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Abstract

Let C:y* =f(x) be a hyperelliptic curve of genus g > 1, defined over a complete discretely valued field K, with ring
of integers O. Under certain conditions on C, mild when residue characteristic is not 2, we explicitly construct
the minimal regular model with normal crossings C/Ox of C. In the same setting we determine a basis of integral
differentials of C, that is an O-basis for the global sections of the relative dualising sheaf wco,-

1. Introduction

The purpose of this paper is to construct regular models of hyperelliptic curves and to describe a basis
of integral differentials attached to them. Moreover, we want these constructions explicit and easy to
compute.

1.1. Overview

To describe the arithmetic of curves over global fields, for example in the study of the Birch &
Swinnerton-Dyer conjecture, it is essential to understand regular models and integral differentials over
all primes, including those with very bad reduction. Constructing regular models of curves over discrete
valuation rings is not an easy problem, even in the hyperelliptic curve case. In fact, there is no practical
algorithm able to determine a model, unless the genus of the curve is 1 or we have some tameness or
nondegeneracy hypothesis.

One possible approach to tackle this problem is giving a full classification of possible regular models
in a fixed genus, as done by the Kodaira—Néron [7, 19] and Namikawa—Ueno [10, 18] classifications
for curves of genera 1 and 2, respectively. However, this strategy seems impractical in general, since the
number of models grows fast with the genus. Recently, new approaches based on clusters [14], Newton
polytopes [1], and MacLane valuations [21], have been developed (see Section 1.5 for more detail).

On one side, clusters define nice and clear invariants from which one can extract information on the
local arithmetic of hyperelliptic curves. Such invariants turn out to be particularly useful from a Galois
theoretical point of view. However, for describing regular models, restrictions on the reduction type of
the curve and on the residue characteristic of its base field [5, 14] need to be imposed. On the other side,
Newton polytopes and MacLane valuations have a potential to solve the problem in general, but the
respective constructions are more algorithmic and so do not give the result in closed form. Furthermore,
they often depend on the chosen equation rather than on the curve itself.

In this paper, we present a new approach that preserves both positive aspects from the above and
provides a link between the two sides. We describe a model from simple invariants defined from what
we call rational cluster picture (Definition 1.10). This object modifies the theory in [14] and appears to be
more suitable for our purpose (see Section 1.3). In fact, the rational cluster picture also carries intrinsic
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connections with the other presented approaches, as it is closely related to Newton polygons and to
degree 1 MacLane valuations (see [3]). When these valuations are enough to describe a regular model
we say that the curve has an almost rational cluster picture (Definition 1.1; see also Corollary 3.29,
Proposition 3.31). It turns out that the approach even works in residue characteristic 2, under an extra
assumption that the curve is y-regular (Definition 1.4). Our main result is:

Let K be a complete' discretely valued field with char(K) # 2, and let K™ be its maximal unramified
extension. Let C/K be a hyperelliptic curve, having an almost rational cluster picture over K. If the
residue characteristic of K is 2, assume that Cy is y-regular. Then via the rational cluster picture we
determine:

(i) the minimal regular model with normal crossings C™®,
(i) a basis of integral differentials of C.

This result applies to a wide class of curves, covering wild cases and base fields with even residue char-
acteristic. For example, if g = 2, then 107 out of 120 Namikawa-Ueno types [18] arise from hyperelliptic
curves satisfying the conditions of our theorem. In addition, the author believes it has a potential to solve
the problem in general. Heuristically speaking, the rational clusters invariants are expected to extend to
general MacLane valuations. This approach could eventually lead to a full characterisation of minimal
models with normal crossings of hyperelliptic curves (over any discretely valued field).

1.2. Main results

We will now present (a simplified version of) the main results of this paper. We will then illustrate them
with an explicit example in Section 1.4.

Let K be a complete discretely valued field of residue characteristic p, with normalised discrete
valuation v and ring of integers Ox. We require char(K) to be not 2, but we allow p =2 and p = 0. In this
subsection we will assume for simplicity that K = K. Extend the valuation v to an algebraic closure
K of K. Let C/K be a hyperelliptic curve, that is a geometrically connected smooth projective curve,
double cover of ;. Let g be the genus of C. Assume g > 1. Fix a Weierstrass equation

C:y* =f(x).
Let 9 be the set of roots of f in K. Thus

fW=¢[]ex-n.

reR
For any r, ¥’ € R, with r # r/, denote by D, - the smallest v-adic disc containing r and 7.
Definition 1.1 (Definition 3.26). We say that C has an almost rational cluster picture if for any roots
r,r € Rwithr #£7, either

(@ D.,NK#Q, or
(b) p>0and|D,, NR| < |v(r —w)|, for some w € K,

where | - |, denotes the canonical p-adic absolute value on Q.

Definition 1.2. A rational cluster is a non-empty subset s C R of the form D N R, where D is a v-adic
disc D={xe K |v(x —w) > p} for some w € K and p € Q. We denote by X the set of rational clusters.

In the following definition we introduce most of the notation and quantities, associated with rational
clusters, needed in order to state our main theorems.

'The assumption on the completeness of K is not restrictive since regular models do not change under completion of the base
field.
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Definition 1.3. For any s € ¥ we say:

5 proper, |s| > 1

s is a child of s, s € Xy and s C s is a maximal subcluster

s minimal, s has no proper children

s libereven, §=. quaors 5 and |8'| even for all children s' of s

Moreover, we write s' < s, or s = P(s'), for a child s' € Xk of s, and r A s for the smallest rational cluster
containing the root r € R and s.
Let X be the set of proper rational clusters. For any s € X, define its radius

0, = max min v(r — w)

weK res
and the following quantities:
b, denominator of p,
€5 V(Cf) + Zrem Prrs
D, 1 if bse, odd, 2 if bse, even
mg (3 - Ds)bs
Ds 1if |s| is odd, 2 if |s| is even
Ss %(|5|/05 +psps - 65)
Ve 2 if |s| is even and €,—|s|p, is odd, 1 otherwise
2 1 if s is minimal and s N K # &, 2 otherwise
52 _65/2 + Ps
Yo 2ifp? =2 and €, is odd, 1 otherwise

Definition 1.4 (Definition 4.10). We say that the hyperelliptic curve C is y-regular if either p #?2 or

D, =1 forany s € X.

Definition 1.5. Lets € X and let c € {0, ..., b, — 1} such that cp, — bL € Z. Define
5={s' € Ty U{o}|s <sand =l —ce, ¢ 27},

where & < s if 5 is minimal and p° = 2.
The genus g(s) of a rational cluster s € Xk is defined as follows:

o If D, =1, then g(s) =0.

5| -

|5| — Zg’<s

o If D, =2, then2g(s) + 1 or 2g(s) + 2 equals A + |5].
Notation 1.6. Letax € Z,, a,b € Q, with a > b, and fix % € Q so that
aa=@>ﬂ>...>ﬂ>nr+l=ab, with | T =1,
d() dl dr dr+l di di+l

and r minimal. We write P'(«, a, b) for a chain of P's (Notation 4.16) of length r and multiplicities
ad,, . .. ,ad,. Denote by P!(a, a) the chain P'(a, a, |aa — 1]/a).

The following theorem describes the special fibre of a regular model of C with strict normal cross-
ings.? It follows from a more general result constructing a proper flat model of C unconditionally

*In this paper a ‘normal crossings’ divisor is not a ‘strict normal crossings” divisor in general (see e.g. [9, Remark 9.1.7]).
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(Theorem 4.18). For the special fibre C™" of the minimal regular model with normal crossings, the
reader can refer to Theorem 4.23, where we also describe a defining equation for all components of
C™ and discuss the Galois action (for general K). Finally, note that all these models are constructed in
Section 5 by giving an explicit open affine cover (see Sections 5.1-5.3).

Theorem 1.7 (Regular SNC model). Suppose C is y-regular and has almost rational cluster pic-
ture. Then we can explicitly construct a regular model with strict normal crossings C/Og of C
(Sections 5.1-5.3). Its special fibre C,/k is given as follows.

(1) Every s € Xk gives a 1-dimensional closed subscheme T, of multiplicity m,. If s is iibereven
and €, is even, then I, is the disjoint union of T' >~ P! and Iy~ P!, otherwise T, is a smooth
geometrically integral curve of genus g(s) (write T - =T =T, in this case).

(2) Every s € g with D, =1 gives (|s| — )_ |s'| +p? —2)/b, open-ended P's of multi-
plicity b, from T,

(3) Finally, for any s € X draw the following chains of P's:

s'€Xk,s' <5

Conditions Chain From To

5 minimal P'(y?, —sY) r; open-ended
s minimal, p°/y? =2 P'(y?, —s%) ry open-ended
s#m Pl(ysvssv Ss —Ps %) Fs_ IﬂI;(s)

5759%, Ps/7/5=2 Pl()/s,ss,ss —Ds %) F; 1_‘l-i—(s)

s=NR P (v, 85) r; open-ended
s=R, p./y, =2 P'(v,, 85) rf open-ended

Definition 1.8. Foranys € X, an element w, € K is called rational centre of s if min,., v(r — w,) = p,.

If s <s and w, is a rational centre of §', then w, is also a rational centre of s. For any minimal
rational cluster s’ fix a rational centre w,,. For any s € X fix w, = w,, for some minimal rational cluster
5 Cs.

The following result gives a basis of integral differentials when K = K"". In Theorem 6.4 we extend
it to the case K # K™

Theorem 1.9 (Theorem 6.3). Suppose C is y-regular and has almost rational cluster picture. For i =
0,...,g— 1, inductively
€ i—1

. o € .
(i) define e; := rtlelg,)(( { > P 20: ps,M},
=

2

(iii) choose a maximal element s; of Z; freely.

i—1
€
(11) letEiz{te Z[(| e,'z_l_,of_ E ps,Ak};
=0

Then a basis of integral differentials is given by
i=0,...,g—1

Note that given e; as in the previous theorem, the sum Zf:ol Le;] is the quantity, often denoted by
v(w’®/w), appearing in the period in the Birch and Swinnerton-Dyer conjecture (for more details see [4],
[25, §1.3]).
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1.3. Rational cluster picture

In this subsection we define the rational cluster picture and compare it with the classical cluster picture
defined in [14]. We will show, via a simple example, in which sense the new object we introduce appears
to be more suitable for the study of regular models.

Definition 1.10 (Definition 3.9). Let K and C as before. The rational cluster picture of C is the collection
of its rational clusters Ty together with their radii.

Example 1.11. Let p be any prime number and set K = Q,". Let E,/Q\" given by y'=x'—p. Then E,
is an elliptic curve with Kodaira-Néron reduction type Il. Therefore, the minimal regular model (with
normal crossings) of E, does not depend on p. This is in accordance with the fact that the rational
cluster picture of E, is the same for all p. Indeed, the set of roots of the polynomial x* —p is R=
{I/p, 633/, £3.3/p}, where ¢y is a primitive 3rd of unity. Hence the rational cluster picture of E, is

R

l for any p,

3
where we denoted with bullet points the roots in R, with a surrounding oval the only rational cluster ‘R,
and with the subscript the radius ps of ‘R.

A different behaviour is observed when we consider the cluster picture [14, Definition 1.26] of E,,
collection of its clusters together with their depths. The cluster picture of E, is

R R

cluster picture
not depﬁned
where the subscripts represent the depth of the cluster SR. It does depend on p and differs from the
rational cluster picture when p = 3. Thus, although the cluster picture is particularly useful for Galois
theoretical problems, the rational cluster picture appears to be a more suitable object for the study of
regular models of the curve.
Finally, note that E, has an almost rational cluster picture. For any two distinct roots r,r' € R, the

smallest v-adic disc D, containing them also contains the whole R. The element 0 € Q)" belongs to
D, ,» when p # 3, while |D,, NR| =3 = |v(r)l,, if p=3.

N[}

1
3

The advantages of the rational cluster picture discussed in this subsection can also be observed in the
following example where we study a more complex family of hyperelliptic curves having almost rational
cluster picture.

1.4. Example

In this subsection we are going to present an example of a family of hyperelliptic curves C, satisfying
the hypothesis of Theorems 1.7 and 1.9. Via those results we will then describe the special fibre of the
minimal regular model and a basis of integral differentials of C,. All the computations involved are
explained in detail in Examples 3.32, 4.25 and 6.5.

For any prime number p, let a € Z,, b € Z; such that the polynomial x>+ ax+ b is not a square
modulo p. Let C,/Q, be the hyperelliptic curve of genus 4 given by y* = f(x), where f(x) = (x° + ap*x® +
bp®*)((x — p)* — p'"). The curve C,/Q)" has an almost rational cluster picture and is y-regular when p = 2.
Its rational cluster picture is

(@90009,@09),)
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where p;, = %, Py, = %, and pi = 1. From Theorem 1.7 we can construct a regular model with strict
normal crossings of C, with special fibre

ot

Ly 4 1 1

2
I

over ]F‘,,. Computing the self-intersection of each irreducible component we easily see that this model
coincides with the minimal regular model C™®. Theorem 4.23 also describes the action of the Galois
group Gal(F,/F,) on the special fibre C™ of C™. If the roots of x> + ax +b mod p are in F, then the
absolute Galois group acts trivially on each component, otherwise it swaps the 2 irreducible components
of multiplicity 3 intersecting I',.

From Theorem 1.9 it follows that, for any p, a basis of integral differentials of C,/Q;" is given by

X 5 ) dx ( ) dx ( ) dx
—, =p’(x — - — =pxXx—p)x:- —, =X—p)x - —.
2 m=p p 2 Ha=Pp p 2 M3 p 2y

o =p*-
In fact, this is also a basis of integral differentials of C,/Q, since they are all defined over Q, (see
Proposition B.2).

Below we will present related works of other authors concerning regular models and integral differ-
entials of hyperelliptic curves. Note that the example presented here is not covered by [14] and [1] since
the curve C, is not semistable and not A,-regular. In fact, if p = 3 the curve C, does not even have tamely
potential semistable reduction. The results in [5] assume p > 2 and C, with tamely potential semistable
reduction, hence they cannot be used when p = 2, 3. Finally, there is no classification for genus 4 curves.

1.5. Related works of other authors

Let K be a discretely valued field with residue field k of characteristic p and let C/K be a hyperelliptic
curve of genus g.

In genus 1, when £ is perfect, thanks to Tate’s algorithm, one can describe the minimal regular model
and the space of integral differentials of an elliptic curve C (see e.g., [24, IV.8.2], [9, Theorem 9.4.35]).

If K = C(¢) and C has genus 2, then Namikawa and Ueno [18] and Liu [12] give a full classification
of the possible configurations of the special fibre of the minimal regular model of C.

If p # 2, then Liu and Lorenzini show in [13] that regular models of C can be seen as double cover of
well-chosen regular models of P}. Since the latter can be found by using the MacLane valuations [15]
approach in [21], this argument gives a way to describe any regular model of a hyperelliptic curve. At
the moment there is no known closed form description of a regular model based on this approach and it
has not been generalised to the p =2 case.

If p > 2, k finite, and C is semistable, then in [14] the authors explicitly construct a minimal regular
model in terms of the cluster picture of C. Under the same assumptions, Kunzweiler [8] gives a basis
of integral differentials rephrasing [6, Proposition 5.5] in terms of the cluster invariants introduced in
[14]. These results can be recovered from Theorem 4.23 (see Corollary 4.27) and Theorem 6.3.

If p > 2 and C is semistable over some tamely ramified extension L/K, then Faraggi and Nowell [5]
find the special fibre of the minimal regular model of C with strict normal crossings taking the quotient
of the stable model of C; and resolving the (tame) singularities. However, since they do not describe the
charts of the model, their result does not immediately yield all arithmetic invariants, such as a basis of
integral differentials.
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The last work we want to recall represents an important ingredient of the strategy we will use in
this paper (described more precisely in the next subsection). T. Dokchitser in [1] shows that the toric
resolution of C gives a regular model in case of A,-regularity [1, Definition 3.9]. This result, used also
in [5], holds for general curves and in any residue characteristic. In his paper, Dokchitser also describes a
basis of integral differentials since his model is given as open cover of affine schemes. In Corollary 3.25
and Theorem 6.1, we will rephrase his results for hyperelliptic curves by using rational cluster picture
invariants from Section 3.

1.6. Strategy and outline of the paper

In [1], Dokchitser not only describes a regular model of C in case of A, -regularity, but also constructs
a proper flat model C, without any assumptions on C. Assume C is y-regular and has an almost rational
cluster picture over K" with rational centres wy, ..., w, € K"". Our approach to construct the minimal
regular model with normal crossings of C is composed by the following steps:

« Consider the x-translated hyperelliptic curves C* /K™ :y* = f(x +w,), for h=1,...,m. For
each A, [1, Theorem 3.14] constructs a proper flat model C}", possibly singular.

o We glue regular open subschemes of these models along common opens, and show that the
result is a proper flat regular model C of Cg. with strict normal crossings.

» We give a complete description of what components of the special fibre of C have to be blown
down to obtain the minimal model with normal crossings C™® of Cu.

« Finally, we describe the action of the absolute Galois group G, of k on the special fibre of C™".

Wh

We will explicitly describe both the models C," and C. This allows us to study the global sections of its
relative dualising sheaf w¢ o, (C).

In Section 2, we present some results on Newton polygons used in the following sections. In Section 3,
we recall the basic objects and notation of [ 14] and define the rational cluster picture. Moreover, we relate
it with the notions given in Section 2. This comparison allows us to rephrase the objects in [1] in terms
of rational clusters invariants in Section 4. In the same section we also state the theorems which describe
the special fibres of a proper flat model (Theorem 4.18) and of the minimal regular model with normal
crossings (Theorem 4.23) of C. The construction of these models, from which the two theorems above
follow, is presented in Section 5. Finally, in Section 6, Theorems 6.3 and 6.4 describe a basis of integral
differentials of C, in terms of rational clusters invariants defined in Section 3.

1.7. Notation

In the following, we present the main notation used for fields, hyperelliptic curves and Newton polytopes.

K,v complete field with normalised discrete valuation v

O, k,p ring of integers, uniformiser, residue field, char(k)

K,k fixed algebraic closure of K, residue field of K

K, K™ separable closure, maximal unramified extension of K in K
Ogw, k* ring of integers of K™, residue field of K"

F extension of K in K, unramified in Section 4

G, Gy absolute Galois groups Gal(K*/K), Gal(k*/k)

Jfx =" a;x', polynomial in K[x], separable from Section 3
NP(f) Newton polygon of f, lower convex hull of {(i, v(a;)) | i}
Flofle restriction and reduction of f to an edge L of NP(f) (Definition 2.5)
g(x,y) =y* — f(x), polynomial in K[x, y] defining C
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C

S, fin(x)
gw(xs Y)’ gh(-x’ )’)
CW

A", AY

Fr.L, Ve vy
sk, 8h.r

hyperelliptic curve defined over K by g(x,y) =0
=f(x+w),f(x+ w,), for a given rational centre w

=y — £,y — fi(x)

=~ C, hyperelliptic curve given by g, (x,y) =0

Newton polytopes attached to C* as in [1, §1.1] (Notation 4.1)
v-faces and v-edges of A" (Notation 4.4)

st, 85 € Q, 1, € Zs,, attached to a v-edge of A" (Notation 4.2)

389

For a separable polynomial f € k[x] or a hyperelliptic curve C/K:y* = f(x) as above, the following is
the main notation for clusters.

¢, R

%, B¢

5 € X¢
G., K., k,
ds

5 <s5=P(s)
sAt

Ps

bs

Wq

€s

=, T
sex
XF

5, X6
5€ XL
pis €
EW, an
D, m,

Ps

Vs

o

Ve

gy 8

8o 8ar S o Sor e

leading coefficient and set of roots of f

cluster picture, the set of clusters of f,C (Definition 3.2)

cluster, s =D N R, for a v-adic disc D (Definition 3.1)

G, = Stabg, (5); K, = (K*)°°; k, residue field of K,

=min, ., v(r — r’) is the depth of a cluster s (Definition 3.1)

5" is a child of s and s is the parent of s’ (Definition 3.3)

smallest cluster containing s and t (Definition 3.3)

= Max,,cr Min,c, V(r — w), radius of s € X, (Definitions 3.8 and 4.6)
denominator of p, (Definition 4.6)

rational centre of s (Definition 3.8)

=v(cr) + D _,cr Pras (Definitions 3.19 and 4.6)

rational cluster picture (Definition 3.9)

rational cluster (Definition 3.9)

= Eg‘;, for some extension F/K (Definition 4.6)

cluster picture centred at z (Definition 3.34)

cluster centred at z (Definition 3.33)

P =min,e, V(r —2), € =v(cy) + ), 0 P, (Definition 3.35)

Y =U,cw Z¢, " C Zgw non-removable clusters (Definition 4.20)
D, =11if b,e, odd, 2 if b€, even; m, = (3 — D,)b, (Definition 4.6)
= 1if |s| is odd, 2 if |s| is even (Definition 4.6)

=2 if |s| is even and €,—|s|p, is odd, 1 otherwise (Definition 4.6)
=1 if s is minimal and s N K, # &, 2 otherwise (Definition 4.6)
=2if p? =2 and ¢, is odd, 1 otherwise (Definition 4.6)

S5 = %(|5|)05 + P05 — €5, Sg = _65/2 + p, (Definition 4.6)
polynomials in one variable over k, (Definitions 4.14 and 4.22)

In Section 5 we explicitly construct proper flat models of hyperelliptic curves and study the conditions
for having (minimal) regular models with normal crossings. Here you can find the most used objects

and notation.

Unis P
M

:{51,...

, 5,1, set of rationally minimal clusters (Section 5.1)

a rationally minimal cluster, element of X (Section 5.1)
={w,...,w,}, where w, is a rational centre of s, (Section 5.1)
fixed rational centre of s, element of W (Section 5.1)

=w,, — w, for fixed rational centres w;, w; (Section 5.1)

uy € O, py € Z such that wy, = u,m”; uy, =0 (Section 5.1)
matrix associated to a proper rational cluster t € ©" (Definition 5.1, Lemma 5.2)
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z change of variable (x, y, ) x (X,Y,Z) e M~" given by M (Section 5.2)

Spts Onts Xt integer, cone, toric scheme attached to a matrix M (Definitio 5.1)

My My entries of the matrices M and M~' (Section 5.2)

X = U, Xu. toric scheme constructed from A" (Definition 5.1)

Cy proper model of C* constructed from A" by [1, 3.14]

Cy' closure of C >~ C"* in X" (Section 5.2)

R = Ok[X*", Y, Z]/(wr — X™3Y™3Z"3) (Section 5.2)

Ty € R, satisfying x — w;, = X" Y*Z*T!! (Section 5.2)

T, =[], T) € R (Section 5.2)

Fh € R, equals Y*Z* - g,((X, Y, Z) e M~") (Section 5.2)

1% = Spec R[(T},)~'] C Xy, (Section 5.2)

Uy, = Spec R[(T},)~'1/(F}) C VI, chart of C (Section 5.2)

X, G X =U, Vi X4, G =, Ul C X% (Section 5.2)

X,C X =J,X:,c=J,C (Section 5.3)

{w, ™1 sets attached to a rational cluster t (Definition 5.15, before Proposition 5.18 and
Definition 4.13)

XFT’ 1-dimensional closed subscheme of C} | given by I’ (Section 5.6)

X =Xz NCY (Section 5.6)

I C C,, glueing of )o(p‘v for all w € W such that t € X} (Section 5.6)

2. Newton polygon

Let K be a complete field with a normalised valuation v, ring of integers Oy, uniformiser r, and residue
field k of characteristic p. We fix K, an algebraic closure of K, of residue field k, and we denote by K*
the separable closure of K in K. Denote by K the maximal unramified extension of K in K*, by O
its ring of integers, and by k° its residue field. Note that &* is the separable closure of k in k. Extend the
valuation v to K. Finally, write Gy, G, for the Galois groups Gal(K*/K), Gal(k*/k), respectively.

Notation 2.1. Let Ox ={a € K |v(a) > 0}. Throughout this paper, given an element a € Ok, we will

write a mod 7 for the reduction of a in k. Similarly, given a polynomial h € Ok[x, ..., x,], namely
h=>3a.. X' - -x& we will write h mod 7 for the polynomial ) (a;.; mod m)-x| ---xI €
klxi,...,x,]

Let f € K[x] be a non-zero polynomial of degree d, say

d
flx)= Z ax'.
i=0
The Newton polygon of f, denoted NP(f), is

NP(f) = lower convex hull {(i,(a,))| i=0,...,d, a; #0} C R%.
We recall the following well-known result (see e.g., [17, 11.6.3,6.4]).

Theorem 2.2. Let iy<...<i,=d be the set of indices in {0,...,d} such that the points
(i, v(aiy)), - . ., (is, V(a;,)) are the vertices of NP(f). For any j=1,...,s, denote by p; the slope of the
edge of NP(f) which links the points (i;_1, v(a;_,)) and (i;, v(a;,)). Then f has a unique factorisation over
K as a product

ij—1

f=a:-8 -8 8-
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where gy =x" and, forallj=1,...,s,

o the polynomials g; € K[x] are monic of degree d; =1i; — ij_,,
o all the roots of g; have valuation —p; in K.

In particular, NP(g;) is a segment of slope p;.

Corollary 2.3. With the notation of Theorem 2.2, the polynomial f has exactly d; roots of valuation —p;
forallj=1,...,s.

Corollary 2.4. Iff =) ax' is irreducible of degree d and ay, # 0, then NP(f) is a segment linking the
points (0,v(ay)) and (d, v(a,)).

Definition 2.5 (Restriction and reduction). Let f = Zlio a;x' € K[x] and consider an edge L of its Newton
polygon NP(f). Let (iy, v(a;))), (ir, V(ay,)), i < i, be the two endpoints of L. Denote by p the slope of L
and by n the denominator of p. Define the restriction of f to L as

(ip—i)/n

flo= ) @y €Klal.

i=0
Moreover, we define the reduction of f with respect to L to be the polynomial
flo = 7 fl.(r""x) mod 7 € k[x],
where ¢ =v(a;,) = v(a;,) + (i) — i2)p.

Remark 2.6. These definitions coincide with the ones given in [1, Definitions 3.4, 3.5 ] when the number
of variables is 1 (for suitable choices of basis of the lattices used in the definitions).

Until the end of the section let f € K[x], consider a factorisation f=a,-go-g,--- g, as in
Theorem 2.2. Denote by L, the edge of slope p; of NP(f), forany j=1...s.

Remark 2.7. By the lower convexity of NP(f), forall j=1,...,s, note that]TL/. =¢; - &jlweg) Jor some
¢; € k*. In particular they define the same k-scheme in G,,,. More precisely, foranyj=1,...,s, let
w=a,- [ &0
i=j+1

Then ¢; = u;/7"™ mod 7.

Definition 2.8. We say that f is NP-regular if the k-scheme
XLj : {fTLj = O} - Gm,k

is smooth forallj=1,...,s.

Lemma 2.9. The polynomialf =a,- g - g - - - & is NP-regular if and only if g; is NP-regular for every
j=1,...,s

Proof. The Lemma follows from Remark 2.7. O

We conclude this section with two examples.
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v(a;)

~

Example 2.10. Lerf =x'" + 9x” — 3x° + 9x° + 81x — 27 € Q3[x]. Then the Newton polygon of f is

(0,3)

QI

05
(6,1) T——__

Sy,

(11,0)
Corollary 2.3 implies that f has 6 roots of valuation % and 5 roots of valuation % Furthermore, the two
polynomials g, and g, in the factorisation f = g, - g, of Theorem 2.2 turn out to be

g1 =x"+09, & =x+9x—3.
Finally,

f|L1 =-3x-27=-3- 81 |Np(g,), f|L2 =x—3= 82|Np(g2)§
and

fTLl— —x—1= _(xz +1)= _gllNP(g1)9 fle =x—1= g2|NP(g2)

in IF::, [)C]
Thus f is NP-regular.
Example 2.11. We now show an example of a polynomial that is not NP-regular. Let f = x° + 12x° +
36x* + 81 € Qs[x]. Then the Newton polygon of f is

v(a;)
(0,4) 4

01%
39
<
(312) T~ 2 = ~d
e

&
(9,0)
Corollary 2.3 implies that f has 3 roots of valuation % and 6 roots of valuation % Furthermore, the two
polynomials g, and g, in the factorisation f = g, - g, of Theorem 2.2 are

gi=x+09, g =x"+3x+0.
Finally,

flo, =36x+81  fl, =x"+12x+ 36,

8ilwe) =x+9,

2 .
&2l =% +3x+9;
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and

]TL,=X+ 1 :gl|NP(g1)’ fTqu(x+2)2=g2|NP(g2) in 5 [x].

Then f is not NP-regular. In fact, in accordance with Lemma 2.9, g, is not NP-regular.

3. Rational clusters

In this subsection we introduce simple combinatorial objects, that we call rational clusters, attached
to a separable polynomial f € K[x]. Via this new terminology, we will give a characterisation for the
NP-regularity, from which the definition of almost rational cluster picture, key condition for the next
sections, will follow. In fact, rational clusters are the main objects we will use for the construction of
models and the description of integral differentials of hyperelliptic curves in Sections 5 and 6.

From now on, let f € K[x] be a separable polynomial and denote by R the set of its roots in K* and
by ¢, its leading coefficient. Then

fW=¢[]e-n.

reR

Definition 3.1 ([14, Definition 1.1]). A cluster (for f) is a non-empty subset s C R of the form D N'R,
where D is a v-adic disc D ={x € K | v(x — z) > d} for some z € K and d € Q. If |s| > 1 we say that s is
proper and define its depth d, to be

d, =minv(r —r).

rres
Note that every proper cluster is cut out by a disc of the form
D:{xel_ﬂv(x—r)zds}

foranyre€s.

Definition 3.2 ([14, Definition 1.26]). The cluster picture of f is the collection of its clusters, together
with their depths.
We denote by %y the set of all clusters of f and by %, the subset of Z; of proper clusters.

Definition 3.3 ([14, Definition 1.3]). If ' C s is maximal subcluster, then we say that 5" is a child of s
and s is the parent of §', and we write s' < s. For any §', s € ¥;, we write §' < s if either §' < s or ' = 5.
Since every cluster s # R has one and only one parent we write P(s) to refer to the unique parent of s.
We say that a proper cluster s is minimal if it does not have any proper child.
For two clusters (or roots) s,, 5., we write s, N s, for the smallest cluster that contains them.

Definition 3.4 ([14, Definition 1.4]). A cluster s is odd/even if its size is odd/even. If |s| =2, then we
say s is a twin. A cluster s is iibereven if it has only even children.

Definition 3.5 ([14, Definition 1.9]). A centre z, of a proper cluster s is any element z, € K* such that
s =D NR, where

D={xeK|vix—z)=>d,).

Equivalently, v(r — z,) > d, for all r € s. The centre of a non-proper cluster s = {r} is r.

Definition 3.6 ([14, Definition 1.6]). For a proper cluster s set
Vs 1= V(Cf) + Z dr/\s-
reR
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Definition 3.7. We say that % is nested if one of the following equivalent conditions is satisfied:

(i) there exists z € K* such that z is a centre for all proper clusters s € X;;
(ii) there is only one minimal cluster in %;;
(iii) every non-minimal proper cluster has exactly one proper child.

Definition 3.8. A rational centre of a cluster s is any element w, € K such that

min v(r —w,) = max min v(r — w).

res res

If s ={r}, withr € K, thenw, =r.
If w, is a rational centre of a proper cluster s, we define the radius of s to be

Ps =min v(r — wy).

res

Definition 3.9. A rational cluster is a cluster cut out by a v-adic disc of the form D = {x € K | v(x — w) >
d} withwe K and d € Q.

The rational cluster picture is the collection of all rational clusters of f together with their radii.

We denote by X" C %y the set of rational clusters and by Eoljr.a‘ the subset of T of proper rational
clusters.

Lemma 3.10. Let s be a proper cluster. Then d; > p,.

Proof. First we want to show that

mm vir—r)= max mln v(r — z).

r, res
Clearly min,. ¢, v(r — r) < maX_cxs min,e, V(r — z). Let z, € K* such that

max min v(r — z) = min v(r — z,).
res

zeKS res
Then, for any r, 7 € 5, one has
v(r —7r") = min{v(r — z,), v(r' — z;)} = min v(r — z,),
res
and so

m1n v(r — ') > max mm v(r —2),

rr'es zek®
as required. From

d, = min v(r — r)— max min v(r — z) > max min v(r — w) = p,,

T, res res wek res
the Lemma follows. O
Thanks to the previous lemma, the next definition gives, for any cluster s, the smallest rational cluster

containing it.

Definition 3.11. Given a proper cluster s € ¥, we define the rationalisation s™ of s to be the smallest
rational cluster containing s. By definition

s E)C{m{XEI('V(-x_ws)>ps}

where w, is a rational centre of s and p, is its radius.

The next Lemma will be used in Section 5 to prove the minimality of the regular model with normal
crossings we construct.
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Lemma 3.12. Let s € £ be a proper cluster with rational centre ws. Let 5" € E" be the child of s with
rational centre w, (let s' = @ if it does not exist). Then (|s| — |5'|)p, € Z.

Proof. As s € £, one has s =s™. Let b, be the denominator of p,. Then b, divides the degree of
the minimal polynomial of r, for any r € s satisfying v(w, — r) = p,. Then (|s| — |5'|)ps € Z, where
§F=RN{xek|vix—w,)> p,},
as required. O

By definition, a rational cluster is Gg-invariant. Apart from that necessary condition, it is not easy to
see whether a proper cluster s is also a rational cluster in general. The following remark gives a sufficient
condition and shows we have a simple characterisation when K(s)/K is tamely ramified.

Remark 3.13. If a proper cluster s € ¥ satisfies d; = p,, then a rational centre w, € K of its is also
a centre. Hence s is a rational cluster and, in particular, is Gg-invariant. On the other hand, if a
proper cluster s € Xy is Gg-invariant and K(s)/K is tamely ramified, then s has a centre z, € K by
[14, Lemma B.1]. Thus p, =d, and s € Ef““.

Lemma 3.14. Let 5 be a proper cluster with rational centre w, and let t € X satisfying t 2 5. Then w,
is a rational centre of t and p, < ps. Furthermore, if s is a rational cluster and t 2 s, then p; < ps.

Proof. 1t suffices to prove the Lemma for t = P(s). Hence we first want to show that min,cp) v(r —
Ws) = Pp(s) and Pp(s) < Ps. Note that

min v(r — w,) < max min v(r —w) = Op(s)-
reP(s) weK reP(s)

Moreover,

Prs) = Max min v(r —w) < max min v(r — w) = ps.
weK reP(s) weK res

If r € s then v(w, — r) > p,, by definition of p,. On the other hand, if r € P(s) \ s then fixing ' € 5 we
have

V(= W) =V — 11— wo) = min{u(r — ), v(r — w,)} = min{dpe. 0} = prco

by the previous lemma. Thus min,cp) v(r — ws) = pp(s), as required.
Now suppose s € X" with t 2 5. From Definition 3.8, it follows that

xeK|vix—w)=p} NR=5CtC {xeK|vix—wy)>=p}NNR,
as w, is a rational centre of t. Thus p, < p,. O

Definition 3.15. We say that a proper rational cluster s € T is (rationally) minimal if it does not have
any proper rational child.

From Lemma 3.14 it follows that if W € K such that every minimal rational cluster has a rational
centre in W, then all clusters have a rational centre in W. This fact will be key for the construction of the
model in Section 5. Another important result is Lemma 3.18, that describes the depth and the radius of
5 A g for two rational clusters s, 5'. To prove it, we need the following two lemmas.

Lemma 3.16. Every cluster s with p, < ds has no rational subcluster s' C s.

rat

Proof. Suppose by contradiction there exists ' € X3, §' C s, and fix a rational centre w, of §'. Then
we is a rational centre of s by the previous lemma. If |s'| =1, then w, is also a centre of s and this
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contradicts p, < d,; so, assume s proper. Let ' € s’ such that v(r' — wy ) = p, and r € s such that v(r —
Wy ) = p,. But then d, <v(r —wy 4+ wy, — ') = p, again by Lemma 3.14. O

In particular, the Lemma above shows that if s € ; and s’ € X" is a maximal rational subcluster of
s, with ' C s, then ¢’ is a child of s. Moreover, the parent of a rational cluster is rational.

Lemma 3.17. Let 5,5 € X" such that s' ¢ s. If w, is a rational centre of s then

min v(r — w,) = Pspe-

Proof. By Lemma 3.14 we have

min v(r — wy) = Pore-

resns’

Therefore min, ., vV(w, — ) > p,rs. Suppose by contradiction that
nllﬁl;l V(r - Ws) =10 > Psps-

It follows from Lemma 3.14 that

min v(r — wg) = 05 > Psne

res

as s SZ 5. But then there exists 7 € (s A §') . (s Us’) such that v(7 — w,) = p,.. Consider the rational
cluster

t:= RN {xeK|v(x—w,) > min{p, p,}} € .

Then s, s’ C t, but since 7 ¢ t we have s A &' g t that contradicts the minimality of s A 5. O

Lemma 3.18. Lett € X, with at least two children in . Then d, = p € Z and t € £*. More precisely,
ifs,s € E;“‘ such thats Cs Ns' 2 s/, then

Psns =V(Ws — Wy ) = dsnes

where w, and wy are rational centres of s and s’ respectively.

Proof. If d = py, then t € X by Remark 3.13. Hence it suffices to prove the second statement as
v(w, — wy) € Z. For our assumptions s’ Z s. Then by Lemma 3.17 there exists r € s’ so that v(r — w,) =
Psns’- Thus,

v(ws —wy) = min{v(w5 — ), v(r— Ws’)} = Psns’s

as v(r — wy) > py > psne by Lemma 3.14. Finally, d, .y = ps,s follows from Lemma 3.16. O

Definition 3.19. For a proper cluster s set

€; 1= V(Cf) + Z Pras-

reRr

Example 3.20. Ler f =x'"" — 3x® + 9x° — 27 € Qs [x]. The set of roots of f is
R= {\z/g’ é‘?\?/g’ C}ZS/_’ _\3/5’ _4-3\3/3, _4.32\3/3, \5/3’ Cﬁ\i/g’ §52\i/§’ C;\S/g9 g;\s/g}’
where ¢, is a primitive qth root of unity for q =3, 5. Then the proper clusters of f are

5 = {%’ ;3\3/§’ §32C/§}’ 5, = {_2/_7 _§3%7 _§§%}9 53 =8, U529 m
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with d,, =d,, = 2, d, = 1 and dw = %. The graphic representation of the cluster picture of f is then

(@oc@g@c@Q}oeocc

1
5

where the subscripts of clusters (represented as circles) are their depths.
Furthermore, note that 0 is a rational centre for all proper clusters and we have p;, = ps, = ps; = %

and py, = 3.
Finally, for every cluster s we can also compute v, and €., that are
9 11
Vsl zvszzis U53=651=€52:653=3a VERZE‘.R:?~

Example 3.21. Let f = x° + 12x° + 36x° + 81 € Qs[x] and fix an isomorphism Q, ~ C. Then the set of
roots of f is

N = (V3, 1:V/32, 53V/32, 6V/3, 49V/3, 1533, 63/3, 63, £3/3),
where £, = e*™" is a primitive gth root of unity for g =3,9. Then the proper clusters of f are

5= (V3L GV, V3, 5= {03,603, ¢JV3),
53={§92\3/§’ 4-95\3/5’ {98\3/5}, 54 =256, U53, m

withd,, = é, d,, =d,, = 3 d, = %, and dy = % The cluster picture of f is then

g) 54

[@"@g @QQ@%@O@Q;

Ll

It is easy to see that 0 is a rational centre for all proper clusters and that p,, =3, ps, = ps, = ps, =
1

Px = 3. Finally,
1

Vs, = > Ve, = Vs, =5, Vg, =4, vu=23; €, =4, €,=¢€;, =6, =
The goal of this section is to describe the NP-regularity of f € K[x] (and its translations) in terms of

conditions on its cluster picture.

Notation 3.22. If p > 0, we denote by | - |, the standard p-adic absolute value attached to Q, that is
lal, =p~"“ for all a € Q. If p =0, then we write | - |, for the function on Q identically equal to 1, that
is lal, =1 forall a e Q.

Lemma 3.23. Suppose that x1f and that NP(f) is a segment L of slope —p. Let n be the denominator
of p. Then f is NP-regular if and only if all proper clusters s € X, with |s| > |p|, satisfy d, = p.
More precisely:

e

P

(i) Ifs e X, with |s| > |pl, but d, > p, then f|, has a non-zero multiple root it =
some (any) r € s. B o
(ii) The multiplicity of a root u € k* of |, equals |5°|/n, where

mod 7, for

5°:{re%|ﬁ:1 mod n}.

e

(iii) All multiple roots of f|, come from clusters s as described in (i).
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Proof. Let ¢ be the highest power of p dividing n (set g =1 if p=0). Let m=n/q so that ptm.
Let R={r;|i=1,...,D} be the (multi-)set of roots of f, where D := degf. Fix some choice of Nz

and define u; € k* as u; =r;/m” mod m, for all i=1,...,D. Firstly, note that there exists a proper
cluster s with |s| > |p|, and d; > p if and only if there exists a subset I C {1,..., D} of size |I| > g
such that u; = u,, for all i;, i, € I. Indeed, given s, then I ={i € {1,..., D} | r; € s}, while given /, then

s ={r; | u; = u;,, for any i, € I}. Secondly, recall that f is not NP-regular if and only if |, has a multiple
root in k*. Therefore we will prove that f|, has a non-zero multlple root if and only if there exists a
subset I C {1, ..., D} with size |I| > g and such that u;, = u;, for all i}, 7, € I.

Note that for the lower convexity of NP(f) = L, we have

Fl(x") =~ OPOf(rPx)y  mod 7.

Hence {i; | i=1, ..., D} is the multiset of roots of f|,(x"). Then there exists an n-to-1 map
(it} — (W),
u—u.,

where {w; |j=1,..., D/n} is the multiset of roots of f|,.. Note that w;#0Qforallj=1,...,D/n,soall
roots of f|, are non-zero.

Now, suppose that f is not NP-regular. We want to show that there exists a subset / C {1, ..., D} with
|I| > q such that u; =u,, for all i;,i, €. Since f is not NP-regular, its reduction f|, has a (non-zero)
multiple root. Then there exist j;,j, € {1,...,D/n} so that w;, =w;, =: w. Hence, by the definition of

¢, for some (any) i € ¢~ (), there are at least 2¢ ;s with it; = it. Let I denote the set of their indices.
Then |I| > 2g > q and u;, = u,, for all i, i, € I, as required.

On the other hand, suppose that there exists asubset/ C {1, ..., D} with |I| > g and such that u;, = u;,
for all i,,i, € I. We want to show thatE has a multiple root, that is there exist two indices j,j, €
{1,...,D/n} such that w; =w;,. Suppose not and let je{1,...,D/n} such that w; =] = ¢(it;) for
some (all) i € I. Then the polynomial x" — w; = (x" —w;)? € k[x], factor of f|,(x"), should have a root of
order |I| > g. This would imply x” — w; is inseparable, a contradiction as p { m.

The parts (i), (ii) and (iii) of the Lemma follow from above:

(i) Given a proper cluster 5 € ¥, with |s| > |p|, and d; > p, we showed thatE has a non-zero
multiple root w; = u! = r! /"™ mod m, where r; is any root in s.

(ii) By the deﬁmtlon of ¢, given w e k, the number of # w;’s such that w; = w equals |s°|/n, where
s = {r; | u = w).

(iii) Given a (non-zero) multiple root w of f|, we showed that there exists I C {1, ..., D}, with
|I| >gq and u;, =u,; for any i;,i, €, such that u} =w for all i€ l. The set s ={r;|u; =
u;,, for any i, € I} is a proper cluster as in (i). O

Theorem 3.24. Let w € K and f,,(x) = f(x +w). For all clusters s € X define L, =min,c; v(r —w),
and let b be the denominator of A,. Then f,, is NP-regular if and only if all proper clusters s € X; with
Is| > |Aql, have dgy = A.

More precisely:

(i) Lets € Xy with|s| > |A,|, butd, > A, and letr € s withv(r —w) = A,. Thean_|L has a non-zero
multiple root u = “7,—:")}) mod 7, where L is the edge of NP(f,,) of slope —
(ii) Let L be an edge of NP(f,,) of slope —A. Let | be the denominator of A. The mulnpllaty of a root

it € k* of f, |, equals |s°|/1, where

(rfw)’

s'={reR|vr—w)=1 and u="" mod r}.

(iii) For every edge L of NP(f,), the multiple roots of f,|, come from proper clusters s for f as
described in (i).
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Proof. Let R, be the set of roots of f,,. Note that we have a natural bijection R — R,,, r—r —w,
which induces a bijective function v: X, — X, , sending

s=RN{xeK|vix—2)>d} +— YE=R,NxeK|vx+w—2z)>d}.
In particular, if s € X, |s| = | (s)|, ds = dy () and

As = min v(r — w) = min v(r).
res rey(s)

Hence it suffices to show the theorem for w = 0.

Assume w=0. Let f =c¢;- gy - g1 ...& be a factorisation of Theorem 2.2. Note that if =0, then
either f € K or f € Kx. In both cases, f is clearly NP-regular and has no proper clusters. Then assume
t > 0 and let —p; be the slope of NP(g;) for any i=1, ..., t. Denote by R the set of roots of f and by
fR; the set of roots of g; for i =0, ..., t. Note that the 9R;’s are pairwise disjoint. From Remark 2.7, for
every edge L of NP(f) there exists i such thatm =C; - 8ilw(, for some ¢; € k*. Hence, by Lemma 2.9 and
Lemma 3.23, we need to prove that there exists a proper cluster s € X, such that |s| > |A;|, and d; > A,
if and only if for some i =1, .. ., ¢ there exists a proper cluster s; € X, such that |s;| > |A,,|, = |0:], and
ds; > A5, = p;. We will show that one can choose s = s;.

First, note that if s is a proper cluster, then s R, as |9R,| < 1. Furthermore, if 5 € X, contains roots
of different valuations, that is s Q fR; for all i, then

d; =minv(r — ¥) =min v(r) = A, = min{p; | R; Ns £ T}.
rr'es res

Now suppose there exists a proper cluster s € X; such that |s| > |A,|, and d, > A,. For the observation

above, the inequality d, > X, implies that s CR; for some i=1,...,t. Let D be the v-adic disc such
that s =D N . Since 5 C R;, one has s =D N NR; which means that s € X, as required.
Finally suppose that for some i =1, ..., s, there exists a proper cluster s; € X, such that |s;| > ||,

and d, > p;. Let r; € 5;. Then
5,-:{xel_(|v(x—r,-)zd5i}ﬂi)%i.

Consider the cluster s := {x € K | v(x — r;) > d,,} NR of f. Clearly s; C s. Therefore

A;, = min > min =X,
5 = mir v(r) z minv(r) = A,

which implies
d, st[ > pi=hs = Ass

where d; = d,, by construction. Again, from the observation above, the inequality d, > X, implies that s
is contained in R; for some j. As s NR; D 5, N R; = 5;, we must have s C NR;. Thus s = s;, that concludes
the proof. O

Corollary 3.25. Letf € K[x] be a separable polynomial. Let w € K and f,(x) = f(x + w). Then f,, is NP-
regular if and only if all proper clusters s € X, have rational centre w and those with |s| > |p;|, satisfy
ds = ps.

Proof. If f,, is NP-regular, then, from the previous theorem, all proper clusters s € 3, with [s] > |A,],
have d, = A,, where A, = min,., v(r — w). First let s € X proper and assume |s| > |A,],. Then

res

d; =A; =minv(r —w) <max minv(r — z) = p, <d.,
res zek

sod; = A, = ps, and w is a rational centre of 5. Now assume |s| < [A,|,. In particular, p > 0 and A, ¢ Z,
and so

minv(r —w) = A, Zv(w — wy),

re
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where w, is a rational centre of 5. Let r € s such that v(r — w) = XA,. Then
Ps <v(r —w—+w —wy) =min{is, v(w — wy)} < As.
Clearly

ps = max min v(r — z) > min v(r — w) = A,,
ek  res res
that implies p, = A, = min,., v(r — w). Hence w is a rational centre of s.
On the other hand, suppose that all proper clusters s € X, have rational centre w € K and those with
Is| > |psl, satisfy d; = p,. Then p, =min,., v(r —w) for any s € ;. Thus f,, is NP-regular again by
Theorem 3.24. 0

The next definition, which is the main (and only, if p # 2) condition for our explicit construction of
the minimal regular model of a hyperelliptic curve given by y* = f(x), follows from the statement of
Corollary 3.25.

Definition 3.26. We say that f has an almost rational cluster picture if all proper clusters 5 € X; with
Is| > |2l have d, = p,.

Corollary 3.25 shows that f has a translation which is NP-regular if and only if f has an almost rational
cluster picture and there exists w € K that is a rational centre of all clusters.
In the following we give different characterisations of the previous definition.

Corollary 3.27. Suppose that K(R)/K is a tamely ramified extension. Then f has an almost rational
cluster picture if and only if every proper cluster s € Xy is Gg-invariant.

Proof. Since K(R)/K is tamely ramified, every cluster s € X, has |p,|, <1. Therefore, the

Corollary follows from Remark 3.13. O

Corollary 3.28. Suppose that K(R)/K is a tamely ramified extension. Then f,, is NP-regular for some
w € K if and only if ¥ is nested.

Proof. First note that every cluster s € X; has |p,], <1, as K(R)/K is tamely ramified. Therefore,
from Corollary 3.25, we need to prove that 3, is nested if and only if all clusters s € 3, have d, = p,
and rational centre w, for some w € K. But this follows from Remark 3.13. O

Corollary 3.29. The polynomial f has an almost rational cluster picture if and only if for every r €
R\ K, there existsw € K so that r’, := W mod 7 isasimple root of f,,|,, where b is the denominator

b vir—w)

of v(ir —w), f,,(x) =f(x +w) and L is the edge of NP(f,,) of slope —v(r — w).

Proof. Fix r € R \ K and let s be the smallest proper cluster containing 7. Let w, be a rational centre
of 5. Note that v(7 — w,) = p, = min,, v(r — w,), for the choice of s, as r ¢ K. Moreover, for any proper
cluster t containing 7, we have s C t. In particular, w, is a rational centre of all such clusters. Let L be
the edge of NP(f,,,) of slope —p,. Theorem 3.24 shows that 7 is a multiple root of £, |, if and only if
there exists t € X, such that 7 € t, |[t| > |pi|, and d; > p. Therefore, if f has an almost rational cluster
picture, then 7¢ is a simple root.

Suppose there exists t € X, such that [t| > |p|, and d; > p,. Then t N K = &. By Theorem 3.24, it
remains to show that for any w € K, we have |t| > |A(|, and d; > A, where A = min,¢, v(r — w). First
note d > p¢ > A. Moreover, in the proof of Corollary 3.25, we saw that if [t| < |A|, then p; = A and
50 [t] < o1l but [t > |yl thus [t > [, O

https://doi.org/10.1017/S001708952400003X Published online by Cambridge University Press


https://doi.org/10.1017/S001708952400003X

Glasgow Mathematical Journal 401

Lemma 3.30. Suppose f has an almost rational cluster picture. Let s € X proper. If ds; > ps, thenp >0
and |s| is a p-power. In particular, if w, is a rational centre of s, for any r € s, the elements r — w, are
all the roots of a monic polynomial with coefficients in K*, and constant term c such that |v(c)|, > 1.

Proof. Let s € X; proper, with d, > p,. Since f has an almost rational cluster picture, we must have
|s| <|psl,. Since s is proper, p > 0. Let b, be the denominator of p,. Then v,(b,) > 1. Fix arational centre
w, of s and a root r € s such that v(r — w,) = p,. Consider s' = {x e R | v(x — r) > p,}. Thens C s’ < g™
and |s'| < |ps|, (asdy > ps = ps). Let L be the Galois closure of K(r). Let H be the wild inertia subgroup
of Gal(L/K) and L the corresponding fixed field. Let oy, . . ., 0, € H such that o,(r — w,), ..., 0,(r —
w,) are the roots of the minimal polynomial of r — w, over L. Hence o:(r) € R and o,(r) # o;(r) for any
iL,j=1,...,n,i#j. From

Ha,—(r—ws)ELH and v<l_[a,-(r—ws)) =n-p,,

i=1 i=1
it follows that |ps|, | n, and so |ps|, <n, since L”/K is tamely ramified. By definition of H (see for
example [17, Definition 9.3]) we have

V(L‘” — 1) >0, andso v(o,»(r) — r) = v(o,»(r —w,)— (r— ws)) > P4

r—ws

foranyi=1,...,n. Therefore 0,(r) € s' foralliand son < |s'|. Thusn = |s'| = |p,|, and s C 5" = {oy(r) |
i=1,...,n}. Finally, as s’ contains only conjugates of r € s, the cluster ' is union of orbits of 5. In
particular, [s| | |s'| = |ps|,, and so |s]| is a p-power. The rest of the Lemma follows. O]

Proposition 3.31. The polynomial f has an almost rational cluster picture if and only if for every proper
cluster s € X; one of the following is satisfied:

(a) the smallest disc containing s also contains a rational point;
(b) p > 0 and after a translation by an element of K, the elements in s are all the roots of a monic
polynomial with coefficients in K* of p-power degree and constant term c such that [v(c)|, > 1.

Proof. First of all, note that point (a) is equivalent to requiring d, = p,. Therefore, by Lemma 3.30 it
only remains to show that if s € X, with d; > p, and (b) is satisfied, then [s| < |p;|,. Let F € K*[x] be the
polynomial in (b) and let w € K such that r — w, for r € s, are all the roots of F. We have p, > min,, v(r —
w). Fix r € s such that p, > v(r — w) =: p. Since d; > p, > v(r — w), we have v(r¥ — w) =v(r —w) =p
for any 7 € s. Then

ls| =deg F = |1/ deg Fl, < |v(c)/ deg Fl, = [pl,.

We will prove that p = p,, so that |s| < |p|, = |ps|,, as required. We already know that p, > p. Suppose
by contradiction that p, > p. Let w, be a rational centre of s and let r, € s such that v(r, — w,) = ps.
Hence

V(W—WS)ZV(W— rs +r5 _Ws):min{ps Ios} =p.
But then p € Z, which contradicts [s] <|p],. O
Example 3.32. Let p be a prime number and let a € Z,,, b € 7 such that the polynomial X +ax+bis

not a square modulo p. Let f € Q,[x] given by f(x) = (x° + ap*x® + bp®*)((x — p)* — p'"). For any prime
p the rational cluster picture of f is

(@90000),@00), )

4 11
where py, = 3, py, = 5, and px = 1.
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If p # 3, then the proper clusters of ¥ coincide with the rational clusters above and d, = p, for any
s =13, 4, R. In particular, f has an almost rational cluster picture when p # 3.
Suppose p = 3. Then the cluster picture of f is

(===

1 _ _ 4 25
where d, =d,, = i dy, = py, = Py, = 3 dy, = 3

picture for all p.

and dy = 1. Thus f has an almost rational cluster

We conclude this section by showing that the cluster picture centred at w € K completely determines
the Newton polygon of the translation of f by w.

Definition 3.33. Let z€ K. A cluster centred at z is a cluster cut out by a v-adic disc of the form
D={xeK|v(x—z)>d}for somed Q.

Definition 3.34. Let z € K. Define %} to be the set of all clusters centred at z. Write ¥} for the set
: N\ {{z}}. Note that 3} is nested, that is every cluster s € X; has at most one child in ¥.

Definition 3.35. Letz€ K, and let s € 3\ {{z}}. The radius of s with respect to the centre z is
o =minv(r — z).
res

The cluster picture centred at 7 of f is the collection of all clusters in X} together with their radii with
respect to z. Finally set

=W+ ) P

reR

Remark 3.36. From the definitions above, if s is a cluster centred at z € K*, then s =R N {x e K |
v(x —2) > pZ}. But this does not mean 7 is a centre for s, that is false in general. For example, R is
clearly a cluster centred at any z € K°, but there are elements of K® which are not centres of ‘R, for
example any z € K* with valuation v(z) < min,cg V(7).

Remark 3.37. Let s € 3 be a proper cluster with centre z and rational centre w. Then s € X}, d, = p,
v, = €, ps = p;, and €, = €. Furthermore, s € i if and only if s € X}

The following result gives a complete description of the Newton polygon of the translation of f by
w € K, knowing the cluster picture centred at w of f.

Lemma 3.38. Let w € K and let f,(x) =f(x + w). Then there is a 1-to-1 correspondence between the
clusters in ;' and the edges of NP(f,,). More explicitly, let s, C--- Cs, =R be the clusters in ¥} and
let 5o = {w} lf{W} EX) ors =0 otherwise. Then NP(f,) has vertices Q,, i = , n, where

® Q11:(|SR|’€9Q |m|p )_(degf v(Cf))
o Oi=(sil, el —lsilpr) =(sil, € | —lsilpy, ), fori=1,....n—1,
. Qo=(lso|,6;‘, |50|,05[)

+1

and edges L, i =1, ..., n, of slope —p; linking Q;_, and Q;.
Furthermore, foranyi=1,...,n we have

fw|L,(x - 7,\(u) Hres i\Si—1 ()C+

where p; = p, and b; is the denominator of p,.

u=cr l_[re%\s (W - I"),
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Proof. Without loss of generality we can assume w = 0 so that f,, = f. First note that the coordinates of
Q, are trivial. Now consider a factorisation f =c¢; - gy - g - - - g, of Theorem 2.2. Recall the polynomials
g; are monic and g, | x. Let 2R; be the set of roots of g;. It follows from the definition of cluster centred

at 0 that
n=s, and s=|J%R foralli=0,...,n
j=0
Therefore s, =R, and R; =s; \ s, foranyi=1,...,n.
Leti=1,...,n— 1. Then the x-coordinate of Q; follows as

sl =) IR =) degg=deg] ]
Jj=0 j=0 j=0

The y-coordinate of Q; equals the sum of v(c;) and the valuation of the constant term of [._,, g;, s0

Q= (|s,-|, e+ Y |m,-|v(r,-)>,

=it

. : : _ i 0
where 7; is any root in 9R;. But since s; = | J,_, %;, we have v(r;) = ps,- Therefore

e + Y IR =v(c) + Y (sl — s Dol = €0 — silp?.

J=i+1 J=i+1
Moreover,
0 0 0 0
€, — |5i|,05,. =€ |5i|:05,erl
o0 o _ 0 0 ) . . .
from the easy computation €, — €, =|s] (pﬁ’_ = Ps,., ) Finally the x-coordinate of Q, is trivial, while

its y-coordinate equals

v(e) + Y IR =v(e) + Y (Is;] — Is;-11)pg =€ — Isolpl,
J=1 Jj=1

that concludes the first part of the proof as |sy| = |R,| = deg go.-

The computation of f|;, follows from&emark 2.7. Indeed, let i=1, ..., n, and define ¢; = u/m*™
mod 7, where u = c; 1_[7=,- 11 &(0). Then f[,,(x") =C; - gilup,)(x™), where b; is the denominator of p; .
But

—_— . 0 0 .
Gilvee) (X" = gi(ﬂ'pﬁfx)/ﬂpﬁf s mod 7.

Thus the Lemma follows as R; = s; \ 5,_;. O

Notation 3.39. Lets € E}”. Following the notation of Lemma 3.38, leti € {1, . . ., n} be such that s = s,.
We will write L for the edge L,.

4. Description of a regular model

From now on, assume char(K) # 2 and let C/K be a hyperelliptic curve, that is a geometrically con-
nected, smooth, projective curve, equipped with a separable morphism C — Py of degree 2. Let y* = f(x)
be a Weierstrass equation of C. Suppose deg f > 1. Let g be the genus of C. Accordingly with [14] we
define the cluster picture of C as the cluster picture of f. Analogously, all definitions and notations
attached to f given in Section 3 (e.g. Xy, X", Xj) are given for C in the same way (e.g. Z¢, T, X¢).
In particular, we will say that C has an almost rational cluster picture if f does (Definition 3.26).

For the following sections we will use the main definitions, notations and results of [1, §3]. In partic-
ular, we recall (without stating) the definitions of Newton polytopes A and A, attached to a polynomial
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g € K[x, y], v-vertices/edges/faces of A, the denominator §, of a v-face/edge A, the slopes s?, sg of a
v-edge A.

Notation 4.1. We denote by A" and A" respectively the polytopes A, and A attached to the polynomial
gw(x,¥) =y* — f(x + w). The piecewise affine function v: A* — R determining the bijection A* — A",
P+ (P, v(P)), will be denoted by v (with a little abuse of notation). For a v-face F of A”, denote by
vp: AY — R the linear function equal to v on F. Since the projection AY — A" is a bijection, given a
vertex/edge/face ) of A we will denote by the same symbol ) the corresponding v-vertex/edge/face of
AY. Since they are mainly used for indexing, this will not cause confusion.

Notation 4.2. Given a v-edge ) of A", we will denote by r, the smallest non-negative integer such that

wecanﬁx% €eQ fori=0,...,r, + 1 so that
;
M M My My . n
si=—>—>...>—"2>"" =g, with | =1
d() d] dr}\ d’/\‘*'] didi-H

Thanks to Lemma 3.38 we can explicitly relate the Newton polytope A" of g,,(x, y) and the cluster
picture centred at w of C.

Lemma4.3. Letw € K. Then there is a 1-to-1 correspondence between the clusters in X} and the faces
of the Newton polytope AY. More explicitly, let s, C - - - C 5, =R be the clusters in X} and let 5, = {w})

if {w} € ¢ or 5o = & otherwise. Then A has vertices T, Q;, i =0, ..., n, where
« T=(0,2,0),
M Qn = (|m|’ O’ V(Cf));
. O=(sil.0.€l,, —Isiloy, ) fori=0.....n—1,

and edges L; (i=1,...,n), linking Q,_, and Q;, and V; (j=0, ... ,n), linking Q; and T. Furthermore,
(possible choices for) the slopes of the v-edges of A" are:

Vo
S =

—v(ep)+H(RI 290} v, :
Sy, ———"2 and s, =5 —1];

t=a (<3 (15141 ).

=t (-5 (2] 40 0)

foralli=1,...,n—1;

w

si0=8y, (S —pr) and o =1sl - 13

simo (“R (] H0e) wma sl
Joralli=1,...,n. In particular, as §,, is the denominator of p;,
B {1 if 8,2 is odd,
"o it 8,€r is even.
Finally, for suitable choices of basis of the lattices in [1, 3.4, 3.5], we have

— -
8ol 0" = =26 [lesne, 6+ 55) mod 7w, u=¢ [, W =1),

P
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foranyi=1,...,n, where p;= J and b; is the denominator of p;;

DU Vi(Z)z|—1
gle,(y) =y|VJ( 2t — ”»I:u) mod T, U=cy 1_[;'6%\5,' (W - r)’

forany j=0,...,n, where |V(Z);| is the number of integer points P on the v-edge V; with v(P) € Z,
endpoints included.

Proof. The structure of A follows from Lemma 3.38. For the computation of the slopes, we only
need to individuate, for all the v-edges, the two points P, and P, of [1, Definition 3.12]. It is easy to see
that the followings are admissible choices.

« ForV;and L, (i=1,...,n), choose Py =(|s;],0) and P, = (| 2= | | 1).
« For V,, choose Py =(0,2) and P, = (1, 1);

The second part of the Lemma then follows from the first one. The computations of the reductions also
follows from Lemina 3.38 by choosing the lattices Q;_; + (b;, 0)Z for g,,|;, and Q; + (—|s;|/a, 2/a)Z for
gwly;» where a = |Vi(Z);] — 1. O]

Notation 4.4. Let C be as above and let w € K. For every cluster s € X} denote by F"' the v-face of the
Newton polytope AY of g.,(x,y) =¥* — f(x + w) that corresponds to s.

Following the notation of Lemma 4.3, let i € {1, . . ., n} be such that s = s5,. We will write L?, V!, V;/
for the v-edges L;, V,, V,, respectively.

Example 4.5. Let C be the hyperelliptic curve over Qs given by the equation y* = f(x) where f(x) =
X' —3x5 +9x° — 27 is the polynomial of Example 3.20.
Its cluster picture centred at O is

(@33309), 90009

where the subscripts represent the radii with respect to 0. As we can see, £2. consists of two clusters: s
of size 6, radius § and €} =3, and s, =R of size 11, radius ; and €}, = % Therefore the picture of A°
broken into v-faces will be

T

o Va
0 "

Qo I Q1 I Q2

where T = (0, 2), O, =(0,0), Q, =(6,0), and Q, = (11,0). Denoting the values of v on vertices, the
picture becomes

To state the theorems which describe the special fibre of the proper flat model C of C we will construct
in Section 5, we need some definitions.
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Definition 4.6. Ler F'//K be an unramified extension and let ¥ = X, (i.e. set of clusters cut out by discs
with centre in F). For any proper s € Xy let G, = Stabg, (s) and K, = (K*)%°. We define the following
quantities:

5§ € X, proper

radius Ps max,,cp min,, v(r — w)
b, denominator of p,
€s V(Cf) + ngm Pras

D, 1ifb.e, odd, 2 if b,e, even
multiplicity my (3 —D,)b,

parity Ps 1 if |s| is odd, 2 if |s| is even

SlOpE Ss %(|5|,05 +Psps - 65)
Vs 2 if s is even and €,—|s|p, is odd, 1 otherwise
P° 1 if s is minimal and s N K, # &, 2 otherwise
52 _65/2 + Ps

Y0 2ifp? =2 and €, is odd, 1 otherwise

Lemma 4.7. Keep the notation of the previous definition and let s € £. Then s € X but the quantities
in Definition 4.6 do not depend on F.

Proof. A cluster s € X belongs to X if and only if o (s) = s for any o € Gg. Then the result follows
from Lemma A.1. ]

Remark 4.8. Lemma 4.3 shed some light on the quantities we defined in Definition 4.6. Let s € Y. Fix
a rational centre w, € F of s such that w, € K, if p? = 1. Denoting V. =Vs, L=L"*, and Vo = V;*, we
have:

e by=46,and r, = 2_— D..
o Ve =208y, s/ Ve =V(Z); — 1 and s| = y,s.. If V is internal, that is s # R, then s} = y,(s, —
Ps —PP(s)
Ps=5 )

o Ifs is minimal and so V, is an edge of F*=, then y° = 8y, p2 /v = Vo(Z); — 1 and s,* = —y?s".

Lemmad4.9. Lets € X3 with rational centre w € K. Then D, = 1 if and only if vev((a, 1)) ¢ Z, for every
ael.

Proof. If D, =1 then r;y = 1 by Lemma 4.3, and so vry((a, 1)) ¢ Z, for every a € Z. Now let ¢, d € Z
such that p, - ¢ +d=1/b,. If D, =2, then b€, € 27, so
vF‘;'((Cbsesv O)) _ €; — (Cb565))05 _ db5€5
2 N 2 2

as required. O

e,

ver(chyes/2,1) =

Definition 4.10. We say that C is y-regular if pt D, for every proper s € 2, that is if either p # 2 or
D, =1 for any proper s € L.

Remark 4.11. Let F/K be an unramified extension. Then from Lemma 4.7, if Cr is y-regular then C is
y-regular.

Lemma 4.12. The hyperelliptic curve C is A,-regular if and only if C is y-regular and f is NP-regular.
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Proof. Let g(x, y) = y* — f(x). If C is y-regular and f is NP-regular, then Cis A,-regular by Lemma 4.3
and Lemma 4.9.

Conversely, if C is A,-regular, then f is NP-regular, and all clusters have rational centre O by
Corollary 3.25. It remains to show that if p =2 then D, = 1 for every proper s € Xf. Suppose there exists
s € X¢' such that D, = 2. Consider the variety Xﬂ_g ([1, Definition 3.7]). By Lemma 4.9, the smoothness
of )_(Fg implies there exists s’ € X3, such that |s| — |s'| = 1. Hence p, € Z from Lemma 3.12. Therefore
FS(Z) = Fg(Z)Z, by Lemma 4.9. But this gives a contradiction as it forces either M or m to be a

square. O
Definition 4.13. Let s € X be a proper cluster and let c € {0, ...,b, — 1} such that cp, — ;,L eZ.
Define

§={s’62FU{®}|s’<5and%—ces¢2Z},

where @ < s if 5 is minimal and p? = 2.
The genus g(s) of a rational cluster s € Xy is defined as follows:

e If D, =1, then g(s)=0.
e If D, =2, then 2g(s) + 1 or 2g(s) + 2 equals

|5| - ZE’EEF,5/<5 |5/| + |§|
b,

Definition 4.14. Let X" be the set of rationally minimal clusters of C and let & C ™ non-empty. For
each cluster s € 3, fix a rational centre w,; if possible, choose w, € s. Let W be the set of these rational
centres and define ¥ =}, _,, T¢. For any proper cluster s € £" fix a rational centre w, € W. Denote
r, = == for r € R. Define reductionsfg_w(x) € k[x], g, € kly], and for s € T also g_(s’ € k[y] by

7P

=25 J] «+r) modx, =i [Teme oo
res\Usg/ s 8
2.(0) =y — - mod 1 u=cJ] r
&8sy V) ’ ! reR\s " 5
— 0 /.0
gg()’) == )’1)5/]/5 - ”\'M(u) mod T, U= Cf ]_[rem\(wg} Fs.

where the union runs through all s' € %, §' < s. Finally define the k-schemes

(1) XY {f¥ =0} C G
(2) X, :{g. =01 CG,i;
(3) X2:{g"=0}CG,,ifseX.

Notation 4.15. Given a scheme X /O we will denote by X, its generic fibre X X g0, Spec K, and by
X, its special fibre X Xgpec 0, Spec k.

Notation 4.16. If C=C,U---UC, is a chain of Ps of length r and multiplicities m; € Z (meeting
transversely), then oo € C; is identified with 0 € C;.,, and 0, oo € C are respectively 0 € C, and oo € C,.

Finally, if r =0, then C = Spec k and 0 = oo.

Notation 4.17. Leta €Z,, a,b € Q, with a > b, and fix ’;— € Q so that

ng n n, n . nan;
aa=—">"Ls > _ b, with =1,
d() d] d, dr+1 didi-H
and r minimal. We write P'(a, a, b) for a chain of Pis of length r and multiplicities ad,, . . ., ad,.

Furthermore, we denote by P!(a, a) the chain P'(a, a, |aa — 1] /a).
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Theorem 4.18 and Theorem 4.23 will follow from Section 5.

Theorem 4.18. Ler C/K be a hyperelliptic curve given by a Weierstrass equation y* = f(x). Suppose
degf > 1andlet X, W and XV as in Definition 4.14. Then there exists a proper flat model C /Oy (con-
structed in Section 5) of C such that its special fibre C,/k consists of 1-dimensional schemes given below
in (1), (2), (3), (4), (5), glued along 0-dimensional transversal intersections:

(1) Every proper cluster s € £V gives a 1-dimensional closed subscheme T, of multiplicity m,. T,
is not integral if and only if D, =2, 5 N (ZV U {0}) =& andﬁ,,_w is a square. When this happens,
if p=2then I, is not reduced and (I',)oq is irreducible of multiplicity 2 in T, if p # 2 then T,
is reducible, namely T =T UT_, with T =P,.

(2) Every proper cluster s € " with D, = 1 gives the closed subscheme X' x P,, of multiplicity
b,, where X! x {0} C T,

(3) Every proper cluster s € % such that s # R, gives the closed subscheme X, x P'(ys, S5, 55 —
ps - =) where X, x {0} C Ty and X, x {00} C [p).

(4) Every cluster s € ¥ gives the closed subscheme X x P'(y?, —s%) where X? x {0} C ', (the
chains are open-ended).

(5) Finally, the cluster R gives the closed subscheme Xy x P'(yw, si) where Xy, x {0} C Ty (the
chains are open-ended).

If T, is reducible, the two points in X, x {0} (and X? x {0} if s € ) belong to different irreducible com-
ponents of I's. Similarly, if s # R and T, is reducible, the two points of X, x {00} belong to different
irreducible components of T p(s).

Furthermore, if C has an almost rational cluster picture and is y-regular, then, by choosing ¥ = X",
the model C is regular with strict normal crossings. In that case, if s is iibereven and €, is even, then
[y ~ X, x P}, otherwise T, is irreducible of genus g(s).

Remark 4.19. Consider the proper flat model C/Ox of Theorem 4.18. Via the canonical immersion
C, = C, the singular points of C are images of

o singular points of the subscheme given in (1) when D, = 2 and either p =2, or s = t™ for some
te Xcwith |t > |pi, and d; > p,, or s =8, A 5, for some s, € £ and s, € T \ X;

o non-reduced points of the subscheme given in (2) when D, =1 and either s =t™ for some
te e with |t| > |pl, and d; > p, or s =8, A s, for some s, € ¥ and s, € T \ Z;

 non-reduced points of subschemes given in (3), (4), (5) (that may exist only if p =2).

Note that C is not necessarily normal, hence it may have infinitely many singular points.

Definition 4.20. Let s € Xwr. We say that

5 is removable if either |s| = 1, or s has a child §' € X of size 2g + 1 (s =R in this case).
e 5 is contractible if

(1) |s|=2and p, ¢ Z, €, odd, ppe) < ps — 3; or

(2) s =R of size 2g + 2, with a child s' € Xy of size 2g, and p; ¢ Z, v(cy) odd, py > ps + %;
or

(3) s =R of size 2g + 2, union of its 2 odd proper children s, s, € Xgn, with v(cy) odd, ps, >
ps+1fori=1,2.

Notation 4.21. Write " C Xy for the subset of non-removable clusters.

Definition 4.22. Choose rational centres w, € K" for every s € £", in such a way that w, € s when
PP =1, and 0 (Ws) =W, for all o € Gal(K™ /K). Denote r, = “==* for r € R and define g, g° € k*[y]

TPs
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as in Definition 4.14, and f,(x) € k°[x], by

207 b
O () = ]_[ (x+r) mod w, w=c; ], e
res\Ug/ g 8

where the union runs through all s' € ¥, §' <s. Let G, = Stabg, (s), K, = (K*), and let k, be the
residue field of K,. Then f. € k,[x], g € k,[y], and for s minimal E € ks[y].

Let s € X" be minimal and contained in s. Denote s =5\ {{r} < s | r # w,,}. Note that s does not
depend on the choice of s,. Define fs € k,[x] by

=] x-m) A,

Wer—Ws

where iy, = == mod 7 if s’ # & and uy ; =0 otherwise.

In the next theorem we describe the special fibre of the minimal regular model of C with normal
crossings. We use Definitions/Notations 3.1, 3.3, 3.4, 3.2, 3.8, 3.9, 3.26, 4.6, 4.10, 4.13, 4.17, 4.20,
4.21, 4.22 in the statement. Note that a full description of the model is developed in Section 5.

Theorem 4.23 (Minimal regular NC model). Let C/K : y* = f(x) be a hyperelliptic curve of genus > 1.
Suppose Cyw has an almost rational cluster picture and is y-regular. Then the minimal regular model
with normal crossings C™ /Ogw of C has special fibre C™ /k* described as follows:

(1) Every s € X" gives a 1-dimensional subscheme T, of multiplicity m,. If s is iibereven and €,
is even, then T, is the disjoint union of T~ ~P" and I'">+ ~P', otherwise T, is irreducible
of genus g(s) (write I'>— =T'l>+ =T, in this case). The indices r, _ and r, . are the roots of g,
(where ry_=r,, ifdegg, =1).
(2) Everys e X" with D, =1 gives open-ended P's of multiplicity b, from T, indexed by roots of
I
(3) Every non-maximal element 5 € X" gives chains P'(y,, S5, Ss — Ps - %) from T'; to Tp,
indexed by roots of g..
(4) Every minimal element s € X" gives open-ended chains P'(y, —s2) from T, indexed by roots
of 82
(5) The maximal element s € =" gives open-ended chains P'(ys, s;) from T, indexed by roots of
gs-
(6) Finally, blow down all T'; where s is a contractible cluster.
In (3) and (5), a chain indexed by r goes from I'_. In (3) the chain indexed by r,_ goes to T’ ;’E(;))" and the
chain indexed by r, goes 10 T'ps)"
Before blowing down in (6), the components given in (1)—(5) describe the special fibre of a regular
model of Cyw with strict normal crossings.
The Galois group Gy acts naturally, that is for every o € Gy, o(I',) = Fgf;)) and similarly, on the
chains. ~
If T, is irreducible, then its function field is isomorphic to k*(x)[y] with the relation y** = f,(x).

Remark 4.24. Note that if T'; or Up, is reducible then p, [y, = 2.

Example 4.25. Let p be a prime number and let a € Z,, b € Z; such that the polynomial X*+ax+b
is not a square modulo p. Let C be the hyperelliptic curve over Q, of genus 4 given by the equation
¥ =f(x), where f(x) = (x° + ap*x® + bp®)((x — p)* — p'). In Example 3.32, we described the rational
cluster picture of C and proved that C has an almost rational cluster picture. Recall that X7 consists
of 3 clusters t3, 4, R of size 6, 3,9 respectively such that t; <R and t, <*R. In particular, note that
EQIV;r‘ = X%, and no cluster of E@;r is removable, so X" = L. The minimal elements of " are then t;

and t,.
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We want to describe the special fibre of the minimal regular model with normal crossings C™ of C.

Compute the quantities in Definitions 4.6 and 4.13, and the polynomials f., g, g_(s) of Definition 4.22, for
any cluster in ¥"':

p. b, € D, m, p, s, v, p° 0 y) g(s) f(x) .0 £0)
t 3 3 11 1 6 2 -1 2 -2 2 0 XH4a+b y+1 y-1
t 43 171 6 1 -1 1 2 -2 2 0 x-I y—1 y+1
R 1 1 9 1 2 1 % 1 2 0 1 y—1

where a, b are the reductions of a, b modulo p- Then C is also y-regular for any p. Following the steps
of Theorem 4.23 the special fibre of C™ over F, can be described as follows:

(1) The clusters 4, t4, R give 3 irreducible components I'y,,I'y,, ' of genus 0 of multiplicities
6, 6, 2 respectively;

(2) The cluster t; gives 2 open-ended P's of multiplicity 3 from T, while t, gives 1 open-ended P!
of multiplicity 3 from I'y,.

() From yys, =—1>—=4> 1=y, (sq, —py, - ©5), the cluster t; gives 1 P of multiplicity
4 from Ty, to T'z. From

VS =—¢>—§>—1>-1>-31>-2>-3= V‘s(sbt Py %)
the cluster t, gives 1 chain of P's of multiplicities 5,4,3,2,1 from ', to T'n.

(4) From —yg s?3 = ? > 8 > 7 the cluster t; gives 1 open-ended P' of multiplicity 2 from T',. From
—y0s =3 > 2 >9>8, the cluster t, gives 1 open-ended chain of P's of multiplicities 4,2
Sfrom Ty,

(5) From ypsyw = % > 0> —1, the cluster R gives 1 open-ended P' of multiplicity 1 from Tq.

(6) There is no contractible cluster, so the components we considered in the steps above describe
the special fibre of C™ over IF‘p:

: P
4P Ty,
6 |2 |3 |3 3 9
I, o s |1 1 9
I Iy

Finally, from the Galois action on the roots of the polynomials for Zo» g_g for s € ¥, we get that
G, acts trivially if x* + ax + b is reducible in F,, while it swaps the two components of multiplicity 3
intersecting I'y, (coming from (2)) otherwise.

As application of Theorem 4.23 we suppose £ is finite of characteristic p > 2 and C is semistable of
genus g > 2. In this setting [14, Theorem 8.5] describes the minimal regular model of C in terms of its
cluster picture .. We compare that result with the one obtained from Theorem 4.23 (Corollary 4.27).

First note that Ci is y-regular as p # 2. From [14, Definition 1.7], if C is semistable then

(1) the extension K(R)/K has ramification degree at most 2;
(2) every proper cluster is Gal(K*/K"")-invariant;
(3) every principal cluster has d, € Z and v, € 2Z.
It follows from Corollary 3.27 that Ci. has an almost rational cluster picture.
In fact, (1) and (2) imply p, = d, and €, = v, for any proper cluster s (Remark 3.13). In particular,

¢, = Zc. We will then say that s € X¢ is non-removable if s is proper and non-removable as rational
cluster in X
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Lemma 4.26. Suppose k finite and p > 2. Assume C is semistable and let s € ¥ be a non-removable
cluster. Then d, € %Z and v, € Z. Moreover, s is contractible if and only if ds ¢ Z or v, ¢ 27.

Proof. Let s € X be a non-removable cluster. Since K(fR)/K has ramification degree at most 2, then
d, € 1.

By Theorem 4.23 the multiplicity of the 1-dimensional scheme I', is m,. Furthermore, I'; is an
irreducible component of the special fibre of the minimal regular model of C if and only if s is not con-
tractible. Therefore if s is not contractible, then m, = 1, thatis D, =2 and b, = 1. It follows that v, € 27Z
and d, € Z. Suppose s contractible. Then either d, ¢ Z (and v, € Z) or s =R of size 2g + 2, with 2 odd
rational children and v(c;) odd. We want to show that in the latter case, v, is odd. By Lemma 3.18,
dyn € Z. Then vy = v(cy) + (2g + 2)d is odd. O

Let s € X, be a non-removable cluster. By Lemma 4.26, if s is not contractible, then 2g(s) + 1 or
2g(s) + 2 equals the number of odd children of s. In fact, this also holds when s is contractible since in
that case g(s) = 0 and s has at most 2 odd children.

Corollary 4.27 (Minimal regular model (semistable reduction)). Suppose that k is finite and p > 2. Let
C/K be a semistable hyperelliptic curve of genus g > 2. The minimal regular model C™ /O of C has
special fibre C™ /k* described as follows:

(1) Every non-removable cluster s € ¥ gives a 1-dimensional subscheme T, If s is iibereven, then
T, is the disjoint union of I'>~ ~P" and I'/s+ ~P', otherwise T's is irreducible of genus g(s)
(write I'’>= =T'l>+ =T, in this case). The indices r,_ and r, , are the roots of g.

(2) Every odd proper cluster s € ¢, with size |s| < 2g, gives a chain of P's of length L
from T to I'p, indexed by the root of g..

(3) Every even proper cluster s € X, with size |s| <2g, gives a chain of P's of length
|ds — dpo) — %J from U=~ to T')" indexed by r,_ and a chain of P's of same length from
[7ot to D)™ indexed by r, ;.

(4) Finally, blow down all T, where s is a contractible cluster.

ds 7dp(5)71J
2

All components have multiplicity 1, and the absolute Galois group G, acts naturally, as in
Theorem 4.23.

Proof. Let s € X be a non-removable cluster. From Lemma 4.26, if s is not contractible, then D, = 2,
VsSs € Z and ys° € Z. Suppose s contractible. If |s| =2 with d, ¢ Z (case (1) of Definition 4.20), then
yosleZand y, =1, s, € 32\ Z and 50 s, — d, + dp, € Z, as P(s) can not be contractible. If s =R
(cases (2), (3) of Definition 4.20), then v(c;) is odd, and so y, =2 and y,s, € Z. Therefore (2), (4) and
(5) of Theorem 4.23 do not give any components.

Finally, as y, = 1 and p, % € %Z for any proper s with size |s| < 2g (i.e. non-maximal), the length

1 ds—dp(s)\ :
of P'(Vs, S55 85 — Ps - =) is

ds — dps) 1 d, —dpey 1
)/55'5—]/5 Ss_ps‘T —5 = 1)5~T—E .

The Corollary then follows from Theorem 4.23. O

5. Construction of the model

We are going to construct a proper flat model C/Ox of C by glueing models defined in [1, §4]. For this
reason we will assume the reader has familiarity with the definitions and the results presented in that
paper. Let us start this section by describing the strategy we will follow.
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Let =" be the set of rationally minimal clusters of C and let ¥ € X" non-empty. For any cluster s €
¥ fix a rational centre w, in such a way that EDJ‘C“ consists of the proper clusters in X;-°. This requirement
can be satisfied by choosing w, € s whenever possible.® Let W be the set of all such rational centres and
define X% := J, .,y . For every proper cluster t € £" fix a rational centre w, € W (Lemma 3.14).
For every w € W, consider the curve C* : y* = f(x 4+ w), isomorphic to C, and construct the (proper flat)
model C/Ox by [1, §4, Theorem 3.14]. We will define an open subscheme COX of C; and we will show
that glueing the schemes CO‘A“, to varying of w € W, along common opens, gives a proper flat model C/Ox
of C. Furthermore, if ¥ = ™, and C is y-regular and has an almost rational cluster picture, then CG’AV is
an open regular subscheme of Cy and therefore C is also regular.

5.1. Charts

Let X ={s,...,s,} C X" be a non-empty set of rationally minimal clusters and let W = {w,, ..., w,,}
be a set of corresponding rational centres, such that EOI’C”” consists of the proper clusters of %", for
any h=1,...,m. Define &% := | J;_ | T". For any h,l=1,...,m, h#1, define w;, := w, — w;, and
write wy, = uyt ", where uy, € O and p;, € Z. Note that p; = 05,15, = P, by Lemma 3.18. Set u,, := 0.

Finally, for any h,[=1, ..., m, denote by u,, € k the reduction of u;,; modulo 7.
Definition 5.1. Let h=1,...,m and let t € " be a proper cluster. Recall the matrices and cones
defined in [1, §4]. We say that a matrix M is associated to t if either

(i) M=M,;, withL=L{" andi=0,...,r, or
(i) M=My,;, withV=V" andi=0,...,ry or
(iil) M =My,;, withVo=V" andj=0, ..., ry, if t=s.

For a matrix M associated to t we denote by 8y, and oy, respectively
(i) the denominator 8, and the cone oy ;. y if M =M,

(ii) the denominator 8, and the cone o\ ;.\ if M =M, ;,
(iii) the denominator Sy and the cone Oy s ifM= My .

Finally, define X, = Spec Ox[o,, N Z*] and write

xi =X

for the toric scheme defined in [1, §4.2] from the Newton polytope A" associated to the curve C"".
Therefore, by Lemma 4.3, the union runs through every proper cluster t € " and all matrices M
associated to t.

The following Lemma describes all possible matrices associated to t.

Lemma 5.2. Let t € X" be a proper cluster. Consider the v-face F\". Let Py, P, € 7* and n;, d;, k; € Z.
be asin [1, §4] and define

I’lod- _ n-d() é _ki ki+l
§: =8y, yi=——-—— and Ti:=1[]0 & 0 ],
8dy 00 3

for each matrix M associated to t.

*This is the assumption used in Theorem 4.18.
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o Let ¢ be the unique element of {0, . .., b, — 1} such that i —pi-c=deZ. For L=L{" and
foralli=0,...,r, choose k;=cn; + ddd;(|t/2] + 1); then M, ; and M;} are respectively
8 —cdd; (5 +v) c8dii (5 +vin) L5+ 0
0 d; —di > T;- | disip MTIQ + Ve din |
—8p¢ —ddd; (% +v:) dddiy (& + Vier) dpc Sty d

where Py = (|t|,0), Py = ([It| — 1/2], 1) and § =8, = b
o Iftisodd, thenforV =V{" andforallj=0, ..., ry, the matrices My ; and M;} are respectively

-1t —d MR 1 = 0
2 d; —di |, T;- | dis1pe— 2+ Vi d”zm =t Vi dia |
—e+toe —Njy dip =2y d% =1ty 4

where Py = (|t|,0), P, =(LIt| = 1/2],1), § =8y =1 and k; = k;;, = 0.
o If tis even, then for V=V{" and for all j=0,...,ry, the matrices My; and My} are

respectively
(S )k (S 1) dr
Y di+k; —diy — kin )
-3 fk—\zf\m ';_/ _ k_j et—\zflﬂt _”/’TH + kj+l Et—\zl\m
1t
1 5 +1 0
T | divipe— Vi % - %ijrl di |,

dpo—y, =%y 4

where Py = (], 0), P, = (L[t| — 1/2], 1) and § = 8.
o If f(wy) =0, then for Vo =V;" and for all j=0,...,ry, the matrices My,; and My, are
respectively
1 d —d. -1 -1 0
d; €s),
-2 —d; dy |, T | disips, +2- Vi1 252+ v dia |
€ — Psy T —Thin dips, T2y d’% +v 4
where Py = (0,2), P, = (1, 1), 8 =6y, = | and k, = k;,, =O0.
o If f(wy) #£0, then for Vo =V," and for all j=0,...,ry, the matrices My,; and M. are

respectively v
0 d; —d; -1 -1 0
=8 —di—k disi + ki1 ) T;- | div1ps, + Vinr d'M;sh dig1 | »
85 kS = =k dps, +y, 4,

where Py=(0,2), P, =(1,1) and § = y,.
Proof. We follow the notation of [1, §4]. Choose P,, P, € Z* as in the proof of Lemma 4.3.
First consider the edge L;" of F;". From Lemma 4.3 we have
UZ(],O, _pt) and (WX,W).)Z(_ |_|t|/2J - 1’ 1)
Then M, ; and MLT},I  follow from [1, §4.3] as k; = n,(8p)~" mod & and

n 1 o €
5—;0 =591 = v (P) = v (Po) == + (LIt/2] + D .
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Now assume t even and consider the edge V" of F;". Since t is even,

"Z)= u (W e
Vt (Z)_{(|t|’0)’<2’1),(0,2)}, U—< 2,1, 2 + 2p£>

and (wy, w,) = (=41 — 1, 1) as above. Then My and M), , follow again from [1, (4.3)] as

Ny 1 vk € [t]
E = gsl = VF“‘"I(PI) - VF“'“I(PO) = _5‘ + (? + 1) Py

Similar arguments and computations yield the remaining matrices. 0
Remark 5.3. From the Lemma above one can explicitly construct the charts of the model C)". The

Wh

description of its special fibre C\'. which follows from [1, Theorem 3.14], matches the one given in
Theorem 4.18 in the case W = {w,}.

5.2. Open subschemes

Leth=1,...,mandlet t € X" be a proper cluster. Let M be a matrix associated to t. Write
mpp nmypy M3 mp nmipy M3
M=1my my my and M= |y my oy
msp Mz Msg msy Nz Mg

Recall that X, = Spec R, where
OK[Xil7Y,Z] OK[XiI’Yil’Zil] M +1 +1
:( — < ~~~:[)c,y],
T — XM3YmsZms) (r — X3 Yo Zimss )
via the change of variable

X1y Zimsi X

X xmnymﬂn-m}l X X
Y| =xmy2am | =|y]| oM, y | = Xmeymngzimn | — Y | e ML,
7 X3y g z T X3 Y 733 7

Let [ # h. Set

1+ uthﬂ/x/ﬁllrﬁln Y Prima3 i1 7 ppiis3 =3 iftDs, As,

Ty(X,Y,Z):={ | . o - ~ )
uhl X”lllfﬂhIWlI} Ym2|*/’hlm23zm31*/’h1m33 + 1 lft 2 5h A 51’

element of R[Y~', Z~']. Note that

if tDs,As then TX,Y,Z)— M,

it 25, A5 then TU(X,Y,Z)- TEWH
Whi

The following two lemmas prove that TA"l’(X ,Y,Z) € R. Therefore, up to units, T,{'j(X ,Y,Z) can be seen
as the polynomial in Ox[X*!, Y, Z] satisfying

X —wy = XNYZTIX, Y, Z),
with ny, ny, nz € Z, such that ordy(T}!) = ord,(T") = 0.
Lemma 54. Let h,1=1,...,m, with h#1, let t € ;" be such that t 2 s, A 5, and let M be a matrix
associated to t. Then

Pullas — My = Py — 1y >0 and  pyias — Mz > punas — gy > 0.
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Furthermore if M = M ; then
o Py — iy =0 if and only ifi = rpm or t=8, A s,
. ,0;,1]’7’[33 — ﬁ’l3] =0 lf‘al’ld Only lf‘t =56, N5,

ifM =My ; then

* PwiMyz — iy > 0,
. ,Ohﬂ’;l33 — ﬁ/l31 =0 lf‘and Only if’tzsh NS and]z()

Proof. This result follows from Lemma 5.2, which gives a complete description of M and M~'. We
show it when t is even and M = MV“”h i and leave the other cases for the reader. First of all recall that
Pn = Ps,rs; by Lemma 3.18. Then

Ottty — Myy =0 (dj+1 (o — o) + J/j+1) > dd;yy (PshAs, - Pt) >0,

where y;, = % and 8 = 8. Similarly,
Puizy — Mz =8 (d, (o — o) + )/_/) > dd; (ps,,As, - ,Ot) >0.
In particular p,m;; — ms =0 if and only if t =5, A5, and j =0. O

Lemma 5.5. Let t € X" be a proper cluster such that t 2 s, A s, and let M be a matrix associated to
t. Then

MMy — Puitys >0 and 7ty — pitg; > 0.
Furthermore, my, — pyiy; = 0 if and only if

o« M=Mpu;and i=rpm, or
o« t<s,AS, M=Mvm-, and j = Ty

Proof. This result follows again from Lemma 5.2. As in the previous lemma, we show it when t is
even and M = Mv‘z'h i and leave the other cases for the reader.

Let r = ry». Note that # # R. Set § =y and y; = % Then
M3 — Pz =8 (d, (or — pu) — )/j) > 3d; (,OPa) - thAsl) >0.
since d; > 0 and y;/d; < y,11/dri1 = e — Pr. Similarly,
My — Pl =6 (d_/+1 (o — ow) — )’_/+1) > 8djy (IOP(t) - psh/\51) >0,

In particular m,; — pyiy; =0 if and only if t < s, As;and j=r. O]

Let

T(X.Y.2):= [ | TH(X.Y.2),
I£h
and define

V= SpecRIT)(X.Y,2) '|C Xy, and X,:=| ]V <X,
tM

where t runs through all proper clusters in ;" and M runs through all matrices associated to t. We can
then define the subscheme

Cr=cyrnxt cxt,
where C)" /O is the model of the hyperelliptic curve C*":y* = f(x + w;,) described in [1, Theorem 3.14]
(see [1, §4] for the construction). Explicitly, let g, (x, y) := y* — f(x + w,,) and define F}, € O[X*', Y, Z]
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such that ordy(F},) = ord,(F},) = 0, with all non-zero coefficients in O, satisfying
Y —fx+wy) Z Yz FlX, Y, Z),
for unique ny, nz,, € Z. Consider the subscheme
R|TH(X,Y, Z2)™!
U}, := Spec M cVy.
(Fi(X.,Y.2)

Then
Cr=Juycxl.
M

where t runs through all proper clusters in X and M runs through all matrices associated to t, as before.

5.3. Glueing

Leth,l=1,...,m, with h # . Consider the isomorphism

¢:K [xi‘,yi‘, [1 <x+w,a>‘} — K [x*‘,yﬂ, [Jo+ who)‘} (1

0#l o#h
sending x — x + wy, y—> y. If t D5, A s, and M is a matrix associated to t, then ¢ gives a map

1 o 1 M~ lopom 1 o _
R[Y I’Z I7T1€4(X’ Y,Z) 1]—>R[Y 17Z I’TI{l/I(X, YaZ) I]»

which sends
FX,Y,Z)> F(X-Ty(X, Y, Z)",Y - Ti(X, Y, 2)", Z - Ti(X, Y, Z)"").
Hence it induces the isomorphisms
RIT,(X,Y,Z)"' 1 —> R[T"(X,Y,2)""], v = v 2)
Via these maps we see that g,(x, y) = Y™ Z"z: F (X, Y, Z) also equals
Yrd .z (Tuyrvamatnzims T (X ATy Y - (Tiym2, Z - (T;’j)'"”) ,
where T% = TH(X, Y, Z). Since neither Y nor Z divide T{/(X, Y, Z), we have ny,, = ny,, nz;, = nz, and
FuX, Y, Z) = (Tyyrmetrems Fo(X ()™, Y (Tay"2, Z(Ty)™?) .
Hence (2) induces the isomorphisms
R[T,(X,Y,2)"'] =, R[T}(X, Y., Z)"']
(Fu(X,Y,2)) (Fu(X,Y,2))

Define the subschemes

, UL =S U A3)

hlo.__ h h hl . __ yyh Wi Swi
vih= | vy, S X2, U= viner c e,

.M

where t, runs through all proper clusters in " N T (i.e. t, € %, 5, A 5, C t,) and M, runs through all
matrices associated to t,. From (1), (2) and (3) we have isomorphisms of schemes

vi=vr U=t )

Now, U" C V" are open subschemes respectively of Cy* € X" for any [ # h. Glueing the schemes C' C
X%, tovarying of h =1, ..., m, respectively along the opens U" C V" via (4) gives the schemes C C X.
We will show that C /Oy is a proper flat* model of C.

*Note that the flatness of C is trivial since it is a local property.
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5.4. Generic fibre

Wi

We start studying the generic fibre C, of C. Since it is the glueing of all ¢ Ay through the glueing maps

hl h
U, — U,
induced by (4), we start focusing on Cth forh=1,...,m. In particular, as CO'A”’ is an open subscheme of
Cy\", we study Cy", ~ Czhn =C" N COZf‘n.
Lemma 5.6. Foranyh=1,...,m,
K[x,y]

C" G = Spec

(gh(xa y)7 1_[0#;, (X + Who)) .

Wh

Proof. For every choice of a proper cluster t € X", and M associated to t, let
R®o, K
(FiX, Y, 2), Th(X, Y, 2))’

Py = (CZ’;I ~ CZ”U) N X, = Spec

To study Py, we are going to use Lemma 5.2 and the definition of 7%(X, Y, Z).
Suppose first t = R and M = My . Then 1,3, n133 > 0, so

RIY™',Z] i Klx*, y*

P, = Spec >~ Spec ,
! (FH(X.Y.2). Tj(X. Y. 2)) (enx. . T1, &+ w))

where the product runs over all 0 # h. Now let t=*R and M = My . Ifj# s then Py, is as in the
previous case (since /s, 33 > 0). Ifj = v then 33 > 0, Aity; = 0, but pyimy; — my > 0by Lemma 5.4.
So from the definition of T%(X, Y, Z) we have once more the equality (5). Similarly, if t =5, and M =
MV[‘)Vh ;» then my; > 0, and m,; — pyity; > 0 by Lemma 5.5. Hence we have (5) again.

It remains to study P,, when M :MLVLVhJ-. Ifi# Iy then m,;, ms; > 0 and so P, is as in (5). Let
= Iy Then m3; > 0 but both 7,3 and py,my; — My, equal 0. Hence 7,3 = i, = 0, which also implies
my, = my; = 0. Therefore M defines an isomorphism R[Z™'] >~ K[x*', y], which induces

RIZ™ u K[x*,y]

Py = Spec ~ Spec .
" (Fu(X.Y,2), Ty(X, Y, 2)) (85t ). T O+ wi))

This concludes the proof. O

®)

Wwh

Regarding C}' as a model of C via the natural isomorphism C — C"*, we get
K[x,y]
()’2 _f(-x), l_[,;?gh (x - Wu))

C~ G = Spec

Thus the generic fibre of C is isomorphic to C.

5.5. Special fibre

We now study the structure of the special fibre C, of C. As for the generic fibre, we consider
C NG

forany h=1, ..., m. For every choice of a proper cluster t € £, and M associated to t, let

Ox[X*',Y,Z]
(FiX. Y, Z), Th(X, Y, Z), Y Zss )

Sy = (CX@. ~ CZ’;) N Xy = Spec

Lemma 5.7. Let M=M,; for L=L{". Let [ #h. If t=s,As, then TI(X,Y,Z)=X"(X + uy),
otherwise
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() THX,Y,00=1fori=0,...,r;
(i) TH(X,0,2)=1fori=0,...,r,—1.

Proof. Fix I # h. If t 2 5, A 5, then by Lemma 5.5, we have ,; — pyniy; > 0 and my; — pjmzs > 0.
Moreover, if m,; — pui,; =0, then i = r;. Therefore the equalities in (i) and (ii) follow directly from
the definition of T77.

On the other hand, if t D s, A s, then by Lemma 5.4, we have pimy; — my, > 0 and pyims; — ms; > 0.
Moreover, if pyf,; — my =0, then i = r;. Therefore we have (i) and (ii) again.

Finally, assume t = s; A s,,. Since p, = py; € Z, then pym 3 — m;; = —1. Hence

T;{Z(X, Y, Z)=1+ uhIX_I =X X+ un) ,
by Lemma 5.4. O

Lemma 5.8. Suppose M = My ;. Then

OK[)(:*:1 s Ya Z] W
Sy = Spec —; _ ce,
(‘FA;I(Xa Y, Z), 1_[, (X + l/lh[) , Y3 Zmss 7-[)

where the product runs over all | # h such that t = s, A s,

Proof. Lemma 5.2 shows that m3; is always different from 0, while 7,; = 0 if and only if i = Iy
Thus the result follows from Lemma 5.7. O

Lemma 5.9. Let f,(x) =f(x+w,) and [ # h. Let L;, = L;“:Asl and let t, € 7', t, < s, A 5. Then uy, is a
multiple root ofm of order |t|.

Conversely, if ¥ ={s,...,8,} =X2" C has an almost rational cluster picture and & € kisa
multiple root of f,|,, for some edge L of NP(f,), then & = 1y, and L = Ly, for some 1 # h.

Proof. For any proper cluster s € Xy, let A, = min,., v(r — w,,). Lets € £, with s, C s C s, A 5,. Then
w;, is not rational centre of s, and for every root r € s, one has

v(r —wy) =v(r —w +w, —wy) =min{v(r —wy), pu} = P
as v(r —w;) > p, > py. Therefore A, = p, € Z. In particular, |A,|, < 1. Furthermore,
r—wy Wi

=— mod 7,

ds = Ps > )\'5 = LPni and =
TT Phi TT Phi

and so Theorem 3.24(i) implies that u;, = % mod 7 is a multiple root of f,|,,, where L, = L:Zlmz'

Lett, € T, t; < s, A 5. Since 5, C 4, < 5, A 5, we have

t={reR|m=52 modr},

r—=wy
Phl

Now let @ be a multiple root of f,|, for some edge L of NP(f,) and let s € > associated to o by
Theorem 3.24(iii). We want to prove that if C has an almost rational cluster picture and £ = X", then
there exists / # h so that @ = uy,. Note first w,, is not a rational centre of s. Indeed, if w, is a rational
centre of s, then

as v(r —w;) > py, if and only if uy, = mod . Thus the multiplicity of i, is |t;| by Theorem 3.24(ii).

5] > |Asl, = |0slps ds > hs = s,

which contradicts the fact that C has an almost rational cluster picture. As {s, ..., s,} = X", we must
have that w, is a rational centre of s, for some [ # h. Thens, Cs C 5, A 5,. Since @ = :;;" mod 7 for any
r € s, from above we have o = uy,. Finally, L is the edge of NP(f;,) of slope —A, = —p;. Thus L = L

SpAS"

It remains to compute Sy, when M = M, ;, where V.=V," or V = V.
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Lemma 5.10. Let M =My, for V=V", or V=V," ift=s,. For any | # h we have

(i) THX,Y,0)=1 except when t =15, A 5, and j =0;
(i) TH(X,0,Z)=1 except whent <s; A5, and j=ry.

Proof. The Lemma immediately follows from Lemmas 5.4 and 5.5. O
Lemma 5.11. Let M =My; with V=V\", or V=V" ift=5s,. Then Sy, = @.

Proof. For any I # h, we want to prove that
S = {TH(X,Y,Z)=Y"Z" =0} = @. 6)

Lemma 5.2 shows that ms; is always different from O and that my; =0 if and only if j=ry, and V=
Vot or V.=V,". Assume that if t=s5, A 5, then j # 0 and that if t < s; A 5, then j # r,. Lemma 5.10
implies (6).

If t=5, A s, and j = 0, then pyms; — m3; = 0 but oMy — fy; > 0. So

S = (TU(X, ¥, Z) = 2" =0} C Spec RIY"'].
Similarly, if t < s; A s, and j = ry, then m,, — pjmy; = 0, however my; — pms; > 0. Then
S =1{T}(X, Y, 2) =Y"* = 0} C Spec RIZ"'].

In both cases, S C X, as sets, where F = F" _ ([1, Definition 3.7]). Let L=L" _, and let f,(x) =

S|AS), SIASR

f(x+w,) and g,(x, y) =y* — f(x). By Lemmas 5.8 and 5.9, one has
S;l/; g X[: n SML,O == @,

as f}’\;LO(X, Y,0) mod 7 equals Y* —X"]T|L(X), for some aeZ, b=1,2 (see Lemma 5.17 for more
details, whose proof is independent of this result). Thus if V = V{" and M = My, then Sy, = @. O]

5.6. Components

Now that we have compared the special fibre of C with those of the models C}", let us describe
closed subschemes that form it. We will first study closed subschemes forming CO”A”’; and then how they
glue in C,.

Let f,(x) =f(x + wy) and g,,(x, ) = ¥* — f,(x). According to [1, Theorem 3.14] the special fibre of C)"

is formed by:

o Chains of P,s coming from v-edges of A",
o 1-dimensional subschemes coming from v-faces of A":.

Mo&recisely, each v-edge E gives a scheme X x Pz, where P;; is a chain of Pis and X; C G, is given
by gl = 0. The multiplicities and the length of P; can be completely described by the slopes of E. On
the other hand, each v-face F gives a proper scheme X containing an open subscheme X € G, given

by gilr = 0. How the previous schemes intersect to form C)" is described by [1, Theorem 3.14]. The
reader is pointed to [1] for more details.

Definition 5.12. Let t€ XV be a proper cluster. For any rational centre w of t, let ry,, = el

0 W
Ug =C; Hrem\t roeand uy, | =cy l_[rEfR\(W/,} T, Define f5,, 8o € kIX], and g% | € k[X] for any h=
1,...,m, as follows:
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(i) Let u=u,. Definef by

m(be) = l_[ X+ry,,) mod m,

ret\Ug¢ s

where the union runs through all children s of t in £V. If £ = X" denotem by fin-
(ii) Let u=u,,. Define gi,(X):= Xr/v* — - mod 7.

V@
—_— 0 0

_ 0 0 . YPs)/Vs, _ _U

(iii) Letu=uy, . Defineg) . (X):= X"'"n — - mod 7.

Note that the polynomials defined in Definition 5.12 agree with the ones in Definition 4.14 when

W= Ww.

Lemma 5.13. Lets,te X7, withs C t. Let w', w be rational centres of s and t respectively, and define

/
w—w

u =

4
ww

mod 7. Thenu_;  does not depend on the choice of a rational centre w' of s.

Proof. Suppose that w;, w, are two rational centres of s. Then v(w, —w,) > p, > p;, and so the
Lemma follows. O

Remark 5.14. Ler te X' Let l=1,...,m, [ #h. Then t=s, A s, if and only if it has a child s €
X'\ B¢ In particular, if this happens, Lemma 5.13 shows that w;, = “* mod 7 for any rational
centre w of s.

Definition 5.15. Let t € X be a proper cluster. Define " := {s € £V U {@} | s < t}, where & < tonly
if t has no child in ©V. If & < t then we will say that wy, is the rational centre of @.

Define Gy, := G, \ Ul{u_”,}, where the union runs through all | # h such that s, A s, = t. Note that
Remark 5.14 shows that G, = Ay \ U,cw (o, |, where ., = *52% mod 7, and w, is any rational
centre of s.

Let t € X" be a proper cluster. Let V = V" and M = M. In Section 5.5 we showed the special fibre

wh

of U}, equals X,y N Cy",. Therefore the components of ¢ A coming from V are the same of those of Cy"
given by the same v-edge. Therefore V gives a closed subscheme X, x P, of COZZ, where Py is a chain
of ;s and Xy, : {gulvy = 0} over G,,,. Lemma 4.3 implies that g,|, = Siny -

Let Vy = V" and M = My, ;. Similarly to above, X, N CX”A =Xy NCy" and so V, gives rise to a closed
subscheme Xy, x Py, of COZZ, where Py, is a chain of Ps and Xy, : {gs|v, = 0} over G,,+. Note that g, |, =
8o

"Tet te " be a proper cluster. Let L=L{"* and M =M, ;. By Lemma 5.8, the v-edge L gives a
subscheme X} x P, of COZ’]S, where P, is a chain of P!s of length r, and X}" : {g,|, = 0} in Gy,,. Note
that r, =0 or 1 by Lemma 4.3 and r, = 1 if and only if D, = 1. Let t, € ;" be the unique child of t with
rational centre wj, or set t, = @ if t has no such child. We will show that

gl =— ] &+z) £2,00. (7

stV st

where u,_,, = *5* mod 7, and w; is any rational centre of s.
Suppose t # s, A s; for any [ # h. Equivalently, all children of t in " (at most one) belong to X"
Then Lemma 4.3 shows that g,|, = —fon,- Suppose now that t=s, A s, for some [ # h. In this case

b= 1. We have

éT'L(X) _ _# Hret\th (X + rt,w;,)
uwswl,)‘sl B

mod n) = —fT(X),
Hse@w,s#h X+ Hseiw,s#lh l_[res X+ rhwh) o
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where ry,,, and u = u,,, are as in Definition 5.12. Indeed, u,_,,, =, mod m forevery r € s as v(w, —
r) > p, > Py, and since by = 1, Lemma 4.3 implies that

8l = =7 [eo, @+ riw,) mod 7.

In particular, Remark 5.13 and Lemma 5.9 shows that (X + ;) { ftTwh (X), for any [ # h such that s; A
s, = t. Moreover, X {f%, (X) by definition. Therefore the scheme X;" is equal to the closed subscheme
X{ CA] givenby f =0.

twy

Let t € % be a proper cluster. For any A=1, ..., m such that s, C t, let )_(F‘:h be the 1-dimensional
closed subscheme of C)", given by F;". Define

X := X N CY
Foni= X A

Denote by T, the 1-dimensional closed subscheme of C,, result of the glueing of the subschemes X, o

Wh

of 62’3 to varying of & such that t € ="

Lemma 5.16. Let t € X7 be a proper cluster. The multiplicity of T in C, is m,.

Proof. Let L=L", M =M,,, and let F = F{". The multiplicity of )_(F‘:'h , and so of Xpn and Ty, s
dr. Hence we only need to show that m; = §. Let dy € Z as in Lemma 5.2. Then §; = §,d,,. The result
follows as 8, = b, and dy, denominator of s¥, equals 3 — D, by Lemma 4.3. O]

Lemma 5.17. Let L=L", F=F" and M=M,,. Let c€ {0, ..., b, — 1} such that 1/b, — p, - c € Z.
Then F!'(X,Y,0) mod 7 equals the polynomial

- I8l _cee 7w
gl X V)= Y2 = [ | (X = T) £, (00,
setW

where u,,,, = = mod m, and w, is any rational centre of s.

In particular, T C G, x A, given by glr=0is the open subscheme Ul N{Z=0} of)D(F, and the
points in Sy belong to all irreducible components of Xp.

Proof. From [1, §3.5] and the equation of C"", the polynomial F (X, Y, 0) reduces modulo 7 to
Xay?b —I—X"Zg,T(X), for some b =1,2 and a € Z. Lemma 4.9 shows that b = D,. By Lemma 4.3, a, =
2y, @y = ||y, + (€, — || p)ms, where t, € 27" U{@}, t, <t. Then a; =0 and a, = % — ce¢ by
Lemma 5.2. -

If t has one or no child, or D, =1, then g,m = —ﬁ‘f"w,l by (7). On the other hand, if Dy =2 and t has
two or more children in X7, then b, =1, and so ¢ = 0. Therefore the equality (7) concludes the proof
of the first part of the statement also in this case. Finally, the last part of the Lemma follows from
Lemma 5.8. O

Let ¢ as in the previous Lemma and define t¥ := {s ¢ " | % — ce ¢ 27).

Proposition 5.18. Let L = L;" and M = M. The dense open subscheme I', N\ UL, of T, is isomorphic
to the closed subscheme of G,,,, x A, given by

YDt = 1_[ (X_ uwswh) fTwh(X)’

setW
where u,,_,,, = *=; mod 7, and w, is any rational centre of s.
Proof. The proposition follows from Lemma 5.17 and the definition of G, . O
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We conclude this subsection describing how the glueing morphism (4) restricts to the special fibre.
Suppose t D 5; A s, for [ # h and let M be a matrix associated to t. Consider the glueing map U}, — U/,
explicitly defined in Section 5.3.

Suppose first M = My,; with V = V{". By Lemma 5.10 the glueing morphism restricts to the identity
on Xy x Py.

Suppose M = M,,; with L =L}". Note that 72, = 0 from Lemma 5.2. Recall the open subscheme I'!
of Xy defined in Lemma 5.17. Then, Lemma 5.7 implies that the glueing map restricts to an iso-
morphism I'/ — I'! induced by the ring homomorphism sending X > X + u,,,, where #,,,, =

TPt

mod 7. Similarly, it restricts to an isomorphism X%, x P,w — X", x P,w, where P,w — Ppw is the
L Ly L Ly Ly Ly

identity and XZ‘,’% — XL‘K-/ is induced by the ring homomorphism sending X — X + u,,,.,,.
t t

5.7. Regularity

Let w, € W. We want to show that if ¥ = Eg““, and C has an almost rational cluster picture and is
y-regular, then C)" is a regular scheme.

Lemma 5.19. Consider the model C\" | Ox and let f,,(x) = f(x + w,,). Suppose T = {s,, . ..,5,} = 2",
and C has an almost rational cluster picture and is y-regular. If P is a singular point of C\" then
Ok[X*,Y,Z
P € Spec xl ] cCl'N Xy,

(FuX, Y, Z), X + uy, Y253, 11)
for some | # h, where M = MLZ’ﬁ’M,A,ifO” i=0,...,rm

SpAS]

Proof. Denote by m,(X) € Ox[X] a lift of the minimal polynomial in k[X] of & € k. By Lemma 5.9,
Wi

we only need to show that if P € C}" is a singular point then
OK [)(il ’ Y9 Z]

PeS — ,
PeE Bl (.Y, 2), mu(X), Yooz, )

(®)
for some v-edge L=L{" of A", and some multiple root & of f,|,. We study the polynomial FI, to
varying of the matrix M, using [1, §4.5]. Let g,(x,y) =y* — fu(x). Let L = L{" and M = M, ;. Note that
gil. = —fil.. We have F(X, 0, Z) = g,|,(X) for any i. On the other hand, F/,(X, Y, 0) = g,|(X) if i > 0
and F(X,Y,0) = g,,ﬁ(X ,Y) if i = 0. From the description given in Lemma 5.17, we conclude that for
these matrices M the points in (8) are the only possibly singular points of C)" N X,,. In particular, this
proves that for any v-face F of A", the points in X are non-singular in C}".

Let V=V" or V=V," and M = M. Since C is y-regular, p { deg (g,|,) by Lemma 4.9. By [1, §4.5]
Wh

and the fact that the points in X are non-singular for all v-faces F, we conclude that C," has no singular
point on X,, for these matrices M, as required. ]

Proposition 5.20. Suppose ¥ = X", and C has an almost rational cluster picture and is y-regular,
then C is a regular scheme.

Proof. Lemmas 5.19 and 5.8 show that Coz'h is regular for every h. Thus their glueing C is regular as
well. O

5.8. Separatedness

It remains to prove that C is a proper scheme. We first show it is separated. Clearly it suffices to prove that
X /Oy is separated. Since the schemes X’ are separated, then the open subschemes X" are separated as
well by [9, Proposition 3.3.9]. Consider the open cover {V},},, of X.Leth,I=1,...,mand let M, and
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M, be matrices associated to proper clusters t, € " and t, € X' respectively. By [9, Proposition 3.3.6]
we want to show

@) Vy, NV, is affine,
(i) The canonical homomorphism
Ox(Vy,) ®2 Ox(Vy) —> Ox(Vy, NV,,)
is surjective.
The definition of the glueing map (4) implies (i). f k=1, or 5, C t,, or 5, C {,, then (ii) follows from the

separatedness of X’; and X’A So assume [ # h, and t;,, t; C s, A 5,. Consider the Moebius transformation

X Y
Y x> W V> W
It sends the curve C" to the isomorphic hyperelliptic curve
C):y* = (w,' + D*7f (xGowy! + D7 +w) .
As

@)= Gwy! A+ D (xCowy,! + 17 4 w)

N _ _ r—wy _ r—w;
= cwp (owy, A )X l_[ (xwh,' + ,

Wip r—w,

reR~{wy}
every cluster s € X' such that s C s, A s, corresponds to a unique cluster s" € Eg;, of same size, same
radius and rational centre 0. Moreover,
ex =vcp)+ Y part+ V() =¢..
resh r¢sh
Call ¢/ the cluster in 22? corresponding to t,. Let A" and A" be the Newton polytopes attached to

¥* —f(x) and let X" be the associated toric scheme (defined in [1, §4.2]). Since t, C 5, A 5, the v-
faces F,, of A" and F o of A™ are identical by Lemma 4.3. Furthermore, note that if t, < s, A 5, then

0 V, . .
Pry < P = Pray and s0 s)° < sY, where V° = Vf7 and V =V;". Therefore the matrix M := M, is also

associated to t/.

Foreveryo=1,...,m, with o # [, define
WW
TR it o #£h,
Wio =193 Who
Why ifo= h,

and write wy,, = """, where u,, € Oy and py, € Z, i.e.

Ul .

—— ifo # h, Pni + Plo — Pho ifo # ha
Upp = Uno and  pp, = ]

Up; ifOZh, Oni ifo=nh.

Define

1+ uh]UXﬂmnfhm—'hn Y Priot23 =121 Zphiom33—m31 - f t,Ds,,

Thlo o
TM (X’ Y’ Z) T — 1y —ppom 1 — Phioim: M31—Phio :
uhloX 11 =Phlo"13 Y21~ Phio™23 71M31 = Phlo"33 + 1 if t[ ;_) 5,.

We want to show 7(X, Y, Z) € R. If o = h then
T (X,Y,Z)=T!XX,Y,Z) €R.
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So assume o # h. If 5, C t,;, then it follows from Lemma 5.4 as s, A 5, C §; A s, and s0 py, = p5,- On the
other hand, if s, Z t;, then it follows from Lemma 5.5 as 1,3, 133 > 0 and oy, < max{oy, 0, }. Let

TX,Y,Z):= ]_[ Ti(X, Y, Z).
0#l
The Moebius transformation

v _
K[Xils yil, l_[o#/ (.X + Wlo)il] —I) K[-xila yil’ 1_[0#1 (.X + Whlo) : ]

considered above induces an isomorphism

~loyso ~
RIT,(X,Y,2)"']1 2% RITIX, Y, 2)'],

sending
X—X- Tlltill(X’ Y, Z)—"lll—(g+|)m21 ,
Y—Y. T:;(X, Y, Z)—mlz—(g-*-])mzz’
Z+—Z- T}{’/II(X, Y, Z) et s,
Then

V.= Spec RIT!(X,Y,Z)™"]
is an open subscheme of X%, isomorphic to V},. We can clearly carry out similar constructions for 7,,
M,.
By comparing the Newton polytopes A" and A", we see that the Moebius transformation x —
Wi/ (W' %), y > y/(w),'x)*! gives an isomorphism

v Ky T b wine) ™1 — K, y* [T e wio) ™'
o0#l o#h

which induces a birational map X% --» X", defined on the open set Vi of X%. In particular, there exists

an open set VZ,I of X}, isomorphic to V}, via the map induced by ¥, ' o /.
Recall the definition of ¢ in (1), which induces the glueing map between V,’wl and Vf&h. Since the
following diagram

— ¢ _
K25y o (@ +wio) 7Y —— Ko™ty Tl (@ + who) ']

Jo [

IR _
Ko™ y* T pu (@ + whio) 7' —— Ko™ y™ ' T], (2 + wine) ™)

is commutative, then the surjectivity of
OX(V,(}h) ®Z 0)((‘/}{4,) —> OX(V,]&h n V}(/,’)

follows from the separatedness of X%

5.9. Properness

By [2, IV.15.7.10], it remains to show that C; is proper. From [9, Exercise 3.3.11], we only need to
prove that the 1-dimensional subscheme I'; is proper for every t = s, A s,. Indeed every other component
is entirely contained in a model C}", which is proper (see Section 5.5). Let t =5, A 5, for some h, [ =
1,...,m,withh#[.Foranyo=1,...,msuchthats, C t,lett, be the unique child of t withs, C t, < t.
Then T is equal to the glueing of the schemes

RIT(X,Y,Z)']
(FoX,Y,2),Z,7)°

Spec M =My o, Myyo o,
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and
RIT;, (X, Y,Z2)™"]
(FoX,Y,2),Y,m)’

Spec M =My, .,
;

to
for all o such that s, C t, through the isomorphism (4) and the glueing maps in the definition of Cy.In
particular, for any o as above there exists a natural birational map s, : I', --» X which is defined as the
identity morphism on the dense open X;» =T"(N CZ
Let D/k be anormal curve, let P € D and let D ~ {P} —%_Ft be a non-constant morphism of curves.
We want to show that g extends to D. For every o as above, X is proper, so the birational map
8= 5,08: D~ {P} --> Xy

extends to a morphism g, : D —> Xy If

P, = 2,(P) € (XF:ro n égﬂ) —s, (1“t n égﬂ)

for some o such that s, C t (we will later show this is always the case), then there exists an open neigh-

bourhood U of P, such that U C (Xp‘;’o N CZ) and so sg|SU_,(
map

o is an isomorphism. Since P € g;'(U), the

B zm;f,l
g,'(U)
induces an extension D —> I'; of g.
Suppose that P, ¢ X N C," for any o such that 5, C t. From Section 5.5 we have

R
(JT-.I{)/[(X9 Y’Z)vl_[[ (X+uol) 7Z77T)’

-1
(SO\U,I )
w) so (U)

U s, (U) =T,

P, € S); = Spec ©)]
where M = M, L 05 and the product runs over all / 7 o such that t =5, A s,. In particular P, is a point of
each irreducible component of )_(F»lvo by Lemma 5.17. Let & # o such that X + u,, vanishes at P,. Let &
be the generic point of D and let §, = g,(§), &, = g,(§) be generic points of )_(F;vo and X Fun Tespectively.
Then the birational maps s, and s, give

X pvo k(&)
%o - %90
D~{P} —2s1 = k(D) ~
\\\\A B by,
X k(@)

where we denote by ¢, and ¢,, the homomorphisms between function fields induced by g, and g,. The
vertical isomorphism is induced by the map
RIT;(X, Y, 2)""] RITy(X, Y, 2)"']
—
(FuX,Y,2),2) (Fu(X,Y,2),2)

which sends (see Section 5.3 and Lemma 5.7)
Xtup—>X-TwX, Y, 20" +up =X (1 +w,X ") +us=X.
But the rational function X + u,, vanishes at P,, while X does not vanish at P, by (9). This gives a

contradiction, as g,(P) =P, and g,(P) = P,.
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5.10. Genus

Suppose £ ={sy,...,5,} = X", and C has an almost rational cluster picture and is y-regular. In the
previous subsections we proved that C /Oy is a proper regular model of C. Let t € ;" be a proper cluster.

Proposition 5.21. Letr t € X;". Then T is isomorphic to the smooth projective 1-dimensional scheme

given by
= 1_[ (X - uwswh)ﬂ,wh(x)
setW
where u,,_,, = ‘”jr% mod 7w, and w, is any rational centre of s.

In particular,

(1) if D =1, then '\ ~P;;

(2) if Dy =2 andtisiibereven, then T is the disjoint union of two P's over some quadratic extension
of k;

(3) in all other cases, I, is a hyperelliptic curve of genus g(t).

Proof. The first part of the proposition follows from Proposition 5.18.
For the second part of the statement note that if D, = 1 then the result follows. Suppose D, = 2. Then
p #2 as C is y-regular. Note that since ¥ = E2™, the proper clusters in X" correspond to the > proper
clusters in 7. Recall the definition of t given in Definition 4.13. Let h(X) = [Low X —u,, h)ﬁ w, (X)-

Suppose t is iibereven. Then all its children are (proper) rational cluster by Lemma 3.30 since they
are even and p # 2. In particular b, = 1 by Lemma 3.18 and so €, € 2Z and t =1" = @ since it equals
the set of odd rational children. Moreover, t =, _, , yroper 5> @0d 50 fi, € k. Thus A(X) € k.

Now suppose h(X) € k. Then t¥ = @ and t = J,_, 5, where s runs through all children s € " of t.
The non-proper clusters in " are of the form {w,} for some I=1,...,m. If {w,;} <t, then t=g,, but
in that case t would not equal the union of its children in £". Hence t has no non-proper children. It
follows that t =t and t equals the union of its proper rational children. In particular, ¢ has two or more
children in X7, so by =1, by Lemma 3.18. But then t is the set of odd children of t as €, € 27, and so
all rational children of t are even.

It only remains to prove that if h(x) ¢ k, then the genus of I'y is g(t). Since h(X) is a separable
polynomial, we need to show that

deg h— |t| Zsez?‘,5<t |5| 4 |{| .
b,
It suffices to prove that if s € 27** is a non-proper rational child of t different from {w)}, then b; =1 and
s e {. Suppose s = {r}issucha ratlonal cluster. Since r € t, we have v(r — w;,) > p. Suppose v(r — w;,) >
o.. Thens € X", as s < tand r # w,,. But this contradicts our choice of W. Then p, = v(r — w},) € Z and
so b, = 1. Tt follows that t is the set of odd children of t. Thus s € f. O

5.11. Minimal regular NC model

Suppose the base extended curve Cy is y-regular and has an almost rational cluster picture. Consider
the model C/ Ok constructed before with ¥ = X7 . We want to see what components of C, should be
blown down to obtain the minimal regular model w1th normal crossings. Recall [1, §5]. Let Xgw = E‘g‘:{m
and fix a proper cluster t € 3.7, .

Suppose first t # 6, A s, forall /=1, ..., m with [ 7 h. Equivalently, t has at most one proper child
in Xgw. Then I'y >~ X Fon and can be seen entlrely in C”" In particular, if I'; can be blown down then F;"

is a removable or contractible v-face (see [1, Theorem 5.7]). By Lemma 4.3, we find
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« F{" is removable if and only if t =R with a child in T of size 2g + 1.
« F™ is contractible if and only if either |[t| =2 and 5 — p, € Z or t has a proper rational child
5 € Xgw, of size 2g, and & — gp, € Z.

Recall Definition 4.20. Note that F’ :V " is removable if and only if t is removable. In this case, F;" can be
ignored for the construction of C)" (for any A since t = fR), and so t can be ignored for the construction
of C.

Assume now F contractible. We want to understand when I'; can be blown down. First consider
the case |t| =2 and < — p, € Z. Then T’ intersects other components of C, in 2 points (as V;" gives
two chains of P's and the v-edges V" and L\" give no component in C,"). To have self-intersection
—1, I'y has to have multiplicity > 1. It follows from Lemma 5.16 that p, ¢ Z, as & — p, € Z. Moreover,
by Lemma 3.12, one has p, € 1Z Therefore €, is odd and the multiplicity of ', 1s 2. Let r:= ry» and
consider

wh

ng m n. Ry
PSi=—>—>...>— >

do d, dp

given by V. If T, can be blown down then d;, = 1. Since s, = —5 +2p, we have dy =2. In par-

ticular d; =1 if and only if p; — pp = Z—g — ;’:—i: z% (see also [1, Remark 3.15]). Thus if [t|=2,

then I'y can be blown down if and only if p, ¢ Z, €, odd, ppy < pi — % Note that this is case (1) of
Definition 4.20.

Second consider the case |t| = 2g + 2 with a proper rational child s of size 2g and <+ — gp, € Z. The

argument is very similar to the previous one. If Iy can be blown down then it must have multiplicity

> 1 and this implies p, ¢ Z again by Lemma 5.16. From Lemma 3.12 it follows that (|t| — |s])p( € Z, so

p¢ € 3Z. Then m, =2 and

=V (St —p+ ,OP(t))

TS grpeizz

2
so v(¢y) odd. Let r := ryw and consider
no m n, Ny
/Sg = — > — > ... > — > = VY:(5s — ps +
1Z & 4 4 d Ys(Ss — Ps + p0)
given by VW" If Ty can be blown down then d, = 1. Recall that €, — |s|p, = et |s|p¢. Then y, (s, —
ps +p)=—5%+(g+ Dp, sod,; =2.Inparticular d, = 1 if and only if p, — o, = 2 — e 1 . Thus

d -
if t has size 2g + 2 and has a unique proper ratlonal child s € Zgw, then I', can be bolown down if and

only if |s| =2g, pi ¢ Z, v(c;) odd, p; > oy +1 5~ This is case (2) of Definition 4.20.

Finally, if |t| =2g¢ + 1, t has a proper child s € X~ of size 2¢g and < — go. € Z, then p, € Z, as
(|t] — |s])p; € Z. 1t follows that €, € Z and so m; = 1. This implies the self-intersection of I'; is not —1,
since it intersects the rest of C; in at least two points as before. Hence in this case Iy can never be blown
down.

Now assume there exists / # h such that t =5, A s,. Then t is not minimal. Let t,, t, € Xx» be such
that s, C ¢, <tand s, C {;, < t. Suppose I' irreducible. If |t| <2g (or, equivalently, t is not the largest
non-removable cluster), then I'; intersects at least other 3 components of C; (given by t,, t;, and P(1)). So
it cannot be contracted to obtain a model with normal crossings. A similar argument holds if there exists
0 # I such that s, A 5, = t: at least 3 components (given by t,, t, and t,) intersect Iy, so blowing down I';
would make the model lose normal crossings. Assume then |t| > 2g and s, A s, # tforall o # /. Then I',
intersects at least other 2 components of C, given by V" and V. Firstly, if I'; can be blown down, then
m¢ > 1. But py = py, € Z. Then my is at most 2. If m, = 2 then Dt = 1, that implies ¢, odd and [ >~ P! by
Proposition 5.21. It also follows s, € ;Z \ Z. If tis odd then this implies that V;" gives a P! intersecting
I',. Since that would be a third component intersecting I', the cluster t has to be even. Hence t = R and
[t| =2g + 2. Then €, is odd if and only if v(¢;) is odd, as p, € Z. Now, L," gives some P's intersecting
XF‘:’h C Cy". All these P's are not in CX”A (and so in C;) if and only if t, U t, = t. In particular, t, and ¢,
are either both even or both odd. If t, is even, then y,, =2, and so the component given by V;" has
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multiplicity at least 2. The self-intersection of I'; could not be —1 in this case. Assume t, is odd. Let
r:= ry» and consider
h

)/s—0>ﬂ> >&>”r+1_y s_ﬂt,,—/ot
Gty d, d, d dr+1 ) b 2
given by Vi". We want d, = 1. Since

— € £, — 1
N (St,,—%>=—i+%pf€%Z\Z,

we have d,; =2. As before d, = 1 if and only if p"’ 2= Z—U - Z'*‘ > and similarly for t;,. Thus if t has
two or more rational children and I’y is irreducible then it can be blown down if and only if v(c;) is odd
and t =R is union of its 2 odd rational children t, and {,, satisfying p,, > o, + 1, p, > p¢ + 1. This is
case (3) of Definition 4.20.

Suppose now I'; reducible. By Proposition 5.21 the cluster t is {ibereven, ¢, is even and I’ is the
disjoint union of I'; ~P' and I'} >~ P'. As before, both I'; and I';" intersect at least other two com-
ponents (given by the proper children of t). But then neither I, nor I'} has self-intersection —1, as
my=1.

We have showed that, for a rational cluster t € Xy, an irreducible component of I'y can be blown
down if and only if t is contractible. Moreover, in this case, ', is irreducible. It remains to show that after
blowing down all components I'y where t is a contractible cluster, no other component can be blown
down. First note that if t is a contractible cluster, then m, = 2 and I' intersects one or two other compo-
nents of multiplicity 1 at two points in total. If it intersects only one component, then after the blowing
down, the latter will have a node and will not be isomorphic to P'. If I', intersects two components and
those intersect something else in Cj, then they will not have self-intersection —1 also when I, is blown
down. Therefore suppose that one of those two does not intersect any other component of C,. If we are
in case (1) or case (2), it is easy to see that this never happens. Indeed, in those cases, I'; intersects non-
open-ended chains of P's. Then without loss of generality assume to be in case (3) and that [, is the
component that can be blown down once I'; has been contracted. This implies s, = t, and p,, = p; + 1.
Then b,, =1 and €,, = €, + |s,|. Since both €, and s, are odd, we have €,, € 2Z. So D,, =2 and §, is
the set of rational children of s,. Hence g(s,) = L%J > 1 since |s,| > 3. But then I';, cannot be blown
down.

5.12. Galois action

Consider the base extended hyperelliptic curve Cy. /K" The rational clusters of Ci. and their corre-
spondmg rational centres are then over K. Denote g = X% . For any proper cluster s € Xy, let

G, = Stabg, (5), K, = (K*)° and k, be the residue field of K,. Let Eg""” {s1,...,5,} be the set of
rationally minimal clusters of Cy.. Fix a set W ={w,...,w,} C K" of corresponding rational cen-
tres. By Lemma A.1, we can assume this choice to be Gg-equivariant, that is for any o € G, one has
o (w;) =wj if and only if o (s,) = 5,. We can also require that w,, € 5, if 5, N K,, 7 . Similarly, for any

proper cluster t € Xgn \ EQ",‘” , fix a rational centre w, in such a way that w,, = o (w;) for any o € G.

Setw,, := w, foranyo=1,...,m.
Lemma 5.22. With the choices above, for any h= 1, . .., m, the set of proper clusters in X, coincides
with EE;

Proof. Suppose by contradiction that there exists a non-proper cluster {r} =s e X", , with r # w.
Note that r € 5, and so s < s,. Recall that since s is a cluster centred at wy, it is cut out by the disc
={xeK|vix—w,)> o}, with p¥" = v(r —w,) > p,. This implies that w,, ¢ R, otherwise w, € 5
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and |s| > 2. In particular, w, ¢ s,. For our choice of w,, it follows that s, N K,, = @. Therefore r ¢ K,
and so there exists o € G,, such that o (r) # r. Since w;, € K, we have

wh

V(o (r) —wy) =v(o(r—w,) =v(r —w,) = p.".

But then o (r) € 5, and so |s| > 2, a contradiction. O]

Assume that Cy is y-regular and has an almost rational cluster picture. By the previous lemma, from
the set of rational centres W we can construct the proper regular model C/Ogw of Cgn as previously
presented in this section. In this subsection we show how the Galois group Gal(K"/K) acts on the Ogn -
scheme C. Moreover, we describe the induced action of G, on the special fibre C,/k*, and give defining
equations for the principal components of C; compatibly with the action.

Foranyl=1, ..., m,recall the notation f;(x) = f(x + w;) € K" [x] and C"' /K™ : y* = f(x). Fix o € G.
Let Lh=1,...,m such that o(s;) = 5;,. Then o(f;) =f,. Now, let t€ X' be a proper cluster. Then

Cynr
at) e Eg,’l,,r and p; = p, . It follows that most of the quantities attached to t, such as those of Definition
4.6, are the same for o (t), for example €; = €, ;. In particular, if M is a matrix associated to t then M is
associated to o (t) as well. So o (F.,) = FI.. Finally, as o ( [Ton G+ W) = [Town 6+ Wio) ! we also
have o(T.,) =T}..

. . o . . .
Hence the natural K""-isomorphism C""* — C" induces O -isomorphisms of schemes
wyp 9 aw Swp 9 Aw h I
Cy'—Cy, Cl—CY, U, — U,,. (10)

Via the glueing morphisms (4), these maps describe the action of Gx on C.

We want to study the action of G, on the special fibre of C more in detail. Let o € Gal(K""/K)
and let ¢ € G, corresponding to o via the canonical isomorphism Gal(K"/K) ~ G;. Let [, h and t as
above. In Section 5.6 we described closed 1-dimensional subschemes composing CZ'; and the mor-
phisms induced by the glueing maps. Recall the polynomials introduced in Definition 5.12. From (10)
we get

0 (85) = 8o (&) = 8o, O (&il) =gl -

From the equality (7) we obtain o (f;,,) =f,).,. Note that the previous relations can also be recovered
directly from the definitions.

Lemma 5.23. Let w¢ be the rational centre of t fixed above. Then

() Bowerfim €MIX) |
(1) 8w, = 8w, and fi oo (X) = fi0, (X + Uy (,) Where u,,,,, = =2 mod 7;

TPt

Proof. For any rational centre w of t, let u, = ¢ [ [, (W — 1) as in Definition 5.12. Note that
uy,, /7" is independent of w since

v((we—r)— W —=r)=vw,—w) = p>v(w —r)
for any r e R\ t. Then g, = gu,- If 0 € Gal(k*/ky), i.e. 0 € Gal(K""/K,), then
0 (8ew) = 0 (8ru) = Zron, = 8tone-

In particular g, € k[X].
Since uy,,/7"“ is independent of w we also have

Ford X)) = Fo (X + Tyi)).

Suppose p, € Z. Then b, = 1 and so the equality above implies f,,,, (X) =]TWI(X + U,,,,)- Suppose p ¢ Z.
Then v(iw — wy) >ﬂfor any rational centre w of t as v(w — w,) € Z and v(w — w,) > p. Hence u,,,,, = 0.
Thus f,,, (X**) = fi,,,(X**), which implies fi,, (X) = fi, (X) = fi, X + Upyowy)- If & € Gal(k* /ky), ie. 0 €
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Gal(K" /K), then

& (Fon )X = & Fon) X + G W) = Foon X + Tooy) = fro X),
and SOJTWl € kJ(X]. O

Remark 5.24. Note that the polynomialsm, 8uw and g}, equal the polynomials f,, g; and g_‘jh given
in Definition 4.22.

Let V= V;" and consider the subscheme X, x P, of C, given by V, where Py, is a chain of P's arld
Xy :{gcw, =0} over G,,4. If 5, C t, then the glueing map Uy, — U, induces the identity ¢ : Xy» —

Xv‘{'/- Define X, € G,,;s given by g;,, =0. By Lemma 5.23, ¢} : X; > Xyro, for 0 =h, [, and this iso-
morphism is compatible with the Galois action and the glueing maps, that is o o ¢}, =@}, oo and
"o ¢l = ¢i, as morphisms on X,.

When V, =V, we can consider the subscheme Xy, x [Py, given by V,, where Py, is a chain of P's
and Xy, : {g,,.,, = 0} over G, 4. Since Xy, x Py, is never glued to any other component there is no need
to choose a different model for it.

Let L=L;" and consider the subscheme X" x P, given by L, where P, is a chain of P's and

XV : {fu., =0} over AL. If 5, C t, then the isomorphism ¢}’ X = X\, given by the glueing map
U}, — U\, is induced by the ring isomorphism k*[X] — £°[X], sending X — X + &,,,,, Where 1, =
% mod 7. Define X} C Al given by f,,,, =0. By Lemma 5.23, the map X +> X + u,,,,, induces an

isomorphism ¢¢ : X}V 5X M., for o = h, I, compatible with the Galois action and the glueing morphisms,
that is o 0 ¢! = ¢} o o and ¢, o ¢} = ¢, as morphisms on X}".
Recall the definitions of ¥ and G, Ai given in Definition 5.15 and the definition of t given in
Definition 4.22. Note that by Lemma 5.22,
YV={se T U{D} |5 <t} \ {{r} € Tpn | r ¢ W).

Fixc=0,...,b,— 1suchthat 1/b, — cp, € Z. For any rational centre w € K" of t deﬁneﬁ,w ek’[X,Y]
by

~ E_Cq_
Fo@ =[] & =it ).
setW
where #,,, =2 mod 7 (w, =w, if s=0). Let L=L{", F=F{" and M =M. It follows from

Lemma 5.17 that the scheme I'y" = X, N U}, is given by Y =]A‘Lwl(X) as a subscheme of G, x A},.
‘We then obtain 6(ﬁ,w,,) = fa(t)’wh from the action (10) of o on Ul,.

Lemma 5.25. With the notation above,

@) fun € kX1
(i) fow X) =fow X +U,) where ., = =52 mod 7;

TPt

Proof. If s € 1, then 0 (s) € (0(V)) and 0 (i,,,,,) = U, ,,on fOr any rational centre w of t. Hence ﬁ,m €

k[X] and & (fi,.,) = focm, by Lemma 5.23(i),(iii). Since 7,y = yow — iy Lemma 5.23(ii) implies
ﬁ,W{ (X) :ﬂ,wl (X + Mwuv'/)' D

Define I'{* C G,,, x A, given by Y” = fi. Suppose s, C t, and let @i T" ~T}" be the isomor-
phism coming from the glueing map U?, — U, induced by the ring homomorphism X > X +u, ..
By Lemma 5.25, the map X — X + #,,,,,, induces an isomorphism ¢{:I'{"* >~ T'{“, for o = h, [, which is
compatible with the Galois action and the glueing maps, that is o o ¢} = ¢! oo and ¢! o ¢! = ¢! as
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morphisms on I'{"*. Therefore I, is isomorphic to the smooth completion of I'{", and so it is given by
YP =f(X), where fy(X) = [[,., (X — W, )ft (X) is the polynomial given in Definition 4.22.

6. Integral differentials

Let C be a hyperelliptic curve of genus g > 1 defined over K by a Weierstrass equation y* = f(x). It is well-
known that the K-vector space of global sections of the sheaf of differentials of C, namely H°(C, Q‘C / )
is spanned by the basis

— X, x5 =
2y 2y 2y
Let C be a regular model of C over Ok and consider its canonical (or dualising) sheaf wc¢,,. The free
O-module of its global sections H’(C, wc,o,) can be viewed as an O-lattice in H*(C, Q¢ ) (see [9,
Corollary 9.2.25(a)]). The aim of this section is to present a basis of H(C, w¢ Jox) as an Og-linear combi-
nation of the elements in @ under the assumptions of Theorem 4.23. Note that by [9, Corollary 9.2.25(b)]
the problem is independent of the choice of model C but it does depend on the choice of the equation
y* = f(x) since the basis @ does. Throughout this section let C and C/Ox be as above.
If C is A,-regular, [1, Theorem 8.12] gives an Ox-basis of H(C, w¢,o, ), as required. We rephrase it
in terms of rational cluster invariants, by using results of Section 3 and Lemma 4.12.

{dx dx dx}
w= x$ .

Theorem 6.1. Suppose C has an almost rational cluster picture and is y-regular, and all proper clusters
5 € X¢ have same rational centre w € K. Let 5, C - - - C 5, = R be the proper clusters in ¥7". For every
j=0,...,g—1, define

jr=min{ie{l,...,n}|2(+ 1) <|s]}
and
&= tey, — G+ Doy,
Then the differentials | |

|
e

lej) ax ;
Wi =1 —w) — j e —1,
2y

Jorm an Og-basis of H*(C, we,0,)-

Proof. Let C*:y* = f(x + w) be the hyperelliptic curve isomorphic to C through the change of variable
y+ ¥, x> x + w. By Corollary 3.25 and Lemma 4.12, the curve C* is A,-regular. Since X7 consists
of the proper clusters in X, Lemma 4.3 and [1, Theorem 8.12] implies that

=mlaly @ =0 —1
M= 2y J=Y,...., 8 »
form an Og-basis of H'(C, wc o, ) as a lattice in H°(C”, Q.. ) (that is if C is regarded as a model of C*).
Changing variables concludes the proof. O

Suppose now C has an almost rational cluster picture and is y-regular. Let =™ be the set of rationally
minimal clusters and let W = {w, | s € £""} be a corresponding set of rational centres, such that all
clusters in X/ are proper. For every proper cluster t € 2!, choose a minimal cluster s C t and set
w¢ := w,. Consider the regular model C/Oy of C of Theorem 4.18, constructed in Section 5 by glueing
the open subschemes CO”Av of C} for w e W. We want to describe the canonical morphism C — C. Write
W ={wy,...,w,} asin Section 5. For any h=1,...,m, let t € X} be a proper cluster and let M be a
matrix associated to t. Let C**:y? = f(x + w,,) and

V= fx+w) =YX, Y, Z).
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Then, on the affine chart X, the projection C — C," is induced by
R L K[, 0)*'] 2 K[x*', y*']
(FiuX,¥,2)) ~ (OGP —f&+w) 2 =fG)’

where (X,Y,Z)=(x,y,m)eM and (x,y) = (x —w,, y). In particular it follows that (X,Y,Z) = (x —
Wy, ¥, z) @ M and so

X —wy, Xr"n“ Yﬁzz]Zﬁm X
y = | Xmymzm | =Y |eM™.
T X3 Yo 7ims3 7

For a proper cluster t € X" recall the definitions of I"; and m.

Proposition 6.2. Let t € T be a proper cluster. Then’
ordr, (x — wg) = mpy,
ordrt;’—i =—m (36— p—1)—1.
for every proper cluster s € 7, s C t.
Proof. Let g(x,y) =y* — f(x). Let W = {wy, ..., w,]} as above. Let h € {1, ..., m} such that w, = w,.

Let F=F",V=V",M=My,andlet X, Y, Z be the transformed variables (X, Y, Z) = (x — w,, y, ) ®
M. Define H(X,Y,Z)=m — X"3Y"™ 7" and G(X,Y,Z)=g((X,Y,Z) e M~"). We have

FuX, Y, 2)=Y""Z"G(X,Y,Z),

where n; = me, since ord,(y*) = m€, for Lemma 5.2. Write F = FP.
Note that d(x — w,) = dxand (g, ).(x — w,) = g.(x), where g, (x,y) = g(x +w,, y). Then, by [1, 8.7],

(x —wo)g. =m XGy +mpYG, +miZG),
¥8, = mnXGy + mnYG, + myuZG)

from which it follows that
myyg, — My (X — We)g, = (Mymy; — mymn)YGy, — (mymyy — mmy)2G,
=myuYG, —mnZG,.
We will show later that this quantity is non-zero. Moreover,
myYGy, — i ZG, =YY" Z" (i Y Fy, — i ZF, + (ny + ny)F) .

Recall that X = (x — w,)"y"™ 7", Then & = my, ﬁ + my, % Furthermore, as 0 = dg = g,dx + gdy
in Q¢/x, we have

dx ! d
— = ( o @&) dx = S (m“yg; —my(x — W5)g;) .

X X—ws Yy g (x —ws)yg,
Therefore
dx ax
2 —wo)y? XYM Z2 (i Y Fy — iy ZFy + (ny + 1) F)
Let S = Spec O. Considering X' as an independent variable, the scheme
o 017, X!, X]
(F,H,X- X' —1)

1)

U =Sp
*If T is reducible, say Ty =T U I":r, with ordr (- ) we mean min{ordrz( ), Ordrf( )}

https://doi.org/10.1017/S001708952400003X Published online by Cambridge University Press


https://doi.org/10.1017/S001708952400003X

Glasgow Mathematical Journal 433

defines a complete intersection in Ag. Furthermore, U is an open subscheme of C," N X, that restricted
to A¢\ {71 (X, Y,Z) =0} equals U},. In particular, U is integral. From Section 5.5 it follows that U, =
U N {Z =0} is a dense open subset of X;. Recall that X is an open subscheme of I',. Hence it suffices
to prove the proposition for U, instead of I'y ([9, Lemma 9.2.17(a)]). Since X and Y are units and Z
vanishes to order 1 on U, Lemma 5.2 implies that

orde (x — wy) =1i13; = mypy, OrdU{y =My = mt%‘, OrdUJT = M3 = my. (12)

Recall that U is integral and that U, is isomorphic to an open subscheme of C. Then U, is smooth.
Hence, by [9, Corollary 6.4.14(b)], the sheaf w0, is generated on U by £~'dX where

Fy Fz Ty
E:= |Hy H, F\|=—nXY"'Z" (s YF, — mnZF,), (13)
00 X
if £ is non-zero. Suppose it is; we are going to prove it later. Thus, as 7 =0 on U, we have
dx X
OrdU‘ m = OI‘dUt XY 2z (%331/‘}_;,7’;!232}_2) from (1 1)
=ordy, (Y™ 'Z77 €7 dX) from (13)
=mi—ny;—1=m(—e+1)—1 from (12).

Then it follows from (12) that

dx dx
ordy, — = le) +ordy, ————
Uy 2y my (,Ot +3 t) + Uy 20— w2
It remains to show that £ does not equal 0 on U. Suppose it does. Then from the computations above,
it follows that muyg; — my (x —w,)g. =0 in K(C). Since my, equals either 1 or 2 by Lemma 5.2, it
follows that there exists a non-zero ¢ € K, such that

=m(—3se+p+1)—1.

myyg, — my(x — wy)g, +cg=0

(c € K from degree analysis). Then cf(x) = m,;(x — w,)f’(x). Note that m,, is non-zero as char(K) # 2.
But then a contradiction follows since f is a separable polynomial of degree > 3. O

In the following two theorems we describe a basis of integral differentials of C. We use
Definitions/Notations 3.1, 3.3, 3.2, 3.8, 3.9, 3.26, 4.6, 4.10 in the statements.

Theorem 6.3. Let C/K be a hyperelliptic curve of genus g > 1 defined by the Weierstrass equation

y* =f(x) and let C/Ox be a regular model of C. Suppose C has an almost rational cluster picture and
is y-regular. Fori=0, ..., g — 1 inductively

i—1
€
o ameere ms |5 $on)
J=0

tez
e i—1
(ii) choose a maximal element s; of {t ex| e= Et — P — Z psiAt}freely.
=0
Then the differentials

i—1
dx
Leil _ ; — —
wi=m !:(!(x Wsj)2y’ i=0,...,g—1,

form an Ox-basis of H(C, wc,0,)-

Proof. Since H(C, w¢,o,) is independent of the choice of regular model, we consider C to be the
model described in Theorem 4.18 and constructed in Section 5.
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We first show that the differentials p, are global sections of w¢ ¢, . It suffices to prove they are regular
along all components I'y, where t € X" proper. Indeed for the construction of C and the definition of the
e;’s, the differentials u; are regular along all other components of C; by Theorem 6.1. Fixi=1,...,g—1
andletj=0,...,i—1.Let t e X be a proper cluster. If 5; C t then

ordr, (x — wy,) = mpy = Mg,

by Proposition 6.2. If t C s; then w; is a rational centre of s;. Hence
(W —wg) > nﬁleifl min{v(r — wy), v(r — wg))} > min{py, p5;} = pPs; = Ps;nt-
Therefore Proposition 6.2 implies
ordr, (x — wy,;) = min{ordr, (x — wy), ordr, (W — w;,)}
> min{mpe, M Ps;ni} = Mot
Ifs;Z tand t ¢ s; then from Lemma 3.18 it follows that
ordr, (x — wy,) = min{m, o, M Ps;nc} = MiPsjnt-
as py > Ps;a1- Thus we have proved that
ordr, (X — wg,) > Mg s where the equality holds if t Z s;. (14)

Hence it follows from Proposition 6.2 that

i—1

ordr, u; > mt(LeiJ + Z Psint —

j=0

1) -1
> o .

But
¢ i1 ¢ i1
le] > \‘Et — Py ZpsjAtJ > Et — P Zpsjm -1,
j=0 j=0

then ordr, u; > —1, that implies ordr, u; > 0, as required.

Now we need to show that the differentials u; span H°(C, wc,o,), that is the lattice they span is sat-
urated in the global sections of w¢,o,. Suppose not. Then there exist I € {0, ..., g — 1} and u; € Oy for
i € I such that the differential nl > s Wil; is regular along ', for every proper cluster t € 3. First we
want to show that for any i;,i, =0,...,g — 1 with i; <i,, one has s;, ¢ s;,. Suppose by contradiction

that 5, C s;,. Then

i =

ir—1 ir—1 ir—1

€, 2 — Ps;y — E Psjns;y = €y — Ps;; — E Ps /\5,] Z € — Ps;; — E Psjnsiy
j=ip+1 Jj=i1+1
i1—1 ir—1 i
1— 2— 65,2 2
ps,z Z Ps ij ASiy ’05'1 Z psjmlz = — — Z ps,-Aslz =ée;.
j=i1+1 j=0

Therefore

ir—1 ir—1
€y 41]
max E — Pt — § psjAt =é€, = - /04,] E ps,As,l
J=0

rat
teXd

and this means that s;, is a possible choice for the i th cluster s;,. But s;, C s;,, so the i,th cluster should
have been s, , a contradiction.
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Let /, © I be the set of indices i such that y; := ¢; — |e;] is maximal. Let i, =min/, and let ', = I', .
Since 5;, ¢ 5, forall j=0,...,i, — 1, from (14) it follows that

ig—1
mi= ordroéuio = —mq, Vi, + m5,0< ey — ot Z pg,m,o) -
=—m, ¥, — 1 <0.
Furthermore,
1
ordry —p1; = =y, ¥, + s, <e~ - Z Ps Aﬁ,[))

= M Vi — 1> —Msi Vip — l=m,

forall iel. Let J:= {iel| ordroiui =m}. Then J # & since iy € J. The order of the differential
# > .o wip; along T'y must be > m. Let i € 1. From the computations above i € J if and only if

(D) ordr,(x —wg) =mg, P 1 forall j=0,...,i— 1. Equivalently, if 5; D s, for some j < i, then
V(Ws,ggv_ Ws ) ;05,0/\5,
(i) ;=% — Psiy — ZJ o Psjrs, - In particular, if s; € s, then 5; = 5;,

(iii) y; =¥,,. Equivalently, i € I,.

Therefore J C I, iy = min J and

I.eiJ - I_ei()J =€ —Yi— € + yl() =¢€; = Z pﬁjAﬁ,O

J=io

for all i € J. Hence

i—1
D DUTIEE T O Dot | Kt
o Ty

ieJ ie] T

and since ordp, ﬁ Wi, =m < 0 we must have

ordro(z = ’] e H(x ) (15)

ies T 0 iy

2 5;,. In the latter case,

iy =

For any j < i € J, with iy <j we have s; ¢ s, . Therefore either 5; = 5, or 5; A 5;

Ol'dro (X - ngo) 4‘0 /05‘0 > ms,o :05//\5,0 - Oran (X Ws/)~

It follows from (15) that

d Gty
ordr, ZV T R

ieJ

Wsj) —Ws;

where J;={jellip <j<iands; #s,},vi=u;| [, e, € Og, and B; = [{ip, ..., i — 1} \ Ji|.

To find a contradiction, we will use the explicit description of a dense open affine subset of I',. Let
W ={w,,...,w,} be the set of rational centres of the rationally minimal clusters for C fixed at the
beginning of the section. Let w, € W such that w), = We s and let L = L;“’(') , M =M,,, and consider

RIT\(X,Y,Z)"]

Uiz =01 =Spec oo 85 20.2)

ts
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dense open subscheme of I'y. From Lemma 5.2,

(x— Wh)ﬂ' Bi/bs.
DV = D v,
ieJ ieJ
which is a unit since the polynomial F%.(X, Y, Z) in {Z = 0} is of the form ¥Y* — G(X) or Y — G(X) for
some non-constant G(X) € K[X] (for more details see Lemma 5.17). This gives a contradiction and
concludes the proof. O

Assume now Cin has an almost rational cluster picture and is y-regular as in Theorem 4.23. Since
| 2| is finite, there exists a finite unramified extension F'/K such that Cr has an almost rational cluster
picture and is y-regular. Denote by Oy the ring of integers of F. Let Xy = X Fix a rational centre
w, € F for every rationally minimal cluster s € X . For all non-minimal clusters t € X choose a rational
centre w, = w, for some rationally minimal cluster s C t. In this setting the next theorem gives a basis
of integral differentials of C.

Theorem 6.4. Let C/K be a hyperelliptic curve of genus g > 1 defined by the Weierstrass equation
y* =f(x) and let C/Ox be a regular model of C. Suppose there exists a finite unramified extension F/K
such that Cy has an almost rational cluster picture and is y-regular. Fori =0, ..., g — 1 inductively

i—1

. o €¢ .
(i) define e;:= max {5 — P ZO ps,Ak},
=

i—1

€
(ii) choose a maximal element s; of {t €EXr| e,= Et — P — Z psiM}freely.

Then the differentials

i—1

dx
Y _ ; — _
Wi=m ~Tr,.~/,(<,3 L! (x wsj)> 2’ i=0,...,g—1,

form an Ok-basis of H(C, wc0,)-

Proof. First note that without loss of generality we can suppose F/K Galois. Moreover, since F'/K is
unramified, Gal(F/K) ~ Gal(j/k), where f is the residue field of F, and so the existence of § is guaranteed
by the surjectivity of Tt;/. Let C be the minimal regular model of C over O. By [9, Proposition 10.1.17],
the base extended scheme C,, is the minimal regular model of Cr over O;. Let [LOF e ug_l be the basis
of integral differentials of Cr given by Theorem 6.3.

Suppose g, . .., i, is a basis of integral differentials of Cj that, for any o € Gal(F/K) and any
j=0,...,g— 1, satisfies

o) =wj+ ) hys (16)
0<i<j
for some A; € Or (depending on o). Note that ug e pcg_] is in fact such a basis. We want to prove

that, for any j =0, ..., g — 1, the differentials

H6’~‘~’M;_|,TrF/K(ﬂM;)7 M;+1,...,/,L;_| (17)
still form a basis of H(Cr, w¢,0,) satisfying condition (16). From equation (16) it follows that
Tre(Bu)= Y o(B)o(w)="Trr B+ Y N,
o€Gal(F/K) i<j

for some Aj; € Op. Since Trr/k(B) € Oy, the differentials in (17) form a basis of H°(Cr, we,j0,) satisfying
condition (16)
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Since uf, ..., ,ugfl satisfies (16), by induction it follows that
Trrk(Bitg)s - - - TI’F/K(.BMQI)

is a basis of H(Cr, we, Jor)- Proposition B.2 concludes the proof. ]

We conclude this section with an application of Theorem 6.3.

Example 6.5. Let p be a prime number and let a € Z,, b € Z; such that the polynomial xX*+ax+bis
not a square modulo p. Let C be the hyperelliptic curve over Q, of genus 4 described by the equation
v? =f(x), where f(x) = (x° + ap*x® + bp®)((x — p)* — p''). We have already shown in Examples 3.32 and
4.25 that C satisfies the hypothesis of Theorem 6.3 and has rational cluster picture

(@990009),@99) )

We choose rational centres for the minimal clusters t; and t,: w,, =0 and w,, =p. Since R=14 A
ty, we can set either wyy = wy, or wey = wy,. Let us fix wy = wy, = 0. Then to choose sy, 5, 55, 53 as in
Theorem 6.3 we draw the following table:

€ €
Pt €4 Et — Pt Et — Pt Pspat 5 Pt Z Psint 5 Pt Z Psint
4 25 19 11 1
19 = 11 — — — =
3 6 6 6 2
11 29 7 1 5
t — 17 — — — -
3 6 6 6 6
7 5 3 1
R 1 9 -~ = = -
2 2 2 2

The numbers in red indicate that 5, = t4, 5| = 5, = t; and s; = R. Thus the differentials

dx L )dx ( ) dx ( ) ,dx
—, =p - (x—p)—, =p-(x—p}x—, =(x—px —
2% p p 2% M2 =Pp p 2 3 p 2

form a Z,-basis of H'(C, w¢,z,), for any regular model C/Z, of C.

Mo =P4'
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Appendix A: Rational centres over tame extensions

Let C/K be a hyperelliptic curve given by y* = f(x).

Lemma A.1. Let L/K be a field extension. Consider the base extended curve C,/L and its associated
cluster picture Z,. Let s € X, be a proper cluster G, = Stabg, (s), and K, = (K%)°s. IfL/LNK, is
tamely ramified, then s has a rational centre w, € LN K.

Proof. Let F, =LNK,. Let w, € L be a rational centre of s and let p, = max,,c, min,e, v(r — w) be
its radius. Let D = {x € K* | v(x — w;) > p,} and define G = Stabg, (D). Since s €D we have G, C G.
Furthermore, Gal(K*/L) C G. Then Gal(K*/F,) C G. Since w, € D, for ¢ € Gal(K*/F,) € G we have
o(w,) € D. In particular, v(r — o (w,)) > p, for any r € s. Define

_ TI‘L/F5 (ws) c
[L:F,]

If m=[F,[w,]:F,], then w= 271:1 oj(ws)/m, where o;(w,), ..., 0,(w;) are the roots of the minimal
polynomial of w, over F, (with o; € Gal(K*/F,)). Since L/F, is tamely ramified, p { [L:F,] and so p { m.
In particular, v(m) = 0 and so for any r € s we have

m

v(r—w) = V<m = Z G,-(ws)) Z,-ef?inm; v(r — 0j(Ws)) = ps.

J=1

Then w € F, is a rational centre of s. O

Appendix B: Dualising sheaf under base extensions

Let F/K be a finite Galois extension and let O be the ring of integers of F.
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Lemma B.1. Let M be a flat Ox-module and My := M ®o,, Or. Then
M~ M0 = (m e My | o(m) = m for every o € Gal(F/K)}.

Proof. As M is flat, the functor M ®,, — is (left) exact. From the isomorphism Ok >~ 070 it
follows that
M ®o, Ox =M Qo O(p}ﬂl(F/K),
that is M ~ M"""® | as required. O

Proposition B.2. Let C be a smooth projective curve of genus g > 1 and let C be a regular model of C
over Og. Denote by Cr. and Cy,. the base extended schemes. Then H°(Cr, wc,j0,) =~ H*(C, ®c,0,) oy Or
and

~ 770 Gal(F/K
HO(C,CUC/OK)—H (CFva)CF/O,::) AT,

Proof. The Lemma follows from the following results: [9, Proposition 10.1.17], [9,
Theorem 6.4.9(b)], [9, Exercise 6.4.6], [9, Corollary 5.2.27] and the previous lemma. O]
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