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Abstract

In recent years, there has been significant interest in the effect of different types of adversarial perturbations in data
classification problems. Many of these models incorporate the adversarial power, which is an important parameter
with an associated trade-off between accuracy and robustness. This work considers a general framework for adver-
sarially perturbed classification problems, in a large data or population-level limit. In such a regime, we demonstrate
that as adversarial strength goes to zero that optimal classifiers converge to the Bayes classifier in the Hausdorff
distance. This significantly strengthens previous results, which generally focus on L'-type convergence. The main
argument relies upon direct geometric comparisons and is inspired by techniques from geometric measure theory.

1. Introduction

In recent years, neural networks have achieved remarkable success in a wide range of classification and
learning tasks. However, it is now well-known that these networks do not learn in the same ways as
humans and will fail in specific settings. In particular, a wide range of recent work has shown that they
fail to be robust to specially designed adversarial attacks [11, 12, 18, 23, 27].

One general approach for mitigating this problem is to include an adversary in the training process. A
simple mathematical formulation of this method for 0—1 loss [19], in the large-data or population limit,
is to consider the optimization problem

min J.(4), J.(A):=E [}I}??X) ILa(x) — yl} ;

where the y variables represent observed classification labels and x variables represent features (we give
a more precise description of our setting in the next section). This can be seen as a robust optimization
problem, where an adversary is allowed to modify the inputs to our classifier up to some distance ¢.
When ¢ =0, this corresponds to the standard Bayes risk.

Recent work has significantly expanded our mathematical understanding of this problem. Our work
directly builds upon [5], which rewrites the previous functional as

J(A) =E[|14(x) — yl] + ePer.(A),

where Per, is a special data-adapted perimeter, whose definition is given in (4). This is related to a
growing body of recent work, for example, showing that Per, converges to the (weighted) classical
perimeter [7], and demonstrating links between the adversarially robust training problem and mean
curvature flow [6, 16]. This literature seeks to provide a more complete description of the effect of ¢
on adversarially robust classifiers in a geometric sense. This relates to the study of nonlocal perimeter
minimization and flows [8, 9, 10], where the unweighted e-perimeter is considered. As training these
robust classifiers is generally a challenging task, one overarching goal of this type of work is to provide
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a more precise understanding of the effect of ¢, practical means for approximating that effect and the
impact on classifier complexity: each of these has the potential to improve more efficient solvers for
these problems.

Various modifications of the robust classification energy J, have been proposed. For example, some
authors relax either the criteria for an adversarial attack or the loss function to interpolate between
the accurate yet brittle Bayes classifier and the robust yet costly minimizers of the adversarial train-
ing problem [4, 17, 24, 25]. Still others employ optimal transport techniques to study distributionally
robust optimization, where instead of perturbing data points, the adversary perturbs the underlying data
distribution [13, 14, 15, 21, 22].

The main goal of this paper is to study the convergence of solutions to the adversarially robust clas-
sification problem towards the original Bayes classification task for data-perturbing models. We build
a framework that allows us to consider a wide range of adversarial settings at the same time. In doing
s0, we obtain Hausdorff convergence results, which are generally much stronger than the L'-type results
previously obtained [4]. These results parallel many of the basic results in the study of variational prob-
lems involving perimeters, wherein one first proves stability in L™ spaces, and then subsequently proves
stronger regularity results for minimizers. In a similar way, we see our results as a building block towards
stronger regularity results for the adversarially robust classification problem, which have received sig-
nificant attention in the literature. We begin by concretely describing the setup of our problem and then
giving an informal statement of our results along with some discussion.

1.1. Setup

Let the Euclidean space R equipped with the metric d(-, -) represent the space of features for a data
point, and let B(R?) be the set of all Borel measurable subsets of RY. We will let £¢ be the d-dimensional
Lebesgue measure. We are considering a supervised binary classification setting, in which training pairs
(x, y) are distributed according to a probability measure p over R? x {0, 1}. Here y represents the class
associated with a given data point, and the fact that y € {0, 1} corresponds to the binary classification
setting. Let p denote the RY marginal of u, namely p(A) = (A x {0, 1}). We decompose p € P(R?) into
0 =wopo + w;p; where w; = w(R? x {i}), and the conditional probability measure p; € P(R?) for a set
A € B(RY) is

D(A) = H(A >< {ih)

for i =0, 1. All of these measures are assumed to be Radon measures.

In binary classification, we associate a set A € B(R?) with a classifier, meaning that x € R is assigned
label 1 when x € A and x is assigned the label O when x € A°. Unless otherwise stated, we will assume
all classifiers A € B(R?). The Bayes classification problem for the 0-1 loss function is given by

inf E(x,y)N;LHILA(x) - y|] (1)

AeB(RY)

In this work, we will only consider the 0—1 loss function, which allows us to restrict our attention to
indicator functions for minimizers of (1). We refer to minimizes of the Bayes risk as Bayes classifiers.

Remark 1.1 (Uniqueness of Bayes Classifiers). If we assume that p has a density everywhere on R? and
identify the measures p; with the density at x € R? given by p;(x), then we can describe the uniqueness,
or lack thereof, of Bayes classifiers in terms of those densities. Specifically, Bayes classifiers are unique
up to the set {w, p; = wypo}, which may be a set of positive measure depending on . We define maximal
and minimal Bayes classifiers (in the sense of set inclusion) by

AP = {xe R w01 (x) = wopo(x)}, AS“" = {x e R 1wy i (x) > wopo(x)}. ()

When wopy — wyp; € Ct and \wyV py — w1V o] > o > 0 on the set {wypy = w, p,}, the Bayes classifier
is unique up to sets of p measure zero. In the case where p is supported everywhere, Bayes classifiers
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are unique up to sets of L measure zero. Whenever we refer to the Bayes classifier as unique, we mean
unique in this measure-theoretic sense. Later on in Assumption 3.11, we will refer to such uniqueness
as the 'non-degeneracy’ of the Bayes classifier and represent the unique classifier by A,.

Throughout this paper, we will consider and seek to unify two optimization problems from the litera-
ture that aim to train robust classifiers. First, we consider the adversarial training problem, which trains
classifiers to mitigate the effect of worst-case perturbations [19]. The adversarial training problem is

inf Eqyeu| sup [143) —yl |,
AeB(RY) FeBy(xe)

where By(x, €) is the open metric ball of radius ¢ > 0. The existence of solutions in this setting was
previously established [5]. The parameter ¢ is called the adversarial budget, and it represents the strength
of the adversary. By using the open ball, we are following the conventions set in the previous work
on convergence of optimal adversarial classifiers [7]. Other works have utilized the closed ball due to
consistency with the standard classification problem when ¢ = 0, but that comes at the price of added
measurability concerns: see Remark 1.2 for more details.

An equivalent form of this variational problem (see [5]), wherein the problem is rewritten using a
nonlocal perimeter, is
inf i By [1L4(x) — yI] + €Per.(A) 3)

AeB(R

with the e-perimeter defined by

Wo
Per.(A) .= - /

R4

- Wi
[ sup ]lA(x)_]lA(x)i| dpo(x) + - /

XEBg(x,€) R4

|:]J-A(x) — nf )]lA(fc)} dp(x).

This normalization with ¢ in the denominator is chosen so that we recover the (weighted) classical
perimeter as ¢ — 0. In this sense, we consider the nonlocal e-perimeter a data-adapted approxima-
tion of the classical perimeter. From the variational problem given by (3), we define the adversarial
classification risk for a classifier A € B(R?) as

Jo(A) := By [1La(x) — yI] + €Per,(A).

When considering the e-perimeter, the region affected by adversarial perturbations must be within
distance ¢ of the decision boundary of the classifier. As such, it will be helpful to be able to discuss
sets that either include or exclude the e-perimeter region. From mathematical morphology [26], for a
set A € R? and ¢ > 0, we define the

o e-dilation of A as A® ;== {x e R?:d(x, A) < &},

o g-erosion of Aas A~ := {x e R’ : d(x, A®) > &}.
Using this notation, one can equivalently express the e-perimeter as
Wy . wi e
Per.(A) = ?po(A \A)+ ?pl(A \A™). “)

Inspired by the notation in geometric measure theory, we also define the relative e-perimeter for a
classifier A € B(R¢) with respect to a set E € B(R?) by

Wo wi —
Per.(A E) := ?po((As \ANE) + —p((A\A ONE).

Remark 1.2 (Previous work for the adversarial training problem (3)). The worst-case adversarial train-
ing model was initially proposed for general loss functions by [19]. When the loss function is specified
to be the 01 loss function, previous work has established the existence and considered the equivalence
of minimizers to (3) for the open and closed ball models [2, 5, 14, 22]. Although the open and closed

https://doi.org/10.1017/50956792525100223 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792525100223

4 R. Morris and R. Murray

ball models are similar, there are some subtle differences that must be considered. While measurability
of SUPscp, ey La(X) for a Borel set A in the open ball model is trivial, the same cannot be said for the
closed ball model; to address these measurability concerns in the closed ball model, one must employ
the universal o-algebra instead of the Borel o -algebra. We emphasize that we choose to study the open
ball model as this simplifies the analysis and measurability concerns associated with the closed ball
model, and the open ball model was used for prior convergence results [7].

Some papers consider a surrogate adversarial risk which is more computationally tractable [ 1, 3, 13,
20]; others explore necessary conditions and geometric properties of minimizers [6, 7, 16]. Of particular
note to the present work is the study of the limit of minimizers of J.. Theorem 2.5 states [7].

Theorem (Conditional convergence of adversarial training). Under the conditions of Theorems 2.1 and
2.3 from [7] and assuming the source condition, any sequence of solutions to

inf E .| su T,(x) —
AeB(Q) e I:xeB(x,ng 114 y|]
possesses a subsequence converging to a minimizer of

min{Per(A; p) : A € arg ming,_p o Eyy~p [[1s(x) — y[1}.

The convergence is proven in the L'(2) topology for some open, bounded Lipschitz; domain Q C
RY. Here, Per(-; p) is a weighted version of the classical perimeter. The source condition mentioned
provides minor regularity assumptions on the Bayes classifier. Note that in the referenced theorem,
there are additional assumptions on the underlying data distribution p. In our work, we strengthen this
convergence result by proving Hausdorff convergence of minimizers of (3) to the Bayes classifier with
similar assumptions on p.

The second optimization problem, which serves as an important model case, interpolates between
the accuracy on clean data of the Bayes classifier and the robustness of the adversarial training problem
minimizers. The probabilistic adversarial training problem for p € [0, 1) and probability measures p, €
P(RY) for each x € RY is

infd) Eqy~u[114(x) — y|] 4 ProbPer,(A), 5)

AeB(R:

with the probabilistic perimeter defined by
ProbPer, (A) := wopo(A(A)) + wipi(A,(A)), (6)
and the set functions A; for i =0, 1 defined by

AYA) = (xe A% P €A:x ~p,) > p),

AA):= {xeA:P( €A®: X ~p,)>p}.

Here, P(x' € A: X' ~p,) is the probability that a point x sampled from the probability distribution p,
belongs to the set A. We notice that (6) takes the same form as (4) where we replace the metric boundary
fattening by a probabilistic fattening. We define the probabilistic adversarial classification risk for a
classifier A € B(RY) as

J,(A) := E~u[|14(x) — y|] + ProbPer,(A).

The relative probabilistic perimeter for a classifier A € B(R?) with respect to a set E € B(RY) is
given by

ProbPer,(A; E) := wopo (A%A) N E) +wip (ANA)NE).
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To make the connection with the e-perimeter more concrete, we will restrict our attention to certain
families of probability measures that scale appropriately with & for the remainder of this work.

Assumption 1.3. Let &£ : R? — [0, 00) such that & € L'(RY), fR[, E(dz=1, E&(0=01if |zl > 1, and

&(z) > c for some constant ¢ > 0 and for |z| < 1. For x,x € RY, we assume that

Poo() =~ (x/ - x) :
g O

We will now write ProbPer, , and refer to it as the probabilistic e-perimeter to emphasize the depen-
dence on the adversarial budget. Unlike with the Per,, we do not normalize ProbPer,, with respect
to &. We also write J; , instead of J, and A, instead of A} for i =0, 1. Under Assumption 1.3, A7 (A)
and Aé’p(A) are subsets of the e-perimeter regions A° \ A and A \ A, respectively. Specifically, this
means that J, ,(A) <J.(A) for all A € B(R?) when the underlying data distribution w is the same. We
note that probabilistic e-perimeter that most closely coincides with the e-perimeter when p =0 and
p.. = Unif(B4(x, ¢)) for each x € R?.

Remark 1.4 (Previous work for the probabilistic adversarial training problem (5)). This form of the
problem was proposed by [4] as a revision of probabilistically robust learning [25]. Although ProbPer,
is not a perimeter in the sense that it has not been shown to be submodular and it does not admit a
coarea formula, we follow the convention from [4] and refer to ProbPer, as the probabilistic perimeter.
Importantly, existence of minimizers has not been proved for either the original or modified proba-
bilistic adversarial training problem. There have also been no results pertaining to the convergence of
minimizers, provided they exist, to the Bayes classifier for either version.

However, [4] proposes and proves the existence of minimizers for a related probabilistically robust
W risk

Ju(A) := Eyp[114(x) — yI] + ProbPery (A)

for suitable functions W : [0, 1] — [0, 1] where the \V-perimeter takes the form

ProbPery (A) := / W(PW € A:x ~p,))dpy(x) + / WP € A®: X' ~p,))dp (x).
C A

A

However, the convergence results proved in this paper do not currently extend to the V-perimeter case.
The details will be further discussed in Remark 4.17.

If we juxtapose the variational problem for the adversarial training problem (3) and the probabilistic
adversarial training problem (5), both risks are of the form

J(A) = Bayes risk + data-adapted perimeter,
where the data-adapted perimeters can be expressed as
data-adapted perimeter = wyp,(subset of A®) + w, p,(subset of A).

We seek to develop a unifying framework for various adversarial models, including, but not limited to,
(3) and (5). These types of attacks are designed to flexibly capture a range of adversarial behaviours, not
just the idealized ones given in the original adversarial training problem. Under the proper assumptions,
which will be discussed in Sections 2 and 4, we can extend the convergence result to a broad class of
adversarial attacks. We begin by giving some concrete definitions.

Definition 1.5. For a classifier A € B(RY), we define the Lebesgue measurable function ¢ : R — {0, 1}
by
0 A) 1, ifthe adversary can perturb a data point x from A to A° or vice versa,
x;A) =

0, otherwise.

We refer to ¢ as the deterministic attack function with respect to the classifier A.
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Deterministic refers to the fact that the classification risk is completely determined at any point x € R¢
by the choice of classifier and the associated attack function. We emphasize that this attack function does
not consider the true label y associated with x.

In order to generalize the classification risk, it will be essential to isolate the sets where classification
loss occurs. We can define the following set operators based on the values of ¢.

Definition 1.6. Let A € B:(Rd). For a deterministic attack function ¢, we define the set operators
Al i BRY) — B(R?) and Al : BRY) — BR) for i =0, 1 by

AZ(A) = {x€A®: p(x;A) =1}, A;(A) = {xeA:p(x;A) =1},

AY(A):= {x € A®: p(x;A) =0}, ALA):= {xeA:p(x;A)=0}.

We refer to these four sets collectively as A-sets. For convenience, we also define A,(A) = AZ(A) U

AL(A) and A4(A) = AS(A) U AL(A). Note the 0 and | superscripts indicate the label assigned by the
classifier A and not the value of the deterministic attack function (i.e. O corresponds to points in A® and
1 corresponds to points in A).

The set A,(A) contains points that meet the attack criteria for the deterministic attack function ¢,
whereas the set 1~\¢(A) contains points that do not meet the attack criteria. The A-sets are mutually
disjoint with A = A;(A) U f\j,(A) and A = Ag(A) U ]\g(A).

We can express the classification risk for a set A € B(R?) by the loss on the attacked sets, given by
A4(A), and by the loss inherent to the choice of classifier. More formally, we define the generalized
classification risk as follows.

Definition 1.7. The generalized classification risk for a deterministic attack function ¢ and classifier
A € B(RY) is given by

J5(A) 1= wopo(Ay(A) UA) + w01 (Agy(A) UA®). N

As in [28], we seek to separate the total classification risk J, into the standard Bayes risk (natural
error) and the risk attributed to the adversary’s attack.

Definition 1.8. The adversarial deficit for a classifier A € B(R?) and a deterministic attack function ¢
is defined to be

Dy(A) 1= Jy(A) — By [ L4 (x) — yl1,

where E, -, [|14(x) — y|] is the standard Bayes risk.

As one can express the standard Bayes risk as

E(X,A\')N;L[l]]‘A(x) =yl =wopo(A) + wi01(A%),

we can derive a more useful equation for the adversarial deficit that mirrors the formulas for the data-
adapted perimeters (4) and (6), namely,

Dy(A) = wopo (Ai(A)) +wip (A;(A)) .

Unlike the data-adapted perimeters we described above, at this stage A,(A) is not necessarily in some
neighbourhood of the decision boundary. We define the relative adversarial deficit for a classifier A €
B(R?) with respect to a set E € B(RY) to be

Dy(A; E) := wopy (AG(A) NE) +wip (Ay(A)NE).

With the appropriate definitions in place, we now present the generalized adversarial training problem
for the deterministic attack function ¢.
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Definition 1.9. For a deterministic attack function ¢, the generalized adversarial training problem is
given by
inf Eq - [[T4(x) = yI1 4 Dy(A). ®)
AeB(Rd)
In the previous equation, the adversarial deficit, Dy, takes the place of the data-adapted perimeter
terms from (3) and (5).

Remark 1.10. By construction, the adversarial training problem (3) and the probabilistic adversarial
training problem (5) are two examples that fall under this generalized attack function framework. For
(3), the e-deterministic attack function with respect to a classifier A € B(R?) for ¢ > 0 is

1, ifd(x,dA) <e,
¢ (x;A) 1=

0, otherwise.

For ¢., we will let A°(A) := A°\ A, A/(A):= A\ A, A%A):= A°\ A, and A'(A) := A~ denote the
A-sets for convenience.

On the other hand for (5), the (¢, p)-deterministic attack function with respect to a classifier A € B(R?)
fore>0andpe|0,1)is

I, ifPMu(x) # La(x) 1 X ~Pee) > P,
O (3 A) =
0, otherwise.

1.2. Informal main results and discussion

We will focus the main results and discussion on the generalized adversarial training problem (8) and
comment on the application to the adversarial training problem (3) and the probabilistic adversarial
training problem (5) when appropriate. By Remark 1.10, all statements pertaining to (8) automatically
apply to (3) and (5). However, because (3) is sensitive to measure zero changes, results for (3) are stronger
than what can be stated in the generalized or probabilistic cases. On the other hand, the results for (5)
are identical to those for (8) up to notation.

The first crucial result for (8) provides an estimate on the relative adversarial deficit.

Proposition ((Informal) Energy Exchange Inequality for (8)). Under mild assumptions on ¢ (see
Assumption 2.1), for a classifier A € B(R?) and a set E € B(R?) such that wypy — wip, > 8 >0 on E,
if J,(A\E) — J4(A) > 0O, then

Dy(A: E) < Dy(E* A) = 8LYAN E) + wopo(Un) +wi01(T1)
where U, C AL(A) N AY(E) and Uy, C AS(A) N AL(E).

The energy exchange inequality asserts that if it favourable according to the densities to be labelled
0 on E but adversarial training labels it 1, then the ‘perimeter’ (more generally, the adversarial deficit)
of the original set A must be quantifiably better in the sense of (1.2). In spirit, the energy exchange
inequality is connected to relative isoperimetric comparisons as it seeks to relate the relative adversarial
deficits (or for (3) the relative e-perimeters) of two sets to the volume of their intersection. However,
the energy exchange inequality has additional error terms that must be accounted for. In the case of
the stronger e-perimeter, U, =0 so the energy exchange inequality simplifies and can be expressed as
follows.

Proposition ((Informal) Energy Exchange Inequality for (3)). For a classifier A € B(R?) and a set E €
B(R?) such that wopy — w1 > 8 > 0on E, if J,(A\ E) — J.(A) > 0, then

gPer.(A; E) < ePer.(E% A) — §LYA N E) 4+ wopo(Us,)
where Uy, C (A* \ A)N (E \ E~°) (see Figure 1).
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0A®

Figure 1. This diagram illustrates the sets present in the energy exchange inequality for the adversarial
training problem (3) when E = By(R). The sets comprising ePer,(A; By(R)) are shaded blue and purple,
whereas the sets comprising ePer,(By(R)%; A) are shaded pink and purple.

As for the relative probabilistic perimeter ProbPer, ,, the energy exchange inequality is the same as
that for (8) up to notation.

Proposition ((Informal) Energy Exchange Inequality for (5)). For a classifier A € BR?) and a set E €
B(RY) such that wopy — wip1 >8> 0onE, if J, ,(A\ E) — J. ,(A) > 0, then

ProbPer. ,(A; E) < ProbPer, , (E; A) — 8L/ (A N E) + wopo(Un) +wip1(TU))

where U, C (A\ A=) N (E° \ E) and Uy, C (A° \A)N(E \ E~).

The energy exchange inequality allows us to argue that classifiers which are minimizers of the general-
ized adversarial training problem (8), if they exist, can be made disjoint from sets where it is energetically
preferable to be labelled 0 when the adversarial budget ¢ is small enough. As we will see, in the general-
ized setting we can only guarantee the uniqueness of minimizers of (5) and (8) up to sets of measure zero;
however, we can show that the intersection of such sets with an energetic preference for the label zero
with minimizers must have £¢ measure zero. For the adversarial training problem (3), we can improve
the result to show that any minimizer must be disjoint from these sets when ¢ is small enough. This result
builds towards proving uniform convergence of minimizers of (8) to the Bayes classifier, which is the
next main result. In order to prove the convergence rate, we must include a non-degeneracy assumption
to ensure dy(AF™, Ap™) = 0 and the Bayes classifier is unique in the sense of Remark 1.1.
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Theorem (Informal). With mild assumptions on ¢, let K be compact and let {A. 4}..0 be any sequence
of minimizers to the generalized adversarial training problem (8). Assuming that wypy — w, 0, is non-
degenerate, then

dH((AE,zIJ UN] \Nz) ﬁK,AO ﬂK)—) 0

as € — 0%, where N,, N, are sets of L measure zero, dy is the Hausdor{f distance and A, is the Bayes
classifier.

However, the theorem actually proved is more general and does not require a unique Bayes classifier.
Under these relaxed assumptions, we prove a corralling result for the sequence {A, 4}.., with respect to
the Hausdorff distance from the maximal Bayes classifier, Aj**, and the minimal Bayes classifier, Ag‘i“.
In essence, the corralling result states that the boundary of lim,_ o+ A, 5 U N, \ N, must lie between the
boundaries of AJ™ and AJ"™. When we specify this result to the adversarial training problem (3), we no
longer have to remove a £¢ measure zero set and instead prove the following.

Theorem (Informal). Let K be compact and let {A.}.., be any sequence of minimizers to the adversarial
training problem (3). Assuming that wypy — w, p; is non-degenerate, then

dy(A:NK,A)NK)—0
as € — 07, where dy is the Hausdor[f distance and A, is the Bayes classifier.
For the probabilistic adversarial training problem, the uniform convergence result states,

Theorem (Informal). Let K be compact and let {A, ,}.~o be any sequence of minimizers to the prob-
abilistic adversarial training problem (5) for some fixed p € [0, 1). Assuming that wypy — w1 p; is
non-degenerate, then

dH((Ag,p UN] \Nz)mK,Ao ﬂK)—) O

as ¢ — 0%, where N,, N, are sets of L measure zero, dy is the Hausdor{f distance and A, is the Bayes
classifier.

As with (8), if we relax the assumption that the Bayes classifier is unique, we can instead prove an
analogous corralling result with respect to Ag"™* and Ag‘i" for (3) and (5).

With the non-degeneracy condition in place, we can also consider the rate of convergence and show
that it is at most O(¢#) for all three adversarial training problems. However, we do not expect this
result to be optimal and would expect that the convergence rate to be O(¢), which we discuss further in
Remark 3.13.

2. Energy exchange inequality

In this section, we will prove a quantitative result for the adversarial deficit, which can then be applied
to the e-perimeter and the probabilistic e-perimeter. In order to do so, we will require the deterministic
attack function ¢ and the corresponding A-sets to have the following structural properties.

Assumption 2.1. Recall Definition 1.6. Let A, E € B(R?). We will make the following two assumptions
to ensure consistency with respect to complements and set difference:
1. Complement Property (CP): ¢(x; A) = ¢(x; A®), or in terms of A-sets, Ag(A) = A;,(AC) and 1~\2(A) =
A (A°).
2. A-Monotonicity (AM):
(i) Ifx € A%(A), then x € AS(A \ E).
(it) Ifx € AY(E), then x € AY(A\ E).
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(iii) If x€ AY(E)NA, then x € Ay(A\ E).
(iv) If xe Ay(A)NE®, then x € Ay(A\ E). =

In the following series of remarks, we seek to better understand these two properties generally and
as they apply to the adversarial and probabilistic adversarial settings.

Remark 2.2 (On Monotonicity). We note that the deterministic attack functions ¢ that satisfy
Assumption 2.1 are not monotonic with respect to set inclusion unless ¢ is the trivial attack function
(i.e. p =0 or ¢ = 1). To illustrate this, suppose ¢ is monotonic. By the monotonicity of ¢ with respect
to set inclusion coupled with the complement property,

$x:4) S p(x A9 < 95 A\ E)) S p(x; A\ E) < (3 A).
This implies ¢(x; A)=¢(x; A\ E) and, if we let E=A, that ¢(x;A) = ¢(x; B). Hence, the attack is
independent of A, which can only be satisfied by a trivial attack function.
Although ¢ itself is not monotonic, if you have a function  which is monotonic in terms of set
inclusion, then setting ¢ via its level set yields an attack function which satisfies A-monotonicity. In
particular, both the distance function and the probability function are monotonic.

(cp)

Remark 2.3. We will verify that the adversarial training problem (3) and the probabilistic adversarial
training problem (5) satisfy Assumption 2.1. Recall from Remark 1.10, the attack for (3) is denoted ¢,
and the attack for (5) is denoted ¢, , for some ¢ > 0 and p € [0, 1).

We will first show that ¢, satisfies Assumption 2.1. For the complement property, recognize that since
A =3(A°), A%A) = AL(A®) and A%(A) = AL(A®) by definition. As for A-monotonicity, we can verify
these four statements directly.

(i) Ifx € A%A), then d(x,A\ E) > d(x,A) > & so x € A%A \ E).

(ii) If x € AN(E), then d(x,A \ E) > d(x, E°) > £ so x € A%A \ E).
(iii) If x € AAE)NA, then d(x,(A\ E)°) <d(x,E) <& soxe A(A\E).
(iv) Ifxe AN(A)NE®, then d(x,(A\ E)°) <d(x,A°) <& sox€ A{A\E).

Now, we consider ¢.,. By definition,

Al (A% =[x e A°: P(X € (A%°:xX' ~p,.) > p} = A’ (A).

ep

Similarly, one can show ]\SW(A) = A;J}(AC). Hence, the complement property holds for ¢.,. Now we

consider A-monotonicity. To simplify notation, we let P(x; A) := P(x' € A: X' ~ p, ). Examining each of
the A-monotonicity properties, we find the monotonicity with respect to set inclusion of the probability
function

(i) Ifx€ A% (A), then P(x; A\ E) <P(x;A) <p sox€ A (A\ E).

(ii) Ifxe Al (E), then P(x; A\ E) <P(x; E°) <p sox e A" (A \ E).
(iii) Ifx € A‘E’,p(E) NA, then P(x; A\ E)®) >P(x; E) >psox e A;p(A \ E).
(iv) Ifxe A} (A)NE®, then P(x; (A \ E)°) > P(x; A°) > psox e Al (A\ E).
Thus, ¢., satisfies A-monotonicity and Assumption 2.1.

Remark 2.4 (A-set Decompositions). Under Assumption 2.1, we may decompose R? in terms of the
A-sets for A, E € B(R?) according to A-monotonicity. In doing so, we define the sets U,, . . ., U3, which
partition R? (see Table 1 and Figure 2).

For the sets U; where no conclusion can be made about ¢(x; A \ E), we will further decompose them
into two subsets based on the ¢ values, i.e.

U=1{xeU:¢xA\E)=0}, U={xeU:¢xA\E)=1}, ©
fori=1,3,6,9,10, and 11.
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Table 1. This table defines the 13 U; sets and exhibits all possible con-
clusions about the A-sets for A\ E based on the A-sets for A and E
from A-monotonicity. This set decomposition, along with the further
refinement in (9), will be key in proving the energy exchange inequality

Ifxe U, Then for A(A\E) we have
U, := AL(A)NAY(E) N/A
Usi= Aj(A) N AY(E) x€ALA\E)
Us:= AL(A) N ALE) N/A
Uyi= Ay(A) N ALE) xe AY(A\E)
Us:= AL(A)NALE) xe ASA\E)
Us = Ay(A)N A%(E) N/A

Us = Ay(A) N AY(E) xeALA\E)
Us := AL(A) N AY(E) xeAlA\E)
Usi= AY(A) N AY(E) N/A

Ui := AS(A) N AY(E) N/A

Ui = AS(A) N ALE) N/A

Up == AY(A) N ALE) xe AYA\E)
Uiy = A%(A) xe AS(A\E)

The auxiliary symbols are meant to help the reader group the terms. Notice that the U, sets contain
points that cannot be perturbed by the adversary into the other class for the classifier A \ E in accordance
with all A sets also containing points that are unable to be attacked by the adversary. On the other hand,
the U, sets contain only points that can be perturbed into the opposite class.

With this decomposition, we can express the A-sets for A\ E using the U sets as follows:

AYA\E)=T;UT,UT,UT, Uy,
AYA\E)=T,UU,UU, U,
AS(A\E)=U,UU,UU;UU; VT, 0T, UT,, UU,U Uy,

ALA\E)=T,.

Depending on extra structure imposed by the choice of ¢, sometimes we can conclude certain sets
are empty. For example, when ¢ = ¢, (see Remark 1.10), we have ﬁl =0, 53 =0, and ﬁlo ={. In the
case where such sets are unambiguous in terms of the values of ¢(x; A\ E), we drop the hat or tilde
notation. However, Us, Uy and U, still require a finer decomposition. Note that generally ﬁ(), 59 =0,
but when boundaries of A and E intersect at more than discrete points, then these sets can be non-empty.
When ﬁﬁ, 59 =0 (such as in Figure 2), we also drop the tilde notation and let Ug = i\lﬁ and Uy = ’[jg.
The claims made here are verified in Appendix A.1.

Having stated our assumptions on ¢, we now turn to proving the first main result. In the following
proposition, we examine the difference in energy between classifiers A and A \ E for A, E € B(R?) when
E belongs to a region where the label 0 is energetically preferable according to the Bayes risk. We refer
to the resulting inequality as the energy exchange inequality because it quantifies the effect of removing
the set E from a classifier A by examining the difference in risks.

Proposition 2.5 (Energy Exchange Inequality). Let ¢ be a deterministic attack function that satisfies
Assumption 2.1, let A, E € B(R?), and assume that wypy — w1 p; > 8 > 0 on E. If J,(A\ E) — J4(A) > 0,
then

Dy(A; E) < Dy(E®; A) — 8LYA N E) 4+ wopo(TUy1) + wi oy (U)),
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0A

0A°®

0A¢

Figure 2. This diagram depicts the U, regions for the attack function ¢. associated with adversarial
training problem (3). The g-perimeter regions of A are shaded blue and purple, whereas e-perimeter
regions of A \ By(R) are shaded pink and purple. Note that some sets, such as U,, are null sets for the

g-perimeter, and so do not appear in this figure.

where U} and U, are defined in Table 1, namely U, = {x € A;)(A) N 1~\g(E) ¢ A\E)=1}and U,, =

{xe A;(A) N A;)(E) o A\E)=1}.
Proof. By (7), we have
Jo(A) = w0 (A U Ag(A)) +wip (AC U A;(A)) >

JoANE)=wopy (A\E)UAYA\E) +wip) ((A\EF UALA\E)).

Based on Remark 2.4 with further details shown in Appendix A.2, we can express A N E and the sets

comprising J,(A \ E) as
ANE=U,UU,UUsUUs,
ASAN\E)=U;UT, U0, UT, UT,,
ALA\E)=TU,UU,UU, U U,
A\E=U,UU,UU, U Us,
(A\E)=UsUU,UUsUUgUU,UU;,UUy; UU,UU;.
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‘We can write the adversarial deficit terms as
Dy(A; E) =wopo(Uyy U Uyp) + wi01(Us U Us), (11)
Dy(E®; A) = wopo(Us U Us) + wy p (U, U Uy).

Then we estimate,

J¢(A\E)—J¢(A) :11)0[)0(U1UUQUﬁgUﬁﬁUU7UU8U(?9Uﬁ10U[/J\11)
+w1p1([71UUQUU;;UU4UU5UU5UU7UU3UU9UU10UU11UU12UU13)
—’LUopo(U1UUzUUgUU4UU5UU@UU7UU8UU9UU10UU11UUlg)
*’wlpl(U5UU(,'UU7UU8UU9UU10UU11UU12UU13)
< wopo(WH UL U Us U Us UL U LK U5 U Do U Tny)
+wip1(U1 U U, UU3 U U, UUs U Ug U Uz U LK U U L U D U Lys U L)

— wopo( U L5 U U3 U Uy UUs UUs UL U LK U (Ug U ) U (U0 U Do) U U U Usa)

—w1p1(Us U Us U U7 U LK U LG U Lig U LT U Uz U Lrs)
< Dy(ES; A) — Dy(A; E) — (wopo — wipr)(AN E) + wopo(Un) + wipy (Uh).

In the last line, the inequality results from neglecting all remaining terms with a negative sign. As
Js(A\ E) — Jy(A) > 0 and wypy — w; o1 > 8 > 0 on E, we estimate

Dy(A; E) < Dy(E% A) — (Wopo — w1 01)(A N E) +wopo(U11) +wip1(Ty)
< Dy(E% A) — LYANE) + wopo(Uyy) +wip1(Uy).
O

Observe that if A € B(R?) is a minimizer of J; for some deterministic attack function ¢, then
J4(A\ E) — J4(A) > 0 for any E € B(R?) and Proposition 2.5 applies. This will be the setting for our
results, although we state the result in its most general form here.

In later energy arguments, it will be helpful to express the difference in classification risks exactly
instead of combining terms to form D, (A; E), D4(E°; A), and LYANE). In Corollary 2.6, we consider
the same computation for J,(A \ E) — J,(A) but now aim to simplify the difference as much as possible.

Corollary 2.6. Let A € B(R?) be a classifier for the generalized adversarial training problem and let
E € B(RY). Then, using the same notation as in Proposition 2.5 and under the same assumptions,

Jo(A\ E) — J4(A) = w1 0,(U, U Uy U Ts) — (wopo — wip)(Us U Uy)
— wopo(Us U U U Uy U Uy U Uy, U Uy).

Proof. Letallsets U,, fj,, ﬁi be as defined in Table 1 and (9). We compute the exact difference in energies
as follows:

Jo(A\ E) — J,(A) = wopo(WH U LK U I U TE U 5 U KU T U Do U DY)
+wio1(U; UU, U Us U U, U KU KU KU LK U U U U U D U D U L)
— wopo(WA U LS U (U3 U DR U U, UUs U (U U ULFULKUO, UTS) . ..
U UK U (U U U Up)
— w1 (KU K U LK U K U LK U Ui U Ut U U U US)
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=w, (U, UU,U U, UT, U U,)
—wopo(U; UU, UUs U U, UU, U U,y U T, UU,)
=w,0(U, U U, UT;) — (wopo — wip1)(Us U Uy)
— wopo(Us U Us U U, U Uy, U U, UU,).
O

In the following pair of corollaries, we will apply Proposition 2.5 to the adversarial training problem
(3) and the probabilistic adversarial training problem (5).

Corollary 2.7. Let ¢ > 0 and ¢ = ¢.. Let A, E € B(R?) such that wopy — wip; > 8 > 0on E and J.(A \
E)—J,(A)>0. Then

ePer,(A; E) < ePer,(E%; A) —8LYANE) + wopo(f]“), (12)
where f]ll ={xeA°NE:dx,A\E) <¢}.

Proof. To prove the corollary, we only need to check that ¢, satisfies Assumption 2.1 (which is done in
Remark 2.3) and to verify that U, is empty. To that end, if x € U,, then

x € AN E° such that d(x, A°) > ¢ and d(x, E) > &,

which in turn implies that d(x,A°UE)>¢. Hence for such x, ¢, (x;A\E)=0 and
accordingly U, = . O

Corollary 2.8. Let ¢ >0, p€ [0, 1), {p..}rere be a family of probability measures, and ¢ = ¢, ,. Let
A, E € B(RY) such that wypy — w10, > 8 > 0 on E and Jop(A\E) —J,,(A) > 0. Then,

ProbPer, ,(A; E) < ProbPer, ,(E%; A) — 8 LYA N E) + wopo(U1) + w1 p1(T)),

where U, ={xeA°NE:P( €eA\E:x ~p,.)>p} and U ={xelA! (A)NA(E):PK e
(A\E) : X ~p.) > p}

Proof. We verified that ¢, satisfies Assumption 2.1 in Remark 2.3. Thus, we can apply Proposition
2.5 to conclude that the energy exchange inequality holds for the probabilistic adversarial training
problem (5). ]

3. Uniform convergence for the adversarial training problem

Before tackling convergence for the generalized adversarial problem (8), we first consider the conver-
gence for the adversarial training problem (3) to understand the results in a more concrete setting. The
results for (3) are also stronger than those for (8) and allow for more straightforward proofs that provide
the basis for our approach in the subsequent section. We will return to (8) in Section 4 equipped with
better intuition and understanding.

In this section, we establish uniform convergence in the Hausdorff metric of minimizers of the adver-
sarial training problem (3) to Bayes classifiers on compact sets as the parameter ¢ — 0*. As previously
stated in Remark 1.2, current convergence results are in the (weaker) L' topology. We begin by stating
a modest assumption we make about the underlying metric space.

Assumption 3.1. For the remainder of the paper, we assume that the metric d is induced by a norm.
Then, LY (By(r)) := wyr for the constant wq = LY(By(1)). Naturally, wq will also depend on the dimen-
sion d, but we suppress this in the notation. Additionally, we will identify the conditional measures in
(4) with their densities, meaning that we can express dp; = p;(x) dx.
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For these norm balls, it will be useful to estimate their e-perimeter. When ¢ <R and py, p; are
bounded from above, this amounts to estimating the volume between two norm balls that are distance
2¢ apart.

Lemma3.2. Ler0 < ¢ < Rfor some fixed R > 0. Suppose p,, p; < M onR. Then, there exists a constant
o > 0 independent of R, €, and x such that

gPer,(By(x, R)) < aR"'c.
Proof. Recall that (4) for A = By(x, R) gives
ePer, (Ba(x, R)) = wopo(Ba(x, R + €) \ By(x, R)) + w1 p1(By(x, R) \ By(x, R — ¢)).
As py, p; are bounded from above by M,
gPer.(By(x, R)) < ML/ (By(x, R+ &) \ Ba(x, R — &)) = M(L"(Ba(x, R + £)) — L'(Ba(x, R — ¢))).

By the scaling properties of the norm ball, £/(By(x, r)) = ws(r)? for all r > 0. By convexity, we

estimate
R+ —R—-e) <dR+e) 2.
As ¢ <R, we conclude
gPer,(By(x, R)) < Mwyd(2R)'2e < aR"'e.
O

Throughout the paper, we will require an upper bound on the e-perimeter of the complement of
By(x, R). By the complement property from Assumption 2.1 (verified to hold for the e-perimeter in
Remark 2.3), the bound given by Lemma 3.2 still holds for ePer,(Bg4(x, R)®) since the same upper bound
is true for py and p,, namely,

ePer,(By(x, R)°) < aR‘ '¢. (13)

With our normed setting clear, we begin the process of proving uniform Hausdorff convergence for
minimizers of the adversarial training problem (3). The first step involves proving a technical lemma
about the interaction between minimizers and sets By(x, R) C {wop9 — wp; > § > 0}. Importantly, this
means By(x, R) N Ay, = () for a Bayes classifier Ay, which can help us relate minimizers of the adversarial
training problem to Bayes classifiers. By applying a slicing argument, we will show that minimizers are
disjoint from By(x, R/2¢t).

Lemma 3.3. Ler A € B(R?) be a minimizer of the adversarial training problem (3) for ¢ > 0. Suppose
there exists x e RY and R >0 such that wypy — w,p; > 8 >0 on By(x,2R) with py, py <M on R
Then, there exists a C > 0 independent of R, 8, s, and x such that if £ < min {R/2d+2, CR&! } then
AN By(x, R/2 = 0.

Proof. Fix ¢ > 0. Choose a coordinate system such that x = 0 and write B4(0, R) = B4(R). For the sake
of contradiction, suppose there exists z € A N By(R/2¢™"). Then,

LYUA® N By(R/2%) = L7 (By(e)) = wqe”. (14
Corollary 2.7 shows for » <R,
ePer,(A; By(r) < ePer,(By(r)®; A) — 8 LA N By(r)) + wopo(Un1)
with i\]” C A.(By(r))NA® and wo,oo(f]].) < gPer,(By(r)°; A®).
In particular, using the fact that w0y > § in By(R), we obtain

LAANANBy(R)) < %po((Ag \A) N By(R))

Per,(A; By(R)) < gPerg(Ba(R)C;A) — LUANBy(R) + %Po(ﬁn)-

=

[STRING)
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Rearranging and applying the bound w, po(f/“) < ePer,(B4(R)%; A®), we estimate
£ Wo o~
LA N By(R) = SPer(Bu(R); A) + == po(Th)

2¢
< ?Perg(Ba(R)%AS)

d—1

<2« & (15)

with the last inequality due to (13). Note LY (A® N B4(r)) < 2« %8 forO0<r<R.
Using that p,, p; are bounded from above by M, we estimate

L&)-1 L&)-1
Z LYA° N By(R/2 + 2ke)) < Z %Perg(Bd(R/Z + 2ke)%; A)
k=0 k=0

LR )-1

< 20 LA O BUR/2 2k De)\ BR/2 + 0k~ Do)
k=0

d—1

oM,
< S LUATNByR) < daM e

82
thanks to (15).

In particular,
d—1

52 E.

R| e M,
. mkm LYA* N By(R/2 + 2ke)) < Tﬁ (A* N By(R)) < 4aM
£

Ife <R/8sothat |[£] > X — 1> & then by letting 5, = R/2 4 2ke achieve min, L*(A* N By(R/2 +
2ke)), we then obtain
d—2

LYA® N By(sy)) < 32aM &%

82
Then, repeating the same construction at the scale R/2', i > 2, we find

88 i+3

R/2!
as long as & < 5% (that is, i <log, (4%))'
For i =d, it follows

LA N By(s:) <

2M 25 M
— LUA* N By(siy)) < LY(A° N By(s;-1))
) Rée

o (8Me\"!
LA N By(sy)) < 2Xin! (R—;) LA N By(s1))

d—1 _
< U5+ (M8> amt—

RS 52
Hence,
dgpe d@ED 13441 d gt
LA° N By(s,)) < 2% oM o
Letting C,y, := 24531 gy M we conclude if & < min{R/2*?, w,C;! R}, then
C
LYA" N By(R/2%)) < LUA° N By(sy)) < dec:I e < wye!
which implies that A N By(R/2¢") = @ by (14). O

Remark 3.4. In Lemma 3.3, we can slightly relax the assumption that A is a minimizer as follows:
Recall that we assume wypy — wip; > & > 0 on By(x, 2R). If we have that J,(A \ By(x, 1)) — J.(A) > 0 for
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all r such that R/2t* < r <R, then the energy exchange inequality (12) still holds and the same proof
for Lemma 3.3 shows that A N By(x, R/2%T") = 0.

We now aim to directly relate minimizers of the adversarial training problem (3) to Bayes classifiers.
Recall that the maximal and minimal Bayes classifiers (2) are given by
AP = {x € R :wypo(x) < wip1(0)}, Aé,“i“ ={x e R : wopo(x) < wip(x)}.

We will not be assuming that A7*™ and AT™ coincide up to a set of p measure zero unless explicitly stated.

We will now show that on a compact set, we can ‘corral’ the minimizer of the adversarial training
problem (3) by any distance 1 > 0, in the sense that it must lie between the n-dilation of A" and the
n-erosion of A7™ when ¢ is small enough.

Lemma 3.5. Let Aj™ be the maximal Bayes classifier. Suppose that py, p, are continuous and bounded
from above on R?, and let n > 0. Then for any compact set K C RY, there exists an &, > 0 such that for
all0 < e < g,

[AE n K] c [(A(‘}“‘X)” N K]
where A, C R? is an arbitrary minimizer of the adversarial training problem.

Proof. For convenience, we abuse notation and let Ay = A7**. Assume that (Ag)° N K # @ as otherwise
the result is trivial. The conditions are also trivially satisfied if wyp, — w, p; never changes sign. This is
because, for all € > 0, either Ay =A, = if wopy — w1 p; > 0 on R?, or A, = A, =R otherwise.

Fix > 0. Let R= 1. Observe that Af N K2 is compact and A, C AR, Then, by the continuity of

Wo0o — W01 On A_g N K2R, there exists a § > 0 such that
[E5 mﬁ] c [Xgmﬁ]
where E; = {x € R?: wypo(x) — wy0,(x) <8}. This implies [Eg ﬂﬁ] D [(A_ff) N ﬁ], SO Wypp —

—\C ___ —\ ¢ —
wip; >8>0 on (Ag) N K2k In particular, as (A)°NK C [(AOR) N KZR], the difference in densities

Wopo — wipp > 8 on (A))°NK.

Take x € (A;)° N K. Observe that By(x, 2R) satisfies the conditions of Lemma 3.3 for § as determined
previously. Take &, = min {R/2"+2, CRS§! } for C is independent of R, §, ¢, and x. Let ¢ < g, and let A,
be a minimizer of the adversarial training problem (3). Then, A, N B(x, R/2") =@ forall x € (Aj)° N K,
which implies that A, N (4])° N K = @. Thus, we conclude

[AE m(] c [Agmk].

Remark 3.6. The only place where we use the compactness assumption in Lemma 3.5 is to determine
8 from n by the continuity of wypy — w0, a compact set.

The proof established that minimizers A, of the adversarial training problem (3) can be corralled by
the maximal Bayes classifier. We can also corral A, by the minimal Bayes classifier as follows: Consider
interchanging the densities so data points x are distributed according to 0, = p, and p; = p,. We can
apply Lemma 3.5 to the minimizer ZS = (A,)° of the interchanged problem. We can conclude that for all
compact sets K C R? and n > 0, there exists an &, > 0, such that

[(A{,“‘“)’” N K] - [Ag N K]

for all ¢ < &,. This means that we have a two-sided, or corralling’, bound on our minimizer for & small
enough, namely

[(A{)"i")‘” N K] c [AE n K] - [(A{)"“X)” N K].

https://doi.org/10.1017/50956792525100223 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792525100223

18 R. Morris and R. Murray

The corralling argument will allow us to examine the Hausdorff distance between Bayes classifiers
and minimizers of the adversarial training problem (3) as the adversarial budget decreases to zero. To
begin, we recall the definition of the Hausdorff distance.

Definition 3.7. The Hausdor{f distance between two sets A, E C R? is given by

dy(A, E) := max {sup d(x, E), sup d(x, A)}

xeA xeE

for a metric d on RY. Furthermore, dy is a pseudometric on B(R?).

Remark 3.8. [f dy(AT™, Al™) = 0, then for any n > 0 and compact set K C R, there exists an gy > 0
such that

[(AO)‘” n K] - [Ag N K] c [(Ao)” N K]
for all € < ¢y and for A, the unique Bayes classifier.

We now have the tools to show the uniform convergence of minimizers A, of the adversarial training
problem (3) to the Bayes classifier Ay. To begin, we prove the more general version of the result when
the Bayes classifier is not unique up to a set of p measure zero. In this case, we can only show that
lim,_, ¢+ A, must be corralled by the maximal and minimal Bayes classifiers.

Theorem 3.9. Suppose p,, p; are continuous and bounded from above on R®. Let {A,},-, be a sequence
of minimizers of the adversarial training problem (3) for ¢ — 0F. Then, for any compact set K C R,

lim dy((A. UAF™) N K, A7 NK)=0 and lim dy((A, NAJ™) N K, A}™ N K) =0.
e—0 e—0

Proof. Let K be a compact set. Observe that AJ™* C A, UAJ™, so
dy((A, UAF*)NK, Ay NK)= sup  d(x,Ay™ NK).

XE(AUAT™)NK

For the sake of contradiction, suppose this quantity does not go to zero as ¢ — 0". Then, there exists an
n > 0 such that for all g, > 0, there exists an 0 < & < g, such that

sup  d(x,A;"NK)>n.

XE(AUADT)NK
However, this contradicts Lemma 3.5. Thus, we conclude

glirgl+ dy((A, UAT) NK,A™ NK)=0.
As A, NAJ™ C AP, an analogous argument proves that

F1_1)%1+ du((A, NAT™ N K, A7 NK) =0.

O
Corollary 3.10. Suppose that dg(AF™, Ap™) = 0. Then under the same assumptions as Theorem 3.9,
Flirgl dy(A, NK,A)NK)=0

for Ay the unique Bayes classifier.

Proof. This follows from Theorem 3.9 as the result of Lemma 3.5 simplifies when du(Aj**, Ag™) =0
as described in Remark 3.8. O

In the case where d(A7™, Ay™) = 0, it is natural to consider rates of convergence. In order to obtain
such rates, we introduce the following assumption:

Assumption 3.11. The level set {wyp, = w,p,} is non-degenerate, meaning that wyp, — w, p, € C'(R?)
and [woV po —w V| > a > 0on {wypy = w, p,} for some constant «. In this case, Bayes classifiers are
unique up to a set of L* measure zero and dy(A7™, AT™) = 0.
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Now, we establish the convergence rate for minimizers of the adversarial training problem (3) to
Bayes classifiers under this non-degeneracy assumption.

Corollary 3.12. Suppose Assumption 3.11 holds and that py, p, are continuous and bounded from above
on R?. For any compact set K C RY, there exists a constant C > 0 such that

dyA.NK, A NK
lim sup (A 0 )SC

1
e—0t g2

where A, is the Bayes classifier.

Proof. Consider a sequence {1;};cx Where n; > 0 and »; — 0*. Define &; = min{Cn,, Cr;,-(S;*'“} based on
the requirements on ¢ from Lemma 3.3 with R = n; and the continuity bound § = §; from Lemma 3.5.
In this proof, C is a constant always independent of 7, &;, and §; that we will allow to vary throughout
this proof.

As wopy — wip; € C'(R?Y) and its gradient is bounded away from 0, the boundary 84, = {wyp0, =
wip;} is a C' surface by the implicit function theorem, and hence the Hausdorff distance between the
minimal and maximal sets is zero. Furthermore for n; < 1, §; is the same order as 7;, which implies
g =Cn'.

For each ¢;, let A,, be the associated minimizer of the adversarial training problem (3). By Theorem 3.9
along with Remark 3.10, for any compact set K C R? we have that

1
duy(A, NK,A)NK) <n; =Ce/".

Thus, we conclude that

dy(A, NK,A)NK
lim sup a(As ; 0 ) <C.
&—>01 Sm

O

Remark 3.13. Although we have shown the convergence rate to be at most 0(8#2), we expect that the
convergence rate is actually O(e) (see the formal asymptotics near € = 0 derived by [16]). The reason
we get the convergence rate e js from the 8! that appears in our bounds for €. In Lemma 3.3, this
term comes from the iterative argument that often employs crude volume bounds. More precise estimates
would be required to improve the convergence rate.

4. Uniform convergence for other deterministic attacks

Now, we will turn our focus to the generalized adversarial training problem (8). At the end, we will
present the results for the probabilistic adversarial training problem (5) as an example of our results for
(8). Unlike the case of the adversarial training problem (3), existence of minimizers to (8) is an open
question, and in this case, our convergence result can be understood in the spirit of ‘a priori’ estimates
in partial differential equations. First, we will make it precise which deterministic attack functions we
consider.

Definition 4.1. A deterministic attack function ¢ is metric if an adversary’s attack on x only depends
upon points within distance ¢ of x for some adversarial budget ¢ > 0. More precisely for two classifiers
A, A € B(RY),

AN By(x,6) =ANBy(x,6) = ¢(x;A) = p(x; A).

To avoid a trivial situation where x is always attacked independent of the choice of A, we assume the
adversary has no power, meaning ¢(x; A) =0, if A= or A =R when ¢ is a metric attack function.
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In the following pair of lemmas, we will show two important properties of metric attack functions.
The first will allow us to relate D, with ePer, and provides an upper bound on D, by ePer,. This will
allow us to employ many of the estimates of ePer, from Lemma 3.3 in Lemma 4.6.

Lemma 4.2. Let ¢ be a metric deterministic attack function. For any set A, E € B(R?), we have that
Dy(A) < ePer.(A) and Dy(A; E) < ¢ePer.(A;E).

Proof. It will be sufficient to show that A;(A) C AL(A). Take x € AZ(A). If we consider A = @, the metric
property states

ANBy(x,e) =¥ = ¢p(x;A) = p(x;0) =0.
For x € A°, AN By(x, &) # ¢ implies x € A° \ A = AY(A). Thus, we conclude A}(A) C AY(A). A similar
argument with A = R shows that A}(A) C A[(A). O

We now prove a second property of metric attack functions, which isolates where the values of ¢(x; A)
and ¢(x; A \ E) may differ.

Lemma 4.3. Let ¢ be a metric deterministic attack function. For sets A, E € B(R?), if x € (E*)°, then

¢(x;A) =p(x; A\ E).

Proof. Suppose x € (E°)°. Then, B(x, ¢) C E° and so AN B(x, ) = (A \ E) N B(x, ). Hence, the metric

property then implies that ¢(x; A) = ¢(x; A\ E). O
We require one additional assumption on a metric attack function ¢ in order to prove the generalized

version of Lemma 3.3. Namely, if the size of the intersection of By(x, ¢) with the opposite class of x
satisfies a lower bound, then x € A 4(A).

Assumption 4.4. Let ¢ be a metric deterministic attack function with budget ¢ > 0. For a classifier
A € BRY), we assume:

x € A® and LY (AN By(x,¢)) > Be! = x ¢ Ag(A)’

x €A and L'(A° N By(x, 8)) > Be’ = x € Ay(A),
for some constant 0 < B < wy independent of x, €, and A.

As a consequence of this assumption, we have if x € ZN\g(A), then £4(A N By(x, €)) < Be’. Likewise,

ifxe A;(A), then £4(A° N By(x, €)) < B&“. Furthermore, if Assumption 2.1 also holds for ¢, then only
one of the two lower bounds needs to be assumed, as the other follows by the complement property.

Remark 4.5. This assumption states that a point x € RY is attacked if the portion of its e-neighbours
with the opposite label is on the order of €°. In this way, the deterministic attack function depends on
the adversarial budget & and the metric.

Observe that the adversarial training problem (3) satisfies Assumption 4.4. In fact, it satisfies the
statements

x€ AYNA) < x€A® and AN By(x, &) # 0,
x€ANA) < xeAand A° N By(x, &) # 0.

In Proposition 4.15, we will verify that the probabilistic adversarial training problem (5) also satisfies
Assumption 4.4.

In order to show uniform convergence for the generalized adversarial training problem (8), we first
prove the analogue of Lemma 3.3 by a similar slicing argument. We leverage the relationship between
the adversarial deficit and the e-perimeter established in Lemma 4.2. However, there are a few key
differences in both the results and the proof. Whereas in Lemma 3.3, we show that minimizers of the
adversarial training problem (3) are disjoint from certain norm balls that are misclassified, we show that
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the intersection of minimizers of (8) with a misclassified norm ball must have £¢ measure zero. In this
sense, we establish a necessary condition for minimizers of (8). As for the proof of the statement, the
final step differs significantly between Lemmas 3.3 and 4.6. In final step of Lemma 3.3, we are able to
use the fact that a single point causes misclassification on the order of ¢“. For the general case, the lower
bound on the £? measure condition for misclassification from Assumption 4.4 requires a more delicate
energy argument that examines the exact difference in energies.

Lemma 4.6. Let ¢ be a metric deterministic attack function for ¢ > 0, satisfying Assumptions 2.1 and
4.4. Suppose py, py are continuous and bounded from above on R®. Furthermore, suppose A € B(R?) is
a minimizer of the generalized training problem (8) and there exists x € R? and R > 0 such that wyp, —
w101 > 6 > 0 on By(x, 2R). Then, there exists a constant C > 0 independent of R, 8, €, and x such that if
¢ <min {R/2%*?, CR§*'}, then L(A N B(x,R/2"+?)) =0.

Proof. Choose a coordinate system such that x = 0 and write B4(0, R) = B4(R) with x as in the statement
above.

We will first find an initial estimate for £/(A N By(R)). As A is a minimizer and wypy — w;p; > 8 >0
on By(R), we can apply Proposition 2.5 to find that

Dy(A; B4(R)) < Dy(By(R)%; A) — 8 LA N By(R)) + wopo(Uyy) + wi py(Uy) (16)
where
U ={xe AyA)NAYBy(R) : p(x; A\ By(R)) =1},
Ui = (xe AYA) N ALBIR)) : p(x; A\ By(R) = 1.
By (11), we have wopo(ﬁll) < D4(A; B4(R)). Combining the upper bound on wopo(?j”) with (16) and
simplifying, we find
d l c wi -~
LYANByR)) < ED:p(Bd(R) ;A) + ?pl(UI)
Recall that by definition, /Ul CA rl B4(R)°. Additionally by Lemma 4.3, ﬁl CBy(R+¢)as ¢p(x; A\
B4(R)) =1, while ¢(x; A) = 0. Thus, U; CAN(By(R+ €) \ By(R)). In particular,
Wlpl(ﬁl) <wip1(AN(By(R+ ) \ By(R))) < ePer,(By(R)*; A).
Additionally, by Lemma 4.2, we have D, (B4(R)%; A) < ePer.(B4(R)°; A). Applying (15) from Lemma 3.2,

d—1

d l c. ﬁ 77 % c.
LYANBy(R)) < 8D¢(Bd(R) ;A) + 3 ,Up) < 6<‘?Pel"s(Bd(R) ;A) < €

for « independent of R, &, €, and x as in Lemma 3.2.
Next, we want to find a radius s, € (R/2, R) that will give an order &2 estimate for £%(A N By(s,)). For
r <R, one has

LA N By( 2 °;
a(r) < SePers(Bd(r) ;A).

We can argue by a discrete slicing argument like in Lemma 3.3 to show that there exists an s, € (R/2, R)
such that

d—2

&2

d g C.
LYAANBy(s1) < 88PerE(Bd(Sl) ;A) <32aM

82

Iterating the argument as in Lemma 3.3 yields an order &' estimate of L£/(A N By(s;)) for s; €
(R/2,R/27 ") and 2 <i <log, ({) (i.e. & < 5%5). After d iterations, we find

— Qit2

C
LYANBLR/2Y) < (ﬁ) e,

d(d+1)
where C,,q := 272 T lgMme,
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Finally, we must show that £/(A N B(R/2"?)) =0. Let z € AN By(5+ + ¢). We must consider a
region slightly outside of B4(R/2¢*") as the following argument needs to apply all points in the e-dilation
of B4(R/2%"). We want to show that z € A;(A). To do so, by Assumption 35, it will suffice to show that
if z€ A, then LY(A° N B(z, €)) > Be’.

Recall the estimate from the previous steps, £/(A N By(R/2%)) < (%) g™, As long as (%) £ <

(wq — B), or in other words ¢ < (wq — B) (’?::ll) := C, then we have

LUANBy(R/2) < (w4 — P’
where 8 is the constant from Assumption 4.4. Then, as By(z, €) C By(R/2¢), we estimate
LUANBy(z, 8)) + LYA° N By(z, £)) = wge’ = LA N By(z, ¢)) > B’

Hence, z € Aj(A). In particular, this means that A/N\‘;(A) NBy(5er +&)=1.

We will now examine the difference in energies after removing By(R/2¢t!) in order to show that
we must actually remove By(R/2¢?) in order to achieve £4(A N B4(R/2%"%)) = 0. By Corollary 2.6, the
difference in energy after removing the set E = B4(R/2¢*") from A is

Jo(A\ Ba(R/241)) — J4(A) = wyp,(Uy U Uy U Us) — (wopo — wi o1 )(Us U Uy)
- WOPO(US U 66 U 69 U ﬁ10 U a11 U U),

where all sets are as defined in Table 1 and (9). By construction,

~ —~ ~ R
[U,VUU,UU;s] C [A;(A) N By <% + s)} .
However, we have just shown that A é(A) N Bd(% + &) = . Thus, we conclude that f]l =U,= l73 =0.
As wopo — wip; > 8 > 0 on By(R/24"), the difference in energies becomes

Jy(A \Bd(R/2d+])) —Jy(A) = —(wopo — Wlpl)(ﬁ3 U U,) — wopo(Us U lN]ﬁ U 59 U f]w U 511 UUp,)
< —8LUU,UUy) — 8L UsUTs WU, UU,,UU,, UU,)
<0.

By our assumption, A is a minimizer, so J4(A \ B4(R/2*")) — J;(A) = 0. This means all remaining sets
must have measure zero, i.e.

L(Us) = LUU) = L9Us) = LY Ug) = LYUs) = L Uo) = L4U1) = LU12) =0.
Recall from (10) that A N By(R/24t") = U; U U, U Us U Ug. We have already shown that Us = U, U

U,, U, and Us all have measure zero. However, we notice that U C B(3#5 + &) \ B(zir — ¢), and so we
can conclude that £LY(A N B(587 — ¢)) =0.
Then combining with the facts about U,, U,, and U;, we then get that for any s < zt,% — & we have

that A \ B,(s) is a minimizer of (8) and that A N By(s) has measure zero. O

Remark 4.7. As stated at the end of the proof, A\ By(x, R/2%?) is also a minimizer of (8). In addition
to providing a necessary condition for minimizers, Lemma 4.6 also gives a construction for a minimizer
that is disjoint from By(x, R/2%?).

Considering the assumptions, we cannot relax the assumption that A is a minimizer to J,(A\
By(x, 1)) — J4(A) >0 as we could for Lemma 3.3 (see Remark 3.4). Although the energy exchange
inequality will still hold, we require that A is a minimizer of (8) to show L(A N By(R/2%"*)) =0.

Assuming a minimizer to (8) exists, Lemma 4.6 allows us to show that minimizers are (a.e.) disjoint
from certain sets where it is energetically advantageous to be assigned label 0 by the classifier. In Lemma
4.8, we will use this result to show that for a prescribed distance n > 0, there exists a minimizer of (8)
that can be corralled to be within distance n of any Bayes classifier for all &£ smaller than some threshold.
This is the generalized version of Lemma 3.5. As we cannot expect minimizers of (8) to be sensitive
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to modification by a £ measure zero set, we do not expect arbitrary minimizers to have this property.
However, from an arbitrary minimizer, Lemma 4.8 provides a method to construct a £¢-a.e. equivalent
minimizer that does satisfy this distance condition.

Lemma 4.8. Let AT be the maximal Bayes classifier, i.e. AT = {x € R : wyp(x) < w, p1(x)}. Suppose
00, 1 > 0 and continuous and bounded from above on R. Let K be a compact set and fix n > 0.
Then, there exists an &, > 0 such that for any 0 < ¢ < g, and deterministic attack function ¢ satisfy-
ing Assumptions 2.1 and 4.4 for adversarial budget € such that for any minimizer A, , of the generalized
adversarial training problem (8) there exist a L measure zero set N™™ € B(R?) such that

[\ N K] [ag=y 0]

Furthermore, A, s \ N™ is also a minimizer of (8).

Proof. We will follow the proof of Lemma 3.5. We again abuse notation and let A, = Aj"**. Assume that
(A))° N K # @ as otherwise the result is trivial. The conditions are also trivially satisfied if w0, — w0,
never changes sign.

Let R= 1. By the same argument as in Lemma 3.5, the continuity of w0, — w;p, on the compact

J— _ — \ C -
set AR N K2R allows us to conclude that there exists a § > 0 such that wypy — w0, > 8 on (Aff) N K2k
and (A))°NK.

As (A)° N K is compact, there exists a finite covering of (A7)° N K by {By(x;, R/2%"*)}<i<, for some
n € N such that

| B 2R) [Eg N ﬁ]
i=1

where E; = {x € R? : wy00(x) — w; p1(x) < 8}. Hence, each By(x;, 2R) satisfies the conditions of Lemma
4.6 for é from the continuity bound. As the constant C from Lemma 4.6 is independent of x, we can let
g0 =min {R/2*?, CRs**'}.

Suppose A, , is a minimizer of the generalized adversarial training problem (8) for some 0 <& < ¢,
and let N™> = | J_, [A. 4 N By(x;, R/2¢7)]. Then,

Ll (U [A.y N By(x,, R /2”2)]) <D LA N Bu(xi, R/2)) =0,

i=1 i=1

so N™* is a £¢ measure zero set. By Remark 4.7, an iterative application of Lemma 4.6, removing one
norm ball at a time, ensures that A, , \ N™ is a minimizer of (8). Furthermore, [A,, \ N™] N [(47)° N
K] =0 by construction which implies

[(AM, \N™) N K] c [Ag N K].

O

Remark 4.9. In Lemma 4.6, we require compactness both for the continuity argument and for the finite
covering argument to ensure that we are removing a set of L measure zero. Compare this with Lemma
3.5 and Remark 3.6.

We can analogously show that (up to a set of £¢ measure zero) we can corral A, 4, by an 5-erosion of
the minimal Bayes classifier A7™ by considering the flipped density problem. We can apply the result
from Lemma 4.8 to conclude that on a compact set K C R? for a fixed n > 0, there exists a &, > 0 such that
for 0 < ¢ < ¢, and a deterministic attack function ¢ with adversarial budget ¢ satisfying the appropriate
assumptions, then for any minimizer A, , of (8) there exist a £¢ measure zero set N™® such that

[ nk]c @, unnk].
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Observe that by construction N™ C AS and N™" C A, so the two sets are disjoint. Like in the previous
case, this establishes a two-sided, ‘corralling’ bound on any minimizer for ¢ small enough, namely,

[z k] ¢ [@e N v K] < [@py nk ]

Remark 4.10. If the Bayes classifier is unique in the sense of Remark 1.1, then for any n > 0 and
compact set K C RY, there exists an g, > 0 such that for all 0 < ¢ < g, and ¢ satisfying Assumptions 2-1
and 4.4 for adversarial budget ¢,

I:(AO)*'I N K] C [(ASJ# UNmin \Nmax) N K] C I:(AO)TI N K],
provided that A, ;4 exists.

Following the sequence of proofs in Section 3, we will now use the corralling result from Lemma
4.8 to examine the distance between minimizers of the generalized adversarial training problem (8)
and Bayes classifiers. The next theorem is the generalization of Theorem 3.9 and establishes uniform
convergence in the Hausdorft distance. As previously stated, there is currently no proof of existence for
minimizers of (8), so this result should be seen as a type of a priori uniform convergence estimate.

Theorem 4.11. Let ¢ be a deterministic attack function satisfying Assumptions 2.1 and 4.4. Suppose
Po, 1 are continuous and bounded from above on RY. Additionally, suppose {A,, 4}icx is a sequence of
minimizers of the generalized adversarial training problem (8) with &; — 0% as i — oco. For any compact
set K CRY, there exist sequences {N™};cw and {N™},cn of L measure zero sets such that

lim dy (A6 \ N UAT*)NK,Af* NK) =0
and

lim dyy (A, s UNT™ NAT™) VK, A" N K) =0,

Proof. The proof is identical to that of Theorem 3.9, where N™* and N/™" are as defined in the proof of
Lemma 4.8. O

Corollary 4.12. If the Bayes classifier A, is unique in the sense of Remark 1.1, then under the same
assumptions as Theorem 3.9,

lim dy((A., s UNP" \N"™)NK,A;NK)=0.
Proof. This follows directly from Theorem 4.11. O

Recall that Assumption 3.11 is a non-degeneracy assumption on the Bayes classifier A, that ensures
that d(AF™, Ap™) = 0 and that A, is unique up to a set of £ measure zero. If we assume that the Bayes
classifier is non-degenerate, then it becomes natural to examine the rates of convergence.

Corollary 4.13. Let ¢ be a deterministic attack function satisfying Assumptions 2.1 and 4.4. Suppose
Assumption 3.11 holds and that for every ¢ > 0, there exists a minimizer A, , to the generalized adver-
sarial training problem (8). Additionally, suppose p,, p; are continuous and bounded from above on R?.
For any compact set K C R, there exist sequences {N™},cy and {N™}cx of L measure zero sets and
a constant C > 0 such that

du(Asp UNT™ \N™) N K AN K) _
p <

lim su ; C
i—00 g_m
where A, is the Bayes classifier.
Proof. This proof is identical to that of Corollary 3.12. 0

Remark 4.14. As in Lemma 3.12, we expect that the convergence rate for minimizers of the general-
ized adversarial training problem (8) should be improved to O(g), but this would require more refined
estimates than those available in Lemma 4.6.
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4.1. Application to the probabilistic adversarial training problem

We now turn our attention to the probabilistic adversarial training problem (5), which we will view
as an instance of the generalized adversarial training problem (8). In order to apply the results for
(8) to (5), we must verify that Assumptions 2.1 and 4.4 hold. In Remark 2.3, we established that (5)
satisfies Assumption 2.1; thus, it only remains to show in the following proposition that (5) satisfies
Assumption 4.4.

Proposition 4.15. Let ¢ >0, p€ [0, 1) and {p,.}.cre be a family of probability measures satisfying
Assumption 1.3. The deterministic attack function ¢., associated with the probabilistic adversarial
training problem (5) satisfies Assumption 4.4.

Proof. Suppose x € A® such that £/(A N Bu(x, €)) > Be? for some B > 0 to be determined. It will be
sufficient to show that P(x' € A : x' ~ p,.) > p. Recall that we can express

IP’(x/eA:x’pr,s)=/ d]lA(x)“E( ul ) dx’
Re €

/
X —X
= f g™ ( ) dx’
ANBy(x,e) &

> ce 'LYUANBy(x, ¢))

where ¢ > 0 is the lower bound on & from Assumption 1.3. If § =2, then P(x € A:x' ~p,,) > p as
desired. As the probabilistic adversarial training problem 5) satisfies the complement property, this is
sufficient to conclude that Assumption 4.4 holds for g = . O

Since the probabilistic adversarial training problem (5) satisfies the requisite assumptions, we can
state the following convergence result.

Theorem 4.16. Suppose py, p, are continuous and bounded from above on RY and fix p € [0, 1).
Additionally, suppose {A.,,}ien is a sequence of minimizers of the probabilistic adversarial training
problem (5) with ¢; — 0" as i — oco. For any compact set K C RY, there exist sequences {N™"},cx and
{N™},cn of measure zero sets such that

lim dy (A, \ N™) UAF™) N K, AP NK) =0
and
}EE; dy((A.,, UN™NAT NK,A7" NK) =0.
When Assumption 3.11 holds, Theorem 4.16 asserts that
,lir?c (A, UNM \N™)YUA) NK,ANK)=0
where A, is the unique Bayes classifier. Applying Corollary 4.13 in this case, we find that the minimizers
for the probabilistic training problem (5) converge to the Bayes classifier at the rate O(e 7).

We conclude the discussion of the probabilistic adversarial training problem (5) by commenting on
why this result fails to extend to the W-perimeter problem mentioned in Remark 1.4.

Remark 4.17. Recall that [4] considers the ¥ adversarial training problem
inf Eq,-,[|14(x) — y|] 4+ ProbPery(A) a7
AcB®R!

where the \V-perimeter is given by

ProbPery(A) := /

AC

V(PQ € A:x € p))dpy(x) + / V(PK €A®:x € p))dpi(x)
A

where W : [0, 1] — [0, 1] is concave and non-decreasing. As opposed to the probabilistic adversarial
training problem (5), the existence of minimizers to (17) has been established.
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However, notice that the V-perimeter cannot be expressed as wypo(AY(A)) +wip1(ALA)) if W is
concave and non-decreasing as indicator functions are not concave. The \V-perimeter is an example
of a data-adapted perimeter from the literature that cannot be represented via the deterministic attack
framework. At present, whether the energy exchange inequality holds for the \V-perimeter remains an
open question and proving this inequality for the V-perimeter would be a promising first step towards
showing uniform convergence of minimizers of (17).

5. Conclusion

In this paper, we developed a unifying framework for the adversarial and probabilistic adversarial train-
ing problems to define more generalized adversarial attacks. Under natural set-algebraic assumptions,
we derived the energy exchange inequality to quantify the effect of removing a set where a given label
was energetically preferable from a minimizer. Utilizing the energy exchange inequality to show that
there exist minimizers disjoint from sets where the label 0 is strongly preferred energetically, we then
proved uniform convergence in the Hausdorff distance for various adversarial attacks. This significantly
strengthens the type of convergence established via I"-convergence techniques [7], as well as generaliz-
ing it to a broader class of adversarial attacks. Finally, we derived the rate of convergence based on our
proof techniques.

There are various future directions of research suggested by our results in this paper. First, the uniform
convergence results increase the information that we have about minimizers and sequences of approx-
imate minimizers. That information may be useful in establishing regularity results about minimizers,
for example, in the case of the adversarial training problem (3), or may provide helpful information for
proving existence in the generalized case. A different avenue of research to pursue would be to sharpen
the convergence rates found in this paper by improving estimates from Lemmas 3.3 and 4.6 to determine
whether the formally derived rate of O(¢) can be achieved. Finally, one could consider how to expand
the theoretical deterministic attack function framework to encapsulate other types of adversarial training
problems, such as W adversarial training problem (17).
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Appendix A
A.l. The U sets for ¢,

In Remark 2.4, we claim that further conclusions about the U sets may be drawn when ¢ = ¢.. We will
now verify these claims. We consider only the cases where whether the entire set U, is attacked cannot
be unambiguously determined by A-monotonicity (see Table 1). In all of the following cases, we assume
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0A

0A®

Figure Al. A degenerate example where Us and Uy are neither solely attacked nor unattacked sets.
The example arises because the boundaries of A and B4(R) coincide. The pink and purple sets represent

the e-perimeter regions of A, whereas the blue and purple regions represent the e-perimeter regions for
A\ By(R).

that the interaction of A, E is nontrivial in the sense that A N E and A° U E are both nonempty. Otherwise,
the following sets will either be empty themselves or we trivially find d(x, ) = co.

Proposition A.1. Let ¢ = ¢, and A, E € B(R?). Then, U, = #.

Proof. Suppose x € U; C AN E°. By construction, we have d(x, A°) > ¢ and d(x, E) > ¢. This implies
that d(x,A° UE) =d(x, (A \ E)°) > ¢ as well. Thus, U, = (. O

Proposition A.2. Let ¢ = ¢, and A, E € B(RY). Then, U = §.
Proof. Suppose x € U; C AN E. By construction, we have d(x, A°) > ¢ and d(x, E°) < . As d(x, A®) >

&, B(x, &) C A. Furthermore, as d(x,NEC) <&, B(x, &) N E® # (. Thus, there exists somey € B(x, &) N E° C
ANE®. Hence, d(x,A\E) < ¢, so Uy ={. O

Proposition A.3. Let ¢ = ¢, and A, E € B(RY). Then, Uy, = 9.

Proof. Suppose x € Uy, By construction, we have d(x,A) < ¢ and d(x, E) > ¢. Asd(x, E) > &, B(x, ) C
E°. Furthermore, as d(x,é) <e¢&, B(x,e)NA#£@. Thus, there exists some y € B(x,e)NA CANE°.
Hence, d(x, A\ E) <¢, soUjy=0. 0O

As for Ug, Uy and Uy, we can make no determinations about whether all points in these sets must be
attacked or not. Figure 2 shows an example where U, must be split into attacked and unattacked subsets.
In special cases where the boundaries of the sets A and E coincide, Uy and U, may also need to be split
into attacked and unattacked subsets (see Figure Al).
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A.2. A-set decompositions

For completeness, we give further details about the decompositions by U sets in Proposition 2.5, namely
Ag(A \ E), A;(A \E),ANE,A\E,(A\E), D,(A; E), and D,(E®; A). Table 1 is reproduced for ease of
reference.

oAg(A \ E) is comprised of all U sets such that U; ¢ A \ E and the points can be attacked by the
adversary for the classifier A\ E. The U; ¢ A\ E are all U sets such that the A-set for A has the
superscript O or the A-set for E has the superscript 1, that is, Us, U,, Us, Us, Us, Uy, Uyy, Uy, and Uy ;.
However, U,, Us, Uj,, and U,; are all unattacked by Table 1. Thus, Ag(A \ E) contains the attacked
subsets of Us, Uy, Uy, U}, and U,,. Hence,

Az(A\E)Zﬁ?,U/(jﬁUagUﬁmUﬁ”

e A (A\E) is comprised of all U sets such that U; € A\ E and the points can be attacked by the
adversary for the classifier A\ E. The U; € A\ E are all U sets such that the A-set for A has the
superscript 1 and the A-set for E has the superscript 0, that is, U;, U, U,, and Us. By Table 1, the
sets U,, U, and Uy are belong entirely to A; (A\E),so A;(A \ E) contains those sets and the attacked
subset of U,. Hence,

ALANE)=U,UU,UU, U U
e AN Eis comprised of all U sets such that the A-sets for A and E both have the superscript 1. Hence,

AﬂE=U3UU4UU5UU6

e A\ E is comprised of all U sets such that the A-set for A has the superscript 1 and the A-set for E
has the superscript 0. Hence,

A\E:UIUU2UU7UU8

e (A\ E)®is comprised of all U sets notin A \ E, or alternatively, all U sets such that either the A-set
for A has the superscript 0 or the A-set for E has the superscript 1. Hence,

(A\E)C:U3UU4UU5UU6UUgUUl()UU“UU]QUU]:;.

e Recall D,(A; E) = wOpO(Ag(A) NE)+ wlpl(A;)(A) N E). The set E can be expressed in terms of
A-sets by E= AL(E)U AL(E). By Table 1,

D¢(A; E) =wopo(Uyy U Uy,) + w1 (Us U Ug).

e Recall Dy (E%; A) = wo,oo(Ad‘,(E) NA)+ wlpl(Ag(E) N A) by the Complement Property of A-sets.
The set A can be expressed in terms of A-sets by A = A}(A) U A;(A). By Table 1,

Dy(E®; A) = wopo(Us U Us) +wy p (U, U Us).
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