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Abstract. I review the various mechanisms for creating bars in rotat
ing stellar disks, and conclude that the swing-amplified feed-back loop, 
which produces rapidly tumbling bars, remains the most probable. The 
bar continues to evolve after its formation in a number of ways; here I 
discuss what appears to be inevitable thickening normal to the plane, 
continued spiral activity in the outer disk and also underscore the in
creasingly important problem presented by angular momentum loss to 
the halo. Finally, I examine possible means, excluding interaction, by 
which bars in galaxies could be destroyed. 

1. Bar formation 

1.1. Global Linear Instability 

Bars in disk galaxies are widely believed to have formed through the well-known 
global dynamical instability first discovered in iV-body simulations (Hohl & 
Hockney 1969, Miller, Prendergast & Quirk 1970). This instability afflicts many 
reasonable models of disk galaxies with significant rotational support and, some
what to our embarrassment, the problem of the origin of bars in galaxies has 
been supplanted by the opposite problem of how can galaxies avoid forming a 
bar! 

Toomre (1981) argued convincingly that the linear mode is an unstable 
standing wave between co-rotation and the galaxy center, with the swing-amplifier 
causing leading waves incident on co-rotation to super-reflect into amplified trail
ing waves. Toomre claimed support for his mechanism from the existence of 
overtones, in addition to the fundamental bar mode, which appeared as slower 
modes in his linearized global analysis of cold disks. Quiet start TV-body simula
tions, in which the amplitude of shot noise from the particles is greatly reduced 
by setting down particles in a non-random pattern, are in precise quantitative 
agreement with predictions from global linear theory and also have detectable 
overtones (Earn & Sellwood 1995). 

Still more impressive support comes from the verification of Toomre's pre
diction that very high angular velocities near the galaxy center should shut off 
the linear instability. This is because the feed-back cycle is interrupted by an 
inner Lindblad resonance (ILR) where trailing waves are absorbed - at least in 
linear theory. Quiet start simulations completely verified Toomre's unpublished 
global mode calculations (Sellwood 1989) and demonstrated that the linear bar-
forming instability can be stabilized in an almost fully self-gravitating disk by 
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the addition of a low mass, but dense, central bulge. This result stands as a 
counter-example to all claimed global stability criteria (e.g., Ostriker & Peebles 
1973, Efstathiou, Lake & Negroponte 1982, Christodoulou, Shlosman, & Tohline 
1995, Christodoulou et al., these proceedings) which seem to give a reasonable 
guide only to systems with mild differential rotation. 

1.2. Finite Amplitude Instability 

Toomre's mechanism for the global instability may therefore seem to suggest that 
no galaxy having a steeply rising rotation curve ought to be barred. However, 
neither real galaxies nor JV-body simulations blindly obey the laws of linear 
theory, and perturbations of finite amplitude can trigger the formation of a bar 
in models which linear theory would predict to be stable. In fact, merely shot 
noise caused by the random distribution of tens of thousands of particles can be 
swing-amplified sufficiently to destabilize a linearly stable disk and cause a bar 
to form (Sellwood 1989). Naturally, the larger the number of particles and the 
weaker the swing amplifier, the more difficult it becomes to trigger a bar in this 
way. 

Results from a more recent example are illustrated in Figure 1, which shows 
the power spectrum from a noisy start 2-D simulation of a Fall & Efstathiou 
(1980) model with Vm = 0.8/\/GMva and ab = 0.1. Even in the early stages, 
the pattern speed of the dominant m — 2 disturbance is always less than the 
maximum of the H — n/2 curve. Linear theory predicts that any such wave ought 
to damp at its ILR (Lynden-Bell & Kalnajs 1972, Mark 1974), but its amplitude 
is large enough that the resonance saturates; i.e., particles are trapped by the 
strongly non-axisymmetric potential into distorted orbits that are aligned. The 
result is once again a large-amplitude, rapidly-rotating bar that resembles in 
many respects those formed in models with more gently rising rotation curves. 

The perturbation has to be strong enough to trap particles at the ILR 
at the first attempt; weaker spirals are damped at the resonance, heating the 
disk strongly and making it much harder for the non-linear behavior to occur 
subsequently. In order to get the bar to form in this model, which employed 
50K particles, a fine grid and short time step, I had to make the disk quite cool 
initially (Q = 0.5); similar models with Q > 1 did not form a bar. 

A distinctive feature of bars formed in this manner is that they appear to 
have an inner limiting radius inside which the density distribution is axisym-
metric (Figure 1, lower panel), whereas the m = 2 component of density in 
bars formed by the linear instability declines more gradually towards zero at 
the center. The absence of a coherent disturbance at the bar frequency (or any 
other) indicates there is no inner, perpendicular bar in this simulation, nor have 
I seen one in many other such simulations. The potential supports the inner 
perpendicular (a^) orbit family, the generalization of the ILR for finite ampli
tude non-axisymmetric potentials, but apparently few particles in this purely 
stellar system librate around it. 

Noise is not, of course, the only way to trigger a bar in a meta-stable 
disk galaxy. A tidal interaction with an external perturber could also achieve 
the same result, as has been demonstrated e.g., by Noguchi (1987). Thus it is 
by no means excluded that bars can form directly in galaxies where the central 
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Figure 1. The power spectrum (contours) of m = 2 disturbances in a 
potential with a small core radius. The solid line indicates the circular 
frequency, ft, the dashed lines ft ± K/2 . Above shows the early stages 
when the amplitudes of disturbances are small, and shows that an ILR, 
is present. Below shows later in the same run when the bar is strong. 

density is high enough to inhibit bars from forming by Toomre's small-amplitude 
mechanism. 

1.3. Attempts to Form Slow Bars 

When the bar first forms through either of the above mechanisms, its semi-
major axis corresponds pretty much to the co-rotation radius of the spiral-shaped 
disturbance which led to the bar. This is because particles are captured (rather 
suddenly) onto orbits aligned with the bar within this radius, while there can 
be little trapping beyond. Since the pattern speed does not change much during 
this non-linear saturation phase, the bar ends close to the major-axis Lagrange 
points Li and L2; this is what is meant by a fast bar. Two groups have recently 
been attempting to form bars having much lower figure rotation rates, but both 
ideas face significant problems. 

Combes & Elmegreen (1993) report cases in which the amplitude of the bar 
drops well inside the Lagrange points, though their models retain an aligned 
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oval extension out to much larger radii (see their Figure 9). This happened in 
models started from a density distribution that was very abruptly truncated 
where the disk surface density was still high. I have been able to reproduce 
their final result, but I also noticed that edge-related instabilities were provoked 
which grew just about as fast as the usual bar mode. As these modes saturated, 
the torques associated with the edge modes appeared to interfere with the usual 
trapping of particles into the bar, preventing it from extending to anything like 
its usual radius. A comparison test with a similar model in which the outer 
truncation radius was moved a lot further out formed the usual fast bar. Thus 
their slow bar requires the disk to be sharply truncated before the surface density 
has declined much below its central value; it is hard to imagine how such disks 
could be formed in nature. 

Polyachenko & Polyachenko (1994) argue that slow bars can be formed 
through Lynden-BelPs (1979) mechanism, which is the radial orbit instability 
in disk geometry. For this to happen, the disk must be sufficiently hot that the 
usual rapid bar instability is suppressed, i.e., one in which the rms radial velocity 
exceeds the mean orbital velocity over a large fraction of the disk. They find that 
slow bars form in simulations of such models in which the particles are confined 
to a plane. These authors are aware (e.g., these proceedings) that the large 
radial velocities in their model will make it highly susceptible to the bending 
instability (e.g., Sellwood & Merritt 1994). Figure 2 shows the 3-D evolution 
of a fully self-gravitating disk model having a much smaller degree of pressure 
support than they require, which both puffs out of the plane and forms the usual 
rapid bar. If random motion were sufficiently increased to suppress the usual 
rapid bar mode, the distribution would quickly become so puffed up as to no 
longer resemble a disk. Interestingly, the poster paper by these authors reports 
that immersing their hot disk in a rigid halo appears to reduce substantially the 
thickness produced by the bending instability, which may yet save their idea. It 
will be important to understand why a halo seems to have this effect. 

2. Bar Thickening 

Once a bar has formed in a disk, its interesting evolution has only just begun! 
Here I focus on four aspects of bar evolution which do not require external 
interference; Athanassoula (these proceedings) discusses aspects of encounters 
with companions which affect bars. 

Many recent simulations have confirmed the original result of Combes & 
Sanders (1981) that bars formed in thin disks will thicken into peanut-shaped 
objects. All bars formed in simulations having sufficient resolution have, without 
exception, thickened in this manner. 

The thickening mechanism was most clearly demonstrated by Raha et al. 
(1991) as the saturation of an out-of-plane bending instability. This collec
tive bending instability was first discussed in a local approximation by Toomre 
(1966) but Merritt & Sellwood (1994 [MS]) showed that the local approxima
tion overestimates the stabilizing effect of gravity for large-scale modes. MS 
also noted that the instability requires a supporting response from orbits, which 
limits the thickness of a stellar system that could possibly be bending unstable; 
as for any harmonic oscillator, the frequency of forcing has to be below the nat-
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Figure 2. The evolution of a reasonably hot disk without a halo. 
The thin disk both bends out of the plane, becoming much fatter in 
the center, and forms the usual fast bar. 

ural frequency, in order to produce an in-phase response. Thus particles which 
experience a vertical driving frequency, through their horizontal motion across 
a bend, can support the bend only if the driving frequency is less than their 
natural vertical oscillation frequency. This is, of course, merely a necessary con
dition for instability, since gravity provides an additional stabilizing force, but 
MS showed that gravity is so weak for global bending modes that this minimal 
frequency condition is effectively the main stability condition. 

In effect, a thin bar will puff up through bending instabilities until the 
density in the mid-plane drops to a low enough value that the natural vertical 
frequency for a large fraction of particles drops below the forcing frequency from 
this global bend. Effectively this same argument was expressed by Pfenniger 
& Friedli (1993), who emphasized that the 2:2:1 resonance for particles near 
the mid-plane seemed to be expelled from the bar as it puffed up. See also 
Merrifield's paper in these proceedings for another, highly simplified, argument 
that leads to the same thickness limit. 

The principal orbit family supporting a thick bar is the 2:2:10 family (in 
the notation of Sellwood & Wilkinson 1993). These are the usual xi orbits 
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Figure 3. The evolution (in 2-D) of an exponential disk immersed in 
a rigid halo. The core radius of the total potential is small enough to 
cause a short bar to form by time ~ 45, but the bar continues to grow 
as the evolution proceeds. 

in the plane twisted anti-symmetrically about the mid-plane so that a particle 
following the periodic orbit goes both in and out radially and up and down 
vertically twice for each time around the bar center (in a frame which rotates 
with the bar). Miller & Smith (1979) were in fact the first to note that large 
numbers of particles were librating around this orbit family in their rotating 
thick bar. 

A thickness criterion based on ratios of oscillation frequencies is not eas
ily translated into an observationally testable prediction. However, as bars are 
thought to be populated by orbits of greater eccentricity than those in the axi-
symmetric part of the disk, it is likely that all bars have a vertical thickness 
greater than that of the outer disk in the same galaxy. Most simulators, begin
ning with Combes & Sanders (1981), have speculated that this is the origin of 
"peanut bulges", and the idea is now finding some observational support (e.g., 
Merrifield, these proceedings). 

3. Bar-Disk Interaction 

My objective for the second of my topics is merely to draw attention to some 
ancient work of mine (Sellwood 1981) which may have been forgotten. I found 
that spiral activity occurs for a protracted period in the outer disk when the 
initial bar ends at a radius well inside the outer edge of the disk. 

A further example, which has an approximately exponential mass distri
bution in a logarithmic potential with a harmonic core, is shown in Figure 3. 
This noisy start model forms a short bar by time 90 through the usual linear 
instability (though a three-armed pattern dominated at time 30); the bar then 

https://doi.org/10.1017/S0252921100049903 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100049903


Bar Formation, Evolution and Destruction 265 

grows very markedly in length through subsequent interaction with spirals in 
the outer disk. As it grows, the pattern speed also drops in such a way that the 
Lagrange points are always just outside the bar - as far as one can tell in this 
rapidly evolving potential. 

Note that once again, spiral activity in the disk outside the bar is quite 
clearly not driven by the bar; in this example, the strongest spirals are often three 
armed. I emphasize this point since it reinforces the earlier result of Sellwood 
& Sparke (1988) that the outer spiral can have a quite different pattern speed 
from that of the bar. 

The bar appears to grow by trapping additional particles which are ready to 
give up angular momentum near the inner ends of bi-symmetric spirals. The new 
particles added to the bar in this way still have too much angular momentum 
to sink deep into the bar, and are therefore added to the outer end of the bar. 
Even though the bar is slowing down, its angular momentum content is rising. 

4. Bar-Halo Interaction 

It has long been clear to Tremaine (unpublished) that a bar rotating within a 
halo of collisionless particles should experience a drag due to dynamical friction, 
but the first calculation of the magnitude of the drag was made by Weinberg 
(1985). His estimate from perturbation theory, supported by semi-restricted 
JV-body simulations, indicated that a fierce torque would sap the angular mo
mentum of the bar on the embarrassingly short time scale of a few rotation 
periods. 

I had earlier reported (Sellwood 1980) some preliminary evidence that a halo 
does indeed experience a strong torque in a fully self-consistent simulation, albeit 
with very poor spatial resolution and not integrated for long. Most subsequent 
work has been limited in other ways; e.g., Little & Carlberg (1991) restricted 
their calculation to a plane, using a hot, but flat population of particles to 
represent the halo and Hernquist & Weinberg (1992) used a rigid, unresponsive 
bar rotating in a responsive halo. Again both studies found significant torques, 
but neither answered the central issue of how a real galaxy would respond to 
strong secular torques applied for a Hubble time. 

As computing power and A^-body algorithms improve, we have reached 
the point at which we can begin to simulate the long-term evolution of fully 
self-consistent disk + halo models in three dimensions with adequate spatial 
resolution and large numbers of particles. Some preliminary calculations using 
grid methods are reported by Debattista & Sellwood (these proceedings) while 
Athanassoula (these proceedings) has been using a direct-A^ algorithm on a 
GRAPE device. 

The first results confirm once again that the bar is very substantially braked 
by friction with the halo. In our simulation, we measure a distortion in the halo 
density distribution which lags the bar and gives rise to the torque. However, the 
torque drops to near zero before the bar stops rotating, at which point the halo 
distortion is roughly aligned with the bar, as it must be. Somewhat surprisingly, 
this happens before the halo has been torqued up sufficiently to co-rotate with 
the bar, and suggests that the resonances, which give rise to the out-of-phase 
response, may have saturated. 
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I find even more remarkable the fact that the bar could survive after suf
fering a loss of a large fraction of its angular momentum while its pattern speed 
drops by a factor of five! This typical bar is extremely robust, and does not 
support the suggestion (e.g., Kormendy 1982) that bar strength might decay 
over time. 

Weinberg's prediction that a strong bar should slow down dramatically in a 
massive halo has been qualitatively confirmed. By the time the torque becomes 
negligible, which takes somewhat less than a Hubble time for a reasonable scaling 
of our model, the distance from the center to Lj is more than twice the semi-
major axis of the bar. 

We believe bars in galaxies rotate much more rapidly than this, though the 
evidence is not conclusive. In most cases, we associate dust lanes with shocks 
in the gas flow and then appeal to hydrodynamical simulations (Athanassoula 
1992; Weiner, Sellwood & Williams, these proceedings) which require a fast bar 
to set up a similar flow pattern. Other indirect evidence comes from work on 
rings (Buta, Combes, these proceedings). One much more direct estimate of a 
high pattern speed is reported by Kuijken & Merrifield (these proceedings) for 
the SBO galaxy NGC 936. 

Weinberg suggested that this discrepancy between theory and observation 
may indicate that (1) bars are weak, (2) halos are not very massive or (3) that 
angular momentum is added to the bar from the outer disk at a rate sufficient 
to compensate for that lost to the halo. Two further possible escapes from this 
increasingly serious dilemma are that, (4) the halo may be locked into resonance 
with the bar, or (5) bars in galaxies, as opposed to simulations, do not survive 
for long. 

None of these alternatives seems attractive, however. (1) Weak bars are 
hard to reconcile with the observed strongly non-circular motions in the stars 
and gas (e.g., many papers in these proceedings). (2) The evidence for massive 
halos, in conventional Newtonian mechanics, is strong even for barred galaxies 
(Bosma, these proceedings). (4) While most halo mass lies at large radii, much 
halo material outside the core should still couple to the bar through resonances; 
it is therefore hard to believe that all major resonances become saturated before 
the bar slows significantly. The fast bar in NGC 936 is problematic for both 
(3) and (5). The spirals in this SBO galaxy are extremely weak and cannot be 
adding much mass to the bar. Finally, the absence of young stars and gas makes 
it unlikely that the bar is young, but this possibility cannot be entirely ruled 
out; one could argue that the vestigial spirals in this galaxy are the remnant of 
a slow instability that has just now saturated, and that the galaxy was tipped 
over the stability boundary just as the gas was used up or removed. 

5. Bar Destruction 

Bars in iV-body simulations have been found to be extremely robust; they form 
readily and can survive a long-lasting secular drag (as just noted), or quite major 
surgery (Sparke & Sellwood 1987). There have, however, been a few suggestions 
of ways bars in galaxies could be destroyed. 

One of the most obvious is through interaction between a barred galaxy and 
a dwarf companion, which is discussed in these proceedings both by Athanas-
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soula, and by Nishida & Wakamatsu. Of course, a merger with a larger galaxy 
will destroy not only the bar, but the disk also! 

Raha et al. (1991) speculated that the bending instability could possibly 
be violent enough to destroy a bar completely. They noted that the bar was 
weakened more when the instability grew vigorously but neither they, nor any
one else to my knowledge, has constructed a model in which the instability was 
completely disruptive. On the contrary, the bar frequently recovers to its ap
proximate original strength in the long-term evolution. This idea seems not to 
be a viable method of bar destruction, therefore. 

Another idea does look promising, however, namely the build up of a large 
concentration of mass at the center of the bar. This idea, which has been 
developed over a number of years (Hasan & Norman 1990; Hasan, Pfenniger & 
Norman 1993), has received more attention recently since the discovery of large 
concentrations of molecular gas near the centers of bars (see reviews by Kenney 
and by Turner in these proceedings). At least three groups (Wada & Habe 1992; 
Friedli & Pfenniger 1991; Friedli & Benz 1993; Heller & Shlosman 1994) have 
taken up the daunting challenge of trying to simulate self-gravitating gas inflow 
in bars. The idea continues to be vigorously explored by a number of workers 
(e.g., Hasan, Sellwood & Norman 1993; Friedli 1994; Nishida & Wakamatsu 
1995) but there is still much to be done. 

A fully three-dimensional calculation of a model otherwise similar to that 
reported by Hasan et al. (1993) is shown in Figure 4. The disk in this model is 
a Kuz'min-Toomre disk of length scale a, the gravitational potential of which is 
supplemented by a rigid Plummer sphere of scale size 0.4a and containing 30% 
of the total mass, M. This rigid component can be thought of as representing a 
bulge. Adopting M and a as units of mass and length and setting G = 1, time 
is reckoned in units of \faF]~GM. Choosing M = 1O1OM0 and o = 2 kpc implies 
a time unit of 13 Myr. 

The gravitational field of the 200K disk particles was determined on a three-
dimensional cylindrical polar grid having 65 radial, 80 azimuthal and 225 vertical 
mesh points. Particles passing close to the central mass concentration require 
extremely short time-steps (10- 3 time units) but it is inefficient to use this 
step size for all particles; I therefore adopted a three-zone stepping procedure 
(Sellwood 1989) in which time steps were increased by factors of 10 and then 5, 
for particles progressively further from the center. 

The first moment, time 100 shown in Figure 4, illustrates the disk compo
nent once a bar had formed, thickened and settled. From this moment to time 
140, I gradually reduced the core radius of one sixth of the bulge mass, i.e., 5% 
of the total mass, from 0.4a to 0.02a. This procedure does not add any mass 
to the system and is intended to mimic the radial inflow of gas driven by the 
bar. The bar responds to this change by first increasing its pattern speed and 
becoming shorter and then disrupts very abruptly between times 130 and 140. 
The rapidity of the decay is illustrated in Figure 5, the amplitude of the m = 2 
harmonic drops by a factor 10 in less than one bar rotation period, after which 
time no significant bar remains. Interestingly, the mass distribution in the bar 
region thickens up quite markedly as the bar dissolves, forming a spheroidal, 
bulge-like distribution. 
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Figure 4. The later stages of evolution of a bar-unstable disk with a 
rigid bulge as 5% of the total mass is compressed into a dense object 
in the center. The bar formed and thickened during the period before 
the first frame. The central density was increased gradually from time 
100 to 140, after which it was held constant. The bar disrupts into a 
spheroidal shape between times 130 and 140. 

The demise of the bar on the shortest possible time-scale seems to occur 
because particles cease to be trapped about the main X\ orbit family as the 
potential changes. The growth of the central mass alters the shapes of the 
periodic orbits and particles which had been moving on regular orbits probably 
find themselves in stochastic regions. The widespread breakdown of invariant 
tori in this rotating tri-axial potential leads to a brief period of chaos in which 
the orbits of particles are bounded only by their, much rounder, energy surfaces. 
A new equilibrium is quickly reached when the potential becomes axisymmetric, 
for which phase space is likely to be regular. This interpretation accounts both 
for the abrupt destruction of the bar, and for the vertical thickening of the 
particle distribution. 

A number of authors have offered a different interpretation of the bar dis
solution. They suggest that particles are individually scattered from their bar-
supporting orbits as they pass by the central mass, causing the bar to be eroded 
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Figure 5. The amplitude of the bar as a function of time in the model 
shown in Figure 4. The oscillations are due to beats between the bar 
and weaker spirals in the outer disk. 

more gradually. This argument probably stems from that given by Gerhard & 
Binney (1985) for non-rotating tri-axial ellipsoids; many orbits in these objects 
are boxes, which take stars close to the center where a steep density gradient 
might change the orbit drastically and destroy the tri-axiality. [Merritt & Frid-
man (1995) show that this does not, in fact, preclude tri-axiality.] The main 
(x\) orbit family in a rapidly rotating bar, on the other hand, are loops which 
always avoid the center. When we consider central masses small enough to cause 
only partial disruption of the bar (Hasan et al. 1993, Friedli 1994), many stars 
will be pursuing well behaved loop orbits determined by the combined potential 
of the bar and central mass. It could not therefore be argued that deflections 
accumulate as a star repeatedly passes the center and the gradual erosion picture 
that the scattering argument conjures up is misleading. In effect, focusing on 
the scattering of a test particle by an isolated point mass neglects the existence 
of the rest of the bar. 

The one simulation reported here is very preliminary; it is clear that 5% 
of the entire galaxy mass in a very dense center is enough to destroy the bar. 
Hasan et al. (1993) find that smaller masses weaken the bar, and Friedli (1994) 
reports that 3% in a point-like mass is enough to destroy it. However, we cannot 
yet say how the critical mass varies with concentration, which we need to know 
before we can predict how close barred galaxies may have come to the point of 
destruction. 
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Discussion 

K. Freeman: On bar thickness: it's clear that the bar sticks up out of the disk 
when viewed isophotally, but can you say whether the scale heights of the disk 
and bar are significantly different? 

J. Sellwood: In the model shown in Figure 4, which I hope is typical, I found 
that the vertical density profile at time 100 had a shallower vertical gradient, by 
about a factor 2, in the bar than in the disk beyond the bar. The only galaxy 
with which this can be compared is the Milky Way, in which the IR "bulge" is 
believed to be a bar seen in projection. Independent estimates by Harmon & 
Gilmore and by Dwek et al. both indicate that the scale height of IR light in 
the bulge is about the same as that of the old disk. In this respect, therefore, 
the MW bulge differs from the simulation. 

S. Odewahn: It seems that in many of the simulations we've seen during this 
meeting that the buckling of a bar is extreme and lasts for a non-trivial amount 
of time. Do we see examples of this morphology in samples of edge-on galaxies? 

J. Sellwood: I do not expect to see it because the extreme bending phase lasts a 
very short time, about half a bar rotation period. One has to be very selective 
when choosing snap-shots to illustrate a talk to be sure to capture the moment 
when the bend is at its maximum! 

A. Zasov: What is the outer stellar disk response to the secular evolution of the 
bar? Does the velocity dispersion of the stars grow significantly? If yes, can we 
make use of direct dispersion measurements? 

J. Sellwood: Random motions in the outer disk are increased most strongly as 
the bar forms, presumably because there is a very strong, transient spiral at this 
time. The changes which occur subsequently are quite minor by comparison. 

D. Elmegreen: I would think that statistics showing a similar percentage of 
barred galaxies in all Hubble types would argue against destroying bars in early 
type galaxies to make bulges. 

J. Sellwood: This is certainly something to worry about. I do not argue, however, 
that bulges are made exclusively through dissolution of bars, merely that this 
process must contribute to the bulge. 

H. Zhao: What kind of orbits are turned into the central mass? Does the 
suddenness of the disappearance of the bar imply 5% is a magic number? 
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J. Sellwood: I think you have misunderstood what I did. The central mass was 
created artificially by shrinking a fraction of the rigid mass; this procedure was 
intended to mimic the radial inflow of gas. The bar disappeared suddenly when 
this constant mass reached a critical density. 

D. Friedli: I would like to comment about the amount of central mass necessary 
to destroy the bar. I find that merely 1-2% of the disk mass inside say 100 pc is 
sufficient to dissolve the bar (Friedli 1994). The dissolution time-scale is of the 
order of 1 bar rotation if this amount of mass is added progressively, but it can 
be even shorter when the mass is added abruptly (by accretion of a satellite for 
instance). 
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