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Abstract
In recent years, there has been significant interest in the effect of different types of adversarial perturbations in data
classification problems. Many of these models incorporate the adversarial power, which is an important parameter
with an associated trade-off between accuracy and robustness. This work considers a general framework for adver-
sarially perturbed classification problems, in a large data or population-level limit. In such a regime, we demonstrate
that as adversarial strength goes to zero that optimal classifiers converge to the Bayes classifier in the Hausdorff
distance. This significantly strengthens previous results, which generally focus on L1-type convergence. The main
argument relies upon direct geometric comparisons and is inspired by techniques from geometric measure theory.

1. Introduction

In recent years, neural networks have achieved remarkable success in a wide range of classification and
learning tasks. However, it is now well-known that these networks do not learn in the same ways as
humans and will fail in specific settings. In particular, a wide range of recent work has shown that they
fail to be robust to specially designed adversarial attacks [11, 12, 18, 23, 27].

One general approach for mitigating this problem is to include an adversary in the training process. A
simple mathematical formulation of this method for 0–1 loss [19], in the large-data or population limit,
is to consider the optimization problem

min
A

Jε(A), Jε(A) := E

[
max

x̃∈B(x,ε)
|1A(x̃) − y|

]
,

where the y variables represent observed classification labels and x variables represent features (we give
a more precise description of our setting in the next section). This can be seen as a robust optimization
problem, where an adversary is allowed to modify the inputs to our classifier up to some distance ε.
When ε= 0, this corresponds to the standard Bayes risk.

Recent work has significantly expanded our mathematical understanding of this problem. Our work
directly builds upon [5], which rewrites the previous functional as

Jε(A) =E[|1A(x) − y|] + εPerε(A),

where Perε is a special data-adapted perimeter, whose definition is given in (4). This is related to a
growing body of recent work, for example, showing that Perε converges to the (weighted) classical
perimeter [7], and demonstrating links between the adversarially robust training problem and mean
curvature flow [6, 16]. This literature seeks to provide a more complete description of the effect of ε
on adversarially robust classifiers in a geometric sense. This relates to the study of nonlocal perimeter
minimization and flows [8, 9, 10], where the unweighted ε-perimeter is considered. As training these
robust classifiers is generally a challenging task, one overarching goal of this type of work is to provide
C© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0956792525100223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100223
https://orcid.org/0000-0002-6584-2992
https://orcid.org/0000-0002-4491-4096
mailto:rachel.morris@mail.concordia.ca
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792525100223&domain=pdf
https://doi.org/10.1017/S0956792525100223


2 R. Morris and R. Murray

a more precise understanding of the effect of ε, practical means for approximating that effect and the
impact on classifier complexity: each of these has the potential to improve more efficient solvers for
these problems.

Various modifications of the robust classification energy Jε have been proposed. For example, some
authors relax either the criteria for an adversarial attack or the loss function to interpolate between
the accurate yet brittle Bayes classifier and the robust yet costly minimizers of the adversarial train-
ing problem [4, 17, 24, 25]. Still others employ optimal transport techniques to study distributionally
robust optimization, where instead of perturbing data points, the adversary perturbs the underlying data
distribution [13, 14, 15, 21, 22].

The main goal of this paper is to study the convergence of solutions to the adversarially robust clas-
sification problem towards the original Bayes classification task for data-perturbing models. We build
a framework that allows us to consider a wide range of adversarial settings at the same time. In doing
so, we obtain Hausdorff convergence results, which are generally much stronger than the L1-type results
previously obtained [4]. These results parallel many of the basic results in the study of variational prob-
lems involving perimeters, wherein one first proves stability in L∞ spaces, and then subsequently proves
stronger regularity results for minimizers. In a similar way, we see our results as a building block towards
stronger regularity results for the adversarially robust classification problem, which have received sig-
nificant attention in the literature. We begin by concretely describing the setup of our problem and then
giving an informal statement of our results along with some discussion.

1.1. Setup

Let the Euclidean space R
d equipped with the metric d(·, ·) represent the space of features for a data

point, and let B(Rd) be the set of all Borel measurable subsets of Rd. We will let Ld be the d-dimensional
Lebesgue measure. We are considering a supervised binary classification setting, in which training pairs
(x, y) are distributed according to a probability measure μ over Rd × {0, 1}. Here y represents the class
associated with a given data point, and the fact that y ∈ {0, 1} corresponds to the binary classification
setting. Let ρ denote the Rd marginal ofμ, namely ρ(A) =μ(A × {0, 1}). We decompose ρ ∈P(Rd) into
ρ = w0ρ0 + w1ρ1 where wi =μ(Rd × {i}), and the conditional probability measure ρi ∈P(Rd) for a set
A ∈B(Rd) is

ρi(A) = μ(A × {i})
wi

for i = 0, 1. All of these measures are assumed to be Radon measures.
In binary classification, we associate a set A ∈B(Rd) with a classifier, meaning that x ∈R

d is assigned
label 1 when x ∈ A and x is assigned the label 0 when x ∈ Ac. Unless otherwise stated, we will assume
all classifiers A ∈B(Rd). The Bayes classification problem for the 0–1 loss function is given by

inf
A∈B(Rd )

E(x,y)∼μ[|1A(x) − y|]. (1)

In this work, we will only consider the 0–1 loss function, which allows us to restrict our attention to
indicator functions for minimizers of (1). We refer to minimizes of the Bayes risk as Bayes classifiers.

Remark 1.1 (Uniqueness of Bayes Classifiers). If we assume that ρ has a density everywhere on R
d and

identify the measures ρi with the density at x ∈R
d given by ρi(x), then we can describe the uniqueness,

or lack thereof, of Bayes classifiers in terms of those densities. Specifically, Bayes classifiers are unique
up to the set {w1ρ1 = w0ρ0}, which may be a set of positive measure depending on μ. We define maximal
and minimal Bayes classifiers (in the sense of set inclusion) by

Amax
0 := {x ∈R

d : w1ρ1(x) ≥ w0ρ0(x)}, Amin
0 := {x ∈R

d : w1ρ1(x)>w0ρ0(x)}. (2)

When w0ρ0 − w1ρ1 ∈ C1 and |w0∇ρ0 − w1∇ρ1|>α > 0 on the set {w0ρ0 = w1ρ1}, the Bayes classifier
is unique up to sets of ρ measure zero. In the case where ρ is supported everywhere, Bayes classifiers
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are unique up to sets of Ld measure zero. Whenever we refer to the Bayes classifier as unique, we mean
unique in this measure-theoretic sense. Later on in Assumption 3.11, we will refer to such uniqueness
as the ’non-degeneracy’ of the Bayes classifier and represent the unique classifier by A0.

Throughout this paper, we will consider and seek to unify two optimization problems from the litera-
ture that aim to train robust classifiers. First, we consider the adversarial training problem, which trains
classifiers to mitigate the effect of worst-case perturbations [19]. The adversarial training problem is

inf
A∈B(Rd )

E(x,y)∼μ

[
sup

x̃∈Bd(x,ε)
|1A(x̃) − y|

]
,

where Bd(x, ε) is the open metric ball of radius ε > 0. The existence of solutions in this setting was
previously established [5]. The parameter ε is called the adversarial budget, and it represents the strength
of the adversary. By using the open ball, we are following the conventions set in the previous work
on convergence of optimal adversarial classifiers [7]. Other works have utilized the closed ball due to
consistency with the standard classification problem when ε= 0, but that comes at the price of added
measurability concerns: see Remark 1.2 for more details.

An equivalent form of this variational problem (see [5]), wherein the problem is rewritten using a
nonlocal perimeter, is

inf
A∈B(Rd )

E(x,y)∼μ[|1A(x) − y|] + εPerε(A) (3)

with the ε-perimeter defined by

Perε(A) := w0

ε

∫
Rd

[
sup

x̃∈Bd(x,ε)
1A(x̃) − 1A(x)

]
dρ0(x) + w1

ε

∫
Rd

[
1A(x) − inf

x̃∈Bd(x,ε)
1A(x̃)

]
dρ1(x).

This normalization with ε in the denominator is chosen so that we recover the (weighted) classical
perimeter as ε→ 0+. In this sense, we consider the nonlocal ε-perimeter a data-adapted approxima-
tion of the classical perimeter. From the variational problem given by (3), we define the adversarial
classification risk for a classifier A ∈B(Rd) as

Jε(A) := E(x,y)∼μ[|1A(x) − y|] + εPerε(A).

When considering the ε-perimeter, the region affected by adversarial perturbations must be within
distance ε of the decision boundary of the classifier. As such, it will be helpful to be able to discuss
sets that either include or exclude the ε-perimeter region. From mathematical morphology [26], for a
set A ∈R

d and ε > 0, we define the

• ε-dilation of A as Aε := {x ∈R
d :d(x, A)< ε},

• ε-erosion of A as A−ε := {x ∈R
d : d(x, Ac) ≥ ε}.

Using this notation, one can equivalently express the ε-perimeter as

Perε(A) = w0

ε
ρ0(Aε \ A) + w1

ε
ρ1(A \ A−ε). (4)

Inspired by the notation in geometric measure theory, we also define the relative ε-perimeter for a
classifier A ∈B(Rd) with respect to a set E ∈B(Rd) by

Perε(A; E) := w0

ε
ρ0((Aε \ A) ∩ E) + w1

ε
ρ1((A \ A−ε) ∩ E).

Remark 1.2 (Previous work for the adversarial training problem (3)). The worst-case adversarial train-
ing model was initially proposed for general loss functions by [19]. When the loss function is specified
to be the 0–1 loss function, previous work has established the existence and considered the equivalence
of minimizers to (3) for the open and closed ball models [2, 5, 14, 22]. Although the open and closed
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ball models are similar, there are some subtle differences that must be considered. While measurability
of supx̃∈Bd(x,ε) 1A(x̃) for a Borel set A in the open ball model is trivial, the same cannot be said for the
closed ball model; to address these measurability concerns in the closed ball model, one must employ
the universal σ -algebra instead of the Borel σ -algebra. We emphasize that we choose to study the open
ball model as this simplifies the analysis and measurability concerns associated with the closed ball
model, and the open ball model was used for prior convergence results [7].

Some papers consider a surrogate adversarial risk which is more computationally tractable [1, 3, 13,
20]; others explore necessary conditions and geometric properties of minimizers [6, 7, 16]. Of particular
note to the present work is the study of the limit of minimizers of Jε. Theorem 2.5 states [7].

Theorem (Conditional convergence of adversarial training). Under the conditions of Theorems 2.1 and
2.3 from [7] and assuming the source condition, any sequence of solutions to

inf
A∈B(�)

E(x,y)∼μ

[
sup

x̃∈B(x,ε)∩�
|1A(x̃) − y|

]
possesses a subsequence converging to a minimizer of

min{Per(A; ρ) : A ∈ arg minB∈B(�)E(x,y)∼μ[|1B(x) − y|]}.
The convergence is proven in the L1(�) topology for some open, bounded Lipschitz domain �⊂

R
d. Here, Per( · ; ρ) is a weighted version of the classical perimeter. The source condition mentioned

provides minor regularity assumptions on the Bayes classifier. Note that in the referenced theorem,
there are additional assumptions on the underlying data distribution ρ. In our work, we strengthen this
convergence result by proving Hausdorff convergence of minimizers of (3) to the Bayes classifier with
similar assumptions on ρ.

The second optimization problem, which serves as an important model case, interpolates between
the accuracy on clean data of the Bayes classifier and the robustness of the adversarial training problem
minimizers. The probabilistic adversarial training problem for p ∈ [0, 1) and probability measures px ∈
P(Rd) for each x ∈R

d is

inf
A∈B(Rd )

E(x,y)∼μ[|1A(x) − y|] + ProbPerp(A), (5)

with the probabilistic perimeter defined by

ProbPerp(A) := w0ρ0(�
0
p(A)) + w1ρ1(�1

p(A)), (6)

and the set functions �i
p for i = 0, 1 defined by

�0
p(A) := {x ∈ Ac: P(x′ ∈ A : x′ ∼ px)> p},

�1
p(A) := {x ∈ A : P(x′ ∈ Ac : x′ ∼ px)> p}.

Here, P(x′ ∈ A : x′ ∼ px) is the probability that a point x′ sampled from the probability distribution px

belongs to the set A. We notice that (6) takes the same form as (4) where we replace the metric boundary
fattening by a probabilistic fattening. We define the probabilistic adversarial classification risk for a
classifier A ∈B(Rd) as

Jp(A) := E(x,y)∼μ[|1A(x) − y|] + ProbPerp(A).

The relative probabilistic perimeter for a classifier A ∈B(Rd) with respect to a set E ∈B(Rd) is
given by

ProbPerp(A; E) := w0ρ0

(
�0

p(A) ∩ E
)+ w1ρ1

(
�1

p(A) ∩ E
)

.
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To make the connection with the ε-perimeter more concrete, we will restrict our attention to certain
families of probability measures that scale appropriately with ε for the remainder of this work.

Assumption 1.3. Let ξ : Rd → [0, ∞) such that ξ ∈ L1(Rd),
∫
Rd ξ (z) dz = 1, ξ (z) = 0 if |z|> 1, and

ξ (z)> c for some constant c> 0 and for |z| ≤ 1. For x, x′ ∈R
d, we assume that

px,ε(x
′) = ε−dξ

(
x′ − x

ε

)
.

�
We will now write ProbPerε,p and refer to it as the probabilistic ε-perimeter to emphasize the depen-

dence on the adversarial budget. Unlike with the Perε, we do not normalize ProbPerε,p with respect
to ε. We also write Jε,p instead of Jp and �i

ε,p instead of �i
p for i = 0, 1. Under Assumption 1.3, �0

ε,p(A)
and �1

ε,p(A) are subsets of the ε-perimeter regions Aε \ A and A \ A−ε, respectively. Specifically, this
means that Jε,p(A) ≤ Jε(A) for all A ∈B(Rd) when the underlying data distribution μ is the same. We
note that probabilistic ε-perimeter that most closely coincides with the ε-perimeter when p = 0 and
px,ε = Unif(Bd(x, ε)) for each x ∈R

d.

Remark 1.4 (Previous work for the probabilistic adversarial training problem (5)). This form of the
problem was proposed by [4] as a revision of probabilistically robust learning [25]. Although ProbPerp

is not a perimeter in the sense that it has not been shown to be submodular and it does not admit a
coarea formula, we follow the convention from [4] and refer to ProbPerp as the probabilistic perimeter.
Importantly, existence of minimizers has not been proved for either the original or modified proba-
bilistic adversarial training problem. There have also been no results pertaining to the convergence of
minimizers, provided they exist, to the Bayes classifier for either version.

However, [4] proposes and proves the existence of minimizers for a related probabilistically robust
	 risk

J	(A) := E(x,y)∼μ[|1A(x) − y|] + ProbPer	(A)

for suitable functions 	 : [0, 1] → [0, 1] where the 	-perimeter takes the form

ProbPer	(A) :=
∫

Ac

	(P(x′ ∈ A : x′ ∼ px))dρ0(x) +
∫

A

	(P(x′ ∈ Ac : x′ ∼ px))dρ1(x).

However, the convergence results proved in this paper do not currently extend to the 	-perimeter case.
The details will be further discussed in Remark 4.17.

If we juxtapose the variational problem for the adversarial training problem (3) and the probabilistic
adversarial training problem (5), both risks are of the form

J(A) = Bayes risk + data-adapted perimeter,

where the data-adapted perimeters can be expressed as

data-adapted perimeter = w0ρ0(subset of Ac) + w1ρ1(subset of A).

We seek to develop a unifying framework for various adversarial models, including, but not limited to,
(3) and (5). These types of attacks are designed to flexibly capture a range of adversarial behaviours, not
just the idealized ones given in the original adversarial training problem. Under the proper assumptions,
which will be discussed in Sections 2 and 4, we can extend the convergence result to a broad class of
adversarial attacks. We begin by giving some concrete definitions.

Definition 1.5. For a classifier A ∈B(Rd), we define the Lebesgue measurable function φ : Rd → {0, 1}
by

φ(x; A) :=
{

1, if the adversary can perturb a data point x from A to Ac or vice versa,

0, otherwise.

We refer to φ as the deterministic attack function with respect to the classifier A.
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Deterministic refers to the fact that the classification risk is completely determined at any point x ∈R
d

by the choice of classifier and the associated attack function. We emphasize that this attack function does
not consider the true label y associated with x.

In order to generalize the classification risk, it will be essential to isolate the sets where classification
loss occurs. We can define the following set operators based on the values of φ.

Definition 1.6. Let A ∈B(Rd). For a deterministic attack function φ, we define the set operators
�i
φ

: B(Rd) →B(Rd) and �̃i
φ

: B(Rd) →B(Rd) for i = 0, 1 by

�0
φ
(A) := {x ∈ Ac : φ(x; A) = 1}, �1

φ
(A) := {x ∈ A : φ(x; A) = 1},

�̃0
φ
(A) := {x ∈ Ac : φ(x; A) = 0}, �̃1

φ
(A) := {x ∈ A : φ(x; A) = 0}.

We refer to these four sets collectively as �-sets. For convenience, we also define �φ(A) =�0
φ
(A) ∪

�1
φ
(A) and �̃φ(A) = �̃0

φ
(A) ∪ �̃1

φ
(A). Note the 0 and 1 superscripts indicate the label assigned by the

classifier A and not the value of the deterministic attack function (i.e. 0 corresponds to points in Ac and
1 corresponds to points in A).

The set �φ(A) contains points that meet the attack criteria for the deterministic attack function φ,
whereas the set �̃φ(A) contains points that do not meet the attack criteria. The �-sets are mutually
disjoint with A =�1

φ
(A) ∪ �̃1

φ
(A) and Ac =�0

φ
(A) ∪ �̃0

φ
(A).

We can express the classification risk for a set A ∈B(Rd) by the loss on the attacked sets, given by
�φ(A), and by the loss inherent to the choice of classifier. More formally, we define the generalized
classification risk as follows.

Definition 1.7. The generalized classification risk for a deterministic attack function φ and classifier
A ∈B(Rd) is given by

Jφ(A) := w0ρ0(�
0
φ
(A) ∪ A) + w1ρ1(�1

φ
(A) ∪ Ac). (7)

As in [28], we seek to separate the total classification risk Jφ into the standard Bayes risk (natural
error) and the risk attributed to the adversary’s attack.

Definition 1.8. The adversarial deficit for a classifier A ∈B(Rd) and a deterministic attack function φ
is defined to be

Dφ(A) := Jφ(A) −E(x,y)∼μ[|1A(x) − y|],
where E(x,y)∼μ[|1A(x) − y|] is the standard Bayes risk.

As one can express the standard Bayes risk as

E(x,y)∼μ[|1A(x) − y|] = w0ρ0(A) + w1ρ1(Ac),

we can derive a more useful equation for the adversarial deficit that mirrors the formulas for the data-
adapted perimeters (4) and (6), namely,

Dφ(A) = w0ρ0

(
�0
φ
(A)
)+ w1ρ1

(
�1
φ
(A)
)

.

Unlike the data-adapted perimeters we described above, at this stage �φ(A) is not necessarily in some
neighbourhood of the decision boundary. We define the relative adversarial deficit for a classifier A ∈
B(Rd) with respect to a set E ∈B(Rd) to be

Dφ(A; E) := w0ρ0

(
�0
φ
(A) ∩ E

)+ w1ρ1

(
�1
φ
(A) ∩ E

)
.

With the appropriate definitions in place, we now present the generalized adversarial training problem
for the deterministic attack function φ.
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Definition 1.9. For a deterministic attack function φ, the generalized adversarial training problem is
given by

inf
A∈B(Rd )

E(x,y)∼μ[|1A(x) − y|] + Dφ(A). (8)

In the previous equation, the adversarial deficit, Dφ , takes the place of the data-adapted perimeter
terms from (3) and (5).

Remark 1.10. By construction, the adversarial training problem (3) and the probabilistic adversarial
training problem (5) are two examples that fall under this generalized attack function framework. For
(3), the ε-deterministic attack function with respect to a classifier A ∈B(Rd) for ε > 0 is

φε(x; A) :=
⎧⎨⎩1, if d(x, ∂A)< ε,

0, otherwise.

For φε, we will let �0
ε
(A) := Aε \ A, �1

ε
(A) := A \ A−ε, �̃0

ε
(A) := Ac \ Aε, and �̃1

ε
(A) := A−ε denote the

�-sets for convenience.
On the other hand for (5), the (ε, p)-deterministic attack function with respect to a classifier A ∈B(Rd)

for ε > 0 and p ∈ [0, 1) is

φε,p(x; A) =
⎧⎨⎩1, if P(1A(x′) �= 1A(x)) : x′ ∼ px,ε)> p,

0, otherwise.

1.2. Informal main results and discussion

We will focus the main results and discussion on the generalized adversarial training problem (8) and
comment on the application to the adversarial training problem (3) and the probabilistic adversarial
training problem (5) when appropriate. By Remark 1.10, all statements pertaining to (8) automatically
apply to (3) and (5). However, because (3) is sensitive to measure zero changes, results for (3) are stronger
than what can be stated in the generalized or probabilistic cases. On the other hand, the results for (5)
are identical to those for (8) up to notation.

The first crucial result for (8) provides an estimate on the relative adversarial deficit.

Proposition ((Informal) Energy Exchange Inequality for (8)). Under mild assumptions on φ (see
Assumption 2.1), for a classifier A ∈B(Rd) and a set E ∈B(Rd) such that w0ρ0 − w1ρ1 > δ > 0 on E,
if Jφ(A \ E) − Jφ(A) ≥ 0, then

Dφ(A; E) ≤ Dφ(Ec; A) − δLd(A ∩ E) + w0ρ0(Û11) + w1ρ1(Û1)

where Û1 ⊂ �̃1
φ
(A) ∩ �̃0

φ
(E) and Û11 ⊂�0

φ
(A) ∩�1

φ
(E).

The energy exchange inequality asserts that if it favourable according to the densities to be labelled
0 on E but adversarial training labels it 1, then the ‘perimeter’ (more generally, the adversarial deficit)
of the original set A must be quantifiably better in the sense of (1.2). In spirit, the energy exchange
inequality is connected to relative isoperimetric comparisons as it seeks to relate the relative adversarial
deficits (or for (3) the relative ε-perimeters) of two sets to the volume of their intersection. However,
the energy exchange inequality has additional error terms that must be accounted for. In the case of
the stronger ε-perimeter, Û1 = ∅ so the energy exchange inequality simplifies and can be expressed as
follows.

Proposition ((Informal) Energy Exchange Inequality for (3)). For a classifier A ∈B(Rd) and a set E ∈
B(Rd) such that w0ρ0 − w1ρ1 > δ > 0 on E, if Jε(A \ E) − Jε(A) ≥ 0, then

εPerε(A; E) ≤ εPerε(E
c; A) − δLd(A ∩ E) + w0ρ0(Û11)

where Û11 ⊂ (Aε \ A) ∩ (E \ E−ε) (see Figure 1).
https://doi.org/10.1017/S0956792525100223 Published online by Cambridge University Press
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Figure 1. This diagram illustrates the sets present in the energy exchange inequality for the adversarial
training problem (3) when E = Bd(R). The sets comprising εPerε(A; Bd(R)) are shaded blue and purple,
whereas the sets comprising εPerε(Bd(R)c; A) are shaded pink and purple.

As for the relative probabilistic perimeter ProbPerε,p, the energy exchange inequality is the same as
that for (8) up to notation.

Proposition ((Informal) Energy Exchange Inequality for (5)). For a classifier A ∈B(Rd) and a set E ∈
B(Rd) such that w0ρ0 − w1ρ1 > δ > 0 on E, if Jε,p(A \ E) − Jε,p(A) ≥ 0, then

ProbPerε,p(A; E) ≤ ProbPerε,p
(
Ec; A

)− δLd(A ∩ E) + w0ρ0(Û11) + w1ρ1(Û1)

where Û1 ⊂ (A \ A−ε) ∩ (Eε \ E) and Û11 ⊂ (Aε \ A) ∩ (E \ E−ε).

The energy exchange inequality allows us to argue that classifiers which are minimizers of the general-
ized adversarial training problem (8), if they exist, can be made disjoint from sets where it is energetically
preferable to be labelled 0 when the adversarial budget ε is small enough. As we will see, in the general-
ized setting we can only guarantee the uniqueness of minimizers of (5) and (8) up to sets of measure zero;
however, we can show that the intersection of such sets with an energetic preference for the label zero
with minimizers must have Ld measure zero. For the adversarial training problem (3), we can improve
the result to show that any minimizer must be disjoint from these sets when ε is small enough. This result
builds towards proving uniform convergence of minimizers of (8) to the Bayes classifier, which is the
next main result. In order to prove the convergence rate, we must include a non-degeneracy assumption
to ensure dH(Amax

0 , Amin
0 ) = 0 and the Bayes classifier is unique in the sense of Remark 1.1.
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Theorem (Informal). With mild assumptions on φ, let K be compact and let {Aε,φ}ε>0 be any sequence
of minimizers to the generalized adversarial training problem (8). Assuming that w0ρ0 − w1ρ1 is non-
degenerate, then

dH((Aε,φ ∪ N1 \ N2) ∩ K, A0 ∩ K) → 0

as ε→ 0+, where N1, N2 are sets of Ld measure zero, dH is the Hausdorff distance and A0 is the Bayes
classifier.

However, the theorem actually proved is more general and does not require a unique Bayes classifier.
Under these relaxed assumptions, we prove a corralling result for the sequence {Aε,φ}ε>0 with respect to
the Hausdorff distance from the maximal Bayes classifier, Amax

0 , and the minimal Bayes classifier, Amin
0 .

In essence, the corralling result states that the boundary of limε→0+ Aε,φ ∪ N1 \ N2 must lie between the
boundaries of Amax

0 and Amin
0 . When we specify this result to the adversarial training problem (3), we no

longer have to remove a Ld measure zero set and instead prove the following.

Theorem (Informal). Let K be compact and let {Aε}ε>0 be any sequence of minimizers to the adversarial
training problem (3). Assuming that w0ρ0 − w1ρ1 is non-degenerate, then

dH(Aε ∩ K, A0 ∩ K) → 0

as ε→ 0+, where dH is the Hausdorff distance and A0 is the Bayes classifier.

For the probabilistic adversarial training problem, the uniform convergence result states,

Theorem (Informal). Let K be compact and let {Aε,p}ε>0 be any sequence of minimizers to the prob-
abilistic adversarial training problem (5) for some fixed p ∈ [0, 1). Assuming that w0ρ0 − w1ρ1 is
non-degenerate, then

dH((Aε,p ∪ N1 \ N2) ∩ K, A0 ∩ K) → 0

as ε→ 0+, where N1, N2 are sets of Ld measure zero, dH is the Hausdorff distance and A0 is the Bayes
classifier.

As with (8), if we relax the assumption that the Bayes classifier is unique, we can instead prove an
analogous corralling result with respect to Amax

0 and Amin
0 for (3) and (5).

With the non-degeneracy condition in place, we can also consider the rate of convergence and show
that it is at most O(ε

1
d+2 ) for all three adversarial training problems. However, we do not expect this

result to be optimal and would expect that the convergence rate to be O(ε), which we discuss further in
Remark 3.13.

2. Energy exchange inequality

In this section, we will prove a quantitative result for the adversarial deficit, which can then be applied
to the ε-perimeter and the probabilistic ε-perimeter. In order to do so, we will require the deterministic
attack function φ and the corresponding �-sets to have the following structural properties.

Assumption 2.1. Recall Definition 1.6. Let A, E ∈B(Rd). We will make the following two assumptions
to ensure consistency with respect to complements and set difference:

1. Complement Property (CP): φ(x; A) = φ(x; Ac), or in terms of�-sets,�0
φ
(A) =�1

φ
(Ac) and �̃0

φ
(A) =

�̃1
φ
(Ac).

2. �-Monotonicity (�M):
(i) If x ∈ �̃0

φ
(A), then x ∈ �̃0

φ
(A \ E).

(ii) If x ∈ �̃1
φ
(E), then x ∈ �̃0

φ
(A \ E).
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(iii) If x ∈�0
φ
(E) ∩ A, then x ∈�1

φ
(A \ E).

(iv) If x ∈�1
φ
(A) ∩ Ec, then x ∈�1

φ
(A \ E). �

In the following series of remarks, we seek to better understand these two properties generally and
as they apply to the adversarial and probabilistic adversarial settings.

Remark 2.2 (On Monotonicity). We note that the deterministic attack functions φ that satisfy
Assumption 2.1 are not monotonic with respect to set inclusion unless φ is the trivial attack function
(i.e. φ ≡ 0 or φ ≡ 1). To illustrate this, suppose φ is monotonic. By the monotonicity of φ with respect
to set inclusion coupled with the complement property,

φ(x; A)
(CP)= φ(x; Ac) ≤ φ(x; (A \ E)c)

(CP)= φ(x; A \ E) ≤ φ(x; A).

This implies φ(x; A) ≡ φ(x; A \ E) and, if we let E = A, that φ(x; A) ≡ φ(x; ∅). Hence, the attack is
independent of A, which can only be satisfied by a trivial attack function.

Although φ itself is not monotonic, if you have a function ψ which is monotonic in terms of set
inclusion, then setting φ via its level set yields an attack function which satisfies �-monotonicity. In
particular, both the distance function and the probability function are monotonic.

Remark 2.3. We will verify that the adversarial training problem (3) and the probabilistic adversarial
training problem (5) satisfy Assumption 2.1. Recall from Remark 1.10, the attack for (3) is denoted φε
and the attack for (5) is denoted φε,p for some ε > 0 and p ∈ [0, 1).

We will first show that φε satisfies Assumption 2.1. For the complement property, recognize that since
∂A = ∂(Ac), �0

ε
(A) =�1

ε
(Ac) and �̃0

ε
(A) = �̃1

ε
(Ac) by definition. As for �-monotonicity, we can verify

these four statements directly.

(i) If x ∈ �̃0
ε
(A), then d(x, A \ E) ≥ d(x, A) ≥ ε so x ∈ �̃0

ε
(A \ E).

(ii) If x ∈ �̃1
ε
(E), then d(x, A \ E) ≥ d(x, Ec) ≥ ε so x ∈ �̃0

ε
(A \ E).

(iii) If x ∈�0
ε
(E) ∩ A, then d(x, (A \ E)c) ≤ d(x, E)< ε so x ∈�1

ε
(A \ E).

(iv) If x ∈�1
ε
(A) ∩ Ec, then d(x, (A \ E)c) ≤ d(x, Ac)< ε so x ∈�1

ε
(A \ E).

Now, we consider φε,p. By definition,

�1
ε,p(Ac) = {x ∈ Ac : P(x′ ∈ (Ac)c : x′ ∼ px,ε)> p} =�0

ε,p(A).

Similarly, one can show �̃0
ε,p(A) = �̃1

ε,p(Ac). Hence, the complement property holds for φε,p. Now we
consider�-monotonicity. To simplify notation, we let P(x; A) := P(x′ ∈ A : x′ ∼ px,ε). Examining each of
the �-monotonicity properties, we find the monotonicity with respect to set inclusion of the probability
function

(i) If x ∈ �̃0
ε,p(A), then P(x; A \ E) ≤ P(x; A) ≤ p so x ∈ �̃0

ε,p(A \ E).

(ii) If x ∈ �̃1
ε,p(E), then P(x; A \ E) ≤ P(x; Ec) ≤ p so x ∈ �̃0

ε,p(A \ E).
(iii) If x ∈�0

ε,p(E) ∩ A, then P(x; (A \ E)c) ≥ P(x; E)> p so x ∈�1
ε,p(A \ E).

(iv) If x ∈�1
ε,p(A) ∩ Ec, then P(x; (A \ E)c) ≥ P(x; Ac)> p so x ∈�1

ε,p(A \ E).

Thus, φε,p satisfies �-monotonicity and Assumption 2.1.

Remark 2.4 (�-set Decompositions). Under Assumption 2.1, we may decompose R
d in terms of the

�-sets for A, E ∈B(Rd) according to�-monotonicity. In doing so, we define the sets U1, . . . , U13, which
partition R

d (see Table 1 and Figure 2).
For the sets Ui where no conclusion can be made about φ(x; A \ E), we will further decompose them

into two subsets based on the φ values, i.e.

Ũi = {x ∈ Ui : φ(x; A \ E) = 0}, Ûi = {x ∈ Ui : φ(x; A \ E) = 1}, (9)

for i = 1, 3, 6, 9, 10, and 11.
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Table 1. This table defines the 13 Ui sets and exhibits all possible con-
clusions about the �-sets for A \ E based on the �-sets for A and E
from �-monotonicity. This set decomposition, along with the further
refinement in (9), will be key in proving the energy exchange inequality

If x ∈ Ui Then for �(A\E) we have
U1 := �̃1

φ
(A) ∩ �̃0

φ
(E) N/A

U2 := �̃1
φ
(A) ∩�0

φ
(E) x ∈�1

φ
(A \ E)

U3 := �̃1
φ
(A) ∩�1

φ
(E) N/A

U4 := �̃1
φ
(A) ∩ �̃1

φ
(E) x ∈ �̃0

φ
(A \ E)

U5 := �1
φ
(A) ∩ �̃1

φ
(E) x ∈ �̃0

φ
(A \ E)

U6 := �1
φ
(A) ∩�1

φ
(E) N/A

U7 := �1
φ
(A) ∩�0

φ
(E) x ∈�1

φ
(A \ E)

U8 := �1
φ
(A) ∩ �̃0

φ
(E) x ∈�1

φ
(A \ E)

U9 := �0
φ
(A) ∩�0

φ
(E) N/A

U10 := �0
φ
(A) ∩ �̃0

φ
(E) N/A

U11 := �0
φ
(A) ∩�1

φ
(E) N/A

U12 := �0
φ
(A) ∩ �̃1

φ
(E) x ∈ �̃0

φ
(A \ E)

U13 := �̃0
φ
(A) x ∈ �̃0

φ
(A \ E)

The auxiliary symbols are meant to help the reader group the terms. Notice that the Ũi sets contain
points that cannot be perturbed by the adversary into the other class for the classifier A \ E in accordance
with all �̃ sets also containing points that are unable to be attacked by the adversary. On the other hand,
the Ûi sets contain only points that can be perturbed into the opposite class.

With this decomposition, we can express the �-sets for A \ E using the U sets as follows:

�0
φ
(A \ E) = Û3 ∪ Û6 ∪ Û9 ∪ Û10 ∪ Û11,

�1
φ
(A \ E) = Û1 ∪ U2 ∪ U7 ∪ U8,

�̃0
φ
(A \ E) = Ũ3 ∪ U4 ∪ U5 ∪ Ũ6 ∪ Ũ9 ∪ Ũ10 ∪ Ũ11 ∪ U12 ∪ U13,

�̃1
φ
(A \ E) = Ũ1.

Depending on extra structure imposed by the choice of φ, sometimes we can conclude certain sets
are empty. For example, when φ = φε (see Remark 1.10), we have Û1 = ∅, Ũ3 = ∅, and Ũ10 = ∅. In the
case where such sets are unambiguous in terms of the values of φ(x; A \ E), we drop the hat or tilde
notation. However, U6, U9 and U11 still require a finer decomposition. Note that generally Ũ6, Ũ9 = ∅,
but when boundaries of A and E intersect at more than discrete points, then these sets can be non-empty.
When Ũ6, Ũ9 = ∅ (such as in Figure 2), we also drop the tilde notation and let U6 = Û6 and U9 = Û9.
The claims made here are verified in Appendix A.1.

Having stated our assumptions on φ, we now turn to proving the first main result. In the following
proposition, we examine the difference in energy between classifiers A and A \ E for A, E ∈B(Rd) when
E belongs to a region where the label 0 is energetically preferable according to the Bayes risk. We refer
to the resulting inequality as the energy exchange inequality because it quantifies the effect of removing
the set E from a classifier A by examining the difference in risks.

Proposition 2.5 (Energy Exchange Inequality). Let φ be a deterministic attack function that satisfies
Assumption 2.1, let A, E ∈B(Rd), and assume that w0ρ0 − w1ρ1 > δ > 0 on E. If Jφ(A \ E) − Jφ(A) ≥ 0,
then

Dφ(A; E) ≤ Dφ(Ec; A) − δLd(A ∩ E) + w0ρ0(Û11) + w1ρ1(Û1),
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Figure 2. This diagram depicts the Ui regions for the attack function φε associated with adversarial
training problem (3). The ε-perimeter regions of A are shaded blue and purple, whereas ε-perimeter
regions of A \ Bd(R) are shaded pink and purple. Note that some sets, such as Û1, are null sets for the
ε-perimeter, and so do not appear in this figure.

where U1
1 and Û11 are defined in Table 1, namely Û1 = {x ∈ �̃1

φ
(A) ∩ �̃0

φ
(E) : φ(x; A \ E) = 1} and Û11 =

{x ∈�0
φ
(A) ∩�1

φ
(E) : φ(x; A \ E) = 1}.

Proof. By (7), we have

Jφ(A) = w0ρ0

(
A ∪�0

φ
(A)
)+ w1ρ1

(
Ac ∪�1

φ
(A)
)

,

Jφ(A \ E) = w0ρ0

(
(A \ E) ∪�0

φ
(A \ E)

)+ w1ρ1

(
(A \ E)c ∪�1

φ
(A \ E)

)
.

Based on Remark 2.4 with further details shown in Appendix A.2, we can express A ∩ E and the sets
comprising Jφ(A \ E) as

A ∩ E = U3 ∪ U4 ∪ U5 ∪ U6, (10)

�0
φ
(A \ E) = Û3 ∪ Û6 ∪ Û9 ∪ Û10 ∪ Û11,

�1
φ
(A \ E) = Û1 ∪ U2 ∪ U7 ∪ U8,

A \ E = U1 ∪ U2 ∪ U7 ∪ U8,

(A \ E)c = U3 ∪ U4 ∪ U5 ∪ U6 ∪ U9 ∪ U10 ∪ U11 ∪ U12 ∪ U13.
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We can write the adversarial deficit terms as

Dφ(A; E) = w0ρ0(U11 ∪ U12) + w1ρ1(U5 ∪ U6), (11)

Dφ(Ec; A) = w0ρ0(U3 ∪ U6) + w1ρ1(U2 ∪ U7).

Then we estimate,

Jφ(A \ E) − Jφ(A) = w0ρ0(U1 ∪ U2 ∪ ̂U3 ∪ ̂U6 ∪ U7 ∪ U8 ∪ ̂U9 ∪ ̂U10 ∪ ̂U11)

+ w1ρ1(̂U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 ∪ U6 ∪ U7 ∪ U8 ∪ U9 ∪ U10 ∪ U11 ∪ U12 ∪ U13)
− w0ρ0(U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 ∪ U6 ∪ U7 ∪ U8 ∪ U9 ∪ U10 ∪ U11 ∪ U12)
− w1ρ1(U5 ∪ U6 ∪ U7 ∪ U8 ∪ U9 ∪ U10 ∪ U11 ∪ U12 ∪ U13)

≤ w0ρ0(��U1 ∪��U2 ∪ U3 ∪ U6 ∪��U7 ∪��U8 ∪ ̂U9 ∪�
�

̂U10 ∪ ̂U11)

+ w1ρ1(̂U1 ∪ U2 ∪ U3
��

∪ U4
��

∪ U5
��

∪ U6
��

∪ U7 ∪��U8 ∪��U9 ∪��U10 ∪��U11 ∪��U12 ∪��U13)

− w0ρ0(��U1 ∪��U2 ∪ U3
��

∪ U4
��

∪ U5
��

∪ U6
��

∪��U7 ∪��U8 ∪ (˜U9 ∪ ̂U9) ∪ (˜U10 ∪�
�

̂U10) ∪ U11 ∪ U12)

− w1ρ1(U5 ∪ U6 ∪ U7 ∪��U8 ∪��U9 ∪��U10 ∪��U11 ∪��U12 ∪��U13)

≤ Dφ(Ec; A) − Dφ(A; E) − (w0ρ0 − w1ρ1)(A ∩ E)
�������

+ w0ρ0(̂U11) + w1ρ1(̂U1).

In the last line, the inequality results from neglecting all remaining terms with a negative sign. As
Jφ(A \ E) − Jφ(A) ≥ 0 and w0ρ0 − w1ρ1 > δ > 0 on E, we estimate

Dφ(A; E) ≤ Dφ(Ec; A) − (w0ρ0 − w1ρ1)(A ∩ E) + w0ρ0(Û11) + w1ρ1(Û1)

<Dφ(Ec; A) − δLd(A ∩ E) + w0ρ0(Û11) + w1ρ1(Û1).

Observe that if A ∈B(Rd) is a minimizer of Jφ for some deterministic attack function φ, then
Jφ(A \ E) − Jφ(A) ≥ 0 for any E ∈B(Rd) and Proposition 2.5 applies. This will be the setting for our
results, although we state the result in its most general form here.

In later energy arguments, it will be helpful to express the difference in classification risks exactly
instead of combining terms to form Dφ(A; E), Dφ(Ec; A), and Ld(A ∩ E). In Corollary 2.6, we consider
the same computation for Jφ(A \ E) − Jφ(A) but now aim to simplify the difference as much as possible.

Corollary 2.6. Let A ∈B(Rd) be a classifier for the generalized adversarial training problem and let
E ∈B(Rd). Then, using the same notation as in Proposition 2.5 and under the same assumptions,

Jφ(A \ E) − Jφ(A) = w1ρ1(Û1 ∪ U2 ∪ Û3) − (w0ρ0 − w1ρ1)(Ũ3 ∪ U4)

− w0ρ0(U5 ∪ Ũ6 ∪ Ũ9 ∪ Ũ10 ∪ Ũ11 ∪ U12).

Proof. Let all sets Ui, Ûi, Ũi be as defined in Table 1 and (9). We compute the exact difference in energies
as follows:

Jφ(A \ E) − Jφ(A) = w0ρ0(��U1 ∪��U2 ∪��̂U3 ∪��̂U6 ∪��U7 ∪��U8 ∪��̂U9 ∪��̂U10 ∪��̂U11)

+ w1ρ1(Û1 ∪ U2 ∪ U3 ∪ U4 ∪��U5 ∪��U6 ∪��U7 ∪��U8 ∪��U9 ∪��U10 ∪��U11 ∪��U12 ∪��U13)

− w0ρ0(��U1 ∪��U2 ∪ (Ũ3 ∪��̂U3) ∪ U4 ∪ U5 ∪ (Ũ6 ∪��̂U6) ∪��U7 ∪��U8 ∪ (Ũ9 ∪��̂U9) . . .

. . .∪ (Ũ10 ∪��̂U10) ∪ (Ũ11 ∪��̂U11) ∪ U12)

− w1ρ1(��U5 ∪��U6 ∪��U7 ∪��U8 ∪��U9 ∪��U10 ∪��U11 ∪��U12 ∪��U13)
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= w1ρ1(Û1 ∪ U2 ∪ Ũ3 ∪ Û3 ∪ U4)

− w0ρ0(Ũ3 ∪ U4 ∪ U5 ∪ Ũ6 ∪ Ũ9 ∪ Ũ10 ∪ Ũ11 ∪ U12)

= w1ρ1(Û1 ∪ U2 ∪ Û3) − (w0ρ0 − w1ρ1)(Ũ3 ∪ U4)

− w0ρ0(U5 ∪ Ũ6 ∪ Ũ9 ∪ Ũ10 ∪ Ũ11 ∪ U12).

In the following pair of corollaries, we will apply Proposition 2.5 to the adversarial training problem
(3) and the probabilistic adversarial training problem (5).

Corollary 2.7. Let ε > 0 and φ = φε. Let A, E ∈B(Rd) such that w0ρ0 − w1ρ1 > δ > 0 on E and Jε(A \
E) − Jε(A) ≥ 0. Then

εPerε(A; E) ≤ εPerε(E
c; A) − δLd(A ∩ E) + w0ρ0(Û11), (12)

where Û11 = {x ∈ Ac ∩ E : d(x, A \ E)< ε}.
Proof. To prove the corollary, we only need to check that φε satisfies Assumption 2.1 (which is done in
Remark 2.3) and to verify that Û1 is empty. To that end, if x ∈ Û1, then

x ∈ A ∩ Ec such that d(x, Ac)> ε and d(x, E)> ε,

which in turn implies that d(x, Ac ∪ E)> ε. Hence for such x, φε(x; A \ E) = 0 and
accordingly Û1 = ∅.

Corollary 2.8. Let ε > 0, p ∈ [0, 1), {px,ε}x∈Rd be a family of probability measures, and φ = φε,p. Let
A, E ∈B(Rd) such that w0ρ0 − w1ρ1 > δ > 0 on E and Jε,p(A \ E) − Jε,p(A) ≥ 0. Then,

ProbPerε,p(A; E) ≤ ProbPerε,p(Ec; A) − δLd(A ∩ E) + w0ρ0(Û11) + w1ρ1(Û1),

where Û11 = {x ∈ Ac ∩ E : P(x′ ∈ A \ E : x′ ∼ px,ε)> p} and Û1 = {x ∈ �̃1
ε,p(A) ∩ �̃0

ε,p(E) : P(x′ ∈
(A \ E)c : x′ ∼ px,ε)> p}.
Proof. We verified that φε,p satisfies Assumption 2.1 in Remark 2.3. Thus, we can apply Proposition
2.5 to conclude that the energy exchange inequality holds for the probabilistic adversarial training
problem (5).

3. Uniform convergence for the adversarial training problem

Before tackling convergence for the generalized adversarial problem (8), we first consider the conver-
gence for the adversarial training problem (3) to understand the results in a more concrete setting. The
results for (3) are also stronger than those for (8) and allow for more straightforward proofs that provide
the basis for our approach in the subsequent section. We will return to (8) in Section 4 equipped with
better intuition and understanding.

In this section, we establish uniform convergence in the Hausdorff metric of minimizers of the adver-
sarial training problem (3) to Bayes classifiers on compact sets as the parameter ε→ 0+. As previously
stated in Remark 1.2, current convergence results are in the (weaker) L1 topology. We begin by stating
a modest assumption we make about the underlying metric space.

Assumption 3.1. For the remainder of the paper, we assume that the metric d is induced by a norm.
Then, Ld(Bd(r)) := ωdrd for the constant ωd =Ld(Bd(1)). Naturally, ωd will also depend on the dimen-
sion d, but we suppress this in the notation. Additionally, we will identify the conditional measures in
(4) with their densities, meaning that we can express dρi = ρi(x) dx.
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For these norm balls, it will be useful to estimate their ε-perimeter. When ε≤ R and ρ0, ρ1 are
bounded from above, this amounts to estimating the volume between two norm balls that are distance
2ε apart.

Lemma 3.2. Let 0< ε≤ R for some fixed R> 0. Suppose ρ0, ρ1 ≤ M onRd. Then, there exists a constant
α > 0 independent of R, ε, and x such that

εPerε(Bd(x, R)) ≤ αRd−1ε.

Proof. Recall that (4) for A = Bd(x, R) gives

εPerε(Bd(x, R)) = w0ρ0(Bd(x, R + ε) \ Bd(x, R)) + w1ρ1(Bd(x, R) \ Bd(x, R − ε)).

As ρ0, ρ1 are bounded from above by M,

εPerε(Bd(x, R)) ≤ MLd(Bd(x, R + ε) \ Bd(x, R − ε)) = M(Ld(Bd(x, R + ε)) −Ld(Bd(x, R − ε))).

By the scaling properties of the norm ball, Ld(Bd(x, r)) =ωd(r)d for all r ≥ 0. By convexity, we
estimate

(R + ε)d − (R − ε)d ≤ d(R + ε)d−12ε.

As ε≤ R, we conclude

εPerε(Bd(x, R)) ≤ Mωdd(2R)d−12ε≤ αRd−1ε.

Throughout the paper, we will require an upper bound on the ε-perimeter of the complement of
Bd(x, R). By the complement property from Assumption 2.1 (verified to hold for the ε-perimeter in
Remark 2.3), the bound given by Lemma 3.2 still holds for εPerε(Bd(x, R)c) since the same upper bound
is true for ρ0 and ρ1, namely,

εPerε(Bd(x, R)c) ≤ αRd−1ε. (13)

With our normed setting clear, we begin the process of proving uniform Hausdorff convergence for
minimizers of the adversarial training problem (3). The first step involves proving a technical lemma
about the interaction between minimizers and sets Bd(x, R) ⊂ {w0ρ0 − w1ρ1 > δ > 0}. Importantly, this
means Bd(x, R) ∩ A0 = ∅ for a Bayes classifier A0, which can help us relate minimizers of the adversarial
training problem to Bayes classifiers. By applying a slicing argument, we will show that minimizers are
disjoint from Bd(x, R/2d+1).

Lemma 3.3. Let A ∈B(Rd) be a minimizer of the adversarial training problem (3) for ε > 0. Suppose
there exists x ∈R

d and R> 0 such that w0ρ0 − w1ρ1 > δ > 0 on Bd(x, 2R) with ρ0, ρ1 ≤ M on R
d.

Then, there exists a C> 0 independent of R, δ, ε, and x such that if ε≤ min
{
R/2d+2, CRδd+1

}
, then

A ∩ Bd(x, R/2d+1) = ∅.

Proof. Fix ε > 0. Choose a coordinate system such that x = 0 and write Bd(0, R) = Bd(R). For the sake
of contradiction, suppose there exists z ∈ A ∩ Bd(R/2d+1). Then,

Ld(Aε ∩ Bd(R/2d)) ≥Ld(Bd(ε)) =ωdε
d. (14)

Corollary 2.7 shows for r ≤ R,

εPerε(A; Bd(r)) ≤ εPerε(Bd(r)c; A) − δLd(A ∩ Bd(r)) + w0ρ0(Û11)

with Û11 ⊂�ε(Bd(r)) ∩ Aε and w0ρ0(Û11) ≤ εPerε(Bd(r)c; Aε).
In particular, using the fact that w0ρ0 > δ in Bd(R), we obtain

Ld((Aε \ A) ∩ Bd(R)) ≤ w0

δ
ρ0((A

ε \ A) ∩ Bd(R))

≤ ε

δ
Perε(A; Bd(R)) ≤ ε

δ
Perε(Bd(R)c; A) −Ld(A ∩ Bd(R)) + w0

δ
ρ0(Û11).
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Rearranging and applying the bound w0ρ0(Û11) ≤ εPerε(Bd(R)c; Aε), we estimate

Ld(Aε ∩ Bd(R)) ≤ ε

δ
Perε(Bd(R)c; A) + w0

δ
ρ0(Û11)

≤ 2ε

δ
Perε(Bd(R)c; Aε)

≤ 2α
Rd−1

δ
ε (15)

with the last inequality due to (13). Note Ld(Aε ∩ Bd(r)) ≤ 2α rd−1

δ
ε for 0< r ≤ R.

Using that ρ0, ρ1 are bounded from above by M, we estimate
� R

4ε �−1∑
k=0

Ld(Aε ∩ Bd(R/2 + 2kε)) ≤
� R

4ε �−1∑
k=0

2ε

δ
Perε(Bd(R/2 + 2kε)c; Aε)

≤ 2M

δ

� R
4ε �−1∑
k=0

Ld(Aε ∩ (Bd(R/2 + (2k + 1)ε) \ Bd(R/2 + (2k − 1)ε))

≤ 2M

δ
Ld(Aε ∩ Bd(R)) ≤ 4αM

Rd−1

δ2
ε

thanks to (15).
In particular,⌊

R

4ε

⌋
min

k
Ld(Aε ∩ Bd(R/2 + 2kε)) ≤ 2M

δ
Ld(Aε ∩ Bd(R)) ≤ 4αM

Rd−1

δ2
ε.

If ε≤ R/8 so that � R
4ε

� ≥ R
4ε

− 1 ≥ R
8ε

, then by letting s1 = R/2 + 2kε achieve mink Ld(Aε ∩ Bd(R/2 +
2kε)), we then obtain

Ld(Aε ∩ Bd(s1)) ≤ 32αM
Rd−2

δ2
ε2.

Then, repeating the same construction at the scale R/2i, i ≥ 2, we find

Ld(Aε ∩ Bd(si)) ≤ 8ε

R/2i−1

2M

δ
Ld(Aε ∩ Bd(si−1)) ≤ 2i+3M

Rδε
Ld(Aε ∩ Bd(si−1))

as long as ε≤ R
2i+2 (that is, i ≤ log2

(
R
4ε

)
).

For i = d, it follows

Ld(Aε ∩ Bd(sd)) ≤ 2
∑d

i=2 i

(
8Mε

Rδ

)d−1

Ld(Aε ∩ Bd(s1))

≤ 2
d(d+1)

2 +3d−4

(
Mε

Rδ

)d−1

32αM
Rd−2

δ2
ε2.

Hence,

Ld(Aε ∩ Bd(sd)) ≤ 2
d(d+1)

2 +3d+1αMd ε
d+1

Rδd+1
.

Letting Cd+1 := 2
d(d+1)

2 +3d+1αMd, we conclude if ε <min{R/2d+2,ωdC−1
d+1Rδ

d+1}, then

Ld(Aε ∩ Bd(R/2d)) ≤Ld(Aε ∩ Bd(sd)) ≤ Cd+1

Rδd+1
εd+1 <ωdε

d

which implies that A ∩ Bd(R/2d+1) = ∅ by (14).

Remark 3.4. In Lemma 3.3, we can slightly relax the assumption that A is a minimizer as follows:
Recall that we assume w0ρ0 − w1ρ1 > δ > 0 on Bd(x, 2R). If we have that Jε(A \ Bd(x, r)) − Jε(A) ≥ 0 for
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all r such that R/2d+2 ≤ r ≤ R, then the energy exchange inequality (12) still holds and the same proof
for Lemma 3.3 shows that A ∩ Bd(x, R/2d+1) = ∅.

We now aim to directly relate minimizers of the adversarial training problem (3) to Bayes classifiers.
Recall that the maximal and minimal Bayes classifiers (2) are given by

Amax
0 = {x ∈R

d : w0ρ0(x) ≤ w1ρ1(x)}, Amin
0 = {x ∈R

d : w0ρ0(x)<w1ρ1(x)}.
We will not be assuming that Amax

0 and Amin
0 coincide up to a set of ρ measure zero unless explicitly stated.

We will now show that on a compact set, we can ‘corral’ the minimizer of the adversarial training
problem (3) by any distance η > 0, in the sense that it must lie between the η-dilation of Amax

0 and the
η-erosion of Amin

0 when ε is small enough.

Lemma 3.5. Let Amax
0 be the maximal Bayes classifier. Suppose that ρ0, ρ1 are continuous and bounded

from above on R
d, and let η > 0. Then for any compact set K ⊂R

d, there exists an ε0 > 0 such that for
all 0< ε < ε0, [

Aε ∩ K
]
⊂
[
(Amax

0 )η ∩ K
]

where Aε ⊂R
d is an arbitrary minimizer of the adversarial training problem.

Proof. For convenience, we abuse notation and let A0 = Amax
0 . Assume that

(
Aη

0

)c ∩ K �= ∅ as otherwise
the result is trivial. The conditions are also trivially satisfied if w0ρ0 − w1ρ1 never changes sign. This is
because, for all ε > 0, either A0 = Aε = ∅ if w0ρ0 − w1ρ1 > 0 on R

d, or A0 = Aε =R
d otherwise.

Fix η > 0. Let R = η

3
. Observe that AR

0 ∩ K2R is compact and A0 ⊂ AR
0 . Then, by the continuity of

w0ρ0 − w1ρ1 on AR
0 ∩ K2R, there exists a δ > 0 such that[

Eδ ∩ K2R
]
⊂
[
AR

0 ∩ K2R
]

where Eδ = {x ∈R
d : w0ρ0(x) − w1ρ1(x) ≤ δ}. This implies

[
Ec
δ
∩ K2R

]
⊃
[(

AR
0

)c ∩ K2R
]
, so w0ρ0 −

w1ρ1 > δ > 0 on
(

AR
0

)c ∩ K2R. In particular, as (Aη

0)c ∩ K ⊂
[(

AR
0

)c ∩ K2R
]
, the difference in densities

w0ρ0 − w1ρ1 > δ on (Aη

0)c ∩ K.
Take x ∈ (Aη

0)c ∩ K. Observe that Bd(x, 2R) satisfies the conditions of Lemma 3.3 for δ as determined
previously. Take ε0 = min

{
R/2d+2, CRδd+1

}
for C is independent of R, δ, ε, and x. Let ε≤ ε0 and let Aε

be a minimizer of the adversarial training problem (3). Then, Aε ∩ B(x, R/2d+1) = ∅ for all x ∈ (Aη

0)c ∩ K,
which implies that Aε ∩ (Aη

0)c ∩ K = ∅. Thus, we conclude[
Aε ∩ K

]
⊂
[
Aη

0 ∩ K
]
.

Remark 3.6. The only place where we use the compactness assumption in Lemma 3.5 is to determine
δ from η by the continuity of w0ρ0 − w1ρ1 a compact set.

The proof established that minimizers Aε of the adversarial training problem (3) can be corralled by
the maximal Bayes classifier. We can also corral Aε by the minimal Bayes classifier as follows: Consider
interchanging the densities so data points x are distributed according to ρ̃0 = ρ1 and ρ̃1 = ρ0. We can
apply Lemma 3.5 to the minimizer Ãε = (Aε)c of the interchanged problem. We can conclude that for all
compact sets K ⊂R

d and η > 0, there exists an ε0 > 0, such that[
(Amin

0 )−η ∩ K
]
⊂
[
Aε ∩ K

]
for all ε≤ ε0. This means that we have a two-sided, or corralling’, bound on our minimizer for ε small
enough, namely [

(Amin
0 )−η ∩ K

]
⊂
[
Aε ∩ K

]
⊂
[
(Amax

0 )η ∩ K
]
.
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The corralling argument will allow us to examine the Hausdorff distance between Bayes classifiers
and minimizers of the adversarial training problem (3) as the adversarial budget decreases to zero. To
begin, we recall the definition of the Hausdorff distance.

Definition 3.7. The Hausdorff distance between two sets A, E ⊂R
d is given by

dH(A, E) := max

{
sup
x∈A

d(x, E), sup
x∈E

d(x, A)

}
for a metric d on R

d. Furthermore, dH is a pseudometric on B(Rd).

Remark 3.8. If dH(Amax
0 , Amin

0 ) = 0, then for any η > 0 and compact set K ⊂R
d, there exists an ε0 > 0

such that [
(A0)

−η ∩ K
]
⊂
[
Aε ∩ K

]
⊂
[
(A0)η ∩ K

]
for all ε≤ ε0 and for A0 the unique Bayes classifier.

We now have the tools to show the uniform convergence of minimizers Aε of the adversarial training
problem (3) to the Bayes classifier A0. To begin, we prove the more general version of the result when
the Bayes classifier is not unique up to a set of ρ measure zero. In this case, we can only show that
limε→0+ Aε must be corralled by the maximal and minimal Bayes classifiers.

Theorem 3.9. Suppose ρ0, ρ1 are continuous and bounded from above on R
d. Let {Aε}ε>0 be a sequence

of minimizers of the adversarial training problem (3) for ε→ 0+. Then, for any compact set K ⊂R
d,

lim
ε→0+

dH((Aε ∪ Amax
0 ) ∩ K, Amax

0 ∩ K) = 0 and lim
ε→0+

dH((Aε ∩ Amin
0 ) ∩ K, Amin

0 ∩ K) = 0.

Proof. Let K be a compact set. Observe that Amax
0 ⊂ Aε ∪ Amax

0 , so

dH((Aε ∪ Amax
0 ) ∩ K, Amax

0 ∩ K) = sup
x∈(Aε∪Amax

0 )∩K

d(x, Amax
0 ∩ K).

For the sake of contradiction, suppose this quantity does not go to zero as ε→ 0+. Then, there exists an
η > 0 such that for all ε0 > 0, there exists an 0< ε≤ ε0 such that

sup
x∈(Aε∪Amax

0 )∩K

d(x, Amax
0 ∩ K)>η.

However, this contradicts Lemma 3.5. Thus, we conclude

lim
ε→0+

dH((Aε ∪ Amax
0 ) ∩ K, Amax

0 ∩ K) = 0.

As Aε ∩ Amin
0 ⊂ Amin

0 , an analogous argument proves that

lim
ε→0+

dH((Aε ∩ Amin
0 ) ∩ K, Amin

0 ∩ K) = 0.

Corollary 3.10. Suppose that dH(Amax
0 , Amin

0 ) = 0. Then under the same assumptions as Theorem 3.9,

lim
ε→0+

dH(Aε ∩ K, A0 ∩ K) = 0

for A0 the unique Bayes classifier.

Proof. This follows from Theorem 3.9 as the result of Lemma 3.5 simplifies when dH(Amax
0 , Amin

0 ) = 0
as described in Remark 3.8.

In the case where dH(Amax
0 , Amin

0 ) = 0, it is natural to consider rates of convergence. In order to obtain
such rates, we introduce the following assumption:

Assumption 3.11. The level set {w0ρ0 = w1ρ1} is non-degenerate, meaning that w0ρ1 − w1ρ1 ∈ C1(Rd)
and |w0∇ρ0 − w1∇ρ1|>α > 0 on {w0ρ0 = w1ρ1} for some constant α. In this case, Bayes classifiers are
unique up to a set of Ld measure zero and dH(Amax

0 , Amin
0 ) = 0.
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Now, we establish the convergence rate for minimizers of the adversarial training problem (3) to
Bayes classifiers under this non-degeneracy assumption.

Corollary 3.12. Suppose Assumption 3.11 holds and that ρ0, ρ1 are continuous and bounded from above
on R

d. For any compact set K ⊂R
d, there exists a constant C> 0 such that

lim sup
ε→0+

dH(Aε ∩ K, A0 ∩ K)

ε
1

d+2

≤ C

where A0 is the Bayes classifier.

Proof. Consider a sequence {ηi}i∈N where ηi > 0 and ηi → 0+. Define εi = min{Cηi, Cηiδ
d+1
i } based on

the requirements on ε from Lemma 3.3 with R = ηi and the continuity bound δ = δi from Lemma 3.5.
In this proof, C is a constant always independent of ηi, εi, and δi that we will allow to vary throughout
this proof.

As w0ρ0 − w1ρ1 ∈ C1(Rd) and its gradient is bounded away from 0, the boundary ∂A0 = {w0ρ0 =
w1ρ1} is a C1 surface by the implicit function theorem, and hence the Hausdorff distance between the
minimal and maximal sets is zero. Furthermore for ηi � 1, δi is the same order as ηi, which implies
εi = Cηd+2

i .
For each εi, let Aεi be the associated minimizer of the adversarial training problem (3). By Theorem 3.9

along with Remark 3.10, for any compact set K ⊂R
d we have that

dH(Aεi ∩ K, A0 ∩ K)<ηi = Cε
1

d+2
i .

Thus, we conclude that

lim sup
εi→0+

dH(Aεi ∩ K, A0 ∩ K)

ε
1

d+2
i

≤ C.

Remark 3.13. Although we have shown the convergence rate to be at most O(ε
1

d+2 ), we expect that the
convergence rate is actually O(ε) (see the formal asymptotics near ε= 0 derived by [16]). The reason
we get the convergence rate ε 1

d+2 is from the δd+1 that appears in our bounds for ε. In Lemma 3.3, this
term comes from the iterative argument that often employs crude volume bounds. More precise estimates
would be required to improve the convergence rate.

4. Uniform convergence for other deterministic attacks

Now, we will turn our focus to the generalized adversarial training problem (8). At the end, we will
present the results for the probabilistic adversarial training problem (5) as an example of our results for
(8). Unlike the case of the adversarial training problem (3), existence of minimizers to (8) is an open
question, and in this case, our convergence result can be understood in the spirit of ‘a priori’ estimates
in partial differential equations. First, we will make it precise which deterministic attack functions we
consider.

Definition 4.1. A deterministic attack function φ is metric if an adversary’s attack on x only depends
upon points within distance ε of x for some adversarial budget ε > 0. More precisely for two classifiers
A, Ã ∈B(Rd),

A ∩ Bd(x, ε) = Ã ∩ Bd(x, ε) =⇒ φ(x; A) = φ(x; Ã).

To avoid a trivial situation where x is always attacked independent of the choice of A, we assume the
adversary has no power, meaning φ(x; A) ≡ 0, if A = ∅ or A =R

d when φ is a metric attack function.
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In the following pair of lemmas, we will show two important properties of metric attack functions.
The first will allow us to relate Dφ with εPerε and provides an upper bound on Dφ by εPerε. This will
allow us to employ many of the estimates of εPerε from Lemma 3.3 in Lemma 4.6.

Lemma 4.2. Let φ be a metric deterministic attack function. For any set A, E ∈B(Rd), we have that

Dφ(A) ≤ εPerε(A) and Dφ(A; E) ≤ εPerε(A; E).

Proof. It will be sufficient to show that�i
φ
(A) ⊂�i

ε
(A). Take x ∈�0

φ
(A). If we consider Ã = ∅, the metric

property states

A ∩ Bd(x, ε) = ∅ =⇒ φ(x; A) = φ(x; ∅) = 0.

For x ∈ Ac, A ∩ Bd(x, ε) �= ∅ implies x ∈ Aε \ A =�0
ε
(A). Thus, we conclude �0

φ
(A) ⊂�0

ε
(A). A similar

argument with Ã =R
d shows that �1

φ
(A) ⊂�1

ε
(A).

We now prove a second property of metric attack functions, which isolates where the values of φ(x; A)
and φ(x; A \ E) may differ.

Lemma 4.3. Let φ be a metric deterministic attack function. For sets A, E ∈B(Rd), if x ∈ (Eε)c, then
φ(x; A) = φ(x; A \ E).

Proof. Suppose x ∈ (Eε)c. Then, B(x, ε) ⊂ Ec and so A ∩ B(x, ε) = (A \ E) ∩ B(x, ε). Hence, the metric
property then implies that φ(x; A) = φ(x; A \ E).

We require one additional assumption on a metric attack function φ in order to prove the generalized
version of Lemma 3.3. Namely, if the size of the intersection of Bd(x, ε) with the opposite class of x
satisfies a lower bound, then x ∈�φ(A).

Assumption 4.4. Let φ be a metric deterministic attack function with budget ε > 0. For a classifier
A ∈B(Rd), we assume:

x ∈ Ac and Ld(A ∩ Bd(x, ε))>βεd =⇒ x ∈�0
φ
(A),

x ∈ A and Ld(Ac ∩ Bd(x, ε))>βεd =⇒ x ∈�1
φ
(A),

for some constant 0<β <ωd independent of x, ε, and A.

As a consequence of this assumption, we have if x ∈ �̃0
φ
(A), then Ld(A ∩ Bd(x, ε)) ≤ βεd. Likewise,

if x ∈ �̃1
φ
(A), then Ld(Ac ∩ Bd(x, ε)) ≤ βεd. Furthermore, if Assumption 2.1 also holds for φ, then only

one of the two lower bounds needs to be assumed, as the other follows by the complement property.

Remark 4.5. This assumption states that a point x ∈R
d is attacked if the portion of its ε-neighbours

with the opposite label is on the order of εd. In this way, the deterministic attack function depends on
the adversarial budget ε and the metric.

Observe that the adversarial training problem (3) satisfies Assumption 4.4. In fact, it satisfies the
statements

x ∈�0
ε
(A) ⇐⇒ x ∈ Ac and A ∩ Bd(x, ε) �= ∅,

x ∈�1
ε
(A) ⇐⇒ x ∈ A and Ac ∩ Bd(x, ε) �= ∅.

In Proposition 4.15, we will verify that the probabilistic adversarial training problem (5) also satisfies
Assumption 4.4.

In order to show uniform convergence for the generalized adversarial training problem (8), we first
prove the analogue of Lemma 3.3 by a similar slicing argument. We leverage the relationship between
the adversarial deficit and the ε-perimeter established in Lemma 4.2. However, there are a few key
differences in both the results and the proof. Whereas in Lemma 3.3, we show that minimizers of the
adversarial training problem (3) are disjoint from certain norm balls that are misclassified, we show that
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the intersection of minimizers of (8) with a misclassified norm ball must have Ld measure zero. In this
sense, we establish a necessary condition for minimizers of (8). As for the proof of the statement, the
final step differs significantly between Lemmas 3.3 and 4.6. In final step of Lemma 3.3, we are able to
use the fact that a single point causes misclassification on the order of εd. For the general case, the lower
bound on the Ld measure condition for misclassification from Assumption 4.4 requires a more delicate
energy argument that examines the exact difference in energies.

Lemma 4.6. Let φ be a metric deterministic attack function for ε > 0, satisfying Assumptions 2.1 and
4.4. Suppose ρ0, ρ1 are continuous and bounded from above on R

d. Furthermore, suppose A ∈B(Rd) is
a minimizer of the generalized training problem (8) and there exists x ∈R

d and R> 0 such that w0ρ0 −
w1ρ1 > δ > 0 on Bd(x, 2R). Then, there exists a constant C> 0 independent of R, δ, ε, and x such that if
ε≤ min

{
R/2d+2, CRδd+1

}
, then Ld(A ∩ B(x, R/2d+2)) = 0.

Proof. Choose a coordinate system such that x = 0 and write Bd(0, R) = Bd(R) with x as in the statement
above.

We will first find an initial estimate for Ld(A ∩ Bd(R)). As A is a minimizer and w0ρ0 − w1ρ1 > δ > 0
on Bd(R), we can apply Proposition 2.5 to find that

Dφ(A; Bd(R)) ≤ Dφ(Bd(R)c; A) − δLd(A ∩ Bd(R)) + w0ρ0(Û11) + w1ρ1(Û1) (16)

where

Û1 = {x ∈ �̃1
φ
(A) ∩ �̃0

φ
(Bd(R)) : φ(x; A \ Bd(R)) = 1},

Û11 = {x ∈�0
φ
(A) ∩�1

φ
(Bd(R)) : φ(x; A \ Bd(R)) = 1}.

By (11), we have w0ρ0(Û11) ≤ Dφ(A; Bd(R)). Combining the upper bound on w0ρ0(Û11) with (16) and
simplifying, we find

Ld(A ∩ Bd(R)) ≤ 1

δ
Dφ(Bd(R)c; A) + w1

δ
ρ1(Û1).

Recall that by definition, Û1 ⊂ A ∩ Bd(R)c. Additionally by Lemma 4.3, Û1 ⊂ Bd(R + ε) as φ(x; A \
Bd(R)) = 1, while φ(x; A) = 0. Thus, Û1 ⊂ A ∩ (Bd(R + ε) \ Bd(R)). In particular,

w1ρ1(Û1) ≤ w1ρ1(A ∩ (Bd(R + ε) \ Bd(R))) ≤ εPerε(Bd(R)c; A).

Additionally, by Lemma 4.2, we have Dφ(Bd(R)c; A) ≤ εPerε(Bd(R)c; A). Applying (15) from Lemma 3.2,

Ld(A ∩ Bd(R)) ≤ 1

δ
Dφ(Bd(R)c; A) + w1

δ
ρ1(Û1) ≤ 2

δ
εPerε(Bd(R)c; A) ≤ 2αRd−1

δ
ε

for α independent of R, δ, ε, and x as in Lemma 3.2.
Next, we want to find a radius s1 ∈ (R/2, R) that will give an order ε2 estimate for Ld(A ∩ Bd(s1)). For

r ≤ R, one has

Ld(A ∩ Bd(r)) ≤ 2

δ
εPerε(Bd(r)c; A).

We can argue by a discrete slicing argument like in Lemma 3.3 to show that there exists an s1 ∈ (R/2, R)
such that

Ld(A ∩ Bd(s1)) ≤ 2

δ
εPerε(Bd(s1)

c; A) ≤ 32αM
Rd−2

δ2
ε2.

Iterating the argument as in Lemma 3.3 yields an order εi+1 estimate of Ld(A ∩ Bd(si)) for si ∈
(R/2i, R/2i−1) and 2 ≤ i ≤ log2 ( R

4ε
) (i.e. ε≤ R

2i+2 ). After d iterations, we find

Ld(A ∩ Bd(R/2d)) ≤
(

Cd+1

Rδd+1

)
εd+1,

where Cd+1 := 2
d(d+1)

2 +3d+1αMd.
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Finally, we must show that Ld(A ∩ B(R/2d+2)) = 0. Let z ∈ A ∩ Bd( R
2d+1 + ε). We must consider a

region slightly outside of Bd(R/2d+1) as the following argument needs to apply all points in the ε-dilation
of Bd(R/2d+1). We want to show that z ∈�1

φ
(A). To do so, by Assumption 5, it will suffice to show that

if z ∈ A, then Ld(Ac ∩ B(z, ε))>βεd.
Recall the estimate from the previous steps, Ld(A ∩ Bd(R/2d)) ≤ ( Cd+1

Rδd+1

)
εd+1. As long as

( Cd+1

Rδd+1

)
ε <

(ωd − β), or in other words ε < (ωd − β)
(

Rδd+1

Cd+1

)
:= C, then we have

Ld(A ∩ Bd(R/2d))< (ωd − β)εd

where β is the constant from Assumption 4.4. Then, as Bd(z, ε) ⊂ Bd(R/2d), we estimate

Ld(A ∩ Bd(z, ε)) +Ld(Ac ∩ Bd(z, ε)) =ωdε
d =⇒ Ld(Ac ∩ Bd(z, ε))>βεd.

Hence, z ∈�1
φ
(A). In particular, this means that �̃1

φ
(A) ∩ Bd( R

2d+1 + ε) = ∅.
We will now examine the difference in energies after removing Bd(R/2d+1) in order to show that

we must actually remove Bd(R/2d+2) in order to achieve Ld(A ∩ Bd(R/2d+2)) = 0. By Corollary 2.6, the
difference in energy after removing the set E = Bd(R/2d+1) from A is

Jφ(A \ Bd(R/2d+1)) − Jφ(A) = w1ρ1(Û1 ∪ U2 ∪ Û3) − (w0ρ0 − w1ρ1)(Ũ3 ∪ U4)

− w0ρ0(U5 ∪ Ũ6 ∪ Ũ9 ∪ Ũ10 ∪ Ũ11 ∪ U12),

where all sets are as defined in Table 1 and (9). By construction,

[Û1 ∪ U2 ∪ Û3] ⊂
[
�̃1
φ
(A) ∩ Bd

(
R

2d+1
+ ε

)]
.

However, we have just shown that �̃1
φ
(A) ∩ Bd( R

2d+1 + ε) = ∅. Thus, we conclude that Û1 = U2 = Û3 = ∅.
As w0ρ0 − w1ρ1 > δ > 0 on Bd(R/2d+1), the difference in energies becomes

Jφ(A \ Bd(R/2
d+1)) − Jφ(A) = −(w0ρ0 − w1ρ1)(Ũ3 ∪ U4) − w0ρ0(U5 ∪ Ũ6 ∪ Ũ9 ∪ Ũ10 ∪ Ũ11 ∪ U12)

≤ −δLd(Ũ3 ∪ U4) − δLd(U5 ∪ Ũ6 ∪ Ũ9 ∪ Ũ10 ∪ Ũ11 ∪ U12)

≤ 0.

By our assumption, A is a minimizer, so Jφ(A \ Bd(R/2d+1)) − Jφ(A) = 0. This means all remaining sets
must have measure zero, i.e.

Ld(Ũ3) =Ld(U4) =Ld(U5) =Ld(Ũ6) =Ld(Ũ9) =Ld(Ũ10) =Ld(Ũ11) =Ld(U12) = 0.

Recall from (10) that A ∩ Bd(R/2d+1) = U3 ∪ U4 ∪ U5 ∪ U6. We have already shown that U3 = Ũ3 ∪
Û3, U4 and U5 all have measure zero. However, we notice that Û6 ⊂ B( R

2d+1 + ε) \ B( R
2d+1 − ε), and so we

can conclude that Ld(A ∩ B( R
2d+1 − ε)) = 0.

Then combining with the facts about U1, U2, and U3, we then get that for any s< R
2d+1 − ε we have

that A \ Bd(s) is a minimizer of (8) and that A ∩ Bd(s) has measure zero.

Remark 4.7. As stated at the end of the proof, A \ Bd(x, R/2d+2) is also a minimizer of (8). In addition
to providing a necessary condition for minimizers, Lemma 4.6 also gives a construction for a minimizer
that is disjoint from Bd(x, R/2d+2).

Considering the assumptions, we cannot relax the assumption that A is a minimizer to Jφ(A \
Bd(x, r)) − Jφ(A) ≥ 0 as we could for Lemma 3.3 (see Remark 3.4). Although the energy exchange
inequality will still hold, we require that A is a minimizer of (8) to show Ld(A ∩ Bd(R/2d+2)) = 0.

Assuming a minimizer to (8) exists, Lemma 4.6 allows us to show that minimizers are (a.e.) disjoint
from certain sets where it is energetically advantageous to be assigned label 0 by the classifier. In Lemma
4.8, we will use this result to show that for a prescribed distance η > 0, there exists a minimizer of (8)
that can be corralled to be within distance η of any Bayes classifier for all ε smaller than some threshold.
This is the generalized version of Lemma 3.5. As we cannot expect minimizers of (8) to be sensitive
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to modification by a Ld measure zero set, we do not expect arbitrary minimizers to have this property.
However, from an arbitrary minimizer, Lemma 4.8 provides a method to construct a Ld-a.e. equivalent
minimizer that does satisfy this distance condition.

Lemma 4.8. Let Amax
0 be the maximal Bayes classifier, i.e. Amax

0 = {x ∈R
d : w0ρ0(x) ≤ w1ρ1(x)}. Suppose

ρ0, ρ1 > 0 and continuous and bounded from above on R
d. Let K be a compact set and fix η > 0.

Then, there exists an ε0 > 0 such that for any 0< ε≤ ε0 and deterministic attack function φ satisfy-
ing Assumptions 2.1 and 4.4 for adversarial budget ε such that for any minimizer Aε,φ of the generalized
adversarial training problem (8) there exist a Ld measure zero set Nmax ∈B(Rd) such that[

(Aε,φ \ Nmax) ∩ K
]
⊂
[
(Amax

0 )η ∩ K
]
.

Furthermore, Aε,φ \ Nmax is also a minimizer of (8).

Proof. We will follow the proof of Lemma 3.5. We again abuse notation and let A0 = Amax
0 . Assume that

(Aη

0)c ∩ K �= ∅ as otherwise the result is trivial. The conditions are also trivially satisfied if w0ρ0 − w1ρ1

never changes sign.
Let R = η

3
. By the same argument as in Lemma 3.5, the continuity of w0ρ0 − w1ρ1 on the compact

set AR
0 ∩ K2R allows us to conclude that there exists a δ > 0 such that w0ρ0 − w1ρ1 > δ on

(
AR

0

)c ∩ K2R

and (Aη

0)c ∩ K.
As (Aη

0)c ∩ K is compact, there exists a finite covering of (Aη

0)c ∩ K by {Bd(xi, R/2d+2)}1≤i≤n for some
n ∈N such that

n⋃
i=1

Bd(xi, 2R) ⊂
[
Ec
δ
∩ K2R

]
where Eδ = {x ∈R

d : w0ρ0(x) − w1ρ1(x) ≤ δ}. Hence, each Bd(xi, 2R) satisfies the conditions of Lemma
4.6 for δ from the continuity bound. As the constant C from Lemma 4.6 is independent of x, we can let
ε0 = min

{
R/2d+2, CRδd+1

}
.

Suppose Aε,φ is a minimizer of the generalized adversarial training problem (8) for some 0< ε≤ ε0

and let Nmax =⋃n
i=1 [Aε,φ ∩ Bd(xi, R/2d+2)]. Then,

Ld

(
n⋃

i=1

[
Aε,φ ∩ Bd(xi, R/2d+2)

])≤
n∑

i=1

Ld(Aε,φ ∩ Bd(xi, R/2d+2)) = 0,

so Nmax is a Ld measure zero set. By Remark 4.7, an iterative application of Lemma 4.6, removing one
norm ball at a time, ensures that Aε,φ \ Nmax is a minimizer of (8). Furthermore, [Aε,φ \ Nmax] ∩ [(Aη

0)c ∩
K] = ∅ by construction which implies[

(Aε,φ \ Nmax) ∩ K
]
⊂
[
Aη

0 ∩ K
]
.

Remark 4.9. In Lemma 4.6, we require compactness both for the continuity argument and for the finite
covering argument to ensure that we are removing a set of Ld measure zero. Compare this with Lemma
3.5 and Remark 3.6.

We can analogously show that (up to a set of Ld measure zero) we can corral Aε,φ by an η-erosion of
the minimal Bayes classifier Amin

0 by considering the flipped density problem. We can apply the result
from Lemma 4.8 to conclude that on a compact set K ⊂R

d for a fixed η > 0, there exists a ε0 > 0 such that
for 0< ε≤ ε0 and a deterministic attack function φ with adversarial budget ε satisfying the appropriate
assumptions, then for any minimizer Aε,φ of (8) there exist a Ld measure zero set Nmin such that[

(Amin
0 )−η ∩ K

]
⊂
[
(Aε,φ ∪ Nmin) ∩ K

]
.
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Observe that by construction Nmax ⊂ Ac
0 and Nmin ⊂ A0 so the two sets are disjoint. Like in the previous

case, this establishes a two-sided, ‘corralling’ bound on any minimizer for ε small enough, namely,[
(Amin

0 )−η ∩ K
]
⊂
[
(Aε,φ ∪ Nmin \ Nmax) ∩ K

]
⊂
[
(Amax

0 )η ∩ K
]
.

Remark 4.10. If the Bayes classifier is unique in the sense of Remark 1.1, then for any η > 0 and
compact set K ⊂R

d, there exists an ε0 > 0 such that for all 0< ε≤ ε0 and φ satisfying Assumptions 2-1
and 4.4 for adversarial budget ε,[

(A0)−η ∩ K
]
⊂
[
(Aε,φ ∪ Nmin \ Nmax) ∩ K

]
⊂
[
(A0)

η ∩ K
]
,

provided that Aε,φ exists.

Following the sequence of proofs in Section 3, we will now use the corralling result from Lemma
4.8 to examine the distance between minimizers of the generalized adversarial training problem (8)
and Bayes classifiers. The next theorem is the generalization of Theorem 3.9 and establishes uniform
convergence in the Hausdorff distance. As previously stated, there is currently no proof of existence for
minimizers of (8), so this result should be seen as a type of a priori uniform convergence estimate.

Theorem 4.11. Let φ be a deterministic attack function satisfying Assumptions 2.1 and 4.4. Suppose
ρ0, ρ1 are continuous and bounded from above on R

d. Additionally, suppose {Aεi ,φ}i∈N is a sequence of
minimizers of the generalized adversarial training problem (8) with εi → 0+ as i → ∞. For any compact
set K ⊂R

d, there exist sequences {Nmin
i }i∈N and {Nmax

i }i∈N of Ld measure zero sets such that
lim
i→∞

dH

(
((Aεi ,φ \ Nmax

i ) ∪ Amax
0 ) ∩ K, Amax

0 ∩ K
)= 0

and
lim
i→∞

dH

(
((Aεi ,φ ∪ Nmin

i ) ∩ Amin
0 ) ∩ K, Amin

0 ∩ K
)= 0.

Proof. The proof is identical to that of Theorem 3.9, where Nmax
i and Nmin

i are as defined in the proof of
Lemma 4.8.

Corollary 4.12. If the Bayes classifier A0 is unique in the sense of Remark 1.1, then under the same
assumptions as Theorem 3.9,

lim
i→∞

dH((Aεi ,φ ∪ Nmin
i \ Nmax

i ) ∩ K, A0 ∩ K) = 0.

Proof. This follows directly from Theorem 4.11.

Recall that Assumption 3.11 is a non-degeneracy assumption on the Bayes classifier A0 that ensures
that dH(Amax

0 , Amin
0 ) = 0 and that A0 is unique up to a set of Ld measure zero. If we assume that the Bayes

classifier is non-degenerate, then it becomes natural to examine the rates of convergence.

Corollary 4.13. Let φ be a deterministic attack function satisfying Assumptions 2.1 and 4.4. Suppose
Assumption 3.11 holds and that for every ε > 0, there exists a minimizer Aε,φ to the generalized adver-
sarial training problem (8). Additionally, suppose ρ0, ρ1 are continuous and bounded from above on R

d.
For any compact set K ⊂R

d, there exist sequences {Nmin
i }i∈N and {Nmax

i }i∈N of Ld measure zero sets and
a constant C> 0 such that

lim sup
i→∞

dH((Aεi ,φ ∪ Nmin
i \ Nmax

i ) ∩ K, A0 ∩ K)

ε
1

d+2
i

≤ C

where A0 is the Bayes classifier.

Proof. This proof is identical to that of Corollary 3.12.

Remark 4.14. As in Lemma 3.12, we expect that the convergence rate for minimizers of the general-
ized adversarial training problem (8) should be improved to O(ε), but this would require more refined
estimates than those available in Lemma 4.6.
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4.1. Application to the probabilistic adversarial training problem

We now turn our attention to the probabilistic adversarial training problem (5), which we will view
as an instance of the generalized adversarial training problem (8). In order to apply the results for
(8) to (5), we must verify that Assumptions 2.1 and 4.4 hold. In Remark 2.3, we established that (5)
satisfies Assumption 2.1; thus, it only remains to show in the following proposition that (5) satisfies
Assumption 4.4.

Proposition 4.15. Let ε > 0, p ∈ [0, 1) and {px,ε}x∈Rd be a family of probability measures satisfying
Assumption 1.3. The deterministic attack function φε,p associated with the probabilistic adversarial
training problem (5) satisfies Assumption 4.4.

Proof. Suppose x ∈ Ac such that Ld(A ∩ Bd(x, ε))>βεd for some β > 0 to be determined. It will be
sufficient to show that P(x′ ∈ A : x′ ∼ px,ε)> p. Recall that we can express

P(x′ ∈ A : x′ ∼ px,ε) =
∫
Rd

ε−d1A(x′)ξ

(
x′ − x

ε

)
dx′

=
∫

A∩Bd(x,ε)

ε−dξ

(
x′ − x

ε

)
dx′

> cε−dLd(A ∩ Bd(x, ε))

where c> 0 is the lower bound on ξ from Assumption 1.3. If β = p
c
, then P(x′ ∈ A : x′ ∼ px,ε)> p as

desired. As the probabilistic adversarial training problem (5) satisfies the complement property, this is
sufficient to conclude that Assumption 4.4 holds for β = p

c
.

Since the probabilistic adversarial training problem (5) satisfies the requisite assumptions, we can
state the following convergence result.

Theorem 4.16. Suppose ρ0, ρ1 are continuous and bounded from above on R
d and fix p ∈ [0, 1).

Additionally, suppose {Aεi ,p}i∈N is a sequence of minimizers of the probabilistic adversarial training
problem (5) with εi → 0+ as i → ∞. For any compact set K ⊂R

d, there exist sequences {Nmin
i }i∈N and

{Nmax
i }i∈N of measure zero sets such that

lim
i→∞

dH

(
((Aεi ,p \ Nmax

i ) ∪ Amax
0 ) ∩ K, Amax

0 ∩ K
)= 0

and

lim
i→∞

dH

(
((Aεi ,p ∪ Nmin

i ) ∩ Amin
0 ) ∩ K, Amin

0 ∩ K
)= 0.

When Assumption 3.11 holds, Theorem 4.16 asserts that

lim
i→∞

(((Aεi ,p ∪ Nmin
i \ Nmax

i ) ∪ A0) ∩ K, A0 ∩ K) = 0

where A0 is the unique Bayes classifier. Applying Corollary 4.13 in this case, we find that the minimizers
for the probabilistic training problem (5) converge to the Bayes classifier at the rate O(ε

1
d+2 ).

We conclude the discussion of the probabilistic adversarial training problem (5) by commenting on
why this result fails to extend to the 	-perimeter problem mentioned in Remark 1.4.

Remark 4.17. Recall that [4] considers the 	 adversarial training problem

inf
A∈B(Rd

E(x,y)∼μ[|1A(x) − y|] + ProbPer	(A) (17)

where the 	-perimeter is given by

ProbPer	(A) :=
∫

Ac

	(P(x′ ∈ A : x′ ∈ px))dρ0(x) +
∫

A

	(P(x′ ∈ Ac : x′ ∈ px))dρ1(x)

where 	 : [0, 1] → [0, 1] is concave and non-decreasing. As opposed to the probabilistic adversarial
training problem (5), the existence of minimizers to (17) has been established.
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However, notice that the 	-perimeter cannot be expressed as w0ρ0(�0
	

(A)) + w1ρ1(�1
	

(A)) if 	 is
concave and non-decreasing as indicator functions are not concave. The 	-perimeter is an example
of a data-adapted perimeter from the literature that cannot be represented via the deterministic attack
framework. At present, whether the energy exchange inequality holds for the 	-perimeter remains an
open question and proving this inequality for the 	-perimeter would be a promising first step towards
showing uniform convergence of minimizers of (17).

5. Conclusion

In this paper, we developed a unifying framework for the adversarial and probabilistic adversarial train-
ing problems to define more generalized adversarial attacks. Under natural set-algebraic assumptions,
we derived the energy exchange inequality to quantify the effect of removing a set where a given label
was energetically preferable from a minimizer. Utilizing the energy exchange inequality to show that
there exist minimizers disjoint from sets where the label 0 is strongly preferred energetically, we then
proved uniform convergence in the Hausdorff distance for various adversarial attacks. This significantly
strengthens the type of convergence established via �-convergence techniques [7], as well as generaliz-
ing it to a broader class of adversarial attacks. Finally, we derived the rate of convergence based on our
proof techniques.

There are various future directions of research suggested by our results in this paper. First, the uniform
convergence results increase the information that we have about minimizers and sequences of approx-
imate minimizers. That information may be useful in establishing regularity results about minimizers,
for example, in the case of the adversarial training problem (3), or may provide helpful information for
proving existence in the generalized case. A different avenue of research to pursue would be to sharpen
the convergence rates found in this paper by improving estimates from Lemmas 3.3 and 4.6 to determine
whether the formally derived rate of O(ε) can be achieved. Finally, one could consider how to expand
the theoretical deterministic attack function framework to encapsulate other types of adversarial training
problems, such as 	 adversarial training problem (17).
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Appendix A

A.1. The U sets for φε

In Remark 2.4, we claim that further conclusions about the U sets may be drawn when φ = φε. We will
now verify these claims. We consider only the cases where whether the entire set Ui is attacked cannot
be unambiguously determined by�-monotonicity (see Table 1). In all of the following cases, we assume
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Figure A1. A degenerate example where U6 and U9 are neither solely attacked nor unattacked sets.
The example arises because the boundaries of A and Bd(R) coincide. The pink and purple sets represent
the ε-perimeter regions of A, whereas the blue and purple regions represent the ε-perimeter regions for
A \ Bd(R).

that the interaction of A, E is nontrivial in the sense that A ∩ E and Ac ∪ E are both nonempty. Otherwise,
the following sets will either be empty themselves or we trivially find d(x, ∅) = ∞.

Proposition A.1. Let φ = φε and A, E ∈B(Rd). Then, Û1 = ∅.

Proof. Suppose x ∈ U1 ⊂ A ∩ Ec. By construction, we have d(x, Ac) ≥ ε and d(x, E) ≥ ε. This implies
that d(x, Ac ∪ E) = d(x, (A \ E)c) ≥ ε as well. Thus, Û1 = ∅. �
Proposition A.2. Let φ = φε and A, E ∈B(Rd). Then, Ũ3 = ∅.

Proof. Suppose x ∈ U3 ⊂ A ∩ E. By construction, we have d(x, Ac) ≥ ε and d(x, Ec)< ε. As d(x, Ac) ≥
ε, B(x, ε) ⊂ A. Furthermore, as d(x, Ec)< ε, B(x, ε) ∩ Ec �= ∅. Thus, there exists some y ∈ B(x, ε) ∩ Ec ⊂
A ∩ Ec. Hence, d(x, A \ E)< ε, so Ũ3 = ∅. �
Proposition A.3. Let φ = φε and A, E ∈B(Rd). Then, Ũ10 = ∅.

Proof. Suppose x ∈ U10. By construction, we have d(x, A)< ε and d(x, E) ≥ ε. As d(x, E) ≥ ε, B(x, ε) ⊂
Ec. Furthermore, as d(x, A)< ε, B(x, ε) ∩ A �= ∅. Thus, there exists some y ∈ B(x, ε) ∩ A ⊂ A ∩ Ec.
Hence, d(x, A \ E)< ε, so Ũ10 = ∅. �

As for U6, U9 and U11, we can make no determinations about whether all points in these sets must be
attacked or not. Figure 2 shows an example where U11 must be split into attacked and unattacked subsets.
In special cases where the boundaries of the sets A and E coincide, U6 and U9 may also need to be split
into attacked and unattacked subsets (see Figure A1).
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A.2. �-set decompositions

For completeness, we give further details about the decompositions by U sets in Proposition 2.5, namely
�0
φ
(A \ E),�1

φ
(A \ E), A ∩ E, A \ E, (A \ E)c, Dφ(A; E), and Dφ(Ec; A). Table 1 is reproduced for ease of

reference.

•�0
φ
(A \ E) is comprised of all U sets such that Ui �∈ A \ E and the points can be attacked by the

adversary for the classifier A \ E. The Ui �∈ A \ E are all U sets such that the �-set for A has the
superscript 0 or the�-set for E has the superscript 1, that is, U3, U4, U5, U6, U9, U10, U11, U12 and U13.
However, U4, U5, U12, and U13 are all unattacked by Table 1. Thus, �0

φ
(A \ E) contains the attacked

subsets of U3, U6, U9, U10, and U11. Hence,

�0
φ
(A \ E) = Û3 ∪ Û6 ∪ Û9 ∪ Û10 ∪ Û11.

• �1
φ
(A \ E) is comprised of all U sets such that Ui ∈ A \ E and the points can be attacked by the

adversary for the classifier A \ E. The Ui �∈ A \ E are all U sets such that the �-set for A has the
superscript 1 and the �-set for E has the superscript 0, that is, U1, U2, U7, and U8. By Table 1, the
sets U2, U7 and U8 are belong entirely to�1

φ
(A \ E), so�1

φ
(A \ E) contains those sets and the attacked

subset of U1. Hence,

�1
φ
(A \ E) = Û1 ∪ U2 ∪ U7 ∪ U8.

• A ∩ E is comprised of all U sets such that the�-sets for A and E both have the superscript 1. Hence,

A ∩ E = U3 ∪ U4 ∪ U5 ∪ U6.

• A \ E is comprised of all U sets such that the �-set for A has the superscript 1 and the �-set for E
has the superscript 0. Hence,

A \ E = U1 ∪ U2 ∪ U7 ∪ U8.

• (A \ E)c is comprised of all U sets not in A \ E, or alternatively, all U sets such that either the�-set
for A has the superscript 0 or the �-set for E has the superscript 1. Hence,

(A \ E)c = U3 ∪ U4 ∪ U5 ∪ U6 ∪ U9 ∪ U10 ∪ U11 ∪ U12 ∪ U13.

• Recall Dφ(A; E) = w0ρ0(�0
φ
(A) ∩ E) + w1ρ1(�1

φ
(A) ∩ E). The set E can be expressed in terms of

�-sets by E =�1
φ
(E) ∪ �̃1

φ
(E). By Table 1,

Dφ(A; E) = w0ρ0(U11 ∪ U12) + w1ρ1(U5 ∪ U6).

• Recall Dφ(Ec; A) = w0ρ0(�1
φ
(E) ∩ A) + w1ρ1(�0

φ
(E) ∩ A) by the Complement Property of �-sets.

The set A can be expressed in terms of �-sets by A =�1
φ
(A) ∪ �̃1

φ
(A). By Table 1,

Dφ(Ec; A) = w0ρ0(U3 ∪ U6) + w1ρ1(U2 ∪ U7).
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