Q2|P = 0}
and

FQ
k,l :=FQ ∩ (Gk,l ×Q2) .

The general fibre of the projection FQ →Q2 is an abelian variety, and we recover Fe by restrict-
ing FQ to pairs of quadratic forms of the form (q1(x) + r1(y), q2(x) + r2(y)), with (q1(x), q2(x))
fixed. Because we assume X general, the pair (q1(x), q2(x)) is general in Q2. It thus suffices to
prove the result for the larger family FQ; that is, to show that FQ

k,l has codimension ≥ 2 in FQ.
This is done by a dimension count. For P ∈G, let ϕP be the restriction map Q→

H0(P,OP (2)). The fibre of the projection FQ →G is the vector space (KerϕP )
⊕2. For P general,

ϕP is surjective: This is the case, for instance, if P is contained in the (n+ 2)-plane in P2n+1

defined by yi = xi (i= 1, . . . , n− 1). However, ϕP is not surjective for P ∈Gk,l because the forms
r(y)|P are singular along P ∩ Pn+2 and the forms q(x)|P are singular along P ∩ Pn−2; this implies
that the subspaces P ∩ Pn+2 and P ∩ Pn−2 are apolar for all forms in ImϕP . Therefore, the corank
of ϕP is ≥ (k+ 1)(l+ 1), and there is equality when P is contained in the subspace defined by
x0 = . . .= xn+1−k = y1 = . . .= yn−2−l = 0, hence for P general in Gk,l. Thus our assertion follows
from:

codim(FQ
k,l,F

Q) = codim(Gk,l,G)− 2(k+ 1)(l+ 1)

= k(k+ 1) + (l+ 1)(l+ 4)− 2(k+ 1)(l+ 1)

= (k− l)(k− l− 1) + 2(l+ 1)

≥ 2 if k≥ 1 or l≥ 0 .

(2) The base locus Z ⊂ PT ∗X has codimension ≥ 2 (Corollary 3.3). Note that ψe is well-
defined in Fe � Γ. If D is a codimension 1 subvariety in Fe � Γ, with ψe(D)⊂Z, the map ψe

does not have maximal rank along D. This contradicts the following lemma:

Lemma 6.2. ψe has maximal rank on Fe � Γ.
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Proof. Let (x, H) be a point of PT ∗X; we view H as a hyperplane in the projective tangent
space to x at X. The fibre of ψe :Fe � Γ→ PT ∗X at (x, H) is the locus

(ψe)−1(x, H) = {(P, r1, r2)∈G×R2 | P ∩ P
n+2 = {x} , P ∩ P

n−2 =∅ , π(P ) =H, (2)

(qi + ri)|P = 0 (i= 1, 2)} . (3)

The equations (2) define a smooth, locally closed subvariety Gx,H of G. Let P ∈Gx,H , and let
χP :R→H0(P,OP (2)) be the restriction map. We will show below that the image of χP is the
space of quadratic forms on P that are singular at x. Since the forms qi|P are singular at x, this
implies that the solutions of (3) form an affine space over (KerχP )

⊕2. Therefore, (ψe)−1(x, H)
admits an affine fibration over Gx,H , hence is smooth.

Clearly the quadrics in ImχP are singular at x. To prove the opposite inclusion, choose
the coordinates (xi) so that x= (1, 0, . . . , 0). Since P ∩ Pn+2 = {x}, there exist linear forms
�1, . . . , �n+2 in the yj so that P is defined by xi = �i(y) for i= 1, . . . , n+ 2. Then a quadratic
form on P2n+1 singular at x can be written as a form in x1, . . . , xn+2; y1, . . . , yn−1; hence, its
restriction to P is in ImχP . This proves the lemma and, hence, also the proposition. �

7. Symmetric tensors: second approach

7.1 The cotangent bundle of a smooth quadric

We consider a smooth quadric Q⊂ Pn+1 defined by an equation q= 0. Its cotangent bundle
PT ∗Q parameterises pairs (x, P ) with x∈Q and P a (n− 1)-plane tangent to Q at x. Thus, we
get a morphism γ from PT ∗Q to the Grassmannian G of (n− 1)-planes in Pn+1, which is the
morphism defined by the linear system |OPT ∗Q(1)|. It is birational onto its image, but contracts
the subvariety C⊂ PT ∗Q that consists of pairs (x, P ), such that P is tangent to Q along a line
�⊂Q with x∈ �; then γ−1(P ) consists of the pairs (x, P ) with x∈ �.

Let hq ∈H0(Q, S2Ω1
Q(2)) be the hessian form of q (§3). Choosing coordinates (xi) such that

q(x) =
∑
x2i , we have hq =

∑
(dxi)

2 (note that this is, up to a scalar, the unique element of
H0(Q, S2Ω1

Q(2)) invariant under Aut(Q)). Then hq(x) is non-degenerate at each point x of Q,

so hq induces an isomorphism Ω1
Q(1)

∼−→ TQ(−1), hence also S2Ω1
Q(2)

∼−→ S2TQ(−2). The image

in H0(Q, S2TQ(−2)) of hq by this isomorphism is h′q =
∑
∂2j . We will view h′q as an element of

H0(PT ∗Q,OPT ∗Q(2)⊗ p∗OQ(−2)), where p : PT ∗Q→Q is the projection.

Proposition 7.1. The divisor of h′q is C. The projection p|C :C→Q is a smooth quadric
fibration, and C is a prime divisor for n≥ 3.

Proof. Let x∈Q; the hyperplane tangent to Q at x cuts out a cone over the smooth quadric
Qx ⊂ P(Tx(Q)) defined by hq(x) = 0 (Section 3). The isomorphism Tx(Q)

∼−→ T ∗
x (Q) given by

hq(x) carries Qx into the dual quadric Q∗
x in P(T ∗

x (Q)). On the other hand, a point y ∈ p−1(x)
corresponds to a hyperplane Hy ⊂ P(Tx(Q)), and y belongs to C if and only if Hy is tangent to
Qx; that is, if y ∈Q∗

x. This proves the equality C=div(h′q) and thus, that the fiber of p|C :C→Q
at x is Qx, which is smooth and connected if n≥ 3. �

Remark 7.2 The variety C is an example of a total dual VMRT [HLS22]. For the proof of the
theorem, we will combine this tool with the birational transformation of PT ∗X defined by a
double cover. (Compare with [AH23]).
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We will have to consider the following situation: Let Q′ be another quadric in Pn+1, such that
the intersection B :=Q∩Q′ is a smooth hypersurface in Q. The surjection TQ→NB/Q gives a
section of PT ∗Q over B, hence an embedding s :B ↪→ PT ∗Q.

Lemma 7.3. The image s(B) is not contained in C.

Proof. Let x∈B. The point s(x) in P(T ∗
x (Q)) corresponds to the hyperplane image of Tx(B) in

Tx(Q); we must therefore show that this hyperplane is not tangent to the quadric Qx := hq(x). In
terms of projective space, this means that the projective tangent space to Q′ at x is not tangent,
at a smooth point y, to the cone cut out on Q by the projective tangent space to Q′ at x.

Suppose that this is the case, with y= (y0, . . . , yn+1). We can assume that Q′ is defined
by

∑
αix

2
i = 0, with αi ∈C distinct. Then the (projective) tangent space to Q′ at x, given by∑

(αixi)ξi = 0, must coincide with the tangent space to Q at y, given by
∑
yiξi = 0. This implies

y= (α0x0, . . . , αn+1xn+1). Thus the point x must satisfy∑
x2i =

∑
αix

2
i =

∑
α2
i x

2
i = 0 .

If these relations hold for all x in B, the quadric
∑
α2
i x

2
i = 0 must belong to the pencil spanned

by Q and Q′. This means that there exist scalars λ, μ, ν such that

λα2
i + μαi + ν = 0 for all i ,

which is impossible since the αi are distinct. Therefore, there exists x∈B such that
s(x) /∈C. �

7.2 Explicit description of symmetric tensors

We keep the notation of the previous sections: X ⊂ P= Pn+2 is defined by q1 = q2 = 0, and with

q1 =

n+2∑
i=0

x2i , q2 =

n+2∑
i=0

μix
2
i with μi ∈C distinct.

We put ∂i :=
∂

∂xi
· We have an exact sequence

0→ TX → TP|X
(dq1,dq2)−−−−−−→OX(2)

2 → 0 ,

where dqi maps the restriction of a vector field V on P to V · qi. This gives the exact sequence
of symmetric tensors

0→ S2TX → S2TP|X
(dq1,dq2)−−−−−−→ TP|X(2)2 , (4)

where dqi(V1V2) = (V1 · qi)V2 + (V2 · qi)V1 for V1, V2 in H0(X, TP|X).

Proposition 7.4. The quadratic vector fields si :=
∑
j �=i

(xi∂j − xj∂i)
2

μj − μi
in H0(X, S2TP|X) belong

to the image of H0(X, S2TX).

Proof. According to the exact sequence (4), we have to prove dq1(si) = dq2(si) = 0.
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We have (xi∂j − xj∂i) · q1 = 0; hence, dq1(si) = 0 and dq2(xi∂j − xj∂i, xi∂j − xj∂i) = 4(μj −
μi)xixj(xi∂j − xj∂i). Hence, using

∑
xj∂j = 0 and q1|X = 0,

dq2(si) = 4x2i
∑
j �=i

xj∂j − 4xi(
∑
j �=i

x2j )∂i = 0 , which proves the proposition.

�

In the rest of this article, we will consider the si to be elements of H0(X, S2TX).

7.3 The double cover

Let p0 : P
n+2 ��� Pn+1 be the projection (x0, . . . , xn+2) �→ (x1, . . . , xn+2). The image p0(X) is

the smooth quadric Q in Pn+1 defined by

n+2∑
i=1

(μi − μ0)x
2
i = 0 .

The restriction π :X→Q of p0 is a double covering that is branched along the subvariety B ⊂Q
defined by

n+2∑
i=1

x2i =

n+2∑
i=1

μix
2
i = 0 .

It is a smooth complete intersection of 2 quadrics in Pn+1. The ramification locus R⊂X of π
(isomorphic to B) is the hyperplane section x0 = 0 of X.

The tangent map of π :X→Q gives a morphism,

τ : TX → π∗TQ,

which is an isomorphism outside of R. Consider the normal exact sequence

0→ TR→ TX|R→NR/X → 0 .

The involution ι : (x0, . . . , xn+2) �→ (−x0, x1, . . . , xn+2) acts on TX|R; this splits the exact
sequence, giving a decomposition

TX|R = TR ⊕NR/X

into eigenspaces for the eigenvalues +1 and −1. Let ρ : TX|R→ TR be the projection on the first
summand. We deduce from ρ a sequence of homomorphisms

hk :H0(X, SkTX)−→H0(X, SkTX|R)
Skρ−−−→H0(R, SkTR) .

Since ι∗∂0 =−∂0 and ι∗∂j = ∂j for j > 0, we have

h2(s0) = 0 and h2(si) =
∑
j>0

j �=i

(xi∂j − xj∂i)
2

μj − μi
for i > 0 (5)

in other words, h2 maps s1, . . . , sn+2 to the elements ŝ1, . . . , ŝn+2 of H0(R, S2TR) constructed
in Proposition 7.2.1 applied to R.

Let π∗PT ∗Q be the pull-back under π of the projective bundle PT ∗Q→Q. The homo-
morphism τ : TX → π∗TQ gives rise to the birational map g : π∗PT ∗Q ��� PT ∗X. Following the
geometric description of the tangent map as an elementary transformation of vector bundles in
the sense of Maruyama in [Mar72] and [Mar73, Corollary 1.1.1], one has a commutative diagram
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Γ
μ ν

π∗PT ∗Q
g

p

PT ∗X

q

X

(6)

where p and q are the canonical projections; ν : Γ→ PT ∗X is the blow-up along the subspace
PT ∗R⊂ PT ∗X defined by the projection ρ; and μ : Γ→ π∗PT ∗Q is the blow-up of the image B′

of the embedding B ↪→ π∗PT ∗Q deduced from the surjective homomorphism π∗TQ→ π∗NB/X .
Let Eμ be the exceptional divisor of μ. By [Mar73, Theorem 1.1], there is an isomorphism

μ∗Oπ∗PT ∗Q(1)⊗OΓ(−Eμ)∼= ν∗OPT ∗X(1) (7)

as well as the equality

ν∗Eμ = q∗R . (8)

7.4 The divisor of s0

We now consider the divisor C⊂ PT ∗Q defined in (7.1) and the cartesian diagram

π∗PT ∗Q π′
PT ∗Q

X
π

Q .

Set C ′ := π′−1(C). The projection C ′ →X is again a smooth quadric fibration, so C ′ is smooth
and connected for n≥ 3.

Recall that we have defined the element s0 :=

n+2∑
j=1

(x0∂j − xj∂0)
2

μj − μ0
∈H0(X, S2TX) (7.2). We

will now view s0 as an element of H0(PT ∗X,O(2)).

Proposition 7.5 Assume n≥ 3. We have g∗C ′ =div(s0).

Proof. We first show that g∗C ′ ∈ |OPT ∗X(2)|. By Proposition 7.1 we have C ′ ∈
|Oπ∗PT ∗Q(2)⊗ p∗OX(−2)|. Using (7), (8) and the projection formula, we get the linear
equivalences

ν∗μ∗C′ ∼ 2ν∗μ∗(c1(Oπ∗PT ∗Q(1)− p∗R))∼ 2(c1(OPT ∗X(1)) + q∗R)− 2q∗R= c1(OPT ∗X(2)) .

Thus, it is enough to prove that ν∗μ∗C ′ is irreducible. Since C ′ is irreducible and μ is the blow-up
along B′ ⊂ π∗PT ∗Q, it suffices to show that B′ is not contained in C ′. If this is the case, then
we have π′(B′)⊂ π′(C ′) =C. But π′(B′) = s(B), where s :B ↪→ PT ∗Q is the embedding defined
by the surjective homomorphism TQ→NB/Q. Then the result follows from Lemma 7.3.

Since g∗C ′ and div(s0) are linearly equivalent effective divisors and g∗C ′ is irreducible, it
suffices to show that their restrictions to PT ∗

x (X) coincide at a general point x∈X.
Fix a point x= (x0, . . . , xn+2)∈X �R so that x0 	= 0. Then the tangent map Tπ(x) :

Tx(X)→ Tπ(x)(Q) is an isomorphism; in diagram (6), the maps μ, ν and g restricted over the
fibres at x are all isomorphisms. Let us show that C ′ and Tπ(div(s0)) define the same quadric
in P(Tπ(x)(Q)).
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Note that C ′ ∩ P(T ∗
x (X)) =C∩ P(T ∗

π(x)(Q)) is the quadric defined by the element h′q of (7.1).

In the coordinates (zi) defined by zi = (μi − μ0)
1/2xi, the equation of Q is

n+2∑
j=1

z2j = 0, so

h′q =
n+2∑
j=1

(
∂

∂zj
)2 =

n+2∑
j=1

∂2j
μj − μ0

·

On the other hand, since π(x0, . . . , xn+2) = (x1, . . . , xn+2), we have Tπ(∂0) = 0 and Tπ(∂j) = ∂j
for j > 0; hence,

Tπ(s0) = x20

n+2∑
j=1

∂2j
μj − μ0

·

Since x0 	= 0, this proves the proposition. �

7.5 Proof of part (a) of the theorem

Suppose now that n≥ 3. Consider the double cover π :X→Q and the ramification divisorR⊂X.
The restriction maps hk defined in Section 7.3 yield a homomorphism of graded C-algebras

h : S(X) :=H0(X, S•TX)−→H0(R, S•TR) =: S(R).

Proposition 7.6 The kernel I of h is the ideal generated by s0.

Proof. Since I is a homogeneous ideal, it suffices to prove that every homogeneous element
s∈I can be written as s= s′s0 for some element s′ ∈ S(X).

Choose an element s∈I of degree k. This element corresponds to an effective Cartier divisor
G in the linear system |OPT ∗X(k)|. Recall the commutative diagram (6):

Γ
μ ν

π∗PT ∗Q
g

p

PT ∗X

q

X

Choose Ĝ := μ∗ν∗G⊂ π∗PT ∗Q. By (7), Ĝ belongs to the linear system |Oπ∗PT ∗Q(k)|.
Here is the key observation: Since s∈I, the divisor Ĝ⊂ π∗PT ∗Q contains p∗R. Indeed, since

(π∗TQ)|R is invariant under ι, the homomorphism τ|R factors as

τ|R : TX|R
ρ−−→ TR −→ (π∗TQ)|R .

Therefore, we have a commutative diagram,

H0(X, SkTX) hk

Sk τ

H0(R,SkTR)

H0(X, Skπ∗TQ) H0(R,Sk(π∗TQ)|R)
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and Skτ(s) vanishes on R. But Ĝ is the divisor of Skτ(s), viewed as a section of Oπ∗PT ∗Q(k);

hence, Ĝ contains p∗R.
Now we want to show that the divisor C ′ ⊂ π∗PT ∗Q is a component of Ĝ− p∗R. Recall from

(7.1) that C is the union of the lines � that are contracted by the morphism γ : PT ∗Q→G

and that c1(OPT ∗Q(1)) · �= 0. Thus the curves �′ := π′∗� cover C ′ and satisfy c1(Oπ∗PT ∗Q(1)) ·
�′ = 0. On the other hand, the divisor R⊂X is a hyperplane section, so p∗R · �′ =R · p∗�′ > 0.
Therefore,

(Ĝ− p∗R) · �′ < 0 ,

so C ′ is a component of Ĝ. Thus, g∗C ′ is a component of G. Since g∗C ′ =div(s0) by
Proposition 7.5, this proves the proposition. �

The following proposition implies part (a) of our main theorem:

Proposition 7.7. Assume n≥ 2. For any choice of indices 0≤ i1 < . . . < in ≤ n+ 2, the homo-
morphism C[t1, . . . , tn]→ S(X), which maps tj to sij , with deg(ti) = 2, is an isomorphism of
graded C-algebras.

Proof. We argue by induction on n. The statement for n= 2 follows from [DOL19, Theorem
5.1], except for the fact that any two of the si generate H0(X, S2TX). Up to the permut-
ing of the coordinates, it suffices to prove that s0 and s1 are linearly independent. But
h2 :H0(X, S2TX)→H0(R, S2TR) maps s0 to zero and maps si (for i > 0) to the corresponding
elements ŝi of H

0(R, S2TR); this implies our assertion.
Assume n≥ 3. By the induction hypothesis, the homomorphism C[t1, . . . , tn−1]→ S(R),

which maps ti to ŝi, is an isomorphism of graded C-algebras (with deg(ti) = 2). It follows that
h is surjective and that (s0, . . . , sn−1) form a basis of H0(X, S2TX) and generate the C-algebra
S(X). Thus we have a surjective homomorphism u :C[t0, . . . , tn−1]→ S(X), with u(ti) = si.

In particular, the Krull dimension of S(X) is at most n. On the other hand, the ring S(X) is
a domain, and s0 is neither zero nor a unit. Thus, by Krull’s Hauptidealsatz, the Krull dimension
of S(X) is equal to n; hence, u is an isomorphism. By permutation of the coordinates, we get
the same result for any choice of n elements in {s0, . . . , sn+2}. This proves the proposition. �
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