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0. Abstract. We add Schreier's space S and the Lorentz space d(a, 1) to the list of
classical Banach spaces which enjoy the A-property, investigate the extreme point
structure of 5, and show that d(a, 1) has a A-function which is continuous on Sd(aA),
though not even uniformly so.

1. Introduction. Let X be a Banach space, Bx the unit ball of X, Sx the surface of
Bx, and ext Bx the set of extreme points of Bx. For points x, y e X, we write [x, y) for

DEFINITION 1.1. (a) X has the k-property, if for each x € Bx, there exists e e ext Bx,
yeBx, 0 < A < 1 such that

x = ke + (1 - X)y.

In this case we say that the triple (e, y, A) is amenable to x, and write (e, y, A) ~ x.
(b) If X has the A-property, for each x e Bx, we define

A(x): = sup{A:(e, y, k)~x}.

(c) If there exists Ao > 0 such that k(x) > Ao, for all x e Bx, we say that X has the
uniform k-property.

(d) Finally, we say that X has the convex series representation property (C.S.R.P.), if
for each x e Bx, there exist kn sO, en e ext Bx, (n = 1, 2, . . . ), such that x - E knen and
E K = 1.
n

These notions were developed by R. Aron and R. H. Lohman in [1], where (among
other results) they proved: the uniform A-property implies C.S.R.P. An easy exercise
shows that C.S.R.P. implies the A-property. Spaces that enjoy either the A-property or
the uniform A-property are not rare [1], [3], [4], [8], and it is our belief that some strong
theorems are lurking behind these concepts. In an attempt to better understand these
properties we decided to investigate a couple of "exotic" sequence spaces. We begin with
Schreier's space S.

2. Schreier's space S.

DEFINITION 2.1. (a) Let /?</v) denote the (vector) space of real sequences x =
(x(l), x(2), . . .) which are finitely-non-zero (i.e., have "finite support"). A subset E of the
natural numbers N is admissible, if E = {nu n2, • . . , nk}, with k < « , <n2 • • . <nk. We
denote by si the collection of all admissible subsets of N.

(b) For x e Rw, we define

jeE

(Routine calculations show that ||-||s is a norm on RiN).)
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(c) Schreier's space S is the ||-||s-completion of Rw. (From here on, we will write
"IHr.forlHU".)

The space 5 has been studied extensively in [2], where it is shown that S is
hereditarily-c0; (hence /, does not embed in it). In this section we shall show that 5 has
enough extreme points to enjoy C.S.R.P., even though we fall short of a useful
characterization of ext Bs. First we note that S is not c0 in disguise.

PROPOSITION 2.2. 5 is not isomorphic to c0.

Proof. If we denote by {sn}^=i the canonical unit vector basis for 5, then for each n,
I" is isometric to the norm-one complemented subspace of 5 spanned by {s,: n + 1 < i <
2/j}. Thus (see [6, p. 74)] 5* fails to have finite co-type. Hence 5* is not isomorphic to CQ,
and so 5 is not isomorphic to c0.

For each n, let Sn : = span {J, : / < « } . Since Sn is finite-dimensional, ext Bn=£0 (where
Bn := BSn). In fact we shall show that

ext Bn n ext Bs * 0 .

The reader can easily show (by using 1-sets introduced below) that the vectors (1,1),
( 1 , 1 i, | ) , and (1, §, i i i | ) are all in ext Bs (when we write x = (x(l), x{2), ..., x{n)),
we mean x(j) = 0 when / > n).

DEFINITION 2.3. Let x e Bs.

(a) If £ e M, and E 1*0)1 = 1, we say that £ is a 1-set for x.

(b) If (in addition) E = {n 1 <n 2 < . . . <nk) and k<nu we say £ is a non-maximal
l-set, for x.

Since for E e si, x—* E \x(j)\ is a semi-norm, we clearly have the following result.
jeE

LEMMA 2.4. Let x, b, c e Bs with x = Xb + (1 — A)c for some 0 < A < 1. Then any 1-set
for x is a l-set for b and c.

A slight modification of the above shows that for vectors x, bu b2, . . . in Bs and
scalars A1; A2, . . . each >0 with £ kn = 1 and x = E hnbn, every 1-set for x is a 1-set for
each bn.

LEMMA 2.5. Let « > 1 and x e ext Bn. Ifx has a non-maximal 1-set E, then x e ext Bs.

Proof. Clearly we may assume that max E =£ H. Suppose x = kb + (1 — X)c, for some
0< A < 1 and some b,c e Bs. If £ is a non-maximal 1-set for x, then, by Lemma 2.4, £ is
a non-maximal 1-set for b and c. So b(j) = 0 = c(j), for / > n, since £ U {/} e si for every
j > n. But x(j) = b(j) = c(j) for / ^ n, since x e ext Bn. Thus x = b = c, and x e ext Bs.

We note that ext Bn <£ ext Bs. Some calculations show that (1, \, \, \, ^) e ext B5 ~
ext Bs, for instance. To show that 5 has C.S.R.P. we need some lemmata about certain
representations.

LEMMA 2.6. Let x e Bs. Then for all e > 0, there exists N such that for E eM with
N<minE, we have E |-t(y")|<e.

jeE

Proof. If x e Bs, then ||JC — ,y|| < e for some finite vector y e Bs.
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LEMMA 2.7. Let x e Bs have infinite support. Then there exist vectors b, c e Bs such
that x = \b + \c, and b has finite support.

Proof. Without loss of generality we may assume ||JC|| = 1. Let

a := min{|jc(/)| :j e E e si, £ is a 1-set for x, x(j) =£()},
and

:= mini 1 - £ |x(/)|: E e si, 2 \x(J)\ <
*• jeE jeE

Lemma 2.6 implies that e > 0. Choose an integer M larger than any element in any 1-set
for x and larger than any element in any E e si which determines e. Finally, enlarge M (if
needed) so that for E e si, minE^M implies

2
jeE

Now define vectors b and c by

<

'b(j) = x(J

b(j) = O,

c(J) = 2x{

1*0)1<2 minja,

j), for 1

for y

for y

=£;<

>M.

The only thing left to show is that c e Bs. Towards this end, let E e si. If max E <M,
then £ |c(;)|2£ ||*|| = 1. If max£>M, then

jE
|

jeE

Note that for x e Bs, applying the above Lemma recursively we obtain a representation
x = E 2~'bj, where each 6, e Bs and each ft, has finite support. Also note that we

i

immediately obtain the following result.

COROLLARY 2.8. If x e ext Bs, then x has finite support.

In fact, we can show more.

LEMMA 2.9. Let x e Bs have finite support. Then x can be represented as x = \b + {c,
for two vectors b, c e Bs each of finite support, and each having a non-maximal l-set.

Proof. Without loss of generality, we may assume jt#O. Let N = max(support

x) + l, and let e = m i n l l - E |x(/)|:£ = {nu . . . ,nk), k<nx<N\. (If e = 0, then JC
I jeE >

already has a non-maximal 1-set, and we can choose b = c = x.) Choose M>N such that
N-2

< e. (The case where N < 2 is trivial.)
M
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Define vectors b and c via

x(j) = c(j), for lsy-sAf,

0 = c(j), for j>2M,

±-=-c(j), for M + 1</

Clearly, jc = i6 + k and j
To show that \\b\\<l, let £ e rf. If min£>N, then E |6(;)| s M . — = 1. If

max E<N, then £ |6(/)| = E \x(j)\ ^ 1. In the only remaining case
jeE j<=E

( )
jeE ^jeE JEE'

N-2
l

So ||ft|| = ||c|| = 1, and each has {M + 1, M + 2, . . . , 2M) for a non-maximal 1-set.

THEOREM 2.10. Schreier's space S has C.S.R.P.

Proof. Let x e Bs. By the remark following Lemma 2.7, we may write x = E 2~"bn,
n

where ||ftn|| = 1 and support bn is finite, (n = 1, 2, . . . ). Using Lemma 2.9 on each bn, we
can write* = E A,cy, for some choices of Ay and cy such that E Ay = 1, ||cy|| = 1, and each vector

i i
Cj has finite support and a non-maximal 1-set. Now each vector c, belongs to some 5,,,
where n :=n{j). Since Sn has C.S.R.P. [2], for each j we can write cy = £ A; ^ , , a convex
series where the ejA e ext Bn. Finally x = E Ay ,ey,, and the vectors ey, all belong to ext Bs,
by Lemmas 2.4 and 2.5. '''

This of course implies that 5 has the A-property although we do not know whether it
has the uniform A-property. We mention here that the extreme points of Bs all have
supports with even cardinality (we omit the proof). It is of interest to note the following
result.

PROPOSITION 2.11. ext Bs is countable.

Proof. The earlier lemmas show that ext Bs a [J ext Bn. We now show that each
n

ext Bn is finite. Since Bn is compact, it suffices to show that for each x e Bn, there is a ball
(in the Bn topology) of radius e = e{x) such that this ball meets ext Bn (at most) at the
point x. Let x e Bn, and assume ||JC|| = 1. Define

«52 = minf 1 - 2 |*(/)l: E e si and £ |jc(y)| < l).
1 jeE jeE J

Let <5 = 5 min{<5|, 52}, and choose e > 0 so that 2ne < 8.
Suppose yeBn with \\x-y\\ < e. Note that by choice of e, whenever x(j) # 0 , JC(/)

https://doi.org/10.1017/S0017089500009368 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009368


THE A-PROPERTY 281

and >>(/) have the same sign. Now define z by

n = (0' if }>n'
ZU) \2y(j)-x(j), if ;<n.

Clearly z e Sn and y = \x + £z. If we can show z e Bn, then y <£ ext Bn, unless y = x and
JC e ext Bn. Note that e was chosen small enough so that *(/), y{j), and z(j) have the
same sign as j ranges over the support of x. So for all j , we have

Letting E e si, we may assume E <= {1, . . . , n}. If £ is not a 1-set for x, then

2 1*0)1̂  21*0)1+ 2ne<l.
jeE jeE

If E is a 1-set for x, then letting Eo = {j eE :x(j) = 0}, and E, = E\E0, we have

2 1*0)1 = 2 1*0)1+2 1*0)1
ye£ yeE, /e£0

= 2 i*(/)i - S (i*0)i -1*0)1) + 2 i*0)i
j'eEi ;eE, yeEo

= 2 1*0)1-2 2 (l*0)l

Thus ||z||s£l.

3. The Lorentz sequence space d(a, 1). We consider here Lorentz sequence spaces
of type d{a, 1). These "weighted" versions of /j turn out to have the A-property, while
failing the uniform A-property. This was demonstrated in Theorems 5 and 6 in [8], both of
which we improve here by producing the exact form of the A-function for norm-one
vectors. This is then used to prove a continuity result. First we establish some definitions
and notation.

DEFINITION 3.1. Let a = (an)ec0\/i be a positive strictly decreasing sequence with
fl, = 1. The space d(a, 1) consists of all real sequences x = (x(n)) e c0 such that
sup E l*(tt("))l an

 <00» where the supremum is taken over all permutations n of the
natural numbers. (If ||JC|| is taken to be this supremum, then d(a, 1) is a Banach space.)

If x = (x(n)) e d(a, 1), and x + 0, we write

Afi(x) = ||x|L, and F1(x) = {n:\x(n)\ = Ml(x)},

M2(x) = \\x - xcFlM\\~, Kx) = {n: |x(n)| = M2(x)},

where cFt(x) is the characteristic function of F,(x), etc. Then Mk(x) j , 0, and if Mk(x) >0,
then Mk{x) > Mk+1(x). Also Fk(x) and i;(jc) are disjoint if Mk(x), Mj(x) > 0 and k i=j. Let

N(x) = {k:Mk(x)-Mk+l(x)>0}, and for keN(x), define nk(x) = cardf U F,(x)\ and
>>k(x)

sk(x)= E an.
l
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If we let no(x) = 0, then we can write \\x\\ as

11*11= 2 M*(*)
keN(x)

Importantly, for x e d(a, 1), ||.r|| can also be realized in another way.

PROPOSITION 3.2. For any x e d(a, 1),

\\x\\ = 2 Mk(x). [**(*)-**_,(*)] = 2 [Mn(x) - Mn+l(x)]. sn(x).
k n

Proof. It suffices to note that either sum is equal to

2 2 (Mk(x) - Mk+I(x))(sj(x) - s,-i(*))
* jsk

The extreme points of Bd^aX) were characterized by W. J. Davis [10].

PROPOSITION 3.3. e e ext Bd(aA) if and only if e has the form

e == (S«J (2 e«*\
for some integer k, ix < i2 < . . . < ik, and signs ex, e2, . . . , ek, (where (*,) is the canonical
unit vector basis of d(a, 1).)

Using this characterization, we can establish the following result.

PROPOSITION 3.4. The space d(a, 1) has C.S.R.P.

Proof. Assume first that ||x|| = 1, and that x has the form

x = (x(l) > x(2) > . . . > x(k) > 0).

For any /, define Sj= L ah and denote by em that extreme point with non-negative

coefficients and support = {1,2,. . . ,m}. Further denote by v" that vector defined by
v"(i) = 1, if 1 < n, and 0, otherwise. Then

x = (x(l), x{2),..., x(k), 0 , . . . )

= x(k).vk + (x(l)-x(k),...,x(k-l)-x(k),0,...)

= ...= x(k)vk + (x(k - 1) -

+ (x(k - 2) - x ( k - l)v*~2 + . . .(x(2) -x(3))v2 +

= [x(k)sk]ek + [(x(k - 1) - J C W K - I K - I

+ [(x(k-2)-x(k-l))sk_2]ek-2 + ...

+ [(x(2)-x(3))s2]e2 + [(JC(1) - Jc(2))s1]eI.

Let or, = (JC(/) - x{l + l))sh (I = k, k - 1,. . . , 2, 1) and note that

ak + ak-l + ... + ax= x(k)(sk - sk_2) + x(k - \)(sk_x - sk_2)

= x(k)ak + x(k - 1K_! + . . . + x(2)a2 + x(l)ai

= 11x11 = 1.
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Now assume that ||*|| = 1 and that x has the form x = (*(1) > x(2) > . . . > 0). Then (using

the notation above) 1 = ||x|| = lim E a,*(0 = Hm £ a,-. Arbitrary vectors x with ||;c|| = 1
k 1=1 * 1=1

are an isometry away from the two cases already considered, and if ||JC|| < 1,

(where e is an_y extreme point), leads to a convex series representation.
Proposition 3.4 implies that d{a, 1) has the A-property, but we can say more. In [8] a

lower bound is proven for the A-function.

If x e Bd(aA), x*0, then k(x) > sup [Mk(x) - Mk+I(x)]sk(x). (*)
* J V ( )

In the same paper an exact formula is given for unit vectors of finite support.
If x e d(a, 1) with ||JC|| = 1, and support * is finite, then

k(x) = max [Mk(x) - Mk+I(x)]sk(x). (**)
keN(x)

Proposition 3.2 allows us to replace the "sup" in (*) by a "max", and we can now
remove the hypothesis about support x in (**).

Using the results above, we can also establish the following theorems.

THEOREM 3.5. Assume x e d(a, 1), ||oc|| = 1. Then

X(x) = max [Mn(x) - Mn+i(x)]. sn(x)
n

THEOREM 3.6. The k-function for d(a, 1) is continuous on {x:||jt|| = 1}, Lipschitz-
continuous on {*:||x|| ^ r } , ( 0 < r < l ) , though not even uniformly continuous on

Consideration of space forces us to omit proofs of these last two results, which will
appear in [9].

REMARK. R. H. Lohman [7] has recently shown that for Banach spaces the
A-property is equivalent to the C.S.R.P.
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