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OPERATOR TOPOLOGIES A N D INVARIANT 
OPERATOR RANGES 

BY 

S I N G - C H E O N G O N G 

ABSTRACT. The invariant operator range lattices of a wide class 
of uniformly closed algebras (including C*-algebras) are stable 
under weak closures. There is an algebra whose invariant operator 
range lattice contains properly the corresponding lattice of its norm 
closure. An operator range transitive algebra is operator range 
n -transitive for all n. A normal operator is algebraic if and only if 
each of its invariant operator ranges is the range of some operator 
commuting with it. 

1. Let Ht be a complex Hilbert space (not necessarily separable). A linear 
manifold 91 ç Ht is an operator range if there exists a T in 9b(Ht), the algebra of 
(bounded linear) operators on Ht, such that (T>0,cf. [1]) THt = 9l. For any 
algebra si ç, 91 (Ht), we denote the lattice ([1]) of invariant operator ranges 
[closed subspaces] of (every element of) si by Lati ^[Lat si]. For an operator 
A, Lati A(Lat A) is the lattice of invariant operator ranges (closed subspaces) 
of A. We adapt standard notation in [5]. 

The following theorem of Foia§ is very useful. 

THEOREM A [2]. If si is a uniformly closed algebra in 91 (Ht), and if (with 
T > 0 ) THt is invariant under si, then there exists a unique bounded algebra 
homomorphism ir:si-* 9&(Ht) such that 

AT=TTT(A) (A est) 

Suppose si contains a commutative self-adjoint algebra si0. Then T can be 
chosen in si'0, the commutant of si (and T > 0 ) . 

2. It is clear that if an operator range 91 is invariant under si, there is no 
immediate reason for 91 to be invariant under the closure of si (in any 
operator topology). In fact, we shall give an example showing norm closures 
can reduce the invariant operator range lattices. For the same question of 
closing uniformly closed algebras in the weak (or strong) topology, we do not 
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know the answer in general. But the invariant operator range lattices of a wide 
class of uniformly closed algebras are stable under this process. 

PROPOSITION 1. If sd is a C*-algebra, then Lati sd = Lat* i#w. (sdw denotes the 
closure of si in the weak operator topology.) 

Proof. Obviously, any operator range invariant under sïw is invariant under 
sd. Let TffleLaUsd. By Theorem A, T induces a bounded algebra 
homomorphism IT of sd into 38(30. Let $ftesdw. By the Kaplansky density 
theorem there exists a net {Aa} in sd with | |Aj |< | |B| | such that Aa~^B weakly. 
The net {^(A^)} is bounded in 98(30. Since uniformly closed bounded balls in 
38 (3if) are compact in the weak operator topology, by dropping down to a 
subnet, we may assume that 7r(Aa) —> D weakly in 98(30. Let x, y e 3f. 

(BTx, y) = lim (AaTx, y) = lim (TTT(AJX, y) = lim (TT(AJX, T*y) 
a. a <x 

= (Dx,T*y) = (TDx,y). 

BT = TD. TM is invariant under B, hence under sdw. This completes the proof. 
The same proof goes through for any uniformly closed algebra for which the 

conclusion of the Kaplansky density theorem holds. 

COROLLARY 2. Let si be a uniformly closed algebra, whose closed unit ball 
sdt is weakly (strongly) dense in the closed unit ball (<s$w)i. Then L a t i ^ = 
L a t i ^ w . [Note (as the referee pointed out) that the uniformly closed algebra 
generated by the unilateral shift satisfies this hypothesis.] 

3. The following theorem is proved in [3] 

THEOREM B [3]. Every operator (with a cyclic vector) has uncountably many 
invariant operator ranges that are (dense and are) ranges of compact operators 
and each pair of them has trivial intersection. 

In view of this, the main theorem and the conjecture of [4], the question of 
whether singly generated uniformly closed algebras have non-trivial invariant 
compact operator ranges is of great interest. 

PROPOSITION 3. There exists a positive operator P that generates a uniformly 
closed algebra with no non-zero compact invariant operator ranges. 

Proof. Let 3? = L2[0,1] (with Lebesgue measure), and 

P = Mx(Mxf(t) = tf(t\ t e [0 , l ] , / e3O. 

Then the uniformly closed algebra sd generated by P is commutative (in fact, 
isometrically ^-isomorphic to C([0,1])), hence, by Theorem A every invariant 
operator range is the range of some (positive) operator in sd'. Since sd' consists 
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of all multiplication operators 

M^ 4> e L°°[0, l](MJ(t) = <M0/W, t e [0,1], / e %), 

M^ is not compact if <f>^ 0. The proof is thus complete. 

COROLLARY 4. Uniform closures can reduce invariant operator range lattices. 

4. If Lati si = Lati &(%)( = {{0}, 3i?}) and ^ is weakly closed, it is proved in 
[2] that sJ = &(3K). It is clear that if Lati si(h) = Lati S(3£)(n) for all n = 
1 ,2 , . . . , then sf = @k(ffl). The former does not immediately imply the follow­
ing: if Lati st = Lati »(3ff) ( = {0,3ff}), then LaU ^ r n ) = La t i^ (^) ( n ) ; which is 
parallel to the Rickart-Yood Theorem. 

PROPOSITION 5. For any algebra si^3ft(%!), Lati s4 = Lati 38(2Ï) implies 
Lati ^ ( n ) = Lati »(3K)<»> ( = Lat »(3K)(n)) n = 1, 2 , . . . . 

Proof. First we prove this for n = 2. Let 01 be an operator range contained 
in Wi2) and in Lat i^ ( 2 ) . Let 0ix = {0®x : 0 © x e ^ } . Then S^ considered in an 
obvious way, as a subspace of $f, is in LaU sd, it is therefore closed (in fact it is 
equal to {0} or X). This implies that 91 = 01^(91^^01) (which is not true 
unless 0l1 is closed). Since 0i\ is either $?©{0} or W®% it is in Lati sda\ and 
hence 9l\V\9l is in Lat i^ ( 2 ) . Furthermore, there is a linear transformation T 
with domain â> such that 0l\ Pi £% = {x© TJC : x e $)}. It is easily verified that Q) is 
an invariant operator range of si\ hence assume, without loss of generality, that 
2 = 9€. T is everywhere defined linear transformation with graph 0t\ Pi 01, an 
operator range, T is bounded by a result of Foia§ ([2], [1]). It follows that 
9l\f\9l is closed. Since 0l±C\0l is in Lati^ ( 2 ) , the closure assumption implies 
the invariance of 0l\C\0l under (siw)(2) and hence under 38($?)(2). (In particu­
lar, T is a scalar multiple of the identity.) <3l is in Lati $$(3€)(2). We now proceed 
by induction. Suppose the Proposition has been proved for all k < n. Let 01 be 
an element of Lati dM. Let 

aft1 = {0©x2©- • -©jcn:0©x2©- • -®xne0i). 

Then 9ll9 considered as a submanifold of $?(n~1} in an obvious way, is in 
Lati ^ ( n _ 1 ) . By the induction hypothesis, 0lx is invariant under 38($0(n-1) and is 
thus closed. Let 01' = 01 n 0i\. Then 01 = 0lx + 3ft' (again, this is not true unless 
01 x is closed), and there exist linear transformations Tl9..., Tn_t such that 

for some linear manifold ®ç3if. Since £%' is clearly invariant under stf(n\ for 
each ; = 1, 2 , . . . , n - 1 

^•={jc©7}x: jce0} 

is an invariant operator range of s&(2\ hence an element of Lati£$($0(2) This 
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implies (assuming 3k non-trivial) that 3&=%e and T) is a scalar multiple of the 
identity. We conclude that 

3k' = {x@\xx@k2x®- • •©A n _ 1 x:xG^} 

for some complex numbers Al5 . . . ,A n _ 1 ; 3ft' is invariant under â8(9?)(n). It 
follows that 3ft = 3ft1 + 0V is invariant under ^ ( ^ ) ( n ) . This completes the proof. 

5. For any operator A, if T commutes with A, then T$?eLaUA. For 
general operators we cannot say any more about the relationship between {A}' 
and Lati A. For normal operators we do have the following. 

PROPOSITION 6. If A is a non-algebraic normal operator, then 

Latt A 3 {TW:Te {A}'}. 

Proof. We consider two cases. Case (1): A has a cyclic vector x, that is 
V^= 0{Anx} = l ' . Then the von Neumann algebra generated by A is maximal 
abelian, hence {A}' is commutative, and each pair of dense ranges of operators 
{A}' has a dense intersection; while Lat iA contains uncountably many ele­
ments dense in Ht each pair of which has intersection {0} (Theorem B). 
Therefore 

LatiA=>{T9if:Te{A}'}. 

Case (2): A has no cyclic vectors. Since A is assumed to be non-algebraic, 
there exists, by a theorem of Kaplansky ([5]), a n x e ^ such that the space 

M = \J {Anx:n = 0,1,2,...} 

is of infinite dimension. Let EM denote the orthogonal projection of %t onto M. 
If EM£{A}\ then, since {A}', is a von Neumann algebra which contains the 
range projection of any operator it contains, M is not the range of any operator 
in {A}r. We can, therefore, assume that EMe{A}'. Then Ax = A | M is normal 
with a cyclic vector. It follows from case (1) that there exists T1e3ft(M) such 
that T1MehsiUA1 and TXM is not the range of any operator in {AJ'. Let 
Te®(%) be the operator Tx®0 relative to the decomposition M®M± of W. 
Then T3C is not the range of any operator in {A}'. For if it were the range of 
some operator S in {A}', then, by seif-adjointness of {A}', we would be able to 
assume S to be positive. The operator range SW is contained in M. It would, 
then, follow that M reduces S. Let S1 = S\M. Then Sx e {A J ' and SXM = TXM. 
This contradicts the choice of T. Hence Tdft is invariant under A and is not the 
range of any operator in {A}'. This completes the proof. 

COROLLARY 7. Let Abe a normal operator. Then A is algebraic if and only if 

LatiA={S9if:Se{A}'}. 

Proof. If A is algebraic and normal, then the C*-algebra sd generated by A 
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is commutative and finite dimensional. Therefore Lati si = Lati A = 
{Sffl:Se{A}'} by Theorem A. Proposition 6 shows the converse. 
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