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This paper investigates the flow and density field around a spinning solid spheroid with
a given aspect ratio, immersed in a rotating stratified fluid. First, we derive the general
system of equations governing such flows around any solid of revolution in the limit
of infinite Schmidt number. We then present an exact analytical solution for a spinning
spheroid of arbitrary aspect ratio. For the specific case of a sphere, we provide the diffusive
spin-up solution obtained via an inverse Laplace integral. To validate the theoretical
results, we experimentally reproduce these flows by spinning spheroids in a rotating
tank filled with stratified salt water. By varying the stratification intensity, the angular
velocities of the spheroid and the rotating table, and the spheroid’s shape, we explore a
broad parameter space defined by Froude, Reynolds and Rossby numbers and aspect ratio.
Using particle image velocimetry to measure the velocity field, we demonstrate excellent
agreement between theory and experiments across all tested regimes.
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1. Introduction
Rotating stratified flows are a key element in geophysical fluid dynamics. For example, the
warm and salty Mediterranean water can flow into the Atlantic Ocean and form vortices
called meddies, short for Mediterranean eddies. Meddies can live up to four years (Armi
et al. 1989; Bashmachnikov et al. 2015). They are typically 1 km high and 100 km long
(Richardson, Bower & Zenk 2000). Similar mesoscale eddies are observed in different
locations (Meschanov & Shapiro 1998; Chang et al. 2004; Carton et al. 2013). Meddies
adopt a spheroidal shape whose aspect ratio depends on the competition between rotation
and the difference between the core and the ambient stratification (Aubert et al. 2012).
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The flow around deep ocean vortices like meddies destabilises into layers (Hua et al.
2013). These homogeneous layers break locally the density gradient and may contribute
to mixing in the oceans (Ruddick & Hebert 1988; Molemaker, Mcwilliams & Capet
2010). The role of these instabilities is thus of primary importance for the global fluxes of
temperature and carbon dioxide. To describe the instabilities around meddies, numerical
(Yim, Billant & Ménesguen 2016; Sutyrin & Radko 2017; Le Bars 2021) and experimental
(Saunders 1973; Griffiths & Linden 1981; Burin, Sommeria & Viboud 2020) studies
have been conducted. However, at scales accessible in the laboratory, spheroidal fluid
vortices tend to be rapidly damped by viscosity and the growth rate of the instabilities
can be similar to the lifetime of the vortex. It is thus difficult to get reliable results on the
mechanisms at play.

To study the instabilities around columnar vortices, numerous studies have replaced the
fluid vortex by a solid cylinder spinning in a stratified fluid. Numerical studies (Smyth &
McWilliams 1998; Kloosterziel, Carnevale & Orlandi 2007; Yim & Billant 2015) are
complemented by experimental (Le Bars & Le Gal 2007; Riedinger, Le Dizès & Meunier
2011; Flór et al. 2018) studies in cylindrical Taylor–Couette geometries. Likewise, the flow
in a meddy core can be approximated by a solid-body rotation (Paillet et al. 2002; Tokos &
Rossby 1991). A spinning spheroid in a rotating stratified fluid is thus a good candidate for
experimental studies of the instabilities around meddies.

It is first necessary to know the base flow which is the subject of the present
paper. The Stokes velocity profile induced by a spinning spheroid in a uniform non-
rotating fluid has been computed by Jeffery (1915) using spheroidal coordinates. In the
absence of background stratification this Stokes flow creates vertical velocities by Ekman
pumping at finite Reynolds number (Marcus & Tuckerman 1987), leading to a meridional
recirculation. The full nonlinear Navier–Stokes solution around a spinning spheroid is thus
unknown in a homogeneous fluid. In this paper, we generalise the Stokes flow solution to
any Reynolds number and any Rossby number by allowing the fluid to be stratified and
compute the density anomaly induced by the flow.

In § 2 we present the experimental set-up and the measurement techniques. In § 3 we
propose a simplified set of equations describing the flow around a spinning solid of any
arbitrary shape in a rotating stratified fluid. In § 4, those equations are solved in the case
of a sphere and compared with experimental results. The spin-up of the flow around a
sphere is also analytically described. In § 5, the equations are solved around prolate and
oblate spheroids by use of spheroidal coordinates and compared with experiments. We
then conclude in § 6 with the prospects brought by this study.

2. Materials and methods

2.1. Experimental set-up
The experiments are performed in a cylindrical tank of 1 m in diameter and 1.6 m in
height. Figure 1(a) shows a photograph of the experimental set-up. Figure 1(b) shows a
schematic. The laser can be translated vertically to scan different heights of the flow. The
tank is mounted on a table rotating at angular speed Ω ranging from 0 to 4.7 rad s−1.
Different spheroids of R = 4 cm in radius and respective heights 2H of 16, 8, 4 and 1 cm
can be mounted on a spinning axis placed in the centre of the tank. The tank is filled with
a top layer of clear water. Then an intermediate linearly stratified layer is introduced below
the clear water via the double-bucket technique. Finally a bottom layer of nearly saturated
salt water is introduced below the stratified layer. Following Nayar et al. (2016), viscosity
is taken equal to 1.2 × 10−6 m2 s−1 at the centre of the stratified layer. The spheroid is
placed in the middle of the stratified region as shown in figure 1(b). A stepper motor spins
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Figure 1. Photograph (a) and schematic (b) of the experimental set-up. As suggested by the arrows, the laser
can be vertically translated to scan different heights of the flow.

the spheroid at angular speed ω ranging from 0 to 4.7 rad s−1 in the rotating frame of the
table in either co-rotation or contra-rotation. The spinning spheroid sets the fluid into an
azimuthal motion that remains axisymmetric for small enough rotation rates.

2.2. Density measurements
The density has been measured to check that the stratification profile is linear in height
around the spheroid and to compute the Brunt–Väisälä angular frequency. Samples of the
fluid are taken at different heights and their densities are measured with an oscillating
U-tube densimeter. A typical stratification profile is given in figure 2. This profile shows
that the fluid is separated in three regions. The upper one is filled with clear water. The
middle one is linearly stably stratified. The bottom one is filled with salted water. Between
those main regions there are smaller transition regions due to mixing during the filling
of the tank and to salt diffusion afterwards. The linear regression in the stratified domain
yields the vertical density gradient and then the Brunt–Väisälä angular frequency with the
usual definition: N 2 = −(g/ρ0)(dρ̄∗/dz∗), for this particular profile, N = 2.04 rad s−1.
The ratio between the size of the stratified region and the full height of the spheroid varies
from 1.25 for the longest spheroid to 20 for the flattest.

2.3. Particle image velocimetry measurements
Particle image velocimetry (PIV) is used to measure azimuthal velocities in the fluid. The
two buckets used to fill the stratified region are seeded with hollow glass particles of 10 µm
in diameter and density close to 1 g cm−3. A nearly horizontal green laser sheet illuminates
the tank. To scan different heights the laser is mounted on a vertical translation platform.
A high-resolution camera is focused on the laser plane with a field of view of about
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Figure 2. Typical stratification profile. The top region is full of fresh water. The middle region is stably
stratified in salt concentration. The bottom region is full of salt water. The dark line indicates the height of
the equator of the spheroid. Between the two dashed lines the profile is linear. The orange dotted line is a linear
regression through which we compute the density gradient and deduce the Brunt–Väisälä angular frequency
N = 2.04 rad s−1.

8 spheroid radii along one axis and 6 along the other. We thus have access to the full three-
dimensional dependence of the stationary azimuthal flow around the spheroids. Because
of the salt concentration stratification, the middle layer is also stratified in optical index.
The laser sheet is thus slightly bent downwards in a parabolic shape. This is compensated
by inclining the laser with a small upward angle so that the maximum of the parabola
is in the middle of the field of view of the camera. The maximum of vertical deviation
between the centre of the plane and the edge is only a couple of millimetres. The sheet
is thus considered flat in the field of view of the camera. Velocity profiles are computed
by projecting the flow in the azimuthal direction and averaging over every visible angle
for each radial distance. All velocity measurements of the steady flow are taken after the
transient for a time greater than 60 diffusive times.

3. A simple azimuthal flow solution

3.1. Governing equations
The flow in the rotating frame of the table around the spheroid in the stratified region is
taken to be incompressible. The Navier–Stokes equations in the Boussinesq approximation
and the conservation of salt in dimensional variables are

∂v∗

∂t∗
+ (v∗ · ∇∗)v∗ + Ω2r∗ + 2Ω × v∗ = − 1

ρ0
∇∗ p∗

t − ρ∗
t

ρ0
gẑ + ν∇∗2

v∗, (3.1)

∇∗ · v∗ = 0, (3.2)
∂ρ∗

t

∂t∗
+ v∗ · ∇∗ρ∗

t = D∇∗2
ρ∗

t . (3.3)

Here, r∗ corresponds to the horizontal position vector.
The density is decomposed into the reference density, the density due to the stratification

and the dynamical density due to the flow, ρ∗
t = ρ0 + ρ̄∗ + ρ∗ with ρ̄∗ = −ρ0 N 2z∗/g.

The pressure is decomposed accordingly into the atmospheric pressure, the hydrostatic
pressure that equilibrates the reference density and the stratification density, the pressure
due to the centrifugal force ρ0Ω

2r∗2/2 and the dynamical pressure due to the flow, p∗
t =

P0 + p0 + p̄∗ + p∗
c + p∗.
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The time scale is taken as the diffusive time R2/ν, the length scale as R and the velocity
scale as ωR. The pressure scale is ρ0(ωR)2 and the density scale is the variation in density
ρ0(RN 2/g) over a distance R. Equations (3.1)–(3.3) read in dimensionless form:

1
Re

∂v

∂t
+ (v · ∇)v + 2

Ro
ẑ × v = −∇ p − 1

Fr2 ρ ẑ + 1
Re

∇2v, (3.4)

∇ · v = 0, (3.5)
1

Re
∂ρ

∂t
+ v · ∇ρ = 1

Sc
∇2ρ. (3.6)

In the experiments, the Reynolds number Re = ωR2/ν ranges from 500 to 1000, the
Froude number Fr = ω/N ranges from 0.16 to 0.32 and the Rossby number Ro = ω/Ω is
equal to −1, 6 and infinity. The Schmidt number Sc = ν/D is equal to 700. The aspect ratio
Λ = H/R, where H is the half-height of the spheroid, appears in the boundary conditions
and ranges in the experiments from 0.5 to 2.

3.2. Generic set of equations valid around any rotating solid of revolution
For a homogeneous fluid (ρ = 0), the solution to the Navier–Stokes equations (3.4) is
difficult to find since the vertical and radial velocities are generated by Ekman pumping.
However, for a stratified fluid it is possible to get a time-independent axisymmetric
flow with a purely azimuthal velocity. Let us look in cylindrical coordinates (r, z, φ)
for a solution v = v(r, z)φ̂, p = p(r, z), ρ = ρ(r, z). The boundary conditions read
v(on the solid) = r , v(∞) = 0 and p(∞) = 0. They imply ρ(∞) = 0. The continuity
equation (3.5) is satisfied and the conservation of salt (3.6) is satisfied in the large-Sc
limit. We take this limit given that Sc = 700 for salt water. Equation (3.4) gives the three
momentum equations that are left for our three scalar variables:

∇2v − v

r2 = 0, (3.7)

∂p

∂r
= v2

r
+ 2

Ro
v, (3.8)

ρ = −Fr2 ∂p

∂z
. (3.9)

Equation (3.7) indicates that the Stokes flow, obtained at vanishing Reynolds number as
a solution of the vector Laplacian equal to 0, is still a valid base flow for any Reynolds
number.

Surprisingly, the velocity field does not depend on Fr, Ro and Re and depends only on
the shape of the solid.

In the presence of stratification, this flow is an exact steady solution of the nonlinear
equations. Indeed, in (3.8), the azimuthal centrifugal and Coriolis terms are balanced by
a radial pressure gradient that imposes the solution to the full pressure field. It induces a
vertical pressure gradient, which is balanced in (3.9) by the variable density. This density
field, that prevents the addition of a vertical velocity, comes from the deflection of the
isopycnals and is only present in the case of a stratified fluid. While the velocity field
depend only on the shape of the solid, because of the Coriolis term the density profile
depends on the shape of the spheroid, the Froude number and the Rossby number. In other
words, in the absence of stratification, the azimuthal velocity would induce recirculation
by Ekman pumping on the boundary of the solid. Here, the density perturbation ρ is
proportional to Fr2. When the Froude number increases, the density gradient ∂ρ/∂z
increases and may become larger than the mean density gradient dρ̄/dz = −1, leading
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Figure 3. Velocity colourmap around a spinning sphere. The bottom region is the theoretical base flow
computed from (4.1). The top region is an interpolation of experimental velocity profiles at different heights.
On the left, Re = 804, Fr = 0.296, Ro = −1. On the right, Re = 1005, Fr = 0.306, Ro = ∞.

to convectively unstable regions. Therefore, this solution, although valid for any Froude
number, becomes irrelevant for large Froude numbers, i.e. weak stratifications. Let us note
that this flow is not restricted to linear stratification profiles but valid for any background
stratification profile. Note that we do not pretend that this solution remains stable for
any Reynolds, Rossby or Froude number. For high Reynolds number the flow may be
considered as a destabilisation of this base flow.

4. Flow around a sphere

4.1. Stationary flow
Around a sphere in an infinite medium, the Stokes flow solution of (3.7) is given by Jeffery
(1915) in spherical coordinates (μ, θ, φ):

v = sin θ

μ2 . (4.1)

Figure 3 shows a colourmap of the velocity field around a spinning sphere. The top
region is an experimental interpolation from profiles at different heights. The bottom
region is the theoretical velocity computed from (4.1). There is no global background
rotation on the right and a strong contra-rotation on the left which does not modify the
azimuthal velocity. There is a very good agreement between the experiments and the
theory in both cases. The discrepancies between the two plots come from the logarithmic
scale enhancing any PIV error and the difference of vertical sampling leading to a different
interpolation and spurious isovelocity contours. Let us highlight that this is not a low-
Re flow, Re � 1000, as the advective terms do not need to be neglected because of their
geometric cancellation.

More quantitatively, an experimental validation of the flow up to 8 radii is shown in
figure 4. At each height the velocity is plotted and compared with the theoretical velocity.
There is an excellent agreement between the experiments and the theory for both Ro = ∞
and Ro = −1. Given that the flow does not depend on the Rossby number and that it is
gravitationally stable for low Froude numbers, this agreement is expected to hold in the
geophysical regime where |Ro| � 1.

The pressure may be found by rewriting the velocity profile given by (4.1) in cylindrical
coordinates, introducing it in (3.8) and integrating with respect to r . However, it is easier
to rewrite the term (∂p/∂r)z on the left-hand side of (3.8) using spherical coordinates, as
given in Appendix A by (A2). Formally we locate a point in space using their spherical
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Figure 4. Theoretical and experimental azimuthal velocity radial profiles around a spinning sphere. Circles
are PIV measurements. Dashed lines are the analytical base flow (4.1) at each height, which has no
fitting parameter and does not depend on any dimensionless number. The profiles are shifted by their
height and scaled by a factor of 1/3 to distinguish them. (a) From dark to light, the heights are z =
0, 0.5, 0.875, 1 and 1.1 with Ro = ∞, Re = 1005, Fr = 0.306. (b) From dark to light, the heights are
z = 0, 0.5, 0.75, 0.875, 1, 1.1, 1.2 and 1.3 with Ro = −1, Re = 804, Fr = 0.296.

distance to the origin μ, their height z and their azimuthal angle φ. We thus use the mixed
coordinates (μ, z, φ). Equation (3.8) is simply written

sin θ

(
∂p

∂μ

)
z
= v2

μ sin θ
+ 2

Ro
v. (4.2)

Since v is proportional to sin θ , the θ dependence disappears from this equation and it can
be easily integrated in μ to give

p = −1
4μ4 − 2

Roμ
. (4.3)

The density can be found by noting that the pressure gradient (∂p/∂z)r on the right-
hand side of (3.9) is equal to cos θ(∂p/∂μ)r (see Appendix A). Equation (3.9) thus gives

ρ = −Fr2 cos θ

(
1
μ5 + 2

Roμ2

)
. (4.4)

Contrary to the velocity, the density field depends on both the Froude and the Rossby
numbers, as shown in figure 5. We here plot the full variable density profile ρ̄ + ρ.
The isopycnals in the full space can be obtained by symmetrising any quadrant with
respect to the vertical and horizontal axes. In the upper right quadrant we see that
without background rotation the flow tends to bend isopycnals towards the equator with an
increased effect near the poles. This can be understood because if there was no deflection,
the pressure would induce Ekman pumping that would advect the isopycnals from the
poles to the equator and create a deflection. The equilibrium is reached when the buoyancy
force counterbalances the pressure gradient. When decreasing the stratification strength,
i.e. increasing Fr, the isopycnals bend more, as shown in the upper left corner. This can
create regions near the poles with overturning. The lower left corner shows that co-rotation
exacerbates the bending far from the sphere. On the other hand, the lower right corner
shows that contra-rotation (Ro < 0) tends to bend the isopycnals the other way around and
suppress the overturn. Let us note that the isopycnals are not necessarily orthogonal to the
solid surface because we have taken the large-Sc limit. A molecular diffusive boundary
layer is probably present in the experiment.

Let us remark that by neglecting diffusion of density, the density can only be advected
during the spin-up to produce the equilibrium profile. On the axis of rotation only a vertical
velocity may advect this density meaning that the transient cannot lead to a profile where
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Figure 5. Theoretical isopycnals from (4.4) around a spinning sphere for four sets of Ro and Fr values. Each
quadrant corresponds to a pair of Ro and Fr. In the upper (lower) region the density is increasing (decreasing)
from dark to light. The dotted outer sphere is not a boundary but only the end of the plotting region.

the total vertical density gradient is positive. Setting ∂ρ/∂z = 1 and z = 1 yields the critical
Froude number where that overturning occurs. Overturning occurs when Ro < −4/5 or
Ro > 0 and Fr2 > 1/(5 + 4/Ro). For a high enough Froude number this base flow cannot
establish and vertical and radial velocities will be present. The same reasoning applies
on the equator and it follows that overturning occurs at the equator for 0 > Ro > −2 and
Fr2 > 1/(1 + 2/Ro).

4.2. Spin-up of the flow
Initially, the solid and fluid are at rest in the rotating frame and the solid is instantaneously
set spinning at angular frequency ω. The stratification inhibits vertical motions. We thus
suppose that during the spin-up of the stationary flow, the velocity stays axisymmetric,
azimuthal with the same co-latitude θ dependence v = (sin θ/μ2) f (t, μ). We suppose that
small- and fast-scale mechanisms that we do not need to describe ensure that the density
profile is advected to balance this time-dependent flow. Then the azimuthal φ̂ component
of the momentum equations reads

∂ f

∂t
= ∂2 f

∂μ2 − 2
μ

∂ f

∂μ
. (4.5)

The initial rest condition f (t = 0−, μ) = 0 and the boundary conditions f (t, μ = 1) = 1
and f (t, μ → ∞) = 0 translate, respectively, in the Laplace domain to L(∂t f ) = pL( f ),
L( f )(pμ = 1) = 1/p and L( f )(p, μ → ∞) = 0. Equation (4.5) becomes μ2 pL( f ) −
μ2∂2

μL( f ) + 2μ∂μ f = 0 which can be solved with the correct boundary conditions,
leading to the analytical solution:

f (μ, t) =L−1

(
e−√

p(μ−1)

p

1 + μ
√

p

1 + √
p

)
. (4.6)
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Figure 6. Theoretical and experimental azimuthal velocity radial profiles around a spinning sphere during spin-
up. The velocities are measured and computed in the equatorial plane z = 0. The dashed line is the theoretical
stationary profile. The plots from dark to light correspond to the diffusive times t = 1.13 × 10−2, 2.25 ×
10−1, 9 × 10−1, 3.6 and 65.61. The circles are measurements from PIV. The lines are computed by the inverse
Laplace transform. Here Ro = ∞, Re = 503, Fr = 0.16.

Numerically, the inverse Laplace transform is obtained using the instruction
‘invertlaplace’ in the Python library mpmath. It is plotted in figure 6 and compared with
the experimental velocity during spin-up. The velocity is plotted in the equatorial plane
where μ = r . The PIV profiles are measured at different multiples of the diffusive time. At
each time, (4.6) is computed to plot the theoretical flow. There is an excellent agreement
between theory and experiments over two orders of magnitude of the velocity. The μ−2

dependence of the stationary flow is shown by the dashed black line of slope −2 in the
log–log plot. This study of the transient flow shows that the flow stays axisymmetric and
azimuthal in both transient and steady regimes. Let us note that Beckers et al. (2001)
study in a similar fashion the decay of fluid pancake vortices. They model their vortices
by Gaussian vortices and consider that no radial and vertical velocity is created during the
decay. This leads to a pure diffusion of the azimuthal velocity over time. Similarly to our
case, this simple model predicts well the temporal evolution of this flow.

5. Flow around a spheroid

5.1. Prolate spheroid
We can use the prolate spheroidal coordinates (μ, θ, φ) defined by r = a sinh μ sin θ and
z = a cosh μ cos θ , where a = √

Λ2 − 1 is the half-distance between the two foci of the
spheroid. The flow around a prolate spheroid was given in Jeffery (1915) as

v = va

[
coth μ − tanh−1

(
1

cosh μ

)
sinh μ

]
sin θ with va = 1

Λ − tanh−1(a/Λ)/a
.

(5.1)
Indeed, this solution satisfies (3.7) because the scalar Laplacian is equal to

∇2v = ∂μμv + ∂θθv + coth μ∂μv + cot θ∂θv

a2(sinh2 μ + sin2 θ)
. (5.2)

1018 A44-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
56

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10561


A. Chauchat, M. Le Bars and P. Meunier

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

z

r
3.0 2.0 1.0 0 1.0 2.0 3.0

Ro
6

Ro
∞

100

10−1

v

Figure 7. Velocity colourmap around a spinning spheroid of aspect ratio Λ = 2. The bottom region is the
theoretical base flow computed from (5.1). The top region is an interpolation of experimental velocity profiles
at different heights. On the left, Re = 670, Fr = 0.320, Ro = ∞. On the right, Re = 838, Fr = 0.288, Ro = 6.
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Figure 8. Theoretical and experimental azimuthal velocity radial profiles around a rotating prolate spheroid.
Circles are PIV measurements. Each dashed line is the analytical base flow at that height; there is no fitting
parameter. The base flow depends only on the aspect ratio. The profiles are shifted by their height and scaled
by a factor of 1/3 to distinguish them. From dark to light, the heights are z = 0, 0.5, 1 and 1.5 with (a) Ro =
∞, Re = 670, Fr = 0.320, Λ = 2 and (b) Ro = 6, Re = 838, Fr = 0.288, Λ = 2.

Furthermore, the velocity on the ellipsoid, i.e. at μ = sinh−1(1/a), is equal to v = r
because of the sin θ dependence.

Figure 7 shows a colourmap of the velocity field around a spinning spheroid. The top
region is an experimental interpolation from profiles at different heights. The bottom
region is the theoretical velocity computed from (5.1). There is no global rotation on the
left and co-rotation on the right. There is a very good agreement between the experiments
and the theory in both cases. Those two experiments illustrate the theoretical result that
the azimuthal velocity is independent of the Rossby number.

Similarly to the results for a spinning sphere, experimental validation of the flow up
to 8 radii is shown in figure 8. At each height the velocity is plotted and compared with
the theoretical velocity. There is an excellent agreement between the experiments and the
theory at every height in both cases Ro = ∞ and Ro = 6.

As for the sphere, the pressure can be obtained by writing (∂p/∂r)z using spheroidal
coordinates, as given by (A3). The radial component of the Navier–Stokes equation (3.8)

1018 A44-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
56

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10561


Journal of Fluid Mechanics

is thus written(
∂p

∂μ

)
z
= v

sin θ

(
cosh μ − z2

a2 cosh3 μ

)(
v

sin θ sinh μ
+ 2a

Ro

)
. (5.3)

Since the velocity profile (5.1) is proportional to sin θ , the term sin θ disappears from
the right-hand side of (5.3), which is a function of μ and z. It can be integrated in μ at
constant z to get the pressure:

p = v2
a

[
tanh−1(1/ cosh μ)

(− cosh μ + 3z2/
(
a2 cosh μ

))
+ (

tanh−1(1/ cosh μ)
)2

/2 × (
1 − 3z2/a2 + (cosh μ)2 + z2/

(
a(cosh μ)2))

+ 1/2
(
z2/a2 − 1 + 8z2/a2 ln(tanh(μ))(sinh μ)2)/(sinh μ)2 + 1/2

]
+ 2/Ro × ava/4

[
2 cosh μ + 3

(
1 − 2z2/a2) ln(tanh(μ/2))

− 6z2/
(
a2 cosh μ

)− tanh−1(1/ cosh μ)
(

cosh(2μ) + 2z2/(a cosh μ)2)]. (5.4)

The pressure can then be rewritten as a function of μ and r only by rewriting z2 as
a2 cosh2 μ − r2 coth2 μ. This expression can then be derived with respect to μ at constant
r to get the pressure gradient term (∂p/∂z)r in (3.9) using the relation (A7). The density
has a simple form:

ρ = −Fr2 cos θ
[
2v2

a

(
coth μ/ sinh μ − 4 ln(coth μ) cosh μ

+ tanh−1(1/ cosh μ)(2 − tanh−1(1/ cosh μ) cosh μ)
)

+ 4va

Ro
(cosh μ tanh−1(1/ cosh μ) − 1)

]
, (5.5)

ρ = −Fr2 cos θ cosh μ

[
2v2

a

(
1

sinh2 μ
− 4 ln(coth μ) + 2T

cosh μ
− T 2

)

+4va

Ro

(
T − 1

cosh μ

)]
, (5.6)

where T = tanh−1(1/ cosh μ).
Isopycnals around a spinning prolate spheroid according to (5.6) are shown in figure 9.

The influence of Fr and Ro is the same as shown in figure 5. The greater aspect ratio
inhibits overall the bending of isopycnals. Let us note that (5.1) and (5.6) recover the flow
around a cylinder (Riedinger et al. 2011) (a sphere) in the limit Λ → ∞ (Λ → 1+).

5.2. Oblate spheroid
The same ideas are applied for an oblate spheroid, using the oblate spheroid coordinates
(μ, θ, φ) with r = a cosh μ sin θ and z = a sinh μ sin θ , where a = √

1 − Λ2 is the radius
of the spheroid focal ring. The velocity profile is once again given by (Jeffery 1915)

v = va

[
arctan

(
1

sinh μ

)
cosh μ − tanh μ

]
sin θ with va = 1

arctan(a/Λ)/a − Λ
.

(5.7)
Figure 10(a) shows a colourmap of the velocity field around a spinning spheroid. In

this section we only present experimental results for one Ro number as its effect has been
discussed in previous sections and is there identical. The top region is an experimental
interpolation from profiles at different heights. The bottom region is the theoretical
velocity computed from (5.1). There is a good agreement between the experiments and
the theory far from the spheroid.
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Figure 9. Theoretical isopycnals from (5.6) around a spinning prolate spheroid of aspect ratio Λ = 2 for four
sets of Ro and Fr values. Each quadrant corresponds to a pair of Ro and Fr. In the upper (lower) region the
density is increasing (decreasing) from dark to light. The dotted outer ellipse is not a boundary but only the
end of the plotting region.
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Figure 10. Parameters Ro = ∞, Re = 586, Fr = 0.244, Λ = 0.5. (a) Velocity colourmap around a spinning
oblate spheroid. The bottom region is the theoretical base flow computed from (5.7). The top region is an
interpolation of experimental velocity profiles at different heights. (b) Theoretical and experimental azimuthal
velocity radial profiles around a rotating oblate spheroid. Circles are PIV measurements. From dark to light, z =
0, 0.25, 0.5 and 0.75. Each dashed line is the analytical base flow at that height; there is no fitting parameter.
The base flow depends only on the aspect ratio. The profiles are shifted by their height and scaled by a factor
of 1/3 to distinguish them.

Experimental validation of the flow up to 8 radii is once again shown in figure 10(b).
At each height the velocity is plotted and compared with the theoretical velocity. There
is a good agreement between the experiments and the theory at every height for r > 1.
The discrepancies between theory and experiments for r < 1 can be explained by the
perturbation of the PIV signal by the surface of the spheroid illuminated by the laser. The
perturbation is greater when the laser illuminates the flatter surface of the oblate spheroid
compared with a sphere or a prolate spheroid.

As for the prolate spheroid, the pressure can be obtained by writing (∂p/∂r)z using
spheroidal coordinates, as given by (A4). The radial component of the Navier–Stokes
equation (3.8) can be integrated in μ at constant z to get the pressure:
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Figure 11. Theoretical isopycnals from (5.10) around a spinning prolate spheroid of aspect ratio Λ = 1/2 for
four sets of Ro and Fr values. Each quadrant corresponds to a pair of Ro and Fr. In the upper (lower) region
the density is increasing (decreasing) from dark to light. The dotted outer ellipse is not a boundary but only the
end of the plotting region.

p = v2
a/2

[(
1 − arctan(1/ sinh μ)

(− 1 − 6z2/a2 + cosh(2μ)
)
/ sinh μ

)
+ (arctan(1/ sinh μ))2/2

(− 3 − 6z2/a2 + cosh(2μ) − 2z2/a2(sinh μ)−2)
+ 8z2/a2 ln(tanh(μ)) + (

1 + z2/a2)(cosh μ)−2] (5.8)

+ 2/Ro × ava/8
[

arctan(1/ sinh μ)
(
2 cosh(2μ) − 6 − 12z2/a2)

+ (
3 + 12z2/a2 − 1/ sinh μ

(
4z2/a2 arctan(1/ sinh μ) + sinh(3μ)

)
/ sinh μ

)]
.

The pressure can then be rewritten as a function of μ and r only by rewriting z2 as
a2 sinh2 μ − r2 tanh2 μ. This expression can then be derived with respect to μ at constant
r to get the pressure gradient term (∂p/∂z)r in (3.9) using the relation (A8). The density
has a simple form:

ρ = −Fr2 cos θ
[
2v2

a/a(tanh μ/ cosh μ − 4 ln(coth μ) sinh μ

+ arctan(1/ sinh μ)(2 − arctan(1/ sinh μ) sinh μ))

+ 4va

Ro
(1 − sinh μ arctan(1/ sinh μ))

]
, (5.9)

ρ = −Fr2 cos θ sinh μ

[
2v2

a

a

(
1

cosh2 μ
− 4 ln(coth μ) + 2A

sinh μ
− A2

)

+4va

Ro

(
1

sinh μ
− A

)]
, (5.10)

where A = arctan(1/ sinh μ).
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Isopycnals around a spinning prolate spheroid according to (5.10) are shown in figure 11.
The influence of Fr and Ro is the same as shown in figure 5. The smaller aspect ratio
exacerbates overall the bending of isopycnals. Let us note that (5.7) and (5.10) also recover
the flow around a disk (a sphere) in the limit Λ → ∞ (Λ → 1−).

6. Conclusion
To conclude, we have demonstrated that solids of revolution spinning in a rotating
stratified medium can induce an axisymmetric azimuthal time-independent flow around
them regardless of the Reynolds number because of the stratification. We have proposed
a simple set of equations to solve for any solid of revolution. We analytically solved them
in the cases of a rotating spheroid of aspect ratio ranging from +∞ to 0. We have shown
that for arbitrary Reynolds numbers this flow is actually equal to the flow computed in
the Stokes limit by Jeffery (1915) for a homogeneous fluid. This is made possible by the
equilibrium of the pressure gradients induced by the advective and Coriolis terms and
the density gradients. This is only possible in stratified fluids. We have experimentally
verified these flows for different Λ, Fr and Ro values. We proposed a theoretical model
for the spin-up of a rotating sphere and verified it experimentally. In the absence of any
destabilisation mechanism, the same diffusive behaviour should hold true with background
rotation for different aspect ratios and could be theoretically computed and experimentally
checked for prolate and oblate spheroids in further studies. The theoretical profiles enable
one to compute local instability criteria to describe when these axisymmetric flows will
eventually destabilise. The destabilisation of this flow will be the focus of future studies.
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Appendix A.
In order to find the pressure from (3.8), we need to calculate the term (∂p/∂r)z in spherical
coordinates and in spheroidal coordinates. The idea is to change from the variables (r, z)
to the mixed variables (μ̃, z̃) with z̃ = z and μ̃ = μ. The left-hand side of (3.8) is equal to(

∂p

∂r

)
z
=
(

∂p

∂μ̃

)
z̃

(
∂μ̃

∂r

)
z
+
(

∂p

∂ z̃

)
μ̃

(
∂ z̃

∂r

)
z
. (A1)

The second term vanishes because (∂ z̃/∂r)z = 0.
In spherical coordinates, the first term can be found by differentiating μ̃2 = r2 + z2 with

respect to r at constant z, to find (∂μ̃/∂r)z =√
μ̃2 − z̃2/μ̃ such that the pressure term in

(3.8) can be written in a simple form:(
∂p

∂r

)
z
= sin θ

(
∂p

∂μ̃

)
z̃
, (A2)

where sin θ is a simple notation for
√

μ̃2 − z̃2/μ̃ in these variables (μ̃, z̃).
In prolate spheroidal coordinates, the first term can be found by differentiating

r2/ sinh2 μ̃ + z2/ cosh2 μ̃ = a2 with respect to r at constant z, to find (∂μ̃/∂r)z =
a sin θ/ cosh μ/(a2 − z2/ cosh4 μ) such that the pressure term in (3.8) is equal to(

∂p

∂r

)
z
= sin θ/a

cosh μ − z2/a2/ cosh3 μ

(
∂p

∂μ̃

)
z̃
. (A3)
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In oblate spheroidal coordinates, the first term can be found by differentiating
r2/ cosh2 μ̃ + z2/ sinh2 μ̃ = a2 with respect to r at constant z, to find (∂μ̃/∂r)z =
a sin θ/ sinh μ/(a2 + z2/ sinh4 μ) such that the pressure term in (3.8) is equal to(

∂p

∂r

)
z
= sin θ/a

sinh μ + z2/a2/ sinh3 μ

(
∂p

∂μ̃

)
z̃
. (A4)

The same type of calculation must be done to get the density from (3.9). To calculate the
term (∂p/∂z)r in spherical coordinates and in spheroidal coordinates, we need to change
from the variables (r, z) to the mixed variables (μ̂, r̂ ) with r̂ = r and μ̂ = μ. The left-hand
side of (3.9) is equal to(

∂p

∂z

)
r
=
(

∂p

∂μ̂

)
r̂

(
∂μ̂

∂z

)
r
+
(

∂p

∂ r̂

)
μ̃

(
∂ r̂

∂z

)
r
. (A5)

The second term vanishes because (∂ r̂/∂z)r = 0.
In spherical coordinates, the first term can be found by differentiating μ̂2 = r2 + z2 with

respect to z at constant r , to find (∂μ̂/∂z)r =√
μ2 − r2/μ = cos θ such that the pressure

term in (3.8) is simply equal to (
∂p

∂z

)
r
= cos θ

(
∂p

∂μ̂

)
r̂

(A6)

in spherical coordinates.
In prolate spheroidal coordinates, the first term can be found by differentiating

r2/ sinh2 μ̂ + z2/ cosh2 μ̂ = a2 with respect to z at constant r , to find (∂μ̂/∂z)r =
a cos θ/ sinh μ/(a2 + r2/ sinh4 μ) such that the pressure term in (3.8) is simply equal to(

∂p

∂z

)
r
= cos θ/a

sinh μ + r2/a2/ sinh3 μ

(
∂p

∂μ̂

)
r̂
. (A7)

In oblate spheroidal coordinates, the first term can be found by differentiating
r2/ cosh2 μ̂ + z2/ sinh2 μ̂ = a2 with respect to z at constant r , to find (∂μ̂/∂z)r =
a cos θ/ cosh μ/(a2 − r2/ cosh4 μ) such that the pressure term in (3.8) is simply equal to

(
∂p

∂z

)
r
= cos θ/a

cosh μ − r2/a2/ cosh3 μ

(
∂p

∂μ̂

)
r̂
. (A8)
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