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LIPEOMORPHISMS CLOSE TO AN
ANOSOV DIFFEOMORPHISM
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§ 0. Introduction

It is well-known that an Anosov diffeomorphism f on a compact
manifold is structurally stable in the space of all C'-diffeomorphisms,
with the C'-topology (Anosov [1]). In this paper we show that f is also
structurally stable in the space of all lipeomorphisms, with a lipschitz
topology. The proof is similar to that of the C'-case by J. Moser [4].
If a C'-diffeomorphism ¢ is sufficiently close to f in the C'-sense ¢ is
also sufficiently close to f in the lipschitz sense by the mean value
theorem. Hence our result is somewhat stronger than that of Anosov.

In the following let M be a compact connected boundaryless C=-
manifold of dimension %7 with a Riemannian metric |-||, d the distance
function induced by |-, and {(U,,a)} a covering of M by finite charts
M =, U, where each local diffeomorphism « onto an open subset of R”
is defined on an open subset of M which contains the closure of U,:
2(a) D U, (2(x) denotes the domain of «.). Let |-| be the standard norm
in R™.

§ 1. Lipschitz maps on M.

Let C°(M) be the set of all continuous maps of M into itself and d,
the distance function on C°(M) induced by the distance function d on
M: d(f,9) = SuPyex Af(x), 9g(x)) for f, ge C(M). L(M) denotes the set
of all lipschitz maps of M into itself. It is clear that L(M) is contained
in C(M). We may choose a positive number 12, such that for any «
S(U) € 2(e) holds for feC(M) with d,(f,1,) < 4, 1, denoting the
identity map of M. For any fe C'(M) with d,(f,1,) <4, f is lipschitz
if and only if for any « the map ao foa™! of a(U,) into R* is lipschitz
i.e. the lipschitz constant of oo foa™': a(U, — R", which is denoted by
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L(ao foa™ on a(U,) or simply by L(ao feoa™), is finite. This follows
from the facts that we can choose a positive number p, such that for
each x the closed p-ball B(x:p) = {yeM|d(x,y) < p,} around x is con-
tained in some U, and that for any chart (V,y) for M, and for each
compact subset X of M contained in V the map 7: (X,d)— ((X),|-]) is
a lipeomorphism. We have the following

PROPOSITION 1-1. There exists a positive number C, with the follow-
ing property: For each o and each x,ye U, we have C;'la(x) — a(y)| £
d(z,y) = C,|alx) — a(y)].

For each fe L(M) with d(f,1,) < 4, we define d,f,1,) by d(f,1;)
= dy(f, 1) + Sup, L{@o foa™ — 1 on a(U))).

PROPOSITION 1-2. Let f be any element in L(M) with d(f,1;) <A,
If d(f,1,) is sufficiently small f is a lipeomorphism.

Proof. We use the following

LEMMA (Lipschitz Inverse Function Theorem [3]). Let E, F' be Banach
space, U C E and V C F non-empty open sets and ¢g: U —V a homeo-
morphism such that g=' is lipschitz. Then for each h:U — F with
Lh —¢)-LgH <1, (U)=V" s an open set of F,h:U—-V" is a
homeomorphism and h=': V' — U is lipschitz.

Let f be an element of L(M) such that d,(f,1,) <1, and d,(f,1y)
< Min{1,p,/2}. By the above lemma and Prop 1-1 f(U, is an open
set of M and f:U,— f(U, is a lipeomorphism. In particular f(M) is
open. Since M is compact connected f(M) = M. We can complete the
proof by proving that f is injective. To do this, take =, ye M with
f@) = f(y). Then, d(f(x),2) £ d(f,1y) £ d(f,1y) < /2. Similarly
d(fW),y) <p,/2. Hence y is contained in B(x :p,) which is contained in
some U,. As f:U,— f(U, is injective we have =z = y. q.e.d.

§ 2. Lipschitz vector fields on M.

Let X°(M) denote the set of all continuous vector fields on. M and
Il be the norm on X°(M) induced by the Riemannian metric ||-||:|u| =
Supzex U] for any u = (Uy) ey € X°(M). (X°(M),|-|) is a Banach space.
For each (U,,a) put U, =a(U,) and let T.: TM|U,— U, X R* be the
isomorphism induced by «. Let Da:TM|U,— R™ be the composite of
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T.:TM|\U,— U, X R* and the projection U, X R* — R*. D« is considered
as the differential of «. Then for each v e X°(M) we define v, by v, =
Daov:U,— R*, and define |v| by |v|= Sup, Sup,ey, |v.(2)]. Then |-|:
X(M) > R* ={aecR|a =0} is a norm on X°(M) and it is equivalent to
I-ll- The equivalence of |-| and ||-|| follows from the following.

PROPOSITION 2-1. There exists a positive number C, such that for
any a and any ve TM|U, we have C;'||v| £ |Da(@)| < C,||v]-

An element v e X°(M) is called a lipschitz vector field on M if and
only if for each «,v,: U,— R" is lipschitz i.e. v, oa™': U,— R" is lipschitz.
Denote the set of all lipschitz vector fields by X, (M). We define a norm
|-l on X, (M) by [v],= ]+ Sup,{Lw,caV)} for any ve X (M). Then
(X,(M),|-|) is a Banach space.

Let exp = (exp,)zcx be the exponential map induced by the Riemannian
metric ||-]. In a normed space (E,|-|) we denote the closed 2-ball around
the origin by (E,||-|); and the open i-ball around the origin by (E,|-|D?.
We can choose a positive number 2, such that for each x¢ M exp, is a
diffeomorphism of (7',(M),|-|D; onto the open 2,-ball around x in (M, d).
Hence for this 2, exp: (X°(M),|-Ds2v — expv = expove{feC(M)|
dy(f, 1) < 2} is a bijective map. And for each v ¢ (X%(M),|-|);, we have
do(exp v,1y) = ||v]. For the convenience assume A, < 2,. By the equiv-
alence of |.-] and |-|| we can choose a positive number e such that
(X°(M),|- D2 is contained in (X°(M),]-|)3.

PROPOSITION 2-2. We can choose a positive number e,: 0 e, < e such
that
(i) for each ve(M,| D expv is contained in L(M) if and only if v is
contained in X, (M) and that
(i) for each sequence {v®}r, C X,(M) N (X°(M),|-D.,

dlexpv®,1,) >0 as i— oo,
tff
[v®,—>0 as 11— co.

Proof. We take any (U, «) and fix it. For each (2,8 e U, X R"
with €] <e, we define e(x’,&) by e(@,8) = acexpoTa™'(2/,&). By the
choice of ¢ this is well-defined and e is of class C~. Since e(2’,0) = a’
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and (De),, 4 = 1ga, if we represent e(2’,&) by e(®’,§) = 2’ + & + r(@'8),
then r is of class C~ and (D7), = 0 as (D)4, = (D1)yr0y = 0 for
any 2’ e U.. Recalling that 2(a«) D U,, by the mean value theorem, we
have the following

(A): There exist a positive number &*:0 <& < and a function
L®: (0, &%) — [0,1) satisfying the following properties.

(iii) For each 2,y e U, 0<e<el” and &, ne R* with [§], [y|<¢ we have
lr@, & — r(y,p| < L@{a — v'| + € — gl}.

(iv) L) 0 as e— 0

Now, take ¢:0 <e<e&® and v e (X(M),|-]), and put v, = Daov:U,— R"
and 2 = expv e C(M). We have h(U,) C D(a) since dy(h, 1) =||v|| < L=< 4,
For each «' ¢ U, put © = a~(2’). Then, we have

@, v,0a7Y2)) = Ta(v,) = Taoexp; (h(x))
= Taocexpzloaaohoa () ,

which implies

aohoa (&) = e(@,v,0a ()
=& + V0™ (@) + (@, v, 0a”(@)),

from which we get
(@ohoa™ — 1)) = v,0a” () + v, v, 007 (2)) .
Hence for each 2/, ¥’ ¢ U, we have
(@ohoa™ — 1)(@) — (@ohoa™ — D))
= {v,0a7 (@) — Voo YN} + {1(@, v, 0a7H@)) — (Y, v 0T WD}

By this equality we have the followings:
(v) If v is lipschitz then we have

[(@ohoa™ — 1)) — (@ohoa™ — 1)(¥)]
=< L oa™Ma — ¥ + L@{2 — ¥| + L, ca™2 — v'[}
< L) + v, + L@9@v|le — v'] .

(vi) If h = expwv is lipschitz then we have

dh, 1) — ¥ | = Llaohoa™ — D&/ — |
= [(@ohoa™ — (@) — (@ohoa™ — 1))
= v, 007 (X)) — v,0a”H(Y)]
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— 7@, V07N (@) — (Y, v, 07 Y))]
Z |Veoa™ (@) — Veoa™ (YY)
— L@@ — | + [v,0a7(@) — v, 0a” (W)}
As 0 < L) <1 we have by this inequality
[Veoa™(x) — v,0a” ()]

= {ddh, 1,0 + L@@}/ A — L] |2" — v/

The proof is complete by using (iv), (v) and (v). q.e.d.

§ 3. Lipeomorphisms close to an Anosov diffeomorphism on M.

LEMMA 3-1. There exist positive numbers ¢,:0 < & < ¢, and C, with
the following property. For any xeU, and & npe R with |&], |y < &
we have

Ci'l§ =gl =Y — 2= Gl — 9]
where ¥ = aocexp,o (Da);' (&) and 2 = acexp,o (Da);' ().

Proof. Take « and fix it. In the proof of Prop. 2-2 we defined e
and ». By (A) we can choose a positive number &~ :0 < &® < ¢ such
that for any «/, ¥ € U, and any &, 7€ R" with |&], |5| < & we have

(@, &) — vy, | < 1/2(¢ — ¥'| + |§ — 3]

For any w e U, and &, 5 € R™ with |§], || <&~ putting ¥’ = a o exp, o (Da);'(£),
Z = aoexp,o (Da);(p and ¢’ = a(x), we have ¥ = e(2’, &) and 2’ = e(2/, ).
Hence

[ — 2|8 — g+ |r@,8) —r@, | < | — 9| + 1/2]§ — g
=GCl¢— 7l

and

W =2z — gl —|r@,8) —r@, | = [§ — 9l — 1/2]§ — 9]
2 G5 § — 1

Hence we can take C, = 2 and & = Inf, {¢{} q.e.d.

COROLLARY. We can take positive numbers 2 and C such that for
any xeM and u,ve T, M with ||ul, ||v] <1 we have

Clu — || < d(exp, u,exp, v) < C|llu — v]|.
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Proof. This follows from Lemma 3-1, Prop. 1-1 and Prop. 2-1.
q.e.d.

LEMMA 3-2. There exist positive numbers 8,,¢,:0 < e, < ¢, o function
L,:(0,6) X (0,e)— R* and a continuous map r: (X ,(M),|-|Ds X (XU(M),|-DS
— X%(M) with the following properties:

(i) It holds that expwoexpv =expw + v + r(w,v)) for each
we (X,(M),]- s and ve(X'(M),|-D2

(ii) Foreach §:0<5<d, e: 0<e<¢g,, we (X,(M),|-|); and v, v e (X°(M),]|- ).
we have |r(w,v) — r(w,v')| £ L0, ¢9|v — v'| and r(w,0) = r(0,v) = 0.

(i) L,6,¢) —0 as 6, — 0.

Proof. Choose open subsets V, of M for each « such that V,CV,
cU,and |J,V,=M. We define a norm |-| on X°(M) with respect to
the covering by finite charts, {(V,,a)},, in the same way as we defined
[-1: For each v ¢ X(M) we define |v{ by |v| = Sup, Sup,er,|v.(2)], Where
v,= Daov. As |-/ and |-|| are equivalent |-|/ and |-| are equivalent.
We can choose a positive number e: 0 <& < such that for any w,
veX'(M) with |w], |v] <¢ we have expv(V,) C U, for any « and
dyexp woexpv,1y) < 2,. Then for each w, ve X*(M) with |w|, |v] <€
there exists a unique 7(w,v) e X°(M) such that expwoexpv = exp (w +
v + r(w,v)) and dylexp woexpv,1y) = ||lw + v + r(w,v)||l. It is clear that
r is continuous and #(w,0) = (0,v) = 0. Take any « and fix it. Put
V,=aV,). For each (#/,& 7 eV, X R* X R* with |&|, || < & we define
P(x,&7n) by PJx,&19) = D.cexp;ioexp,o(Da);'(§), where z = a (')
and ¥ = exp,o (Da);(»). By the choice of ¢ this is well-defined and P, is
of class C~. It is clear that P(2,0,0) =0, P(2/,£,0) = & and P (2/,0,7)
=. Hence if we express P (2/,&,7) by P (,&,9) =& + y 4+ 7@, §,7)
then 7@ is of class C=, (Dr')yuze00 = D7 zr0,m = 0, D7)ypr ey = 0,
(Dr)ypr0,,y = 0 and so in particular (Dr®)g. ., = 0. Noting that
D) DU, DU, DV, DV, we can conclude the following by the mean
value theorem.

(B) There exist two positive numbers 0;: 0 < < ¢, and ¢/:0 < &/ < ¢
and a function L{®: (0,4, X (0,¢/) — R* with the following properties:
(iv) For each 6:0<6<4], e:0<e<e/, 2,y €V, and &,9,(,0¢ R* with
[§], [€] = 0 and [g], |0] < e we have

[r @', &) — 1, L, 0| = Li®@,¢)-{|a" — Y|+ |§ ~Cl + |y — 6]},
(v) L{®(,e) — 0 as d,e — 0.
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Take any positive numbers d, ¢ with 0 <6 < ¢ and 0 <e < ¢/ and fix
them. For each w, v, v ¢ X"(M) with |w| < 4§ and [v/], |[v'| £ ¢ we define
Wy Vyy Vo (w0, ), and r(w,v’), as before. Then for each 2’ ¢ V/ we have

(W, v)oa (@) = P (&, W0 (Y), v, 07 (X)) — {w,0a” (&) + v,0a” ()}

and
(W, V) o a”H &) = P&, w,oa™(¥), v, 0a”(2)
—{w,ca (@) + v,oa (2},
where
¥ =a'(2), Y = aoexp,o(Da); (v, 0o (x))
and

?Z = aoexp,o(Da); (W, 0oa (2)) .
Hence we get
[7(w, V)0 a” (@) — r(w, V'), 0a (@)
S weoa™ (YY) — woa (@) + 7@, W0 (YD), Vo a” (D))
— 7@, W, 0 a” (@), Vo (@)
= {14 L@, 9} w00 () — w,oa™(2)]
4 L0, )| v, 0~ (2) — Voo™ (2)| .
If we assume that w is contained in L(M), then we have by Lemma 3-1
[7(w, v) 00 (@) — r(w, V'), 00 (2]
= {14 L{®0@, 9} w1y — 2| + L{¥@, v, 0™ '(@) — V0™ '(2)|
S {L2@,8) + Cilwl,- A + L{®0, )} |v,0a” (@) — vioa™(2)] .
From this inequality, the equivalence of |-| and |-/ and (v) the proof
of Lemma 3-2 is complete. q.e.d.

In the followings we assume that f: M — M is a (C'-diffeomorphism.
For this f we define a linear automorphism f, of X%M) by

f+@) =dfovoft for any veX'(M),
where df is the differential of f.

LEMMA 38-3. There exist a positive number e, a bounded function
L,: (0,e) —» R* and o continuous map s: (X°(M),|- )2 — X(M) with the
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following properties.
(i) foexpvof~ = exp (f(v) + s®@) for any ve (X°(M),|- D2,
(ii) s(0) = 0 and for each ¢:0 < & < ¢ and v, v € (X'(M),|-]), we have

[s(v) — s(v)| £ Ly(e)|v — 2’|,
({ii) Ly(e) — 0 as ¢— 0.

Proof. (cf.[4]) We can define a map F of a neighborhood of the
origin in X°(M) into X°(M) such that exp (F(v)) == foexpvo ! for each
v e X(M) with |v| sufficiently small. It is clear that F(0) = 0. Since f
is of class C', F is so and in fact, the differential of F' at the origin is
S« Hence the proof is easy by using the mean value theorem for s =
F — f,.

For the convenience we may assume ¢, < ¢,.

Let X,(M) be the set of all bounded vector fields on M. A complete
norm |-, on X,(M) is defined by

vl = zSeu[}) vzl for any veX,(M).

Lemma 3-3 is also true for (X,(M),|-|,). We make use of the same
notations as those in Lemma 3-3 for (X,,|-|l), fxs &» Lss. If f is an
Anosov deffeomorphism 1 — f, is a linear automorphism of X°(M) and
also of X,(M), where 1 is the identity map (cf. [4]).

We will prove the following well known fact.

LEMMA 3-4. If f is an Anosov diffeomorphism then f is expansive
i.e. there exists a positive number 2, such that Sup,, d(f™(x), f*(¥)) > 2,
for any x,ye M with x #+ y.

Proof. (cf.[5]) By the above remark there exists a positive number
Z:0 < 22 < 4, such that for each v, v’ € (X,(M),]-|l), We have

[s(w) — sl = 1/2:[1 — )7 v — Vs

We assert the following.
(C) Let u be a map of M into itself such that fou = uof and u # 1,.
Then dy(u, 1) = Sup,ey du(x), x) > 2-4,.
Choose any map u: M — M with fou = uo f and dy(u,1y) < 2-4,. For
this u# there exists a unique element v ¢ X,(M) such that u = expv and
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do(u, 1) = ol -

Then we have
foexpvoft= fouofl=u=expov,

and hence f,(v) 4+ s(@) = v, or v = (1 — f )7 (s(@)).

By the choice of 2, (1 — f,)"'os is a lipschitz map of (X,(M),||-|,),, into

itself with the lipschitz constant L((1 — f,)~'os) <1/2. Hence by the

contraction principle v must be 0 i.e. u must be the identity map of

M. Now, take any z, ye M with %= y. Put Per(f) ={reM|z is a

periodic point of f}.

Case 1: the case of x & Per (f) or y& Per (f). Suppose z& Per (f).
We can define a map u: M — M as following:

For any ze M

J™) if I with z = f«x)
u(z) = {

otherwise.

Then it is clear that fou = uof and that u x 1,. By (¢) we have
do(u, 1) >2-2,. Hence there exists an integer n with d(f™(x), f*(y)) > A,
The case of y & Per (f) is similar.

Case II: the case of xePer (f) and yecPer (f). Let r and s be the
smallest periods of & and ¥ respectively. Suppose r = s. We can define
a map u: M — M as following:

For any ze M

F™Y) if In with z = f™(z)
2 otherwise.

() = {

It is clear that fou = uof and u x 1,. By (c) we have dy(u, 1,) > 24,.
By the definition of # we conclude that there exists an integer n with
d(f (@), fMy) = dy(u, 1) > 2-2, > 2,. Suppose r > s. We can define a
map u: M — M as follows:
For any ze M

forr(x) if I with z = f*(x)

wz) = .

{z otherwise.
It is clear that fou = uof. Since = % f*(z), v % 1,. Hence we have
do(u,1,)>2.2,. By the definition of u there exists an integer n with
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a(f™(x), frr~(x)) > 2-4. As f™y) = f**"(y) we have
A(f™@), ") + A W), (@) = df"(@), (@) > 24 .

Hence d(f™(x), f™(¥) > 2, or d(f"**(x), /")) > A.

The case of r < s is similar. q.e.d.
For each geL(M) with d(gof 11, <A, we define dJ(g,f) by

dfg, ) =dfgof1,). (Note that C'-diffeomorphism on M is a lipeomor-

phism on M.)

THEOREM. Assume that f is an Anosov diffeomorphism. Then
there exists a positive number ¢, satisfying the followihg condition. For
any e:0<e<eg, there exists a positive number 6 = d(e) with the property
that for each ge L(M) with dg, f) <o there exists a unique homeomor-
phism u: M — M such that gou = uo f and dy(u,1,) <e.

Proof. Put K = |f*| + Subpccc,; L:(e). K is finite by Lemma 3-3.
For each ve (X°(M),|- ]2 we have

[Fx(0) + s = [ Syl [v] + Le(vD [v] = K |v] .

Choose a positive number ¢ with ¢ < Min {¢;,¢,/K}. From Lemma 3-2
and 3-3 we have

expwo foexpvo f = exp{w + f(v) + s(v) + r(w: f,(v) + s())}

for any we (X,(M),|-|)s and ve(X'(M),|-Do. We may assume that
lw + fx@) + s() + r(w: fu () + s@))]| < 2, by making ¢, and ¢ suffi-
ciently small. From the above expression we see that

exp wo foexpvo f! = expv
holds if and only if
W+ [ @) + s@) + r(w: f, ,(v) + s() =v.

As f is Anosov, 1 — f, is a linear automorphism. Hence the above equality
is equivalent to

A - fIo"w+ s + r(w: f@) + s(@) =v.

Put F(v) = f,(v) 4+ s(@) and G,(v) = (1 — f )7 (w + s() + r(w: f,(v) + s@))).
By (i) in Lemma 3-2 and by (ii) in Lemma 3-3 we have

[r(w: F()| £ L(wl, K |v)DK |v]
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and [s(@)] £ L,(v])|v|. Hence by (iii) in Lemma 3-2 and by (iii) in
Lemma 3-3 we can choose positive numbers 6,: 0 <45, <45, and ¢:0 <g=<e
with the property that for each w e (X,(M),|-|)s and ve (X°(M),|-|,, we
have

[ — f )7 rw: F)| < 1/3 |v|
and
A — f) (s < 1/3 |v|

On the other hand for each we (X,(M),|-|)s and v, v' e (X,(I),]|-)DS,
putting é = |w|, and ¢ = Max {|v|,|v'|}, we have

|Gu(v) — G,(V)] = |1 — fI7{Is() — s(@)] + |r(w: F(v))
—r(w: F@)|}
S A = )L v — V| + L3, Ke)(| fyl-|v — v
+ Ly(e)|v — v’}
<A — fI7YA{Le) + KL, Ke)}jv — v'] .

Hence by (ii) in Lemma 3-2 and by (iii) in Lemma 3-3 we can choose
positive numbers §,: 0 <45, < d, and ¢:0 < ¢ < g such that for each
we (X (M), )2 and v, e (XU(M),|-])2 we have

|G,(v) — G,(W)| £ 1/2 v — V] .

For the convenience we may assume that §, <9, and ¢ <¢. Now, take
any positive number ¢ with 0 <e<e,. For this ¢ we can choose a posi-
tive number & such that for each w e (X,(M),|-|,)s we have

A — f)7w)| <1/3e .

Hence, putting § = Min {¢#’, §;}, we have the following
(1) |G, < e for any we (X,(M),]|-]); and ve (X'(M),|-].
(il) |G,(v) — G,(V)| £ 1/2|v — 2|
for any we (X,(M),|-|); and v, v" € (X°(M), |- ).
And so by the contraction principle
(iii) for any w e (X,(M),|-|); there exists a unique v e X%(M) such that
lv] <e and G,(v) = v i.e.

exp wo foexpvo fl=expv.

Note that exp v is onto since exp v is homotopic to the identity. Hence
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the proof of theorem is complete except for proving the injectivity of
% = exp v, remarking several facts that for any ge L(M) and u e C'(M)
gou =uof if and only if (gof Do fouof'=u, that if dlg,f) is
sufficiently small there exists a unique we X,(M) with |w]|, sufficiently
small such that go f~! = expw (see Prop. 2-2), that if d,(u,1,) is suffi-
ciently small there exists a unique v e X°(M) with |v| sufficiently small
such that # = expv and that || and ||-|| are equivalent. To prove the
injectivity let g be a lipeomorphism of M and u# be in C%M) with
dy(u, 1) < 4/2 and assume gou = uof. Choose z, ye M with u(x) =
w(y). If x + y there exists an integer n, such that d(f™(x), f~®w)) = A,
by Lemma 3-4. As g™ou = uo f™ we have uo f*(x) = g™ ou(x) = g™ o u(y)
= %o f™(y). On the other hand as dy(u,1;) < 4,/2 and d(f™(x), f™¥))
= A, we have uo f™(x) 3 uo f™(y). This is a contradiction. Hence x = .

q.e.d.
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