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Abstract. First we de®ne the notion of k-Ricci curvature of a Riemannian n-
manifold. Then we establish sharp relations between the k-Ricci curvature and the
shape operator and also between the k-Ricci curvature and the squared mean cur-
vature for a submanifold in a Riemannian space form with arbitrary codimension.
Several applications of such relationships are also presented.

1. Introduction. According to the well-known Nash's immersion theorem, every
Riemannian n-manifold admits an isometric immersion into the Euclidean space
En(n+1)(3n+11)/2. In general, there exist enormously many isometric immersions from
a Riemannian manifold into Euclidean spaces if no restriction on the codimension
were made. For a submanifold of a Riemannian manifold there associate several
extrinsic invariants beside its intrinsic invariants. Among extrinsic invariants, the
shape operator and the squared mean curvature are the most important ones.
Among the main intrinsic invariants, sectional, Ricci and scalar curvatures are the
well-known ones.

One of the most fundamental problems in submanifold theory is the following.

Problem 1. Establish simple relationship between the main extrinsic invariants
and the main intrinsic invariants of a submanifold.

Several famous results in di�erential geometry, such as isoperimetric inequality,
Chern-Lashof's inequality, and Gauss-Bonnet's theorem among others, can be
regarded as results in this respect. For some recent progress in this direction, see for
instances [2±8].

In this paper we consider isometric immersions of a Riemannian manifold into
Riemannian space forms with arbitrary codimension. In Section 2 we extend the
well-known notion of Ricci curvature to k-Ricci curvature for a Riemannian mani-
fold. In Section 3 we obtain a solution to Problem 1 by establishing a sharp rela-
tionship between the k-Ricci curvatures and the shape operator for submanifolds in
Riemannian space forms with arbitrary codimension. In Section 4 we obtain another
solution to Problem 1 by establishing a sharp relationship between the k-Ricci cur-
vatures and the squared mean curvature also for submanifolds in Riemannian space
forms with arbitrary codimension. Results obtained in this paper can be regarded as
generalizations of some results obtained in [4].

2. Preliminaries. Let Mn be an n-dimensional submanifold of a Riemannian
space form Rm(c) of constant sectional curvature c. Denote by r and ~r the Levi-
Civita connections of Mn and Rm(c), respectively. Then the Gauss and Weingarten
formulas of Mn in Rm(c) are given respectively by
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~rXY � rXY� h�X;Y�; �2:1�

~rX� � ÿA�X�DX�; �2:2�

for vector ®elds X, Y tangent to Mn and � normal to Mn, where h denotes the second
fundamental form, D the normal connection, and A the shape operator of the sub-
manifold. The second fundamental form and the shape operator of Mn in Rm(c) are
related by

hA�X;Yi � hh�X;Y�; �i; �2:3�

The mean curvature vector H of the submanifold Mn is de®ned by H � 1
n trace h

Denote by R the Riemann curvature tensor of Mn. Then the equation of Gauss
is given by

R�X;Y;Z;W� � �hX;WihY;Zi ÿ hX;ZihY;Wi�c
�hh�X;W�; h�Y;Z�i ÿ hh�X;Z�; h�Y;W�i; �2:4�

for vectors X, Y, Z, W tangent to Mn.
For a Riemannian n-manifold Mn, denote by K(�) the sectional curvature of a

2-plane section ��TpM
n, p2Mn. Suppose Lk is a k-plane section of TpM

n and X a
unit vector in Lk. We choose an orthonormal basis {e1,. . .,ek} of L such that e1=X.
De®ne the Ricci curvature RicLk of Lk at X by

RicLk�X� � K12 � . . .� K1k; �2:5�

where Kij denotes the sectional curvature of the 2-plane section spanned by ei, ej. We
simply called such a curvature a k-Ricci curvature. The scalar curvature � of the
k-plane section Lk is de®ned by

��Lk� �
X

1�i<j�k
Kij: �2:6�

Let Vl be an l-plane section in a tangent space TpM
n of a Riemannian n-mani-

fold Mn. Then Vl is said to be k-Einsteinian if the k-Ricci curvatures of all k-plane
sections in Vl are equal. In particular, if Vl is the whole tangent space TpM

n at p,
then Mn is said to be k-Einsteinian at p.

An l-plane section Vl is said to have constant sectional curvature if it is 2-Ein-
steinian; in this case, sectional curvatures of all 2-plane secions in Vl are equal. It
follows from (2.5) that an l-plane section is 2-Einsteinian if and only if it is k-Ein-
steinian for some k<l.

A Riemannian manifold is called k-Einsteinian if it is k-Einsteinian at every
point. Obviously, a Riemannian n-manifold is an Einstein space if it is n-Einsteinian.
On the other hand, a Riemannian n-manifold is a Riemannian space form if it is k-
Einsteinian for some k<n.

3. k-Ricci curvature and shape operator. The main purpose of this section is to
obtain a solution to Problem 1 by establishing a sharp relationship between the k-
Ricci curvature and the shape operator for a submanifold in a Riemannian space
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form with arbitrary codimension. In order to do so, for each integer k, 2�k�n, we
introduce a Riemannian invariant, denoted by �k, on a Riemannian n-manifold Mn

de®ned by

�k�p� � 1

kÿ 1

� �
inf
Lk;X

RicLk�X�; p 2Mn; �3:1�

where Lk runs over all k-plane sections in TpM and X runs over all unit vectors in
Lk. Recall that for a submanifold Mn in a Rieniannian manifold, the relative null
space of Mn at a point p2Mn is de®ned by

Np � fX 2 TpM
n : h�X;Y� � 0 for all Y 2 TpM

ng:

Theorem 1. Let x:Mn!Rm(c) be an isometric immersion of a Riemannian
n-manifold Mn into a Riemannian space form Rm(c) of constant sectional curvature c.
Then for any integer k, 2�k�n and any point p2Mn, we have

1. If �k�p� 6� c, then the shape operator at the mean curvature vector satis®es

AH >
nÿ 1

n
��k�p� ÿ c�I at p; �3:2�

where I denotes the identity map of TpM
n.

2. If �k�p� � c, then AH � 0 at p.
3. A unit vector X2TpM satis®es AHX � nÿ1

n ��k�p� ÿ c�X if and only if �k�p� � c
and X lies in the relative null space at p.

4. AH � nÿ1
n ��kÿc�I at p if and only if p is a totally geodesic point, i.e., the second fun-

damental form vanishes identically at p.

Proof. Let {e1,. . .,en} be an orthonormal basis of TpM
n. Denote by Li1...ik the k-

plane section spanned by ei1,. . .,eik. It follows from (2.5) and (2.6) that

��Li1...ik � �
1

2

X
i2fi1;...;ikg

RicLi1 ...ik
�ei�; �3:3�

��p� � �kÿ 2�!�nÿ k�!
�nÿ 2�!

X
1�i1<���<ik�n

��Li1...ik�: �3:4�

Combining (3.1), (3.3) and (3.4) we ®nd

��p� � n�nÿ 1�
2

�k�p�: �3:5�

On the other hand, Lemma 1 of [4] yields

H 2�p� � 2

n�nÿ 1� ��p� ÿ c: �3:6�
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From (3.5) and (3.6), we obtain H2(p)��k(p)ÿc. This shows that H(p)=0 may
occur only when �k(p)�c. Consequently, if H(p)=0, statements (1) and (2) hold
automatically. Therefore, without loss of generality, we may assumeH(p) 6�0. Choose
an orthonormal basis e1,. . .,en,en+l,. . .,em at p such that en+1 is in the direction of the
mean curvature vector H(p) and e1,. . .,en diagonalize the shape operator AH. Then
we have

An�1 �
a1 0 . . . 0
0 a2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . an

0BB@
1CCA; �3:7�

Ar � �hrij�;
Xn
i�1

hrii � 0; r � n� 2; . . . ;m: �3:8�

From the equation of Gauss we get

aiaj � Kij ÿ c�
Xm
r�n�2
�hrij�2 ÿ

Xm
r�n�2

hriih
r
jj; 1 � i 6� j � n; �3:9�

From (3.9) we obtain

a1�ai2 � � � � � aik� � RicL1i2
...ik
�e1� ÿ �kÿ 1�c

�
Xm
r�n�2

Xk
j�2
�hr1ij�2 ÿ

Xm
r�n�2

Xk
j�2

hr11h
r
ijij
; 1 < i2 < � � � < ik;

�3:10�

which yields

a1�a2 � � � � � an� � 1

nÿ 2

kÿ 2

� � X
2�i2<���<ik�n

RicL1i2 ...ik
�e1�

ÿ�nÿ 1�c�
Xm
r�n�2

Xn
j�1
�hr1j�2:

�3:11�

Using (3.1) and (3.11) we ®nd

a1�a2 � � � � � an� � �nÿ 1���k�p� ÿ c�; �3:12�

with the equality holding if and only if

RicL�e1� � 0 and hr1j � 0; r � n� 2; . . . ;m; j � 2; . . . ; n; �3:13�

for any k-plane section L which contains e1.
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Inequality (3.12) implies

a1�a1 � � � � � an� � �nÿ 1���k�p� ÿ c� � a21 � �nÿ 1���k�p� ÿ c�: �3:14�

Similar inequalities hold when 1 were replaced by j2{2,. . .,n}. Hence, we have

aj�a1 � � � � � an� � �nÿ 1���k�p� ÿ c� � a2j ; j � 1; . . . ; n; �3:15�

which yields

AH � nÿ 1

n
��k�p� ÿ c�I: �3:16�

Now, suppose that the equality case of (3.16) is achieved for some unit vector
X 2 TpM

n. Then at least one of the n eigenvalues of AH is equal to (nÿ1)(�k(p)ÿc)/n.
Without loss of generality, we may assume a1 is such an eigenvalue. Thus, we have

a1�a1 � � � � � an� � �nÿ 1���k�p� ÿ c�: �3:17�

On the other hand, from (3.14) and (3.17) we obtain a1=0 and �k�p� � c.
Moreover, in this case we also know from (3.13) that e1 must lie in the relative null
space Np. Hence, statements (1) and (2) follow. Moreover, this also implies one part
of statement (3). The remaining part of statement (3) is obvious.

Now, if AH � nÿ1
n ��k ÿ c�I identically at a point p, then every tangent vector of

Mn at p lies in the relative null space Np at p, according to statement (3). Therefore, p
is a totally geodesic point. Conversely, if p is a totally geodesic point, then �k(p)=c
and AH=0 which imply AH � nÿ1

n ��k ÿ c�I identically at a point p. Thus we have
statement (4). &

Remark 1. Clearly the estimate of AH given in statement (2) of Theorem 1 is
sharp.

Consider a hyper-ellipsoid in En+1 de®ned by

ax21 � x22 � � � � � x2n�1 � 1; �3:18�

where 0<a<1. The principal curvatures a1,. . .,an of the hyper-ellipsold are given by
(cf. [9])

a1 � a

�1� a�aÿ 1�x21�
3
2

; a2 � � � � � an � 1

�1� a�aÿ 1�x21�
1
2

: �3:19�

Therefore, for any k, 2�k�n, the k-Ricci curvatures at a point p satis®es

RicLk �X� � �kÿ 1��k�p� :� �kÿ 1�a
�1� a�aÿ 1�x21�2

> 0 �3:20�

for any k-plane section Lk and any unit vector X in Lk and, moreover, the eigenva-
lues �1,. . .,�n of the shape operator AH are given by
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�1 � � � � � �nÿ1 � a� �nÿ 1��1� a�aÿ 1�x21�
n�1� a�aÿ 1�x21�2

;

�n � a�a� �nÿ 1��1� a�aÿ 1�x21��
n�1� a�aÿ 1�x21�3

:

�3:21�

From (3.20) and (3.21) it follows that AH >
nÿ1
n

ÿ �
�k�p�In and

�1 ÿ nÿ 1

n
�k�p� � a2

n�1� a�aÿ 1�x21�3
! 0

as a!0.
This example shows that our estimate of AH in statement (1) is also sharp.

One may apply Theorem 1 to obtain a lower bound of the eigenvalues of
the shape operator AH for all isometric immersions of a given Riemannian n-
manifold with arbitrary codimension. For instance, Theorem 1 implies immediately
the following.

Corollary 2. Let x : Mn! Em be any isometric immersion of an open portion
of the unit n-sphere in a Euclidean m-space with arbitrary codimension. Then every
eigenvalue of the shape operator AH is greater than nÿ1

n .

For an n-dimensional submanifold Mn in Em let En+1 be the linear subspace of
dimension n+1 spanned by the tangent space at a point p2M and the mean curva-
ture vector H(p) at p. Geometrically, the shape operator An+1 of M

n in Em at p is the
shape operator of the orthogonal projection of Mn into En+1. Moreover, it is known
that if the shape operator of a hypersurface in En+1 is de®nite at a point p, then it is
strictly convex at p. For this reason a submanifold Mn in Em is said to be H-strictly
convex if the shape operator AH is positive-de®nite at each point in Mn.

Theorem 1 implies immediately the following.

Corollary 3. Let Mn be a submanifold of a Euclidean space with arbitrary
codimension. If there is an integer k, 2�k�n, such that k-Ricci curvatures of Mn are
positive, then Mn is H-strictly convex.

2. Ricci curvature and squared mean curvature. In this section we give another
solution to Problem 1 by establishing a sharp relationship between the k-Ricci cur-
vature and the squared mean curvature.

Theorem 4. Let x: Mn!Rm(c) be an isometric immersion of a Riemannian n-
manifold Mn into a Riemannian space form Rm(c). Then

1. For each unit tangent vector X2TpM
n, we have

H2�p� � 4

n2
fRic�X� ÿ �nÿ 1�cg; �4:1�

where H2=hH,Hi is the squared mean curvature and Ric(X) the Ricci curvature
of Mn at X.
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2. If H(p)=0, then a unit tangent vector X at p satis®es the equality case of (4.1)
if and only if X lies in the relative null space Np at p.

3. The equality case of (4.1) holds identically for all unit tangent vectors at p if
and only if either p is a totally geodesic point or n=2 and p is a totally umbilical
point.

Proof. Let X2TpM
n be a unit tangent vector at p. We choose an orthonormal

basis e1,. . .,en,en+1,. . .,em such that e1,. . .,en are tangent to Mn at p and e1=X. Then
from the equation of Gauss we have

n2H2 � 2�� k h k2 ÿn�nÿ 1�c; �4:2�

where khk2 is the squared length of the second fundamental form. From (4.2) we
®nd

n2H2 � 2� �
Xm
r�n�1

�hr11�2 � �hr22 � � � � � hrnn�2 � 2
X
i<j

�hrij�2
( )

ÿ 2
Xm
r�n�1

X
2�i<j�n

hriih
r
jj ÿ n�nÿ 1�c

� 2� � 1

2

Xm
r�n�1
f�hr11 � � � � � hrnn�2 � �hr11 ÿ hr22 ÿ � � � ÿ hrnn�2g

� 2
Xm
r�n�1

X
i<j

�hrij�2 ÿ 2
Xm
r�n�1

X
2�i<j�n

hriih
r
jj ÿ n�nÿ 1�c

� 2� � n2

2
H2 ÿ 2

X
2�i<j�n

Kij � 2
Xm
r�n�1

Xn
j�2
�hr1j�2 ÿ 2�nÿ 1�c;

�4:3�

which implies

n2H2 � 4�Ric�e1� ÿ �nÿ 1�c�: �4:4�

Since e1=X can be chosen to be any arbitrary unit tangent vector at p, we obtain
statement (1).

From (4.3) we know that the equality case of (4.4) holds if and only if

hr12 � � � � � hr1n � 0 and hr11 � hr22 � � � � � hrnn; r � n� 1; . . . ;m: �4:5�

If H(p)=0, (4.5) implies that e1=X lies in the relative null space Np at p. Conversely,
if e1=X lies in the relative null space, then (4.5) holds automatically, since H(p)=0.
This proves statement (2).

Now, assume that the equality case of (4.1) holds identically for all unit tangent
vectors at p. Then, for any r=n+1,. . .,m, we have

hrij � 0; i 6� j; �4:6�

hr11 � � � � � hrnn ÿ 2hrii � 0; i � 1; . . . ; n: �4:7�
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Conditions (4.6) and (4.7) imply that either p is a totally geodesic point or n=2 and
p is a totally umbilical point. The converse of this is trivial. Thus, we also have
statement (3). &

Theorem 4 can be applied to obtain sharp estimates of the squared mean cur-
vature for some submanifolds with arbitrary codimensions. For instance, Theorem 4
implies immediately the following.

Corollary 5. Let x : Mn!Em be an isometric immersion of a Riemannian n-
manifold Mn in a Euclidean m-space with arbitrary codimension. Then

H2�p� � 4

n2

� �
max
X

Ric�X� �4:8�

where X runs over all unit tangent vectors at p.

Remark 2. There exist many examples of submanifolds in a Euclidean m-space
which satisfy the equality case of (4.8) identically. Two simple examples are spherical
hypercylinder S2(r)�R and round hypercone in E4.

Remark 3. In general, given an integer k, 2�k�nÿ1, there does not exist a
positive constant, say C(n, k), such that

H2�p� � C�n; k�max
Lk;X

RicLk �X� �4:9�

where Lk runs over all k-plane sections in TpM
n and X runs over all unit tangent

vectors in Lk. This fact can be seen from the following example:
Let x : M3!E4 be a minimal hypersurface whose shape operator is non-singular

at some point p2M3. Then by the minimality there exist two principal directions at
p, say e1, e2, such that their corresponding principal curvatures �1, �2 are of the same
sign. This implies that the sectional curvature K12 at p is positive. Now, consider the
minimal hypersurface in En+1 which is given by the product of x : M3! E4 and the
identity map � : Enÿ3! Enÿ3. It is clear that, for any integer k, 2�k�nÿ1, the max-
imum value of the k-th Ricci curvatures of Mn :=M3�Enÿ3 at a point (p,q), q2Enÿ3

is given by K12=�1�2 which is positive. Since H=0, this shows that there does not
exist any positive constant C(n,k) which satis®es (4.9).

On the contrary, by applying Theorem 4 we have the following relationship
between the minimum value of the k-Ricci curvatures and the squared mean curva-
ture for submanifolds with arbitrary codimensions.

Corollary 6. Let x : Mn!Rm(c) be an isometric immersion of a Riemannian n-
manifold Mn in a Riemannian space form Rm(c) of constant sectional curvature c.
Then, for any integer k, 2�k�n, we have

H2�p� � 4�nÿ 1�
n2

�k�p�
kÿ 1

ÿ c

� �
; �4:10�

where �k is the Riemannian invariant on Mn introduced in (3.1).
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The equality case of (4.1) holds identically for all unit tangent vectors at p if and
only if either p is a totally geodesic point or k=n=2 and p is a totally umbilical point.
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