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THE ROLE OF VOLUME DIFFUSION IN THE
METAMORPHISM OF SNOW#*

By P. V. Hoess and L. . Rapke

(Cloud Physics Laboratory, Department of Atmospheric Sciences, University of Washington,
Seattle, Washington, U.S.A.)

AwstrAcT. A theoretical expression is derived for the rate of increase in the density of a compact of
uniform ice spheres due to volume diffusion in the ice. The diffusion occurs due to the existence of high
concentrations of vacancies in the ice just beneath the concave surfaces of the necks which grow between
the ice spheres. Accurate measurements on the densification of a compact of ice spheres as a function of
time, temperature, and particle size are found to be in excellent agreement with the theory. The importance
of this process in the metamorphism of dry snow at a uniform temperature is discussed.

Risumic, Role de la diffusion volumétrique dans le métamorphisme de la neige. Une expression thécrique est
établie pour la vitesse d’augmentation de la densité d’un agglomérat de sphéres de glace uniformes due a la
diffusion volumétrique dans la glace. Cette diffusion a lieu par suite de 'existence de hautes concentrations de
vides dans la glace juste sous les surfaces concaves des goulots qui croissent entre les sphéres de glace. Des
mesures précises de la densification d'un agglomérat de sphéres de glace en fonction du temps, température
et dimension des grains, ont montré un bon accord avee la théorie. On discute 'importance de ce processus
du métamorphisme de la neige séche a temperature uniforme,

ZUSAMMENFASSUNG. Die Rolle der Volumdiffusion bei der Metamorphose von Schnee. Es wird ein theoretischer
Ausdruck abgeleitet, der die Dichtezunahme in einem von gleichférmigen Eiskugeln erfiillten Gefass durch
Volumdiffusion beschreibt. Die Volumdiffusion ist die Folge einer hohen Konzentration von Leerstellen
im Eisgitter knapp unter den konkaven Oberfliichen der Briicken (oder ““Hiilse™). die zwischen den cinzelnen
Kugeln wachsen. Genaue Messungen der Dichtezunahme dieses Agglomerats von Eiskugeln als Funktion
der Zeit, der Temperatur und des Kugeldurchmessers sind in ausgezeichneter Ubereinstimmung mit der
Theorie. Die Bedeutung dieses Vorgangs [iir die Metamorphose von trockenem Schnee gleichférmiger
Temperatur wird diskutiert.

InTRODUCTION

Snowflakes undergo changes in shape shortly after deposition even though the air
temperature may be well below the melting point. The initial stage of this metamorphism
consists of the rounding of the sharp edges of the flakes due to evaporation from convex
surfaces. This is followed by the break-up of individual flakes into a number of isolated
grains, so that there is a decrease in the average size of the particles. As the particles decrease
in size the snow undergoes partial collapse which produces a more eflicient packing of the
grains. At points where the grains are in contact, ice bonds or necks begin to grow by
sintering, and the strength of the snow increases with time. Simultaneously, the grains tend
to become more uniform in size, for the smaller ones evaporate and lose their mass to the
larger grains. The time required for dry snow to transform into this weakly cohesive aggregate
of rounded grains increases with decreasing temperature; at —5°Cl. it takes a matter of weeks.

The growth of ice bonds between spherical particles of ice held at temperatures below
their melting point, has been investigated in recent years by a number of workers (Kingery,
1960; Kuroiwa, 1961 ; Hobbs and Mason, 1964). The driving force for the transfer of material
to the neck between two particles is provided by the gradient in chemical potential existing
between the highly stressed region beneath the concave surface of the neck and points else-
where in the system. Under the influence of this force, molecules can move to the neck by
four mechanisms: transfer via the vapour phase, volume diffusion through the ice, surface
diffusion over the ice, and plastic or viscous flow. These four mechanisms are not, of course,
mutually exclusive, each contributes to the growth of the neck to a greater or lesser extent.
Hobbs and Mason (1964) made theoretical estimates of the contributions to the neck growth
between two ice spheres from each of these four mechanisms, and concluded that the transfer
of material to the neck by the diffusion of water molecules through the air should be the
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dominant mechanism. The growth of the neck by volume diffusion and surface diffusion
was estimated to be smaller than the dominant mechanism by about four orders of magnitude.
Measurements of the rate of growth of the neck between two ice spheres were found to be in
good agreement with this theory. More recently, Hobbs (1965) has shown that the theory
can also account for the observed time dependence of the strength of firn.

Probably the most striking phenomenon associated with the metamorphism of snow is
the increase in density. Freshly fallen snow has a density in the range 0-01 to 0-25 g.cm.=3;
the rounding of the flakes followed by grain packing can increase the density to a maximum
value of 0-58 g.cm.=3 (the critical density), which corresponds to close random packing of
the grains (Anderson and Benson, 1963). For old snow at a uniform temperature further
increases in the density must occur by the mutual interpenetration of the grains at their
points of contact. Now it is clear that although the growth of the neck between two grains
of ice may be dominated by the transfer of material through the air, this mechanism cannot
contribute to the densification of old snow since it does not produce any change in the distance
hetween the centres of the grains. Similarly, the transfer of material to the neck by surface
diffusion will not affect the density of old snow. The movement of material to the neck by
volume diffusion, however, will produce a decrease in the distance between the centres of
two grains and this mechanism will therefore give rise to densification. As the pressure of
the overlying snow increases, a point will eventually be reached where visco-plastic flow
occurs and this may then dominate the densification process.

This paper is concerned with a theoretical and experimental study of the densification of
old snow in the absence of temperature gradients and prior to the onset of visco-plastic flow
due to overburden pressure. We derive first a theoretical expression for the rate of increase
in the density of a spherical compact of ice spheres due to volume diffusion at the points of
contact between the spheres. An experimental technique which allows accurate measure-
ment of the changes in density of a sample of ice spheres is then described, and the results
of a series of measurements on the densification of compacts of these spheres are presented.
Finally, the experimental results are compared with the predictions of our theoretical model.

THEORY

We consider first the sintering of two isolated spherical particles of ice which have the
same radius r (Fig. 1). If the neck between the two particles is assumed to grow predominantly
by the transfer of material through the vapour phase, the radius x of the neck after time ¢
is given by (Hobbs and Mason, 1964):

[i] el 20)/8—‘0:[ kTR L;}mﬁ] = ; (1)
r|  kTY | pomDg | KkT?

where y is the surface tension, 8 the intermolecular spacing, « the condensation coeflicient,
B the density, m the mass of a molecule, and Ly the latent heat of sublimation of ice, o the
equilibrium vapour pressure of ice at temperature 7, and D¢ and A are respectively the
diffusion coeflicient of water vapour in air and the thermal conductivity of air at temperature
T; k is Boltzmann’s constant. For simplicity Equation (1) may be written as

r r3

where B is a temperature-dependent term given by
. 20ydla [ KTB  LimB]* g
B [pomDG }i'k]”] : (3)
Experimental measurements (Hobbs and Mason, 1964) of the radius, temperature, and
time dependence of the growth of the neck between two ice spheres, 25 um. to 350 um.
radius, in the temperature range —3° to —20°C. are found to be in good agreement with
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Fig. 1. The geometry of two sintering spheres

Equation (1). The absolute size of the neck at time ¢ is also given by equation (1) if the
condensation coefficient x is taken as o- 2.

The transfer of molecules by volume diffusion through the ice lattice to the surface of
the neck between two particles is caused by a gradient in the concentration of vacancies.
It is well known that the equilibrium concentration of molecules in the vapour phase is less
above a concave surface than above a plane surface, the difference being given by Kelvin’s
equation. Similarly, the cquilibrium concentration of vacancies ¢, just beneath a concave
surface is greater than that beneath a plane surface C,. In this case C, is related to C, by
an expression analogous to Kelvin’s equation, namely

53

where the curvature of the neck has been taken as 1/p since, except at the very initial stages
of sintering, x » p. Approximating the exponential in (4) vields
Coyd?

T (5)
Due to this difference in concentration of vacancies, molecules will diffuse from the interior
of the neck to the surface. Hence, the distance between the centres of the two spheres will
gradually decrease due to the continual collapse of the spheres over their area of contact,

To calculate the rate of change of the distance between the centres of two spheres, it is
necessary to determine the mass of material that diffuses to the surface by volume diffusion.
The number of vacancies 7 moving away from the surface of the neck in unit time is given
by

AC = C,—Cy =

J= —ADgrad C (6)
where 4 is the surface area of the neck, D the diffusion coefficient for vacancies and grad (
the gradient of vacancies. The precise path which the vacancies take is not known with
certainty. However, we may assume that the grain boundary between the two spheres acts
as an efficient sink for the vacancies and that the concentration of vacancies at a grain
boundary is the same as that at a plane surface Co. The distance over which the concentration
of vacancies falls from its value C, at the surface of the neck to €y will be taken as ap where
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a is a constant of proportionality. If the neck is considered to be a cylinder of radius ¥ and
height 2p, the surface area is A4 = 4mxp. Equation (6) may therefore be written as

J = 4mxpD AC]ap, ()

mxDC gy 83
== ak Toy ) ®)
P
Hence, if ¥’ is the total volume of material that has moved to the surface of the neck by
volume diffusion through the ice after time ¢,
dV'  4mxDyyd?
& = akdp ()
where Dy = D8} is the volume self-diffusion coefficient for water molecules in ice and
$ has been taken as the volume of a vacancy. Provided x/r is not too large, we have from
the geometry of the system p = +*/47, and the volume of the double spherical cap of height
yis V' = amy*. Therefore

or

3
y% = 4——?%8 - (10)
akTx
Combining Equations (2) and (10) and integrating gives
* [‘ODWS‘]‘“ el (11)
akT Bt

where 2y is the change in centre-centre distance between two spheres after they have
sintered together for time £

We turn now to the densification of a compact of uniform ice spheres due to volume
diffusion. For simplicity a spherical compact will be considered. If the initial volume and
radius of the compact are respectively V and R, and these quantities diminish by amounts
AV and AR in time ¢,

AV = 47w R*AR. (12)
If there are n spheres of radius 7 in the length R,
AR = (n-1)2y,
or, for large n,
AR >~ any. (13)
Therefore,
AV 3y
5 (14)

From equations (11) and (14),

AV T1oDywyd¥]'* 5 (
_V — [ akT ] Bx,tmrﬁ,r;‘ 15)

This theoretical expression for the change in the volume of a spherical compact of ice
spheres by volume diffusion, can be checked experimentally in the following ways. First,
Equation (15) predicts that a log-log plot of AV/V against ¢ should be a straight line of
slope 2/5. Secondly, at a fixed temperature, a log-log plot of r against /the time required to
produce a given value of AV/V should be a straight line of slope 1/3. However, the magnitude
and temperature dependence of AV/V cannot be predicted from Equation (15) since the
magnitude of the proportionality constant a and its variation with temperature are not
known.

ExperMENTAL TECHNIQUES

Compacts containing approximately 10 ice spheres of uniform size were required for the
densification measurements. The apparatus used for producing the ice spheres is shown in
Figure 2. Water droplets were produced by directing an axially symmetrical jet of air along
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Fig. 2. Apparatus for producing uniform ice spheres

the outside of a hypodermic needle through which water was passed under slight pressure.
The air jet caused the water to be blown off the needle in the form of a single stream of
fairly uniformly sized droplets. The stream remained stable for the required period of five
to seven hours necessary to collect a test sample. By changing the pressure-head of water
and the velocity of the air jet the diameters of the droplets could be varied from about 200
to 1000 pm. The droplets were frozen in free fall by passing them through a very cold tower
which was refrigerated by cold air. The frozen droplets were caught at the base of the tower
in a flask containing liquid nitrogen.

After the required number of droplets had been collected they were transferred to a cold
room and sized by washing them with liquid nitrogen through a set of standard sieves.
This process removed the badly fractured spheres, ice fragments and aggregates. The particles
removed as undersized were usually less than § per cent of the original volume, while the
oversized particles amounted to about 5 to 10 per cent. Direct measurements on the sizes
of the remaining spheres showed that more than 85 per cent of them were within 10 pum.
of the mean size, although a few of the remaining 15 per cent differed by as much as 50 pm.
from the mean diameter. After the spheres had been sorted and sized they were returned
to the liquid nitrogen for storage. No bonding between the ice spheres could be detected
when they were stored in this way.

The method for measuring the change in volume of a compact of the ice spheres with
time had to satisty several stringent requirements. It needed to have a sensitivity of not less
than o-1 per cent of the total volume of the compact. Since the compacts that were used
had volumes of about 500 em.3, this meant that changes in volume of 0-5 cm.? had to be

https://doi.org/10.3189/50022143000020177 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000020177

884 JOURNAL OF GLACIOLOGY

measurable. Moreover, the compact had to be sealed in order to prevent net evaporation
losses to the air, and had to be kept at a uniform temperature. An ideal method was eventually
developed which satisfied all these requirements. Prior to the use of this method, however,
two other techniques were tried which yielded some results. Since we will need to refer
later to some of these early results, a brief description will first be given of these two methods,
and the final method that was employed will then be described in detail.

In the first method that was tried the ice spheres, together with some auxiliary weights,
were poured into an uninflated neoprene weather balloon until the skin of the balloon drew
tightly around the compact. The balloon was then immersed in a refrigerated bath of
kerosene and attached by means of a long thin wire to a sensitive analytical balance. The
changes in the volume of the compact could then be deduced from the changes in its apparent
weight. This simple device was, in principle, very accurate. With a compact of total volume
300 cm.’, consisting of spheres 400 um. in diameter, a change of 10~* um. in the distance
between the centres of pairs of spheres could be detected. It was found, however, that on
some occasions small amounts of kerosene had penetrated into the interior of the balloon.
In an effort to eliminate this serious source of error, the kerosene was replaced first by an
automotive oil and then by a low viscosity Arctic motor oil. These fluids were noticeably
less diffusively penetrating than kerosene, but since the possibility of some penectration of
the fluid through the walls of the balloon could never be completely eliminated this method
was finally abandoned.

The second method that was tried utilized a modified version of the Beckman gas
pychnometer. This instrument consists of a pair of identical piston-compression cylinders
which are connected by a differential pressure gauge. The ice spheres were again placed
into a neoprene balloon which was put into one of the cylinders. The other cylinder was
constructed so that at the extreme inward travel of its piston the entrapped air was com-
pressed to an overpressure of one atmosphere. The volume of the compact could be deter-
mined by compressing the cylinder in which it was contained to the same overpressure as
the other cylinder, and measuring the corresponding distance of traverse of its piston. By
simultaneously pressurizing both cylinders at the same rate, thus eliminating failure of the
gas law, and by taking repeated measurements, the volume of the compact could be deter-
mined to within o+1 em.’. Unfortunately, this method had to be abandoned owing to
repeated mechanical failures of the instrument at low temperatures.

The above two techniques served to demonstrate the accuracy that could be obtained
in measuring the changes in volume of the compact by means of a displacement method.
The final method that was adopted was therefore of the displacement type, but it avoided
the difficulties of the two earlier methods and was more accurate. The compact of ice
spheres was again contained in a neoprene weather balloon. The undistended volume of
the balloon was less than the volume of the compact so that the balloon gripped the compact
and conformed accurately to its surface contours (Fig. 3). In order to fill the balloon, the
ice spheres were placed in a plastic bottle which was fitted at its base with a three-way
stopcock. The balloon was fastened to the neck of the bottle, inflated slightly, and then
filled with the spheres by inverting the bottle. After the excess pressure in the balloon was
released, the balloon was sealed. The apparatus for measuring the changes in the volume
of the balloon with time is shown in Figure 4; we shall call this instrument the mercury
dilatometer. It consists of a large aluminium container fitted with a 1 mm. diameter glass
capillary tube and a reservoir with piston. This apparatus was placed in a large cold chamber
and, after placing the sealed balloon in the container, the top was bolted down. The reservoir
was then filled with mercury and with the aid of the piston the mercury was forced into
the container and up to a certain level A in the capillary tube. As the compact densified the
mercury level in the capillary tube would drop to some level B, a few centimetres below a,
at which time the mercury level would be returned to a. By measuring the volume of the
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Fig. 3. A portion of the” balloon. The black spots are bumps made by the ice spheres immedialely beneath the surface. Full size

capillary tube between points A and B the magnitudes of the changes in volume of the compact
in given intervals of time could be obtained. The instrument was made semi-automatic by
placing a photo-diode and peanut bulb across the capillary tube which would sound an
alarm whenever the mercury level fell below B. To minimize temperature fluctuations, the
aluminium container was placed in contact with about 50 kg. of aluminium in the cold
chamber. The large heat capacity of this mass helped to keep the temperature of the sample
constant to within a few tenths of a degree. Changes in the volume of the compact of 1 part
in 10° could be measured easily with this apparatus; improvements in the accuracy of
measuring the levels at A and B could have increased the sensitivity by an order of magnitude,
but this was not necessary for our measurements.

The mercury dilatometer provided direct experimental data on the rate of change in
the volume of a spherical compact of ice spheres at different times. Stepwise summation of
these data gave Al as a function of time ¢, and these results could be used to check the

validity of Equation (15).
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Fig. 4. The mercury dilatometer
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ExPERIMENTAL RESULTS

The initial densities of the compacts were about o0-55g.cm.=3, indicating that the
arrangement of the spheres was not far removed from close random packed. The experi-
mental results showed that the compacts underwent small but significant changes in density
with time. For example, with 600 um. diameter spheres at —10°C., the density increased
by approximately 2 per cent after 1000 min. of sintering. Details of the experimental results
are given below.

Time dependence

Log-log plots of AV/V as a function of time for different sizes of ice sphere and different
temperatures are shown in Figures 5, 6 and 7. All of the experimental results lie on a series
of straight lines with very little experimental scatter. The two separate runs at —g-6°C. and
—10-0°C. on spheres 370 pm. in radius, shown in Figure 5, illustrate the reproducibility of
the data. For temperatures between —7° and —20°C. the average slope of the log (AV[V)
against log  results is 0-39. However, the slope is definitely dependent on temperature, for
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it increases from about 0-25 at —2-5°C. to about 0-42 at —15°C. Below —15°C. the slope
remains approximately constant.

Size dependence

Figure 5 illustrates the effect on the densification of changing the radius of the ice spheres.
It can be seen that at the same temperature a compact of smaller spheres densifies by a
greater amount in a given time than does a compact of larger spheres. This effect is dis-
played in a different form in Figure 8 where log r is plotted against the logarithm of the time
required to reach a given value of AV/V. The slope of the line through the three experimental
points is 0-29.

Magnitude of the densification and its variation with temperature
Rearrangement of Equation (15) gives

Dy BT mws [AV]=

(16)
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From the measured values of AV/V, t and r, and the known values of the other parameters
on the right-hand side of Equation (16), values may be calculated for Dy/a as a function
of temperature. This quantity gives a measure of the magnitude of the densification. The
results are shown in Figure g where log (Dy/a) is plotted against 1/7. On this plot the
experimental results lie roughly on a straight line, which indicates that

Dy —E] ]
TC{CXP I:W . (7

The magnitude of Dy/a at —13°C. is about 1077 cm.?/sec. and the experimental value of
E is approximately 204-2 kcal./mole.

Pressure dependence

The results described above were all obtained using the mercury dilatometer. In this
device the compact is under a small hydrostatic overpressure of about 18in. (46 cm.) of
mercury, and it is possible that this pressure could affect the densification. To see if this was
the case an experiment was carried out in which the height of the mercury in the capillary
tube was initially g in. (23 cm.), after a period of time this was increased to 18 in. (46 cm.)
and subsequently to 27 in. (69 cm.). These changes in the applied overpressure produced
no detectable change in the densification of the compact.

Diffusion Coefficient for HF in Ice
(Kopp et al, 1965)

D, 7a (Present Work)

o,
:

2
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¥ Ice ofter One Day (itogoki,|964)
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3p 39
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T

Fig. 9. Comparison of measurements of Dyfa from present work with volume diffusion coefficients in ice measured by other
techniques
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Another check which can be made to see whether or not the overpressure affects the
densification, is to compare the results obtained with the mercury dilatometer with those
obtained from the other two devices described in the last section. The overpressure in the
oil-immersion technique was only about o-3in. (8 mm.) of mercury whilst in the Beckman
Gas Pychnometer the compact sintered at zero overpressure, although this was raised
momentarily to one atmosphere when measurements were taken. In Figure 10 some measure-
ments from these three instruments are compared. It can be seen that in the range o0-3 in.
(8 mm.) to 18 in. (46 cm.) of mercury, the densification is not changed significantly by the
overpressure.

Effect of environment

A few experiments were carried out in which compacts were first allowed to sinter for a
certain time In air, and then the ice spheres were covered with silicone oil. Subsequent
measurements on the densification of the compact did not reveal any significant changes in
the rate of densification, although the measurements in this case were not nearly as accurate
as those in air.

DiscussioNn oF RESULTS

The average value of the exponent for the time dependence of the densification found
experimentally, namely o-3g, is in excellent agreement with the value of 0-4 predicted by
Equation (15). However, the observed variation of this exponent with temperature is not
predicted directly by our theory. This variation can be explained if the value of the exponent
for the time-dependence of the neck growth between two spheres increases with increasing
temperature. For example, if instead of x oc ¢'/5 in Equation (2) we write at high temperatures
x oc t''%, then AV/V oc £3/8 instead of ¢*/5. This explanation is supported by the fact that in
experimental measurements on the growth of the neck between two ice spheres, Kuroiwa
(1961) found that there was a tendency for the magnitude of the exponent of ¢ to increase
with increasing temperature. It should be borne in mind, however, that the experimental
measurements at higher temperatures show more scatter than those at lower temperatures
and are therefore less reliable.

Equation (15) predicts that a graph of log r against the logarithm of the time required
to produce a given value of AV/) should have a slope of 0-33. This is in good agreement

©-45°Cy =470/L,slope = 039, overpressure = 0.6l aim(Mercury Dilatometer)
A- 40°Cr =500(L,slops =0.39, overpressure = | tn(Oil Immarsion}
20165 10°C,T =600LL,slope =0.36, overpressur 0 0fm(0il Immersion) - o]
o-lo°cr =5254L,slope =0.36, overpreasure = 0 atm.(Gas Pychnometer )
10k
9
" 8
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>
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2|IE “—"Too P 1000

TIME (min)

Fig. ro. Effects of overpressure on densification as a function of time
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with the experimental slope of 0-29 (Fig. 8). However, it should be noted that the experi-
mental value is based on just three experimental points, although these are separated by
two orders of magnitude on the time scale.

If the experimental values of AV/V are substituted into Equation (15), the variation of
Dy/a with temperature may be deduced. The results are shown in Figure g where they are
compared with some independent measurements of the volume diffusion coefficient Dy
obtained by different workers. Kopp and others (1965), using nuclear magnetic resonance
techniques, found the activation energy of Dy for the diffusion of HF in ice to be 13-4+1-8
kcal./mole. Blicks and others (1966) obtained an activation energy for Dy of 14:4+40-7
kcal./mole for the diffusion of tritium in ice. Itagaki (1964) also used tritium as a tracer and
found that the activation energy of Dy was time-dependent, after one day it was 24-2
kcal. /mole and after seven days 15742 kcal./mole. In general, therefore, our experimental
value of 2042 kcal./mole for the activation energy of Dy/a is larger than the activation
energies that have been measured for Dy. This difference could be due to the temperature
dependence of the factor a.

In order to check if the absolute magnitudes of Dy/a deduced from the densification
measurements are reasonable, it is necessary to know the value of the proportionality constant
a. Unfortunately, the magnitude of this quantity is a matter for speculation. In the original
work on the sintering of ceramic and metallic particles Kuczynski (1949) assumed that the
value of @ was unity; the true value, however, could well be as small as 107%, corresponding
to a diffusion length of a few hundred molecular layers. If we accept a value of unity for a,
it would appear at first glance that our experimental values for Dy are about three orders
of magnitude larger than those obtained from radioactive measurements. However, it should
be noted that the present results were obtained using ice spheres which were very poly-
crystalline, whereas, the radioactive measurements were made on single crystals of ice.
Diffusion coefficients for polycrystalline specimens are commonly found to be an order of
magnitude larger than those for single crystals of the same material. Moreover, Itagaki
(1964) found that at short times (less than 1 day) the diffusion coefficient of tritium in ice
may have a value almost an order of magnitude larger than the value measured after ten
days. Finally, it is interesting to note that the magnitudes of the diffusion coefficient of
hydrogen fluoride in ice measured by Kopp and others (1965) lie quite close to our experi-
mental values of Dy/a.

Independent estimates of the value of Dyja were obtained by measuring the rate of
growth of the neck between two ice spheres completely immersed in silicone oil. Under
these conditions the neck cannot grow by the transfer of material through the environment,
and volume diffusion should therefore provide the main contribution to the growth of the
neck. Two ice spheres were placed gently in contact in air and allowed to sinter together
for a short time. Silicone oil was then poured over the spheres and measurements on the
growth of the neck were continued. Due to the difficulties of making accurate measurements
of the size of the neck through the silicone oil, the results showed considerable scatter.
Nevertheless, the neck continued to grow in the silicone oil but the time required to reach
a given value of x/r was increased by about an order of magnitude over the corresponding
time in air. Similar results to this were obtained by Kuroiwa (1961) and Hobbs and Mason
(1964) for the sintering of ice spheres in liquid kerosene. It is interesting to note that Hobbs
and Mason found that when two ice spheres were immersed in silicone oil and then pushed
into contact, no neck growth took place. This must have been due to the fact that actual
physical contact of the two spheres never occurred, presumably due to the presence of a thin
layer of silicone oil between them. Assuming that in the presence of silicone oil sintering
occurs by volume diffusion alone, the value of Dy/a is found to be about 10~% cm.?/sec. at
—10°C. It can be seen from Figure g that this value is about an order of magnitude smaller
than that deduced from the densification experiments, however, it does provide experi-
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mental confirmation that the magnitudes of Dy/a are considerably higher than might have
been expected.

The observed decrease in the rate of neck growth between two spheres in silicone oil,
corresponds to a reduction of about one order of magnitude in the value of B in Equation
(2). Hence, the densification of a compact of ice spheres in silicone oil should be given by
the same expression as that in air, namely Equation (15), except the value of B will be
one-tenth that in air and the surface tension y will be reduced by about 20 dyne/cm. These
changes make the densification after a certain time in silicone oil about 0-7 that which
would have taken place in air. This is a small difference and accounts for the fact that no
difference could be detected between the amounts of densification in air and silicone oil.

The high values of Dy/a found in this work indicate that the contribution to the neck
growth between two spheres due to volume diffusion cannot be ignored. The values of
Dy /a deduced from the densification measurements are comparable to the values of the
transport coefficient for transfer through the vapour phase deduced by Hobbs and Mason
(1964). This would imply that volume diffusion and transfer through the vapour phase
contribute equal amounts to the growth of the neck between two ice spheres situated in
air. However, the fact that the neck growth is found to be an order of magnitude less in
silicone oil than in air, suggests that in air transfer through the vapour phase dominates
volume diffusion by about an order of magnitude. It should be emphasized that the use of
Equation (1) in deriving the expression for the densification of a compact of ice spheres,
relies only on the empirical correctness of this expression and not on its theoretical foundations.

In summary, the theory and experiments described in this paper indicate that volume
diffusion in ice can play an important role in the metamorphism of dry snow. Densification
by volume diffusion alone can increase the density of dry snow beyond the critical value for
a close random packed array of spheres, and this mechanism can proceed in the absence of
any temperature gradients or overburden pressure.
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