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This study investigates the impact of local thermal non-equilibrium on the stability
analysis of partially ionized plasma within a porous medium. The plasma, heated from
below, is enclosed by various combinations of bounding surfaces. Both nonlinear (via
the energy method) and linear (utilizing the normal mode analysis method) analyses
are performed. Eigenvalue problems for both analyses are formulated and solved using
the Galerkin method. The study also explores the effects of compressibility, medium
permeability and magnetic fields on system stability. The collisional frequency among
plasma components and the thermal diffusivity ratio significantly influence energy decay.
The results reveal that the Rayleigh–Darcy number is identical for both nonlinear and
linear analyses, thus eliminating the possibility of a subcritical region and confirming
global stability. The principle of exchange of stabilities is validated, indicating the
absence of oscillatory convection modes. Medium permeability, heat-transfer coefficient
and compressibility delay the onset of convection, demonstrating stabilizing effects.
Conversely, the porosity-modified conductivity ratio hastens the convection process,
indicating destabilizing effects. Rigid–rigid bounding surfaces are found to be thermally
more stable for confining the partially ionized plasma. Additionally, the magnetic field
exerts a stabilizing influence.
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1. Introduction

Plasma, often called the fourth state of matter, stands apart from solids, liquids and
gases due to its unique properties. The transition from solid to liquid to gas occurs
with increasing heat, further heating of gas at sufficiently high temperatures causes its
atoms to ionize, shedding the outermost electrons and resulting in a mix of positively
charged ions and negatively charged electrons, known as plasma (Krishan 2022). Plasma
can exist in various forms, categorized by the degree of ionization, with partially
ionized plasma (PIP) consisting of both neutral and charged particles. Unlike fully
ionized plasma, where nearly all particles are ionized, PIP allows for varied degrees of
ionization depending on conditions and plasma source characteristics (Ballai 2019). In

† Email address for correspondence: vcvishal1950chandel@gmail.com

https://doi.org/10.1017/S0022377824001272 Published online by Cambridge University Press

https://orcid.org/0009-0004-5385-4904
https://orcid.org/0000-0001-6738-6815
mailto:vcvishal1950chandel@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377824001272&domain=pdf
https://doi.org/10.1017/S0022377824001272


2 V. Chandel and Sunil

astrophysical contexts such as molecular clouds and the solar atmosphere, PIP plays a
crucial role, with significant implications for understanding phenomena like solar flares
and cometary tails (Ballester et al. 2018; Soler & Ballester 2022). These environments
exhibit varying ionization levels, influencing electromagnetic processes and the plasma
dynamics (Krishan 2022). Conversely, technological applications harness highly ionized
plasmas in devices such as fusion reactors and plasma TVs. Several types of fluid
instabilities, including Kelvin–Helmholtz, Rayleigh–Taylor, thermal and thermosolutal
instabilities, are influenced by partial ionization effects (Soler & Ballester 2022). The
study of PIP extends into diverse fields, including atmospheric science, plasma technology,
laboratory research and astrophysics, owing to its complex behaviour and wide-ranging
applications (Ballester et al. 2021; Kumar et al. 2021).

Thermal convection, a fundamental process in fluid dynamics, occurs when a fluid is
heated from below, leading to a less dense lower layer than the upper layer, resulting
in an unstable, top-heavy configuration. When the temperature difference or the depth
of the layers overcomes the effect of gravity, the fluid ascends, revealing a cellular
structure. This phenomenon, known as Bénard convection, is a significant topic in fluid
dynamics and is thoroughly examined in Chandrasekhar’s monograph (Chandrasekhar
1981). Thermal convection is crucial in various astronomical, natural and industrial
processes, including atmospheric circulation, ocean flow and industrial heat transfer
(Maheshwari & Bhatia 1976; Kaothekar 2018). Numerous studies have investigated
thermal convection, contributing to our understanding of this complex phenomenon
(Sharma 1972; Maheshwari & Bhatia 1976; Sharma & Sharma 1978, 1989; Sharma &
Sunil 1995, 1996; Kaothekar 2018; Chandel & Sunil 2024; Chandel, Sunil & Sharma 2024;
Mahajan & Raj 2024; Sharma, Sunil & Sharma 2024; Thakur, Kumar & Devi 2024).

The phenomenon of thermal convection within porous media has numerous real-world
applications, such as in oil reservoir modelling, geothermal energy utilization, building
thermal insulation, food processing and nuclear water disposal (Malashetty, Swamy &
Kulkarni 2007; Shivakumara et al. 2011). The instability of a horizontal fluid-saturated
porous layer when heated from below has been extensively researched and the growing
volume of work devoted to this area is well documented by Straughan (2008) and Nield
& Bejan (2013). A porous medium is a material containing pores (voids), where thermal
convection occurs as fluid moves through these pores under a temperature gradient. In
their study on the nonlinear stability of a rotating porous layer, Qin & Kaloni (1995) noted
that, for highly porous materials, the Brinkman model, which accounts for the boundary
layer effect, is superior to the Darcy model. This enhanced understanding of thermal
convection in porous media underscores its significance in both theoretical exploration
and practical applications, contributing to advancements across various scientific and
industrial domains.

Studies on thermal convection in porous media heated from below often assume local
thermal equilibrium (LTE), where the temperature gradient between fluid and solid phases
is negligible at any location (Kuznetsov 1998; Malashetty et al. 2007). However, in many
practical applications involving high-speed flows or substantial temperature differences
between the fluid and solid phases, the LTE assumption proves inadequate (Kuznetsov
1998; Malashetty et al. 2007). In such scenarios, it is crucial to consider local thermal
non-equilibrium (LTNE) effects by employing a two-field model for the energy equation,
with separate representations for the fluid and solid phases (Kuznetsov 1998). Local
thermal non-equilibrium theory finds particular relevance in diverse applications such
as food drying, freezing processes, microwave heating, rapid heat transfer in computer
chips utilizing porous metal foams and heat pipe technology (Malashetty et al. 2007;
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Shivakumara et al. 2011). These applications highlight the pivotal role LTNE theory is
expected to play in future advancements.

Recent investigations have been dedicated to examining the effects of LTNE on forced
and free convection in porous media. Comprehensive reviews of this research can be found
in the works authored by Ingham & Pop (2005), Straughan (2008) and Nield & Bejan
(2013). Kuznetsov (1998) provides detailed information about thermal non-equilibrium
effects on internal forced convection flows. Postelnicu & Rees (2003) and Postelnicu
(2008) examined convection onset using a thermal non-equilibrium model, focusing on
stress-free and isothermal rigid boundaries. Rees & Pop (2005) offer an excellent review
of research on LTNE phenomena in porous medium convection, primarily free and
forced convection boundary layers and free convection within cavities. Straughan (2006)
considered thermal convection in a fluid-saturated porous layer using a global nonlinear
stability analysis with a thermal non-equilibrium model, establishing the equivalence
of linear instability and nonlinear stability boundaries for thermal convection in a
rotating porous layer with the Darcy law. Malashetty, Swamy & Heera (2008) studied
double-diffusive convection in a fluid-saturated porous medium when the fluid and solid
phases are not in LTE, using both linear and nonlinear stability analyses. Sunil, Sharma &
Mahajan (2010) conducted an energy stability analysis of thermo-convective magnetized
ferrofluid in a porous medium under thermal non-equilibrium conditions. Shivakumara
et al. (2011) explored the effects of boundary and LTNE on the onset of convection in
a sparsely packed horizontal anisotropic porous layer. Yadav & Lee (2015) investigated
the onset of nanofluid convection in a rotating porous layer with zero nanoparticle
flux boundary conditions under LTNE effects. Bansal & Suthar (2022) and Bansal &
Suthar (2024) studied temperature modulation effects on Darcy–Bénard convection using
the LTNE model. Arnone, Capone & Gianfrani (2024) have studied the stability of
penetrative convection in a Darcy–Brinkman porous medium under the hypothesis of
thermal non-equilibrium.

Despite extensive research, the field remains in a much-to-be-desired state, particularly
regarding the effect of LTNE on the stability of a layer of PIP saturating a porous
medium. To the best knowledge of the authors, no work has yet addressed this
specific problem. Investigating the impact of LTNE on the stability of PIP heated
from below is crucial for improving modelling accuracy and understanding plasma
stability. Such insights are pivotal for applications in astrophysics, fusion research and
various industrial sectors, including spacecraft propulsion, medical technologies and
environmental sciences, thereby fostering scientific and practical advancements. Given the
significance and identified gaps in the literature, in this study, we undertake both nonlinear
and linear analyses to explore the LTNE effect on thermal convection in compressible PIP
within a porous medium enclosed by various combinations of bounding surfaces. Linear
analysis is examined using the normal mode analysis method (Chandrasekhar 1981), while
nonlinear analysis employs the energy method (Straughan 2004, 2008). For numerical
analysis, the Galerkin method (Yadav, Bhargava & Agarwal 2013) has been employed.

The paper is structured as follows: § 2 outlines the physical problem and presents
the governing equations. In § 3, we solve the governing equations for the basic state,
assuming the flow to be quiescent, and introduce perturbations to the system, deriving
the non-dimensional perturbation equations. Section 4 is dedicated to nonlinear analysis,
including the energy decay and the formulation of the eigenvalue problem for nonlinear
analysis. In § 5, we focus on linear analysis and prove the principle of exchange of stability.
Section 6 details the numerical methods for solving eigenvalue problems and provides
expressions for the Rayleigh–Darcy number for various bounding surface configurations.
Section 7 presents the results in graphical form and discusses the outcomes in detail.
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FIGURE 1. Geometrical representation of the problem.

Section 8 explores magnetic field effects. Finally, § 9 summarizes the major outcomes
of our work.

2. Problem formulation

Consider an infinite horizontal layer of porous material saturated with compressible
PIP, heated from below and confined between two surfaces at z = 0 and z = d. Let
ρn denote the density of the neutral components of PIP, ρi the density of the ionized
components of PIP and K1 the permeability of the porous medium. The gravitational force,
g = (0, 0,−g), acts downward. A geometrical representation of the problem is illustrated
in figure 1.

We assume that the solid phase of the porous medium and the ionized components of
the PIP are not in LTE. The temperature of the solid phase, Ts, and the plasma phase, Ti,
are maintained constant at the surfaces z = 0 and z = d

Ts = Ti = T0, at z = 0 and Ts = Ti = Td, at z = d, (2.1a,b)

where T0 > Td. A two-field model is employed to separately represent the temperature
fields of the solid phase of the porous medium and the ionized components of the PIP in
the energy equation.

In this analysis, the PIP is treated under the continuum hypothesis, behaving as a
continuous fluid. Effects of LTNE, pressure, gravity and medium permeability on the
neutral components of the PIP are considered negligibly small and are thus neglected.

Assuming adherence to the Boussinesq approximation (Spiegel & Veronis 1960), the
governing equations are (cf. Sharma & Sharma 1978; Kuznetsov 1998; Straughan 2006;
Nield & Bejan 2013)

1
ε

∂q
∂t

= − 1
ρm

∇p + g
[
1 − αm(T − Tm)+ Km ( p − pm)

]
− 1
ρm

[
μ

K1
− μ̃∇2

]
q + ρdνc

ρmε

(
qd − q

)
, (2.2)

ε
∂ρ

∂t
+ (q · ∇) ρ + ρ∇ · q = 0, (2.3)

ε (ρc)i
∂Ti

∂t
+ (ρc)i (q · ∇)Ti + p∇ · q = εki∇2Ti + h (Ts − Ti) , (2.4)
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(1 − ε) (ρc)s
∂Ts

∂t
= (1 − ε) ks∇2Ts − h (Ts − Ti) , (2.5)

∂qd

∂t
+ 1
ε
(qd · ∇)qd = −νc(qd − q). (2.6)

Here, ε is the porosity, q = (u, v,w) and qd = (�, r, s) are the velocities of the ionized
and neutral components of PIP, respectively, t is time, p is pressure, ρm, Tm and pm are
the constant space averages of density, temperature and pressure, respectively, μ̃ is the
effective viscosity of PIP, μ is the dynamic viscosity of PIP, νc is the collisional frequency
between components of PIP, ki is the thermal conductivity of ionized components of PIP,
h is the inter-phase heat transfer coefficient, ci and cs are the specific heats of the ionized
components of the PIP and the solid phase of the porous medium, respectively, and ks
is the thermal conductivity of the solid phase of the porous medium. In (2.4) and (2.5),
(ρc)i = ρici and (ρc)s = ρscs.

Additionally, αm and Km are defined as

αm = −
(

1
ρ

∂ρ

∂t

)
m

(= α, say) , Km =
(

1
ρ

∂ρ

∂p

)
m

, (2.7a,b)

where α is the coefficient of thermal expansion.

3. Basic state and non-dimensionalized perturbed equations

The steady basic state (Sharma & Sunil 1995) is defined as follows:

q = qb = 0, p = pb (z) , Ti = Tib (z) , Ts = Tsb (z) and qd = qdb
= 0,
(3.1a−e)

where

1
ρm

∇pb (z) = g
[
1 − αm(T − Tm)+ Km ( p − pm)

]
,

Tib (z) = −βz + Tm = Tsb (z) .

⎫⎬⎭ (3.2)

Here, the subscript ‘b’ denotes the basic state and β(= (T0 − Td)/d) is the temperature
gradient.

Consider small disturbances in the form of

q′ = (
u′, v′,w′) , p′, q′

d = (
�′, r′, s′) , θ, and ψ, (3.3a−e)

representing perturbations in q, p, qd, Ti and Ts, respectively. The nonlinear perturbation
equations are

1
ε

∂q′

∂t
= − 1

ρm
∇p′ − gαθ − 1

ρm

[
μ

K1
− μ̃∇2

]
q′ + ρdνc

ρmε

(
q′

d − q′) , (3.4)

∇ · q′ = 0, (3.5)

ε (ρc)i
∂θ

∂t
+ (ρc)i

(
q′ · ∇)

θ = εki∇2θ + h (ψ − θ)+ (ρc)i

(
β − g

ci

)
w′, (3.6)
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(1 − ε) (ρc)s
∂ψ

∂t
= (1 − ε) ks∇2ψ − h (ψ − θ) , (3.7)

∂q′
d

∂t
+ 1
ε

(
q′

d · ∇)
q′

d = −νc
(
q′

d − q′) . (3.8)

The perturbed equations (3.4)–(3.8) are non-dimensionalized using the following scales:

t∗ = ki

d2 (ρc)i
t, q∗ = (ρc)i d

εki
q′, q∗

d = (ρc)i d
εki

q′
d, z∗ = z

d
,

p∗ = K1 (ρc)i
μεki

p∗, θ∗ =
√

Ra
βd

θ, ψ∗ =
√

Ra
βd

ψ.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.9)

As a result, the non-dimensionalized perturbed equations (after removing the asterisk) are
given as

1
Va
∂q
∂t

= −∇p +
√

Raθ k̂ − q + D̃a∇2q + FLPr
Va

(
qd − q

)
, (3.10)

∇ · q = 0, (3.11)

∂θ

∂t
+ (q · ∇) θ = ∇2θ + H (ψ − θ)+

√
Ra

(
1 − 1

G

)
w, (3.12)

A∂ψ
∂t

= ∇2ψ − Hγ (ψ − θ) , (3.13)

∂qd

∂t
+ (

qd · ∇)
qd = −LPr

(
qd − q

)
. (3.14)

Here, Va = (ρc)id2με/kiρmK1 is the Vadasz number, Ra = gαβd2K1ρm(ρc)i/μεki is the
Rayleigh–Darcy number, D̃a = μ̃K1/μd2 is the Darcy–Brinkman number, L = νcd2ρm/μ

is the collisional frequency parameter of PIP, Pr = μ(ρc)i/kiρm is the Prandtl number,
F = ρn/ρm is the ratio of densities of neutral to ionized components of PIP, H = hd2/εki
is the scaled inter-phase heat-transfer coefficient, G = gρm/(ρc)iβ is the compressibility
parameter, A = (ρc)ski/(ρc)iKs is the diffusivity ratio and γ = εki/(1 − ε)ks is the
porosity-modified conductivity ratio.

To investigate the impact of the collisional frequency of two components of PIP on
the system’s stability, we neglect the convective term in (3.14) as it is independent of the
collisional frequency. Subsequently, using the normal mode analysis technique on (3.14),
we obtain

qd =
(

PrL
n + L

)
q, (3.15)

where n(≡ ∂/∂t) is the frequency of harmonic disturbances (Sharma & Sharma 1978).
Substituting (3.15) into (3.10), we get

1
Va

[
1 + FLPr

n + LPr

]
∂q
∂t

= −∇p +
√

Raθ k̂ − q + D̃a∇2q. (3.16)

The boundary conditions (BCs) associated with (3.11)–(3.13) and (3.16) are

q = 0, θ = 0, ψ = 0 on z = 0, 1, (3.17)

and plane tiling periodicity in x and y is satisfied by q, θ and ψ (Straughan 2006).
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4. Nonlinear analysis

To perform a nonlinear analysis, we employ the energy method. Let ‖ · ‖ denote the
L2(V) norm, 〈·〉 denote integration over V and V denote the three-dimensional periodicity
cell. To begin, multiply (3.16) by q, (3.12) by θ and (3.13) byψ/γ . Integrating the resulting
equations over V and using (3.11) and the BCs, we obtain

1
2Va

[
1 + FLPr

n + LPr

]
d
dt

‖q‖2 =
√

Ra〈wθ〉 − ‖q‖2 − D̃a ‖∇q‖2 , (4.1)

1
2

d
dt

‖θ‖2 =
√

Ra
(

1 − 1
G

)
〈wθ〉 − H〈θ (θ − ψ)〉 − ‖∇θ‖2 , (4.2)

A
2γ

d
dt

‖ψ‖2 = −H〈ψ (ψ − θ)〉 − 1
γ

‖∇ψ‖2 . (4.3)

By adding (4.1)–(4.3), we get
dE
dt

= I0 − D0, (4.4)

where E(t) is energy, I0 is the production term and D0 is the dissipation term. Here,

E(t) = 1
2

‖θ‖2 + λ

2Va

[
1 + FLPr

n + LPr

]
‖q‖2 + A

2γ
‖ψ‖2 , (4.5)

I0 = λ
√

Ra〈wθ〉 +
√

Ra
(

1 − 1
G

)
〈wθ〉, (4.6)

D0 = λ (
D̃a ‖∇q‖2 + ‖q‖2) + ‖∇θ‖2 + H ‖θ − ψ‖2 + 1

γ
‖∇ψ‖2 , (4.7)

where λ is the coupling parameter.
From (4.4), we obtain

dE
dt

� (m − 1)D0, (4.8)

where

m = max
G

I0

D0
, (4.9)

and G is the admissible solution space.
Using the Poincaré inequality, (4.7) becomes

D0 � K∗E(t), (4.10)

where

K∗ = 2π2 min

{
1,

1
A ,

1
Va

(
1
π2

+ D̃a
) [

1 + FLPr
n + LPr

]−1
}
. (4.11)

Using inequality (4.10) in inequality (4.8), we get

dE
dt

� −a0K∗E(t), (4.12)

where a0 = 1 − m > 0.

https://doi.org/10.1017/S0022377824001272 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001272


8 V. Chandel and Sunil

By integrating inequality (4.12), we get

E(t) � E(0) exp(−aoK∗t). (4.13)

From inequality (4.13), it follows that E(t) → 0 exponentially as t → ∞. This ensures the
stability for all values of E(0). The collisional frequency plays a significant role in energy
decay, particularly when{

1,
1
A

}
>

1
Va

(
1
π2

+ D̃a
)[

1 + FLPr
n + LPr

]−1

. (4.14)

Similarly, the thermal diffusivity ratio is important if{
1,

1
Va

(
1
π2

+ D̃a
)[

1 + FLPr
n + LPr

]−1
}
>

1
A . (4.15)

These conditions define thresholds where the collisional frequency and thermal diffusivity
ratio significantly influence the stability and energy dynamics of the system under
consideration.

4.1. Eigenvalue problem for nonlinear analysis
The value of Ra is calculated from the Euler–Lagrange equations derived from (4.9),
namely

√
Ra√
λ

[
λ+ G − 1

G

]
θ − 2q + 2D̃a∇2q = 0, (4.16)

√
Ra√
λ

[
λ+ G − 1

G

]
w + 2∇2θ − 2H (θ − ψ) = 0, (4.17)

2
γ

∇2ψ + 2H (θ − ψ) = 0. (4.18)

Operating k̂ · curlcurl on (4.16), we get

√
Ra√
λ

[
λ+ G − 1

G

]
∇2

1θ − 2∇2w + 2D̃a∇4w = 0, (4.19)

where

∇2
1 ≡ ∂2

∂x2
+ ∂2

∂y2
. (4.20)

We assume a plane tiling of the form

{w, θ, ψ} = {W(z),Θ(z), Ψ (z)} f (x, y), (4.21)

where f is a planform satisfying ∇2
1 f + a2f = 0, a being a wavenumber.
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Using the plane form (4.21), (4.19), (4.17) and (4.18) become

√
Ra√
λ

[
λ+ G − 1

G

]
a2Θ − 2D̃a

(
D2 − a2)2

W + 2
(
D2 − a2) W = 0, (4.22)

√
Ra√
λ

[
λ+ G − 1

G

]
W + 2

(
D2 − a2)Θ − 2H (Θ − Ψ ) = 0, (4.23)

2
γ

(
D2 − a2)Ψ + 2H (Θ − Ψ ) = 0, (4.24)

where D = d/dz. The BCs associated with (4.22)–(4.24) are

W = Ψ = Θ = 0 for z = 0, 1,

and DW = 0 for rigid surface,

and D2W = 0 for free surface.

⎫⎪⎬⎪⎭ (4.25)

The set of equations (4.22)–(4.24), together with the BCs (4.25), constitutes the eigenvalue
problem for nonlinear analysis.

5. Linear analysis

To study the linear analysis, by considering the perturbation to be infinitesimally small,
we ignore the nonlinear terms from the non-dimensional perturbed equations and obtain
the linearized non-dimensional perturbed equations as

1
Va

[
1 + FLPr

n + LPr

]
∂q
∂t

= −∇p +
√

Raθ k̂ − q + D̃a∇2q, (5.1)

∂θ

∂t
=

√
Ra

(
1 − 1

G

)
w + H (ψ − θ)+ ∇2θ, (5.2)

A∂ψ
∂t

= −Hγ (ψ − θ)+ ∇2ψ. (5.3)

Operating k̂ · curlcurl on (5.1), we get

1
Va

[
1 + FLPr

n + LPr

]
∂

∂t

(∇2w
) =

√
Ra∇2

1θ − ∇2w + D̃a∇4w. (5.4)

By applying the normal mode analysis method to equations (5.4), (5.2) and (5.3), where
we assumed the perturbed quantities of the form

{w, θ, ψ} = {W(z),Θ(z), Ψ (z)} exp
{
ι
(
axx + ayy

) + nt
}
. (5.5)

Here,
√

a2
x + a2

y = a is the wavenumber.
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Using (5.5), equations (5.4), (5.2) and (5.3) become

1
Va

[
1 + FLPr

n + LPr

]
n

(
D2 − a2) W = −

√
Raa2Θ − (

D2 − a2) W + D̃a
(
D2 − a2)2

W,

(5.6)

nΘ = (
D2 − a2)Θ + H (Ψ −Θ)+

√
Ra

(
1 − 1

G

)
W, (5.7)

AnΨ = (
D2 − a2)Ψ − Hγ (Ψ −Θ) . (5.8)

The BCs associated with (5.6)–(5.8) are same as (4.25).

5.1. Exchange of stabilities
Here, we prove that the principle of exchange of stabilities is valid, namely that marginally
stable modes with σ = 0 also have ω = 0, where σ + ιω = n.

Multiply (5.6) by W∗ (complex conjugate of W), (5.7) by Θ∗ (complex conjugate of Θ)
and (5.8) by Ψ ∗ (complex conjugate of Ψ ), integrating resulting equations over the range
of z and using BCs (4.25), we get

− n
Va

[
1 + FLPr

n + LPr

]
I1 +

√
Raa2

∫ 1

0
W∗Θ dz − I1 − D̃aI2 = 0, (5.9)

nI3 + I4 − H
∫ 1

0
Θ∗Ψ dz + HI3 −

√
Ra

(
1 − 1

G

)∫ 1

0
WΘ∗ dz = 0, (5.10)

AnI5 + I6 + HγI5 − Hγ
∫ 1

0
ΘΨ ∗ dz, (5.11)

where

I1 =
∫ 1

0

(|DW|2 + a2|W|2) dz, I2 =
∫ 1

0

(|D2W|2 + 2a2|DW|2 + a4|W|2) dz,

I3 =
∫ 1

0
|Θ|2 dz, I4 =

∫ 1

0

(|DΘ|2 + a2|Θ|2) dz,

I5 =
∫ 1

0
|Ψ |2 dz, I6 =

∫ 1

0

(|DΨ |2 + a2|Ψ |2) dz.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.12)

The integrals I1, I2, I3, I4, I5 and I6 are positive. So, subtracting the product of a2 with
(5.11) from the sum of the product of (1 − 1/G)γ with (5.9) and the product of a2γ with
complex conjugate of (5.10), we get

− γ

(
1 − 1

G

) (
n

Va

[
1 + FLPr

n + LPr

]
+ 1

)
I1 −

(
1 − 1

G

)
γ D̃aI2

+ a2γ (n∗ + H)I3 + a2γI4 − a2 (An + γH) I5 − a2I6 = 0, (5.13)

where n∗ is the complex conjugate of n.
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The imaginary part of (5.13) gives

ω

{(
1 − 1

G

) (
1

Va
+ FL2(Pr)2

(σ + LPr)2 + ω2

)
γI1 + a2γI3 + a2AI5

}
= 0. (5.14)

The quantity inside the curly brackets is positive definite for G is greater than 1. Hence,
(5.14) suggests that ω = 0. This establishes that the principle of exchange of stabilities is
valid (Chandrasekhar 1981).

Now, keeping in mind the validation of the principle of exchange of stabilities,
(5.6)–(5.8) can be rewritten as

√
Raa2Θ + (

D2 − a2) W − D̃a
(
D2 − a2)2

W = 0, (5.15)(
D2 − a2)Θ + H (Ψ −Θ)+

√
Ra

(
1 − 1

G

)
W = 0, (5.16)(

D2 − a2)Ψ − Hγ (Ψ −Θ) = 0. (5.17)

The set of equations (5.15)–(5.17), together with the BCs (4.25), constitutes the eigenvalue
problem for linear analysis.

6. Method of solution

The eigenvalue problems for both nonlinear as well as linear analyses have been solved
using the single-term Galerkin method. In this method, the weighted functions are the
same as the base (trial) functions (Yadav et al. 2013). Accordingly, we define W,Θ and Ψ
in the following form:

W =
N∑

j=1

AjWj, Θ =
N∑

j=1

BjΘj, Ψ =
N∑

j=1

CjΨj, (6.1a-c)

where Aj, Bj and Cj are unknown coefficients, j = 1, 2, 3, . . . ,N and the base functions Wj,
Θj and Ψj are assumed to be in the following forms for free–free, rigid–free and rigid–rigid
bounding surfaces (Chandrasekhar 1981; Yadav et al. 2013), respectively:

Wj = sin( jπz) = Θj = Ψj, (6.2)

Wj = z2 (1 − z)
[
( j + 2)− 2z j

]
, Θj = z j − zj+1 = Ψj, (6.3a,b)

Wj = zj+1 − 2zj+2 + zj+3, Θj = z j − zj+1 = Ψj, (6.4a,b)

such that Wj, Θj and Ψj satisfy the corresponding BCs (4.25). By substituting the
expressions for W, Θ and Ψ into (4.22)–(4.24) and (5.15)–(5.17), and then multiplying
the first equation by Wj, the second equation by Θj and the third equation by Ψj and
integrating the resulting equations over the interval from zero to unity, we obtain a set of
linear homogeneous equations. This set of equations admits a non-trivial solution only if
its determinant is equal to zero, which gives the characteristic equations of the eigenvalue
problems in terms of the Rayleigh–Darcy number Ra.
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6.1. Rayleigh–Darcy number for free–free bounding surfaces
For nonlinear analysis, Ra has been found as a function of a, λ, H, γ and G. The expression
for Ra is given by

Ra = 4G2
(
a2 + π2

)2 (
1 + a2D̃a + π2D̃a

) (
a2 + π2 + H + γH)

λ

a2
(
a2 + π2 + γH)

(G − 1 + Gλ)2
. (6.5)

The optimal value of λ has been found using the condition dRa/dλ = 0, which yields
λ = (G − 1)/G. Using this value, the expression for Ra becomes

Ra =
(

G
G − 1

) (
a2 + π2

)2 (
1 + a2D̃a + π2D̃a

) (
a2 + π2 + H + γH)

a2
(
a2 + π2 + γH) . (6.6)

For linear analysis, the value of Ra found by solving the eigenvalue problem (5.15)–(5.17)
using the Galerkin method has been the same as (6.6).

6.2. Rayleigh–Darcy number for rigid–free bounding surfaces
For nonlinear analysis, Ra has been found as a function of a, λ, H, γ and G. The expression
for Ra is given by

Ra = 112G2 (
10 + a2) (

19a4D̃a + 216
(
1 + 21D̃a

) + a2 (
19 + 432D̃a

)) (
10 + a2 + H + γH)

λ

507a2
(
10 + a2 + γH)

(G − 1 + Gλ)2
.

(6.7)

The optimal value of λ has been found using the condition dRa/dλ = 0, which yields
λ = (G − 1)/G. Using this value, the expression for Ra becomes

Ra = 28G
(
10 + a2) (

19a4D̃a + 216
(
1 + 21D̃a

) + a2 (
19 + 432D̃a

)) (
10 + a2 + H + γH)

507a2 (G − 1)
(
10 + a2 + γH) . (6.8)

For linear analysis, the value of Ra found by solving the eigenvalue problem (5.15)–(5.17)
using the Galerkin method has been the same as (6.8).

6.3. Rayleigh–Darcy number for rigid–rigid bounding surfaces
For nonlinear analysis, Ra has been found as a function of a, λ, H, γ and G. The expression
for Ra is given by

Ra = 112G2 (
10 + a2) (

12 + 504D̃a + a4D̃a + a2 (
1 + 24D̃a

)) (
10 + a2 + H + γH)

λ

27a2
(
10 + a2 + γH)

(G − 1 + Gλ)2
. (6.9)

The optimal value of λ has been found using the condition dRa/dλ = 0, which yields
λ = (G − 1)/G. Using this value, the expression for Ra becomes

Ra = 28G
(
10 + a2) (

12 + 504D̃a + a4D̃a + a2 (
1 + 24D̃a

)) (
10 + a2 + H + γH)

27a2 (G − 1)
(
10 + a2 + γH) . (6.10)

For linear analysis, the value of Ra found by solving the eigenvalue problem (5.15)–(5.17)
using the Galerkin method has been the same as (6.10).

Here, Ra has the same value for both nonlinear and linear analyses, indicating a lack
of subcritical regions and demonstrating strong global stability. It has been observed that
collisional effects contribute to energy decay, but do not affect the value of Ra in either
nonlinear or linear analyses.
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FIGURE 2. Comparison of Rayleigh–Darcy number (Ra) for LTNE and LTE across various
combinations of bounding surfaces. Solid curves depict Ra variations for LTNE, while dotted
curves show Ra variations for LTE. Curves labelled aa, bb and cc show the variations of Ra with
wavenumber (a) for rigid–rigid, rigid–free and free–free surfaces, respectively, under LTNE
conditions. The curves labelled a′a′, b′b′ and c′c′ represent the variations of Ra with a for
rigid–rigid, rigid–free and free–free bounding surfaces, respectively, under LTE conditions.

7. Results and discussion

This section presents graphical representations of neutral stability curves for various
parameter values. Numerical calculations are conducted with G = 3, D̃a ranging from
0 to 1, H ranging from 10−5 to 105 and γ ranging from 0 to 10. The parameter ranges
discussed are inspired by the existing literature (Sharma & Sunil 1995; Malashetty et al.
2007, 2008; Nield & Bejan 2013; Yadav & Lee 2015).

It is evident from the expressions of Ra that, as the values of G increase, Ra also
increases, suggesting that compressibility exerts a stabilizing influence. Notably, cases
where G = 1 and G < 1 are not applicable in this study, as they result in infinite or
negative Ra. The significance of this relationship becomes particularly pronounced when
G exceeds 1, as emphasized in a study by Sharma & Sunil (1995).

Figure 2 compares LTNE and LTE conditions for the distinct combinations of free and
rigid bounding surfaces. The values of Ra for respective bounding surfaces have been
calculated using H → 0 in (6.6), (6.8) and (6.10), for LTE conditions and for LTNE
conditions using H = 10 and γ = 5. The value of D̃a is kept fixed as 0.1 for both LTE and
LTNE. It is clear from the figure that the values of Ra in the case of LTNE are more than
that of the LTE case for respective bounding surfaces. This indicates that onset convection
occurs earlier for the LTE conditions than for the LTNE conditions.

In figure 3, the variation of Rac with D̃a for different combinations of bounding
surfaces at H = 100, γ = 5 and G = 3 is displayed. This figure illustrates the stabilizing
effect of medium permeability for all three different combinations of bounding surfaces.
This behaviour occurs because permeability adds resistance to the flow of PIP, leading
to enhanced mixing of PIP and more efficient temperature distribution. Consequently,
the convective heat transfer increases, delaying the onset of convection and increasing
Rac.
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FIGURE 3. Variation of critical Rayleigh–Darcy number (Rac) with Darcy–Brinkman number
(D̃a) for the distinct combinations of bounding surfaces.

In figure 4, the relationship between Rac and the scaled inter-phase heat transfer
coefficient (log10 H) for different bounding surface combinations is illustrated. It is
observed that, as H increases, Rac also increases, indicating a stabilizing effect. For small
H values, Rac shows minimal variation and is independent of γ . However, for H > 1,
the variation becomes significant as Rac becomes dependent on γ . This behaviour is a
result of the negligible heat transfer between the phases at low H values, making the
critical value unaffected by the solid phase properties. Conversely, at high H values, the
temperatures of the phases nearly equalize, allowing them to be treated as a single phase.
In between these extremes, H introduces strong non-equilibrium effects. Additionally, an
increase in γ leads to a decrease in Rac, highlighting the destabilizing influence of γ .
This trend is further illustrated in figure 5, which is plotted for a constant H. Higher γ
values imply that heat is transported through both the solid and PIP phases, whereas lower
values indicate that heat is transported primarily through the PIP phase. Thus, convection
is more readily initiated for higher γ values when all the other parameters are held
constant.

Additionally, based on these graphical results, we infer that PIP exhibits greater
thermal stability when confined between rigid–rigid bounding surfaces, while it shows
less thermal stability when the plasma layer is confined between free–free bounding
surfaces.

8. Effect of magnetic field

To study the effect of the magnetic field on the problem of instability described
in § 2, we consider a horizontal porous layer of PIP, subjected to a magnetic field
H . We have adopted the quasi-static magnetohydrodynamic approximation proposed
by Galdi & Straughan (1985). The key modification is to include a term representing
the Lorentz force (L = j × B0) in the equation of motion (2.3), where j is the current
and B0 = (0, 0,B0) is the magnetic field with only vertical component (Chandrasekhar
1981). The non-dimensional perturbed equations (3.11)–(3.13) remains the same but
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FIGURE 4. Comparison of critical Rayleigh–Darcy number (Rac) for various values of
scaled inter-phase heat-transfer coefficient (log10 H), for different values of porosity-modified
conductivity ratio (γ ), for distinct combination of bounding surfaces. The blue curves represent
rigid–rigid bounding surfaces, the red curves indicate rigid–free bounding surfaces and the black
curves correspond to free–free bounding surfaces. The dashed curves are for γ = 0.5, the solid
curves for γ = 1 and the dotted curves for γ = 5.

FIGURE 5. Variation of critical Rayleigh–Darcy number (Rac) with porosity-modified
conductivity ratio (γ ) for the distinct combinations of bounding surfaces.

(3.16) becomes

1
Va

[
1 + FLPr

n + LPr

]
∂q
∂t

= −∇p +
√

Raθ k̂ − q + D̃a∇2q + M2D̃a
Vr

[(
q × k̂

)
× k̂

]
,

(8.1)
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where M2(= σ1B2
0d2/ερmν) is the Hartmann number, which accounts for the effect of the

magnetic field. Here, σ1 is the electrical conductivity.
The eigenvalue problem for nonlinear analysis incorporating the effect of magnetic field

is
√

Ra√
λ

[
λ+ G − 1

G

]
a2Θ + 2

(
D2 − a2) W − 2D̃a

(
D2 − a2)2

W + 2M2D̃a
Vr

D2W = 0,

(8.2)
√

Ra√
λ

[
λ+ G − 1

G

]
W + 2

(
D2 − a2)Θ − 2H (Θ − Ψ ) = 0, (8.3)

2
γ

(
D2 − a2)Ψ + 2H (Θ − Ψ ) = 0. (8.4)

The eigenvalue problem for linear analysis incorporating the effect of magnetic field is

√
Raa2Θ + (

D2 − a2) W − D̃a
(
D2 − a2)2

W + M2D̃a
Vr

D2W = 0, (8.5)

(
D2 − a2)Θ + H (Ψ −Θ)+

√
Ra

(
1 − 1

G

)
W = 0, (8.6)(

D2 − a2)Ψ − Hγ (Ψ −Θ) = 0. (8.7)

The BCs associated with both eigenvalue problems remain the same as (4.25).
The Rayleigh–Darcy numbers for both nonlinear and linear analyses were determined by

solving the eigenvalue problems using the Galerkin method as detailed in § 6. The value
of Ra for nonlinear analysis has been a function of a, λ, H, γ , M2 and G. The optimal
value of λ is (G − 1)/G for all combinations of bounding surfaces. Using this value of λ,
we have found that Ra for nonlinear analysis has been the same as Ra for linear analysis.
The Rayleigh–Darcy numbers (Ra) for distinct combinations of bounding surfaces are as
follows.

For free–free bounding surfaces

Ra =
(

G
G − 1

) (
a2 + π2) (

a2 + π2 + (
a2 + π2)2 D̃a + π2D̃aM2

) (
a2 + π2 + H + γH)

a2
(
a2 + π2 + γH) . (8.8)

For rigid–free bounding surfaces

Ra = 28G
(
10 + a2

) (
10 + a2 + H + γH)

507a2 (G − 1)
(
10 + a2 + γH)

× [
19a4D̃a + 216

(
1 + 21D̃a

) + a2 (
19 + 432D̃a

) + 216D̃aM2] . (8.9)

For rigid–rigid bounding surfaces

Ra = 28G
(
10 + a2

) (
10 + a2 + H + γH)

27a2 (G − 1)
(
10 + a2 + γH)

× [
12 + 504D̃a + a4D̃a + a2 (

1 + 24D̃a
) + 12D̃aM2] . (8.10)

For the limiting case of the magnetic field i.e. M2 = 0, clearly the Rayleigh–Darcy number
for the respective bounding surfaces has been the same as given in (6.6), (6.8) and (6.10).
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FIGURE 6. Variation of critical Rayleigh–Darcy number (Rac) with the square of Hartmann
number (M2) for the distinct combinations of bounding surfaces.

Figure 6 shows the variation in Rac with the square of the Hartmann number (M2)
for different boundary surface combinations. The figure shows that, with the increase
in M2, Rac also increases, indicating that magnetic fields delay the onset of thermal
convection, thus exerting a stabilizing influence. This occurs because the magnetic field
impedes the motion within the PIP. When the PIP attempts convective motion, the
Lorentz force generated by the magnetic field counteracts this movement, resisting the
flow and suppressing convective instabilities, thereby delaying convection onset. This
suppression of plasma motion is essential in postponing or preventing the onset of thermal
convection. Additionally, the figure reveals that PIP confined within rigid–rigid bounding
surfaces exhibits greater thermal stability compared with PIP confined within rigid–free
or free–free bounding surfaces.

The stability analysis of PIP in a porous medium with LTNE effects has significant
applications across various scientific and engineering domains. In astrophysics, this study
enhances the understanding of stellar and planetary atmospheres, contributing to more
accurate models of these complex systems. In the field of nuclear fusion, it offers insights
into the stability of magnetic confinement systems, which is crucial for the development
of efficient fusion reactors. The findings also aid in the design of thermal protection
systems for spacecraft, ensuring their integrity during re-entry and other high-temperature
conditions. Furthermore, the optimization of heat exchangers and combustion chambers
in engineering applications benefits from the improved thermal stability insights provided
by this study. Additionally, the study informs the development of plasma-based pollution
control technologies and advances in plasma medicine, particularly in the design of stable
plasma sources for medical treatments involving porous tissues or materials.

9. Conclusions

This study explored the impact of LTNE and magnetic field on the stability of PIP heated
from below and saturating a porous medium. We analysed three combinations of bounding
surfaces: rigid–rigid, rigid–free and free–free. The eigenvalue problems resulting from
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these configurations were numerically solved using the Galerkin method. The key findings
are as follows:

(i) Energy decay was examined using the energy method, revealing that the collisional
frequency and diffusivity ratios significantly influence the rate of energy decay.

(ii) The principle of exchange of stabilities was confirmed, indicating the absence of
oscillatory convection modes.

(iii) Both linear and nonlinear analyses showed identical stability boundaries for all
bounding surface combinations, indicating the absence of a subcritical region and
the establishment of global stability.

(iv) Factors such as compressibility, medium permeability and inter-phase heat transfer
were found to delay the onset of thermal convection, thereby stabilizing the system.

(v) The porosity-modified conductivity ratio exhibited a destabilizing effect on the
system stability. At very low heat-transfer coefficients, the critical values were
independent of the porosity-modified conductivity ratio.

(vi) The presence of a magnetic field was observed to delay the onset of thermal
convection, thus exerting a stabilizing effect.

(vii) Among the bounding surface configurations, rigid–rigid surfaces provided the
greatest thermal stability for confining the PIP.

Future research could explore the impact of surface tension on thermal convection in
partially ionized plasma using both linear and nonlinear analyses across various bounding
surface configurations. Furthermore, investigating the effects of varying ionization levels,
Hall currents and finite Larmor radius on stability and convection thresholds would
significantly broaden the study’s scope. Additionally, the application of machine learning
techniques to control Rayleigh–Bénard convection in PIP presents a promising avenue for
advanced control and optimization.
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