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1. Introduction

Let (M,J, g) be a Hermitian manifold of complex dimension n with fundamental
form ω = g(J ·, ·). A connection ∇ on TM is said to be Hermitian if ∇g = 0 and
∇J = 0. In [19], an affine line of Hermitian connections is introduced. These are
known as Gauduchon or canonical connections and they can be written as
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2 B. Brienza, A. Fino and G. Grantcharov

g(∇t
XY, Z) = g(∇LC

X Y, Z) +
t− 1

4
(dcω)(X,Y, Z) +

t+ 1

4
(dcω)(X, JY, JZ), (1.1)

where dcω = −Jdω. We adopt the convention Jdω(X,Y, Z) := dω(JX, JY, JZ).
When (M, g, J) is Kähler, dcω is zero, and the line collapses to a single point,

which is the Levi–Civita connection. However, when (M, g, J) is not Kähler, the
line is not trivial and the connections ∇t have non vanishing torsion. For particular
values of t ∈ R, the Chern and the Bismut connections are recovered. More precisely,
∇1 = ∇Ch and ∇−1 = ∇B [6, 13]. Although ∇LC ,∇B ,∇Ch are mutually different
connections, any one of them completely determines the other two.

The Bismut connection, also known as the Strominger connection [35], can
be characterized as the only Hermitian connection with totally skew-symmetric
torsion. It follows from (1.1) that its expression is given by

g(∇B
XY, Z) = g(∇LC

X Y, Z)− 1

2
dcω(X,Y, Z),

and its torsion three-form H is

H(X,Y, Z) = g(TB(X,Y ), Z) = dω(JX, JY, JZ) = −dcω(X,Y, Z).

If the torsion three-form H is closed, i.e., ddcω = 0 or, equivalently, ∂∂ω = 0, the
metric g is said strong Kähler with torsion (SKT in short) or pluriclosed.

The Hermitian metric g is said to be Calabi–Yau with torsion (CYT in short) if
the associated Bismut–Ricci curvature ρB(g) vanishes, where ρB(g) is given, up to a
constant factor, by tracing the Bismut curvature tensor RB(g) in the endomorphism
components, i.e.,

ρB(X,Y ) =
1

2

2n∑
i=1

RB(X,Y, Jei, ei),

where {ei} is an orthonormal frame of the tangent space of M at a given point.
This is a natural Ricci-type curvature which coincides with the usual Ricci form
when the metric g is Kähler. Since the connection ∇B is Hermitian, it determines
via its Ricci form a representative of the first Chern class in de Rham cohomology
of M. As a consequence, the existence of a CYT structure is obstructed by having
vanishing first Chern class.

An SKT structure (M,J, g) which is also CYT is known in literature as Bismut
Hermitian Einstein (BHE in short). Taking inspiration from the Calabi–Yau
Theorem [9, 10, 39, 40], Garcia–Fernandez, Jordan, and Streets investigated in [17]
whether the condition c1(M) = 0 guarantees the existence of a BHE metric. They
actually proved that the answer is far from being positive, showing that in every
complex dimension there exist infinitely many complex manifolds with vanishing
first Chern class which do not admit a BHE metric. An additional obstruction
for the existence of CYT metric on a compact complex manifold with vanishing
first Chern class arises from the Gauduchon’s plurigenera vanishing theorem. It is
noticed in [3], and in particular shows that a manifold which has Kodaira dimen-
sion at least one, cannot admit CYT metrics. Using the construction of T 2-bundles
over complex surfaces of general type with negative Kähler–Einstein metrics, one
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CYT and SKT manifolds with parallel Bismut torsion 3

can provide infinite number of complex three-dimensional manifolds with vanishing
first Chern class which do not admit CYT metric.

In [33], Streets and Tian introduced the pluriclosed flow, an evolution equation
for Hermitian metrics preserving the SKT condition and the existence of generalized
Kähler structures [34]. If (M, J ) is a complex manifold and ω0 is a SKT metric on
M, the pluriclosed flow with initial data ω0 evolves as ∂

∂tω(t) = −
(
ρB(t)

)(1,1)
ω(0) = ω0

and its static points are given by Hermitian structures such that

(
ρB

)(1,1)
= λω for λ ∈ R. (1.2)

When a Hermitian structure is SKT and CYT, then (1.2) is satisfied with
λ=0, motivating a huge interest in finding explicit non-trivial examples of BHE
manifolds, where by non-trivial we mean not diffeomorphic to a product of a
Kähler–Ricci flat manifold and a Bismut flat space. Moreover, up to now, no
non-trivial examples of BHE manifolds are known. Non-Hermitian homogeneous
examples which are Bismut Ricci-flat, with closed torsion form and non-vanishing
Bismut curvature have been constructed in [29, 30], but no Hermitian homogeneous
examples of this type are known. Some negative results on compact semisimple Lie
groups and more in general on C-spaces have been given in [5, 15]. Furthermore,
Ivanov and Stanchev proved in [25] that a compact SKT and CYT 6-manifold
is Bismut Ricci flat if, and only if, either the torsion has constant norm or the
Riemannian scalar curvature is constant. In particular, the torsion is harmonic.

The Bismut flatness condition has been largely investigated in literature [2, 11,
12, 37, 38], and Bismut flat compact manifolds and Bismut flat simply connected
manifolds were completely characterized by Wang, Yang, and Zheng in [36]. We
recall that a Samelson space is a Hermitian manifold (G′ = G×Rn, g′ = b+gE , JL),
where G is a compact, connected, and simply connected semisimple Lie group,
g′ = b+gE is the bi-invariant metric on G

′
given by the product of the bi-invariant

metric b on G and the euclidean metric gE, and JL is a left invariant complex
structure compatible with g

′
. A group homomorphism ρ : Zn → Isom(G) induces

a free and properly discontinuous action of Zn on G
′
as isometries via

m · (p, t) 7→ (ρ(m)p, t+m).

If JL is preserved by this action of Zn, then the compact quotient G′/Zn inherits
the structure of a complex manifold by G

′
. In this case, G′/Zn is said to be a local

Samelson space.
By [36], if (M, g, J) is a compact Bismut flat Hermitian manifold, then there

exists a finite unbranched coverM
′
ofM which is a local Samelson space. Moreover,

if (M, g, J) is Bismut-flat simply connected Hermitian manifold, then there exists
a Samelson space (G′, g′, J ′) such that M is an open complex submanifold of G

′

and g = g′|M .
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In this article, we will mainly focus on the case when the torsion of Bismut
connection is parallel with respect to the Bismut connection. According to [42], we
will call such a manifold (and sometimes also the Hermitian metric) Bismut torsion
parallel (BTP in short). In [41], it has been proved that a Hermitian metric is BTP
and SKT if, and only if, it is Bismut Kähler-like, namely, if the Bismut curvature
satisfied the first Bianchi identity and the type condition (see §2 for further details).
The BTP condition was studied by several authors, e.g., [4, 31, 41, 42] and in the
references therein. In the non-Hermitian setting, it was proved in [1] that a complete
and simply connected Riemannian manifold admitting a connection with parallel
and closed skew-torsion is, up to products, a Lie group.

Our first main result characterizes the universal cover of SKT and CYT manifolds
with parallel Bismut torsion. We prove the following

Theorem 1.1 Let (M, I) be a compact complex manifold admitting a SKT and
CYT I-Hermitian metric h such that its Bismut torsion three-form H is parallel,
i.e., ∇BH = 0. Then, the Riemannian holomorphic universal cover (M̃, Ĩ, h̃) of
(M, I, h) is holomorphically isometric to the product (M1, J1, g1) × (M2, J2, g2),
where (M1, J1, g1) is a Kähler Ricci flat manifold and (M2, J2, g2) is a Samelson
space.

In §3, we use the above characterization to construct non-trivial examples of
CYT and SKT Hermitian manifolds (propositions 3.3 and 4.2).

With a similar technique used by the first two authors in [7], in lemma 3.1,
we show the existence of a SKT structure (I, h) on mapping tori of type Mf =
(K × S3)f , with f = (ψ, IdS3), where K is a compact Kähler manifold and ψ is
a Kähler isometry of K. We point out that such mapping tori do not admit any
Kähler metric as their first Betti numbers are odd (proposition 3.2). If in addition K
is Kähler Ricci-flat and ψ preserves the Kähler Ricci-flat metric, the SKT structure
(I, h) is CYT. Furthermore, we observe that the above Hermitian structure (I, h)
is BTP (remark 3.1) and, whenever K is a K3 surface and ψ 6= IdK , the mapping
tori Mf are non-trivial, i.e., they are not diffeomorphic to a global product of K
with the Hopf Surface (corollary 3.6). Hence, we provide the first known examples
of non-trivial BHE manifolds.

It is natural to ask the following

Question 1.2. Does there exist a Bismut Hermitian Einstein manifold (M, g, J)
such that (g, J ) is not Bismut Torsion Parallel?

On the examples (Mf , I, h), we also investigate the existence of generalized
Kähler structures. Let I− be the complex structure I on the mapping torus Mf

([20, 21, 23, 24]). In theorem 5.3, we prove that (Mf , I−, h) admits another com-
plex structure I+ compatible with h and such that dc+ω+ = −dc−ω−, i.e., (h, I±)
defines a generalized Kähler structure onMf. In the last section, we also give another
description of the mapping tori Mf as total spaces of holomorphic fibrations with
fibre K over the Hopf Surface. To such spaces it is always possible to associate the
Borel spectral sequence (theorem 6.2), which relates the Dolbeault cohomology of
Mf with the ones of K and S3 × S1.
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Since the mapping tori Mf topologically corresponds to Z-quotient of K×S3×R,
i.e., Z-quotient of a product of a Kähler manifold with the Samelson space S3 ×
R, taking inspiration from the local Samelson space construction, we provide a
generalization of the previous machinery to Zn-quotients of the product manifolds
K×G′, where G′ = G×Rn is any Samelson space (for a more detailed construction
see lemma 4.1 and proposition 4.2).

As in the case of mapping tori, these quotients admit a generalized Kähler struc-
ture (theorem 5.5). Moreover, in the case of G′ = S3 × R, the generalized Kähler
structure constructed is different from the one constructed in theorem 5.3. As we
point out, in the first case the complex structures of generalized Kähler metric
induce opposite orientations, whereas in the second case the complex structures of
the Generalized Kähler metric induce the same orientation.

2. Universal cover of BHE manifolds with parallel torsion

In this section, we obtain a characterization of the universal cover of compact
complex manifolds admitting a SKT and CYT metric whose Bismut connection
has parallel torsion.

Before stating the main result of the section, we recall some preliminary defi-
nitions and known results which will be useful in the article. Given a Hermitian
manifold. (M, g, J), a connection ∇ on TM is said to be Hermitian if ∇J = 0 and
∇g = 0.

In [19], Gauduchon proved that there exists an affine line of canonical Hermitian
connections, passing through the Chern connection and the Bismut connection,
which are completely determined by their torsion. In this article, we are mainly
interested in the latter. Firstly introduced by Bismut in [6], the Bismut connection
is the unique Hermitian connection having totally skew-symmetric torsion, i.e., it is
the unique Hermitian connection such that H(·, ·, ·) = g(TB(·, ·), ·) is a three-form
on M. We recall the following

Definition 2.1. A Hermitian manifold (M, g, J) is said to be

(1) Bismut torsion-parallel, or BTP in short, if ∇BH = 0;
(2) SKT or pluriclosed if dH= 0, or, equivalently, ddcω = 0;
(3) Bismut Kähler-like (BKL in short) if the Bismut curvature RB satisfies

the first Bianchi identity and the type condition, i.e., RB(X,Y, Z,W ) =
RB(JX, JY, Z,W ), for every vector fields X,Y, Z,W on M (we write
X,Y, Z,W ∈ X(M)).

In [41], Zhao and Zheng proved that a Hermitian manifold is BKL if and only if
it is BTP and SKT. More precisely, the following theorem holds:

Theorem 2.2 ([41]). A Hermitian manifold (M, g, J) is BKL if and only if ∇B

has parallel Bismut torsion and (g, J) is SKT.

The relations between the first Bianchi identity for the Bismut connection, the
SKT and the BTP conditions have been investigated by the second author and
Tardini in [16]. In particular, they proved the following
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Theorem 2.3 ([16]). Let M be a complex manifold with a compatible SKT metric g
such that the Bismut connection satisfies the first Bianchi identity. Then ∇BH = 0.

While in the Riemannian case there is only one natural trace of the Curvature
tensor (yielding the Ricci tensor), in the complex setting many different traces are
possible.

Definition 2.4. Let (M, g, J) be a Hermitian manifold. Let

ρB(X,Y ) =
1

2

2n∑
i=1

g(RB(X,Y )Jei, ei),

where {ei} is an orthonormal frame of the tangent space of M at a given point. The
tensor ρB is also known in literature as the (first) Bismut Ricci curvature.

Definition 2.5. Let (M,J, g) be a Hermitian manifold. If ρB = 0 then the
Hermitian structure (J, g) is said to be Calabi–Yau with torsion (CYT in short).

When a Hermitian structure (g, J ) is both CYT and SKT, it is called BHE. The
main purpose of this section is to investigate the universal cover of a BHE manifold
with parallel Bismut torsion. One of the main tool of our proof is given by the
following Theorem of Zhao and Zheng.

Theorem 2.6 [43] Let (M, g, J) be a compact BKL Hermitian manifold without
any Kähler de Rham factor. If the (first) Bismut Ricci curvature vanishes, then
(g, J) is Bismut flat.

Remark 2.1. By theorem 2.2, the latter theorem could be equivalently reformu-
lated in the case of (M, g, J) being a compact BHE and BTP manifold without any
Kähler de Rham factor.

Remark 2.2. The latter theorem holds with the same proof in the case of the
metric g being complete (and the manifold M not necessarily compact).

Lemma 2.7. Let (M,h, I) be a complete Hermitian manifold with parallel Bismut
torsion H, i.e., ∇BH = 0. Let

K := kerH = {X ∈ X(M) | ιXH = ′}.

Then, K is an integrable distribution of M preserved by both the Levi–Civita ∇LC

and the Bismut connection ∇B.

Proof. Assume K 6= ′ and consider an open set U in which its dimension is constant.
Let X be a local vector field in K and Y, Z,W any vector fields on M. Notice that

∇LC
Y Z = ∇B

Y Z − TB(Y, Z)

and K = Ker(Y → T B(Y,Z)). From these assumptions, we have

0 = (∇B
WH)(X,Y, Z) = −H(∇B

WX,Y, Z),
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CYT and SKT manifolds with parallel Bismut torsion 7

so ∇B
WX ∈ K and ∇B

WX = ∇LC
W X ∈ K. This means that K is parallel with respect

to both connections. Then parallel transport along geodesics of an orthonormal
frame shows that it has constant dimension. The integrability follows from the fact
that it is parallel with respect to the Levi–Civita connection. �

Using the previous lemma, in the case of (M, I, h) being a compact non-Kähler
complex manifold with Bismut parallel torsion H we may orthogonally decompose
TM as the orthogonal direct sum

TM = K ⊕K⊥,

where K⊥ is the orthogonal distribution of K. Since the Levi–Civita and the Bismut
connections are both metric, it then follows that K⊥ is preserved by both ∇B and
∇LC .

It is straightforward to observe that since (I, h) is non-Kähler, K⊥ is not trivial.
Let F∞ be the maximal sub-distribution of K preserved by both ∇LC = ∇B and

by the complex structure I, i.e., I(F∞) = F∞. Then, we may further decompose K
as the direct sum

K = F∞ ⊕W,

whereW is the orthogonal complement of F∞ inside K with respect to the restricted
metric h|K.

The tangent bundle isometrically splits as the direct sum of three mutually
orthogonal subbundles

TM = K ⊕K⊥ = F∞ ⊕W ⊕K⊥ = F∞ ⊕F∈,

where F∞ and F∈ = W ⊕ K⊥ are preserved by both ∇B and ∇LC and are also
I -invariant.

We mention also the following obvious:

Lemma 2.8. Let (M,h, I) be a compact non-Kähler complex manifold with parallel
Bismut torsion H. Consider the orthogonal splitting

TM = F∞ ⊕F∈,

described above. Then F∈ does not contain any (non-trivial) sub-distribution F3 ⊂
F∈ such that F3 ⊂ K, ∇LCF3 ⊂ F3 and I(F3) = F3.

Now notice that theorem 1.1 is trivially true when the metric h is Kähler. Then
for its proof we only need the following:

Theorem 2.9 Let (M, I) be a compact non-Kähler complex manifold admitting a
SKT and CYT I-Hermitian metric h such that its Bismut torsion three-form H
is parallel, i.e., ∇BH = 0. Then, the Riemannian holomorphic universal cover
(M̃, Ĩ, h̃) of (M, I, h) is holomorphically isometric to the product (M1, J1, g1) ×
(M2, J2, g2), where (M1, J1, g1) is a Kähler Ricci flat manifold and (M2, J2, g2) is
a Samelson space.
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Proof. Let M̃ be the universal holomorphic Riemannian cover of M. By a standard
argument M̃ is complete. Then the Bismut Hermitian Einstein structure (h, I ) of M
with parallel torsion H lifts to a structure (h̃, Ĩ, H̃) of the same kind on the cover
M̃ . By the de Rham splitting theorem, (M̃, h̃, Ĩ) is holomorphically isometric to a
product (M1, J1, g1) × (M2, J2, g2) such that the decomposition TM = F∞ ⊕ F∈
pulls-back to the decomposition TM̃ = TM1 ⊕ TM2. This follows from the fact
that the two distributions F∞ and F∈ are I -invariant and that, by construction,
the complex structures on the distributions pull-back to complex structures J 1 and
J 2 on TM 1 and TM 2, respectively. Moreover, as h̃ is complete, also h1 and h2 are
complete. The splitting of the metric h̃ and the complex structure Ĩ gives a splitting
of the torsion H̃ as H1 +H2. Moreover, since F∞ is in the kernel distribution, we
must have H1 ≡ 0, and, so, (M1, g1, J1) is a Kähler Ricci-flat factor. Furthermore,
(M2, h2, J2) is a BHE structure with parallel Bismut-torsion and, by lemma 2.8,
(M2, h2, J2) does not contain any Kähler de Rham factor. Hence, it must be Bismut
flat by theorem 2.2 stated in the complete case. The last statement follows by the
characterization of simply connected Bismut flat manifolds given in [36, theorem
5] and by the fact that the metric h2 is complete. �

Remark 2.3. If dimC(F∞) ≤ ∞, then M is Bismut flat. Indeed, in such a case, M
does not have any Kähler de Rham factor of dimension bigger than 1 and so it is
Bismut flat, as follows by [43, theorem 3].

3. A construction via mapping tori

Given a smooth manifold M and a diffeomorphism f of M, the mapping torus (or
suspension) of f is defined to be the quotient Mf of the product M × R by the
Z-action defined by

(p, t) 7→ (fn(p), t+ n).

Topologically, a mapping torus is a fiber bundle over S1 via the natural projection
π :Mf → S1 defined by (p, t) 7→ e2πit.

In this section, we construct a SKT metric on the mapping torus of a product of
a Kähler manifold (K,J, g) and the three-sphere S3 via a diagonal diffeomorphism
f = (ψ, IdS3), where ψ is a Kähler isometry of (K,J, g) (lemma 3.1). In proposition
3.3, we show that, if g is Ricci flat, then the SKT structure constructed on Mf is
also CYT. In particular, if g is not flat, then the SKT and CYT metric is not
Bismut flat.

Lemma 3.1. Let (K,J, g) be a compact Kähler manifold of complex dimension k
and let ψ be a Kähler isometry, i.e., ψ is an holomorphic diffeomorphism of K
satisfying ψ∗(g) = g. Then, the mapping torus

Mf = (K × S3)f ,

with f = (ψ, IdS3), admits a SKT structure (I, h).

Proof. Let us fix on K ×C2\{(0, 0)} the product complex structure J × J−, where
J− is the standard complex structure on C2\{(0, 0)}. Consider the following free
and proper discontinuous Z-action on K × C2\{(0, 0)}

https://doi.org/10.1017/prm.2024.115 Published online by Cambridge University Press
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CYT and SKT manifolds with parallel Bismut torsion 9

n · (p, x) 7→ (ψn(p), 2nx). (3.1)

The associated automorphisms φn are manifestly holomorphic with respect to
J × J−, and so, J × J− descends to a complex structure I on the quotient
K × C2\{(0, 0)}/Z.

We claim that K × C2\{(0, 0)}/Z is diffeomorphic to Mf = (K × S3)f . Let

α : K × S3 × R → K × C2\{(0, 0)}, (p, q, t) 7→ (p, 2t · q)

with inverse

α−1 : K × C2\{(0, 0)} → K × S3 × R, (p, x) 7→ (p,
x

‖x‖
, log2 ‖x‖).

The induced maps on the quotient

α :Mf → K × C2\{(0, 0)}/Z, α−1 : K × C2\{(0, 0)}/Z →Mf ,

are well defined and give the claimed identification K × C2\{(0, 0)}/Z ∼= Mf .
Therefore, Mf inherits from K × C2\{(0, 0)}/Z the complex structure I.

Consider Ω = ω + ω−, where in the coordinates (z1, z2) on C2\{(0, 0)}

ω− =
i

R2
(dz1 ∧ dz1 + dz2 ∧ dz2), (3.2)

with R2 = z1z1 + z2z2.
Observe that Ω is a well-defined non-degenerate global two-form on

K × C2\{(0, 0)}/Z ∼= Mf , as it is preserved by φ∗n, for each n in Z. Furthermore,
Ω is of type (1, 1) with respect to I.

The Hermitian metric h = ΩI is hence given by

h = g +
1

R2
(dz1dz1 + dz2dz2). (3.3)

We compute dcΩ, where dc = −IdI, and ddcΩ.

dcΩ =− 1

R4
[(z2dz2 − z2dz2) ∧ dz1 ∧ dz1 + (z1dz1 − z1dz1) ∧ dz2 ∧ dz2] ,

(3.4)

d(dcΩ) =d

(
1

R4

[
(z2dz2 − z2dz2) ∧ dz1 ∧ dz1 + (z1dz1 − z1dz1) ∧ dz2 ∧ dz2

])
= 0.

Therefore, (I, h) is a SKT structure on Mf. �

We investigate some cohomological properties of Mf. In the next proposition, we
prove that Mf is formal (in the sense of Sullivan) and non-Kähler.

Proposition 3.2. Let Mf = (K × S3)f be the mapping torus constructed as in
lemma 3.1. Then

(1) Mf is diffeomorphic to the product of Mψ × S3, where Mψ is the mapping
torus of the Kähler manifold K with respect to the Kähler isometry ψ;
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(2) Mf is formal;
(3) Mf is non-Kähler.

Proof. Consider the map

β :Mf →Mψ × S3, [(p, q, t)] 7→ ([(p, t)], q)

with inverse

β−1 :Mψ × S3 →Mf , ([(p, t)], q) 7→ [(p, q, t)].

It is immediate to observe that β and β−1 are well-defined diffeomorphisms. Indeed,

β[(p, q, 0)] = ([(p, 0)], q) = ([(ψ(p), 1], q) = β[(ψ(p), q, 1)],

β−1([(p, 0)], q) = [(p, q, 0)] = [(ψ(p), q, 1)] = β−1([(ψ(p), 1)], q).

The second statement follows by the identificationMf
∼=Mψ×S3 proved above. In

fact, by [26], the mapping tori of compact Kähler manifolds are compact co-Kähler
manifolds and so they are formal in the sense of Sullivan (see for instance [14]).
Since S3 is formal, Mf is the product of formal manifolds and, hence, formal.

To prove that Mf is non-Kähler is suffices to show that the first Betti number
b1(Mf ) = b1(Mψ) is odd.

The cohomology groups of mapping tori can be computed as follows

Hr(Mψ) = Nr ⊕ Cr−1,

where Nr := ker(ψ∗
r − Id) and Cr−1 := coker(ψ∗

r−1− Id), where ψ∗
r − Id is the map

induced by ψ at the level of the rth cohomology groups.
Clearly,

H0(Mψ) = K0 = C0 = R,

and therefore H1(Mψ) = N1 ⊕ C0. Hence, b1(Mψ) = dim(N1) + 1. We claim that
dim(N1) is even.

Let [α] be in ker(ψ∗
1 − Id). Without loss of generality, we may assume that α is

the harmonic representative of its cohomology class, as K is compact by hypothesis.
As [α] is in ker(ψ∗

1 − Id), ψ∗
1(α) = α+ dη for some smooth function η on K. Let us

denote by (·, ·) the L2 product defined on (K, g) where g is the Kähler metric on
K. We want dη to be zero. Indeed,

0 = (ψ∗(∆α), dη) = (∆(ψ∗α), dη) = (∆(α+ dη), dη) =

= (∆(dη), dη) = (dd∗dη, dη) = (d∗dη, d∗dη) = ‖d∗dη‖2,

where the second equality holds since the pullback by an isometry commutes with
the Laplacian operator.

Since d∗dη = 0, then ∆(dη) = 0. Hence, α and α + dη are two harmonic
representatives of the same cohomology class. By uniqueness, dη = 0.

We just proved that, if [α] is in the ker(ψ∗
1 − Id) and α is the harmonic

representative, then ψ∗α = α.
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Recall that on Kähler manifolds, J induces a map

J : H∞(K) → H∞(K), γ 7→ J γ,

where Jγ(X) = γ(JX) and H∞(K) is the vector space of harmonic one-form.
Observe that the latter map is well defined since on Kähler manifolds J commutes
with the Laplacian operator.

We claim that if α is the harmonic representative of [α] ∈ ker(ψ∗
1 −Id), then also

[Jα] is in ker(ψ∗
1 − Id). In fact, if we apply ψ∗ to Jα we get

ψ∗(Jα) = J(ψ∗α) = Jα.

Then the dimension of N 1 must be even. �

Proposition 3.3. Let Mf be the mapping torus Mf = (K×S3)f constructed as in
lemma 3.1. If the Kähler metric g on (K, J) is (non-flat) Ricci flat, then the Bismut
connection associated with the SKT metric h on (Mf , I), constructed in lemma 3.1
is CYT with non-flat Bismut connection.

Proof. Consider the product metric g̃ := g +
gE
R2 on K × C2\{0}, with g being the

Kähler metric of K, gE being the Euclidean metric of C2 and R2 = z1z1 + z2z2,
where (z1, z2) are the standard coordinates of C2.

Since (J, g, ω) is Kähler, the Bismut connection of (J, g, ω) is the Levi–Civita
∇LC

1 . Analogously, we denote by ∇B
2 the Bismut connection of the Hermitian

structure (
gE
R2 , J−, ω−) on C2\{0}. ∇B

2 is defined by the relation

gE
R2

((∇B
2 )XY, Z) =

gE
R2

((∇LC
2 )XY, Z)−

1

2
dcJ−ω−(X,Y, Z),

for any X,Y, Z ∈ X(C2\{0}). In the following, we will denote by H 2 the torsion
three-form −dcJ−ω−, which is actually closed, as already computed in the proof of

lemma 3.1.
It is straightforward to observe that the fundamental form ω̃ = ω + ω− of the

Hermitian manifold (K × C2\{0}, J̃ := J × J−, g̃) satisfies

dc
J̃
(ω + ω−) = dcJ−ω− = −H2.

Consider the unique metric connection ∇̃ on (K × C2\{0}, g̃, J̃) with skew-
symmetric torsion H 2 determined by

g̃(∇̃XY, Z) = g̃(∇̃LC
X Y, Z)− 1

2
dcJ−ω−(X,Y, Z), ∀X,Y, Z ∈ X(K × C2\{0}),

where ∇̃LC is the Levi–Civita connection of the product metric g̃ = g+
gE
R2 . It turns

out that ∇̃ is the Bismut connection of (K ×C2\{0}, J̃ , g̃), since dc
J̃
ω̃ = dcJ−ω−, as

already remarked. Hence, from now on we set ∇̃ = ∇̃B and we will denote by H̃
the torsion three-form −dc

J̃
ω̃ of ∇̃B .

Let now compute the Bismut curvature tensor R̃B . When the torsion in a closed
three-form, we have a general formula to compute the Bismut curvature tensor R̃B
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in terms of the Riemannian curvature tensor R̃LC (see for instance [18, proposition
3.18]).

For any quadruple (X,Y, Z,W ) of vector fields on K × C2\{0}, it holds that:

R̃B(X,Y, Z,W ) = R̃LC(X,Y, Z,W ) +
1

2
∇̃LC
X H̃(Y, Z,W )− 1

2
∇̃LC
Y H̃(X,Z,W )

− 1

4
g̃(H̃(X,W ), H̃(Y, Z)) +

1

4
g̃(H̃(Y,W ), H̃(X,Z)).

Since X(K × C2\{0}) ∼= X(K) ⊕ X(C2\{0}) as C∞(K × C2\{0}) module, by the
C∞(K×C2\{0})-multi linearity of the curvature tensor we may compute R̃B on vec-
tor fields of the kindX1+X2, whereX1 ∈ X(K) andX2 ∈ X(C2\{0}). Furthermore,
by construction, H̃ = H2. Therefore, R̃

B(X1 +X2, Y1 + Y2, Z1 + Z2,W1 +W2) is
given by

R̃B(X1 +X2, Y1 + Y2, Z1 + Z2,W1 +W2)

= R̃LC(X1 +X2, Y1 + Y2, Z1 + Z2,W1 +W2)

+
1

2
∇̃LC
X1+X2

H̃(Y1 + Y2, Z1 + Z2,W1 +W2)

− 1

2
∇̃LC
Y1+Y2

H̃(X1 +X2, Z1 + Z2,W1 +W2)

− 1

4
g̃(H̃(X1 +X2,W1 +W2), H̃(Y1 + Y2, Z1 + Z2))

+
1

4
g̃(H̃(Y1 + Y2,W1 +W2), H̃(X1 +X2, Z1 + Z2)),

which reduces to

R̃B(X1 +X2, Y1 + Y2, Z1 + Z2,W1 +W2)

= RLC1 (X1, Y1, Z1,W1) +RLC2 (X2, Y2, Z2,W2)

+
1

2

(
∇LC

2

)
X2

H2(Y2, Z2,W2)

− 1

2

(
∇LC

2

)
Y2
H2(X2, Z2,W2)

− 1

4

gE
R2

(H2(X2,W2),H2(Y2, Z2))

+
1

4

gE
R2

(H2(Y2,W2),H2(X2, Z2)).

Therefore

R̃B(X1 +X2, Y1 + Y2, Z1 + Z2,W1 +W2)

= RLC1 (X1, Y1, Z1,W1) +RB2 (X2, Y2, Z2,W2)

= RLC1 (X1, Y1, Z1,W1),
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where the last equality follows from the fact that the Bismut curvature tensor RB
2

of (
gE
R2 , J−,H2) vanishes (for a reference see for instance [36, lemma 3]).

We are now ready to compute the Ricci form ρ̃B of the Bismut connection
∇̃B . As already done before, without loss of generality, we may compute ρ̃B on
decomposable vector fields. By definition

ρ̃B(X1 +X2, Y1 + Y2)

=
1

2

2k+4∑
i=1

R̃B(X1 +X2, Y1 + Y2, Jei, ei)

=
1

2

2k∑
i=1

RB1 (X1, Y1, Jei, ei) = ρLC1 (X1, Y1) = 0,

where ρLC1 is the Ricci form of (K, g), {e1, . . . , e2k} is a local orthonormal basis of
TK, and {e2k+1, . . . , e2k+4} is a local orthonormal basis of TC2\{0}.

For each n ∈ Z, the diffeomorphism φn is a holomorphic isometry of the product
metric g̃, with respect to the product complex structure J̃ . This suffices to show
that also the torsion form is preserved by φ∗n, as H̃ = J̃dω̃.

In particular, the triple (g̃, J̃ , H̃) descends to the mapping torus Mf to
(h, I,−dcΩ), where (h, I,Ω) is the SKT structure constructed in lemma 3.1. We
then have that (Mf , h, I) is an SKT and CYT manifold with non-flat Bismut
connection. �

Remark 3.1. Observe that the torsionH = −dcΩ is always parallel with respect to
the Bismut connection. Since the Bismut curvature tensor satisfies the First Bianchi
Identity and the Hermitian structure is SKT, the statement follows by theorem 2.3.

Remark 3.2. Let K be a K3 surface. Then the Riemannian holomorphic universal
cover of (Mf = (K×S3)f , I, h) is given by (K×S3×R, g̃, J̃), where g̃ is the product
metric g +

gE
R2 and J̃ is the product complex structure J × J−. In the notation of

the theorem 2.9, G = S3 × R.

By proposition 3.3, we are mainly interested in the case of K being a K3 surface.
In particular, we want to show that when K is a K3 surface, the CYT and SKT
mapping tori Mf are not trivial, i.e., they do not split to a product of a Ricci flat
Kähler manifold with a Bismut flat one. To do so, we briefly recall the following
renowned result in the Theory of K3 surfaces.

Theorem 3.4 Torelli Theorem [8, 32] Let K,K ′ be K3 surfaces and let ΩK ,ΩK′
be nowhere vanishing holomorphic two-forms on K and K

′
, respectively. Assume

that there exists an isometry of lattices

α : H2(K,Z) → H2(K ′,Z)
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satisfying

(1) α([Ωk]) = c · [ΩK′ ], for some c ∈ C∗,
(2) α sends a Kähler class of K to a Kähler class of K

′
.

Then there exists a unique isomorphism of K3 surfaces g : K ′ → K such that
g∗ = α on H2(K,Z).

We use the previous theorem to show the following proposition.

Proposition 3.5. Let K be a K3 surface admitting an automorphism ψ 6= IdK .
Then dim(N2

ψ) < 22, where N2
ψ = ker(ψ∗

2 − Id).

Proof. By contradiction, assume that dim(N2
ψ) = 22, i.e., ψ∗ = Id on H2(K,R).

Then, the restriction ψ∗|H2(K,Z) = IdH2(K,Z) satisfies the hypothesis of theorem

3.4. Hence, there exists a unique automorphism g of K such that g∗|H2(K,Z) =
IdH2(K,Z). By uniqueness, g = IdK .

Moreover, since ψ is another automorphism of K which restricted to H2(K,Z)
is the identity, we must have ψ = IdK . The contradiction follows. �

Corollary 3.6. Assume that K is a K3 surface admitting a non-trivial Kähler
isometry ψ, i.e., ψ 6= IdK . Then the mapping torus Mf = (K × S3)(ψ,IdS3)
constructed in lemma 3.1 is never trivial.

Proof. By the Künneth formula, H2(K × S3 × S1,R) ∼= H2(K,Z) ∼= R22.
We claim that dim(H2(Mf ,R)) < 22. Using proposition 3.2, Mf

∼= Mψ × S3
and so, again by Künneth formula, H2(Mf ,R) ∼= H2(Mψ,Z) ∼= N2

ψ ⊕ C1
ψ, where

N2
ψ = ker(ψ∗

2 − Id) and C1
ψ = coker(ψ∗

1 − Id). Since ψ is an automorphism of K

different from the identity, dim(N2
ψ) < 22 by proposition 3.5, and dim(C1

ψ) = 0 as

H1(K,R) = 0. It then follows that dim(H2(Mf ,R)) < 22, concluding the proof. �

Remark 3.3. Since any normal subgroup of π1(Mf ) ∼= Z of finite index is of the
kind kZ for some integer k > 1, it follows that any finite cover of Mf = (K ×
S3)(ψ,IdS3) corresponds to a quotient of K ×C2\{(0, 0)} by the action of kZ given

by

kn · (p, x) 7→ (ψknp, 2knx).

Moreover, since ψ has finite order, there exists a k > 1 such that ψk = Id, i.e.,
there exists a finite cover of Mf which splits as a product of K and the Hopf surface
S3 × S1.

4. A generalization of local Samelson spaces

Let (G′ = G × Rn, g′ = b + gE , JL) be a Samelson space, i.e., G is a compact,
connected, and simply connected semisimple Lie group, g′ = b + gE is the bi-
invariant metric on G

′
given by the product of the bi-invariant metric b on G and

the euclidean metric gE, and JL is a left invariant complex structure compatible
with g

′
. We assume that dim(G) ≥ 3 and dim(G′) = 2r.
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Let ρ be a group homomorphism ρ : Zn → Isom(G). Then, for each m ∈ Zn the
diffeomorphism m · (q, t) = (ρ(m)q, t+m) is an isometry of g

′
.

Furthermore, consider a compact Kähler manifold (K, g, J) and a group homo-
morphism ψ : Zn → Isomhol(K), where Isomhol(K) is the group of holomorphic
Kähler isometries of (K, g, J).

For the sake of clarity, we give an example of the group homomorphism ψ. Let
ϕ be a Kähler isometry of K. We may consider the map

ψ : Zn → Isomhol(K),m = (z1, . . . , zn) 7→ ϕ|m| = ϕz1+···+zn .

Then, ψ(0) = ϕ0 = Id and ψ(m+m′) = ϕz1+w1+···+zn+wn = ϕ|m| ◦ ϕ|m′|. Hence
ψ is a group homomorphism.

We define the following Zn-action on K ×G× Rn as

m · (p, q, t) = (ψ(m)p, ρ(m)q, t+m).

The action is clearly free, as

(ψ(m)p, ρ(m)q, t+m) = (p, q, t) =⇒ t+m = t ⇐⇒ m = 0.

We claim that the action is also properly discontinuous. First, observe that the
action is manifestly smooth, as Zn acts by isometries. Moreover, it is also easy to
verify that the action is proper. Indeed, let (p, q, t), (p′, q′, t′) ∈ K × G′. Since the
action (by translations) of Zn on Rn is proper, there exist I, I ′ open neighbourhood
of t and t

′
respectively such that the set Γ := {m ∈ Zn | (m+ I)∩ I ′ 6= ∅} is finite.

Consider U and U
′
any open neighbourhoods of p and p

′
and V and V

′
any

open neighbourhoods of q and q
′
, respectively, and let m /∈ Γ. Then(

m · U × V × I
)
∩ U ′ × V ′ × I ′

=
(
ψ(m)U × ρ(m)V × (m+ I)

)
∩ U ′ × V ′ × I ′

=
(
ψ(m)U ∩ U ′)× (

ρ(m)V ∩ V ′)× (
(m+ I) ∩ I ′

)
= ∅.

It follows that

Λ := {m ∈ Zn |
(
m · U × V × I

)
∩ U ′ × V ′ × I ′ 6= ∅} ⊂ Γ,

and therefore, since Γ is finite, so is Λ.

Lemma 4.1. Let (G′ = G × Rn, g′ = b + gE , JL) be a Samelson space and let
ρ be a group homomorphism ρ : Zn → Isom(G) such that for each m ∈ Zn the
diffeomorphism

m : G′ → G′, (q, t) 7→ (ρ(m)q, t+m)
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is an holomorphic isometry of (g′, JL). Let (K, g, J) be a compact Kähler manifold
and let ψ be a group homomorphism ψ : Zn → Isomhol(K), where Isomhol(K) is
the group of holomorphic Kähler isometries of (K, g, J). Then the quotient

Mψ,ρ = (K ×G× Rn)ψ,ρ = K ×G× Rn/Zn,

where Zn acts freely and properly discontinuously on K ×G× Rn as

m · (p, q, t) = (ψ(m)p, ρ(m)q, t+m),

admits a SKT structure (I, h).

Proof. We prove the result by constructing a SKT structure (g̃, J̃) on K ×G×Rn
preserved by the action of Zn.

Consider the Hermitian structure (J̃ = J × JL, g̃ = g + b+ gE) on K ×G× Rn
with corresponding fundamental form ω̃ = ω+ωL. Using that dω = 0, then dc

J̃
ω̃ =

dcJL
ωL.

We compute dcJL
ωL. Let us fix X,Y, Z left invariant vector fields on G

′
. Then,

using the integrability of JL and the bi-invariance of the metric g
′
, we obtain

dcLωL(X,Y, Z) = g′([X,Y ], Z) (for a more detailed computation of dcLωL see for
instance [21, example 2.25]).

Since dcLωL is Ad(G′) invariant, dcLωL is a bi-invariant form of G
′
and, hence, it

is closed. Observe that dcLωL can be actually identified with a form on G, as the

factor Rn is abelian. Indeed, let Xi + Yi be decomposable vector fields on G
′
, i.e.,

Xi ∈ X(G) and Yi ∈ X(Rn). Then,

dcLωL(X1 + Y1, X2 + Y2, X3 + Y3) =g
′([X1 + Y1, X2 + Y2], X3 + Y3)

=g′([X1, X2], X3 + Y3) = b([X1, X2], X3).

To conclude the proof, we show that the Hermitian structure (g̃ = g + b+ gE , J̃ =
J × JL) is preserved by the action of Zn.

Consider the diffeomorphism induced by m ∈ Zn, i.e., the map m · (p, q, t) =
(ψ(m)p, ρ(m)q, t +m). We want to prove that the action is actually holomorphic
respect to J̃ . By hypothesis, ψ(m) is holomorphic with respect to J and ρ is such
that (ρ(m)q, t+m) is holomorphic with respect to JL. Then the complex structure
J̃ descends down on Mψ,ρ to a complex structure I. Moreover, since both the
group homomorphisms ψ and ρ have image in the isometry group of K and G
respectively, and Zn acts on Rn by translations, the product metric g̃ = g+b+gE is
manifestly preserved by Zn, and hence descends to a metric h which by construction
is compatible with I. Then, (I, h) is a SKT structure on Mψ,ρ. �

Proposition 4.2. Let Mψ,ρ = (K × G × Rn)ψ,ρ be constructed as in lemma 4.1
and we assume that (K, g) is a (non-flat) Ricci flat Kähler manifold. Then the SKT
structure (I, h) is CYT and the Bismut connection is non-flat.

Proof. To prove the theorem, it suffices to prove that (g̃, J̃) is a non-flat CYT and
SKT structure on K ×G×Rn. Indeed, with the same argument used in the end of
the proof of lemma 4.1, (g̃, J̃) descends on Mψ,ρ to the SKT structure (I, h).
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Since (K, g, J) is Kähler, the Bismut connection of (g, J ) is the Levi–Civita ∇LC
1 .

Analogously, we denote by ∇B
2 the Bismut connection of the Hermitian structure

(g′, JL) on G
′
. ∇B

2 is defined by the relation

g′((∇B
2 )XY, Z) = g′((∇LC

2 )XY, Z)−
1

2
dcJLωL(X,Y, Z),

for any X,Y, Z ∈ X(G′). In the following, we will denote by H 2 the torsion three-
form −dcJLωL, and we have already shown that H 2 is a bi-invariant (and hence

closed) form defined as −g′([·, ·], ·) on left-invariant vector fields.
Consider the Hermitian manifold (K×G′, J̃ , g̃). We have already proved in lemma

4.1, that the fundamental form ω̃ satisfies

dc
J̃
ω̃ = dc

J̃
(ω + ωL) = dcJLωL = −H2. (4.1)

Consider the unique metric connection ∇̃ on (K × G′, J̃ , g̃) with skew-symmetric
torsion H 2 determined by

g̃(∇̃XY, Z) = g̃(∇̃LC
X Y, Z)− 1

2
dcJLωL(X,Y, Z), ∀X,Y, Z ∈ X(K ×G′),

where ∇̃LC is the Levi–Civita connection of the product metric g̃. It turns out that
∇̃ is the Bismut connection of (K×G′, J̃ , g̃), by (4.1). From now on we set ∇̃ = ∇̃B

and we will denote by H̃ the torsion three-form −dc
J̃
ω̃ of ∇̃B .

Let now compute the Bismut curvature tensor R̃B . Using the same computation
of the proof of proposition 3.3, we get

R̃B(X1 +X2, Y1 + Y2, Z1 + Z2,W1 +W2)

= RLC1 (X1, Y1, Z1,W1) +RB2 (X2, Y2, Z2,W2)

= RLC1 (X1, Y1, Z1,W1),

where the last equality follows from the fact that the Bismut curvature tensor RB
2

of (g′, JL) vanishes, as g
′
is bi-invariant and JL is left-invariant (for a reference see

for instance [18, proposition 8.39]).
We are now ready to compute the Ricci form ρ̃B of the Bismut connection

∇̃B . As already done before, without loss of generality, we may compute ρ̃B on
decomposable vector fields. By definition

ρ̃B(X1 +X2, Y1 + Y2) =
1

2

2k+2r∑
i=1

R̃B(X1 +X2, Y1 + Y2, Jei, ei)

=
1

2

2k∑
i=1

RB1 (X1, Y1, Jei, ei) = ρLC1 (X1, Y1) = 0,

where ρLC1 is the Ricci curvature form of (K, g, J), {e1, . . . , e2k} is a local
orthonormal basis of TK and {e2k+1, . . . , e2k+2r} is a local orthonormal basis of
TG

′
.
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The pair (J̃ , g̃) descends on Mψ,ρ to (I, h), where (I, h) is the SKT structure
constructed in lemma 4.1, by previous remarks. We then have that (I, h) is CYT
structure with a non-flat Bismut connection. �

5. Generalized Kähler examples

Definition 5.1. [20] A bi-Hermitian manifold (M, I±, g) is said to be generalized
Kähler if g is I±-compatible, dc+ω+ = −dc−ω− and ddc+ω+ = 0, where dc± = −I±dω±
and ω± = gI±.

As a trivial example, if (g, J ) is a Kähler structure on M, J+ = J and J− = ±J
is a solution of the above equations. Hence, the case of major interested is when the
generalized Kähler structure does not come from a Kähler one. We refer to such a
generalized Kähler structure as non-trivial. We recall the following

Definition 5.2. A generalized Kähler structure (I±, g) is said to be twisted if
[dc+ω+] 6= 0 ∈ H3(M) and untwisted otherwise.

Given a generalized Kähler manifold (M, g, J±), the closed three-form dc+ω+ =
−dc−ω− is also called the torsion of the generalized Kähler structure.

Consider the SKT structure (h, I−), with I− = I, constructed in lemma 3.1.
In the next theorem, we prove that on (Mf , h) is always possible to find another
complex structure I+ compatible with h and satisfying dc+ω+ = −dc−ω−. Therefore,
the triple (h, I±) defines a generalized Kähler structure on Mf.

Theorem 5.3 Let (K,J, g) be a compact Kähler manifold of complex dimension k
and let ψ be a Kähler isometry, i.e., ψ : K → K is an holomorphic diffeomorphism
satisfying ψ∗(g) = g. Then, the mapping torus Mf = (K×S3)f , with f = (ψ, Id3S),
admits a split twisted generalized Kähler structure (I±, h,Ω±). Moreover, I+ and
I− induce opposite orientations on Mf.

Proof. Let (I− := I, h) the SKT structure constructed in lemma 3.1. We consider
on K×C2\{(0, 0)} ∼= K×S3×R another product complex structure J×J+, where
J+ is the complex structure on C2\{(0, 0)} obtained by changing the orientation of
the z 2 plane. More precisely, if (z1, z2) and (ζ1, ζ2) are the holomorphic coordinates
associated with J± respectively, then ζ1 = z1 and ζ2 = z2.

The automorphisms φn associated with the Z-action described in lemma 3.1 are
holomorphic also with respect to J×J+, implying that J×J+ descends to a complex
structure I+ on the quotient Mf

∼= K × C2\{(0, 0)}/Z, which satisfy [I+, I−] = 0.
We denote by Ω+ = ω + ω+ the fundamental form of the Hermitian structure

(I+, h), where h is the Riemannian metric explicitly given in (3.3) and ω+ can be
written in the coordinates (ζ1, ζ2) and (z1, z2), respectively, as

ω+ =
i

R2
(dζ1 ∧ dζ1 + dζ2 ∧ dζ2) =

i

R2
(dz1 ∧ dz1 − dz2 ∧ dz2).
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We compute dc+Ω+.

dc+Ω+ =− 1

R4

[
(ζ2dζ2 − ζ2dζ2) ∧ dζ1 ∧ dζ1 + (ζ1dζ1 − ζ1dζ1) ∧ dζ2 ∧ dζ2

]
=

1

R4
[(z2dz2 − z2dz2) ∧ dz1 ∧ dz1 + (z1dz1 − z1dz1) ∧ dz2 ∧ dz2]

=− dc−Ω−.

It follows that (h, I±) is a split generalized Kähler structure on Mf
∼=

K × C2\{(0, 0)}/Z.
We claim that (h, I±) is a twisted generalized Kähler structure.
Let H = dc+Ω+. If one considers the radial projection

π : K × C2\{(0, 0)}/Z → S3, [(p, x)] 7→ x

‖x‖
,

then it is straightforward to observe that H = 2π∗volS3 .
By contradiction, let us assume that H is exact. Fixed any p ∈ K and t ∈ (0, 1),

we define ιp,t : S3 → K × C2\{(0, 0)}/Z, q 7→ [(p, 2t ·q)]. Then, by Stokes Theorem,

0 =

∫
S3
ι∗p,tH = 2

∫
S3
ι∗p,t(π

∗volS3) = 2

∫
S3
(π ◦ ιp,t)∗volS3 = 2

∫
S3
volS3 6= 0.

Clearly, this leads to a contradiction.
Let us consider the volume forms associated with the pairs (h, I±), which are

respectively

1

k + 2!
Ωk+2

− =− 1

k!R4
ωk ∧ dz1 ∧ dz1 ∧ dz2 ∧ dz2,

1

k + 2!
Ωk+2

+ =− 1

k!R4
ωk ∧ dζ1 ∧ dζ1 ∧ dζ2 ∧ dζ2.

Since dζ1 = dz1 and dζ2 = dz2,
1

k+2!Ω
k+2
− = − 1

k+2!Ω
k+2
+ . The last statement

follows. �

Remark 5.1. By proposition 3.2, the generalized Kähler structure constructed in
theorem 5.3 is not trivial.

We exhibit an explicit example fitting in the hypothesis of theorem 5.3.

Example 5.4. Let K be the flat torus T4 endowed with the standard Kähler
structure (g, J, ω), defined as follows

J

(
∂

∂x1

)
=

∂

∂x2
, J

(
∂

∂x3

)
= − ∂

∂x4
, g = dx21 + dx22 + dx23 + dx24,

ω = dx1 ∧ dx2 − dx3 ∧ dx4,

where (x1, x2, x3, x4) are the standard coordinates on T4 ∼= Z4\R4.
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Let ψ be the R4-rotation (x1, x2, x3, x4) 7→ (x2,−x1, x4,−x3). Since ψ is
represented by an integer matrix, ψ descend to a diffeomorphism of the flat
torus T4.

It is immediate to observe that ψ is holomorphic with respect to J and preserves
the Kähler structure (g, J ). Indeed, [ψ∗, J ] = 0 and ψ∗g = ψ∗(∑4

i=1(dxi)
2
)
= g.

Then the mapping torus

Mf =
T4 × S3 × [0, 1]

(p, q, 0) ∼ (ψ(p), q, 1)
,

is a generalized Kähler manifold, by theorem 5.3.
We compute the cohomology of the example. Since Mf

∼= Mψ × S3 one may
compute the cohomology of Mψ, and then apply the Künneth formula.

As already mentioned in the proof of the proposition 3.2, the cohomology of Mψ

is completely determined by the data Nr
T4 = ker(ψ∗

r−Id) and CrT4 = coker(ψ∗
r−Id),

which are easily computable:

K0
T4 = C0

T4 = 〈1〉, N1
T4 = C1

T4 = 0,

N2
T4 = C2

T4 = 〈 [dx12], [dx13 + dx24], [dx14 − dx23], [dx34] 〉,
N3

T4 = C3
T4 = 0, N4

T4 = C4
T4 = 〈 [dx1234] 〉.

The computation of H•(Mψ) is now trivial,

H1(Mψ) = 〈[dt]〉, H2(Mψ) = 〈[dx12], [dx13 + dx24], [dx14 − dx23], [dx34]〉,
H3(Mψ) = 〈[dt ∧ dx12], [dt ∧ (dx13 + dx24)], [dt ∧ (dx14 − dx23)], [dt ∧ dx34]〉,
H4(Mψ) = 〈[dx1234]〉, H5(Mψ) = 〈[dt ∧ d1234]〉.

Consider the 2r -dimensional Lie group G′ = G × Rn endowed with the bi-
invariant metric g′ = b+gE , where G is a compact, connected and simply connected
semisimple Lie group endowed with the bi-invariant metric b and gE is the Euclidean
metric on Rn. We assume that dim(G) ≥ 3. We denote by gL(G′) and gR(G′) the
left and right Lie algebras of G, respectively. Then

gL(G′) = gL ⊕ Rn = gL(G′′), gR(G′) = gR ⊕ Rn = gR(G′′),

where G′′ = G × Tn. Therefore G
′′

inherits form G
′
the bi-invariant metric g

′
.

Since G
′′
is compact, it admits both a left and a right invariant complex structure,

namely JL and JR, which are compatible with the bi-invariant metric g
′
. As G

′
and

G
′′
shares the same Lie algebras, then (g′, JL, JR) is also a bi-Hermitian structure

on G
′
, where JL and JR are left and right invariant complex structures, respectively.

In particular, (G′, JL, g
′) is a Samelson space.

Theorem 5.5 Let (G′ = G × Rn, g′, JL, JR) be as above. Let ρ be a group
homomorphism ρ : Zn → Isom(G) such that for each m ∈ Zn the diffeomorphism

m · (q, t) = (ρ(m)q, t+m)
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is a holomorphic isometry of g
′
with respect to JL and JR. Let (K, g, J) be a compact

Kähler manifold and let ψ be a group homomorphism ψ : Zn → Isomhol(K), where
Isomhol(K) is the group of holomorphic Kähler isometries of (K, g, J). Then the
quotient

Mψ,ρ = (K ×G× Rn)ψ,ρ = K ×G× Rn/Zn,

where Zn acts freely and properly discontinuously on K ×G× Rn as

m · (p, q, t) = (ψ(m)p, ρ(m)q, t+m),

admits a generalized Kähler structure.

Proof. As already seen in the proof of lemma 4.1, (g̃ = g + g′, J̃− = J̃ = J × JL)
is a SKT structure on K × G × Rn preserved by the Zn-action m · (p, q, t) =
(ψ(m)p, ρ(m)q, t +m), which induces the SKT structure (h, I− = I) on Mψ,ρ (for
the notation, see lemma 4.1). Consider the following product complex structure
J̃+ = J × JR which is compatible with g̃ by construction and it is such that the
fundamental form of (g̃, J̃+) is

ω̃+ = ω + ωR.

Using that dω = 0, then dc
J̃+
ω̃+ = dcJR

ωR. Recalling that dcJL
ωL = g′([·, ·], ·) on

left invariant vector fields, we obtain dc
J̃−
ω̃− = dcJL

ωL = −dcJRωR, as the right

Lie algebra is anti-isomorphic to the left one. To conclude the proof, it suffices
to show that J̃+ is preserved by the Zn-action. Moreover, by hypothesis, ψ(m) is
holomorphic with respect to J and ρ is such that (ρ(m)q, t+m) is holomorphic with
respect to both JL and JR. Then the complex structure J̃+ descends on Mψ,ρ to a
complex structure I+. Therefore, Mψ,ρ inherits from K × G × Rn the generalized
Kähler structure. �

Remark 5.2. If ρ is the trivial homomorphism, i.e., ρ(m) = Id, for each m ∈ Zn,
then the induced diffeomorphism (q, t) 7→ (q, t+m) is necessarily holomorphic with
respect to JL and JR.

Remark 5.3. The complex structures of generalized Kähler metric (h, I±) induce
the same orientation. Indeed, I± are induced by J̃− = J×JL and J̃+ = J×JR and
J̃± have the same orientation, as JL and JR are isomorphic as complex manifolds
via the inversion of the group. In the case G = SU(2) and n =1, then theorem 5.5
gives a different generalized Kähler structure on the mapping torus Mf with respect
to theorem 5.3.

Corollary 5.6. Let (Mψ,ρ, h, I±) be the generalized Kähler manifold constructed
as in theorem 5.5. Then the generalized Kähler structure (h, I±) is twisted, I+ and
I− both fail to satisfy the ddc±-Lemma and in particular they do not admit any
compatible Kähler metric.

Proof. By contradiction, assume that the torsion three-form H of the generalized
Kähler structure (h, I±) on Mψ,ρ is exact. Then, defined by π the covering map
π : K ×G × Rn → Mψ,ρ = (K ×G × Rn)ψ,ρ, we have that π∗H is also exact. By
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construction π∗H = H̃, where H̃ = dc
J̃+
ω̃+ = dcJR

ωR, and so H̃ can be identified

with a three-form on G by previous remarks. By the exactness of H, [H̃] = 0 ∈
H3(G′) ∼= H3(G), by Künneth formula. Moreover, since G is compact, H3(G) ∼=
ΩI(G), where ΩI(G) is the complex of bi-invariant forms. It then follows that H̃
must be the zero form on G and hence [X,Y ] = 0 for any pair of left-invariant
vector fields in G. This would implies that the Lie algebra of G is abelian, but this
provides a contradiction, as G is semisimple. The result follows by applying [21,
corollary 2.19]. �

6. Dolbeault cohomology

We give now a description of Mf as the total space of a holomorphic fibre bundle
p :Mf → S3×S1 with fibre K. To such fibre bundle it is always possible to associate
the Borel spectral sequence, which relates the Dolbeault cohomology of the total
space Mf with that of the base space S3 × S1 and that of the fibre K.

We first recall the following Theorem of Borel contained in [22, appendix II].

Theorem 6.1 Let p : T → B be a holomorphic fibre bundle, with compact con-
nected fibre F and T and B connected. Assume that F is Kähler. Then there exists
a spectral sequence (Er, dr), with dr being the restriction of the debar operator ∂ of
T to Er, satisfying the following properties:

(1) Er is four-graded by the fibre degree, the base degree and the type. Let p,qEu,vr
be the subspace of elements of Er of type (p, q), fibre degree u and base degree
v. We have that p,qEu,vr = 0 if p+ q 6= u+v or if one of p, q, u, v is negative.
Moreover, dr maps p,qEu,vr into p,q+1Eu+r,v−r+1

r .
(2) If p+ q = u+ v

p,qEu,v2 =
∑
k

Hk,u−k
∂

(B)⊗Hp−k,q−u+k
∂

(F ).

(3) The Borel spectral sequence converges to H∂(T ).

Let us denote by π the well-defined projection

π :Mf → S3 × S1, [(p, q, t)] 7→ [(p, t)].

We always assume that Mf is endowed with the standard complex structure I,

which we recall to be induced by J̃ = J × J−, and S3 × S1 is endowed with the
standard complex structure induced by J−, i.e., the standard complex structure
of its universal cover. With respect to such complex structures, the bundle map π
is holomorphic. Now we exhibit a local trivialization around each point [(q, t)] of
S3 × S1.

First we consider points of the kind [(q, t)] with t 6= 0, 1. Let U = V ×(t−ε, t+ε),
where V is an open neighbourhood of q and ε is such that (t − ε, t + ε) does not
contain 0 and 1. Then π−1(U) = K × V × (t − ε, t + ε). We define the local
trivialization
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φU : π−1(U) → U ×K, [(p, q, t)] 7→ ([(q, t)], p),

which clearly is a biholomorphism.
Now we consider points of the kind [(q, 0)]. An open neighbourhood of [(q, 0)] is

given by U = π′(V × [0, ε)tV × (1− ε, 1]) where V is an open neighbourhood of q
in S3, |ε| < 1

2 and π′ : S3 × R → S3 × S1 is the standard quotient map induced by
the Z-action on R by translations.

Therefore, π−1U = π′′(K × V × [0, ε) t K × V × (1 − ε, 1]), where π′′ is the
mapping torus map K × S3 × S1 → Mf . The local trivialization is defined on the
representatives as

φU : π−1U → U ×K

[(p, q, t)] 7→

([(q, t)], p) if t ∈ [0, ε)

([(q, t)], ψ−1(p)) if t ∈ (1− ε, 1].

Although the definition of φU depends on the representative chosen, it is immediate
to prove that it is well posed. Indeed

φU [(p, q, 0)] = ([(q, 0)], p) = ([(q, 1)], p) = φU [(ψ(p), q, 1)].

Moreover, since ψ is holomorphic respect to J, the holomorphy of φU follows. We
exhibit now the inverse for φU. We define

φ−1
U : U ×K → π−1U

([(q, t)], p) 7→

[(p, q, t)] if t ∈ [0, ε)

[(ψ(p), q, t)] if t ∈ (1− ε, 1].

Again, φ−1
U is well defined

φ−1
U ([(q, 0)], p) = [(p, q, 0)] = [(ψ(p), q, 1)] = φ−1

U ([(q, 1)], p),

and it is holomorphic since so is ψ−1. It remains to prove that φU ◦ φ−1
U = Id and

φ−1
U ◦ φU = Id. Although it is a straightforward check, we report it here for the

sake of completeness.

[(p, q, t)]
φU−−→

([(q, t)], p) if t ∈ [0, ε)

([(q, t)], ψ−1(p)) if t ∈ (1− ε, 1].

φ−1
U−−−→ [(p, q, t)]

and

([(q, t)], p)
φ−1
U−−−→

[(p, q, t)] if t ∈ [0, ε)

[(ψ(p), q, t)] if t ∈ (1− ε, 1]

φU−−→ ([(q, t)], p).

The following result easily follows
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Theorem 6.2 If Mf is the mapping torus constructed as in the theorems 5.3, then
(Mf , I) is the total space of the holomorphic fibre bundle

(K,J) → (Mf , I) → (S3 × S1, J−).

Then we have an associated Borel spectral sequence (Er, dr) satisfying the following
properties:

(1) If p+ q = u+ v

p,qEu,v2 =
∑
k

Hk,u−k
∂

(S3 × S1)⊗Hp−k,q−u+k
∂

(K).

(2) The Borel spectral sequences converges to H•,•
∂

(Mf ).

Corollary 6.3. The mapping tori (Mf , I) do not admit any balanced metrics.

Proof. The projection map p : (Mf , I) → (S3 × S1, J−) is an holomorphic submer-
sion, which is proper, as Mf is compact. Since (S3 × S1, J−) does not admit any
balanced metric, the result follows by applying [27, proposition 1.9]. �
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