AN INEQUALITY FOR A PAIR OF POLYNOMIALS THAT ARE RELATIVELY PRIME

K. MAHLER

(received 28 February 1964)

To T. M. Cherry

Let f(x) and g(x) be two polynomials with arbitrary complex coefficients that are relatively prime. Hence the maximum

$$m(x) = \max(|f(x)|, |g(x)|)$$

is positive for all complex x. Since m(x) is continuous and tends to infinity with |x|, the quantity

$$E(f,g) = \min_{x} m(x)$$

is therefore also positive.

In the theory of transcendental numbers one often requires a good positive estimate for E(f, g). The usual method for obtaining such an estimate is as follows. If R(f, g) denotes the resultant of f and g, then identically in x

$$f(x)F(x)+g(x)G(x)=R(f,g)$$

where F(x) and G(x) are two polynomials that can be defined explicitly in terms of determinants. It follows that

$$m(x) \geq |R(f,g)|/\{|F(x)|+|G(x)|\},\$$

and hence it suffices to give an upper estimate for |F(x)|+|G(x)|. For this purpose one may assume that |x| is not too large; for when |x| is large, m(x) trivially cannot be small. (See e.g. A. O. Gelfond, Transcendentnye i algebraitcheskie tchisla, Moskva 1952, pp. 181-2.)

In the present note I shall apply a different and better method that is due to N. Feldman. It has the additional advantage of leading to a bestpossible result.

1. Let, in explicit form,

$$f(x) = a_0(x-\alpha_1)\cdots(x-\alpha_m), \quad g(x) = b_0(x-\beta_1)\cdots(x-\beta_n),$$

where $a_0 \neq 0$ and $b_0 \neq 0$, and where $\alpha_h \neq \beta_k$ for all h and k. Put, for any given complex number x,

418

An inequality for a pair of polynomials that are relatively prime

 $\alpha = \min_{1 \le k \le m} |x - \alpha_k| \quad \text{and} \quad \beta = \min_{1 \le k \le n} |x - \beta_k|,$

and denote by r and s two suffixes for which

$$\alpha = |x - \alpha_r|$$
 and $\beta = |x - \beta_s|$.

Then at least one of the two numbers α and β is positive.

Assume, first, that

 $0 < \alpha \leq \beta$

and number the zeros of g(x) such that, say,

$$|\alpha_r - \beta_k| \begin{cases} < 2\alpha & \text{if } k = 1, 2, \cdots, N, \\ \ge 2\alpha & \text{if } k = N+1, N+2, \cdots, n; \end{cases}$$

here N is a certain integer satisfying $0 \leq N \leq n$. If $k = 1, 2, \dots, N$, then

(1)
$$|x-\beta_k| \ge \beta \ge \alpha > |\alpha_r - \beta_k|/2.$$

If, however, $k = N+1, N+2, \dots, n$, then

$$|\alpha_r - \beta_k| \geq 2\alpha = 2|x - \alpha_r|$$

and therefore

[2]

(2)
$$|x-\beta_k|=|(x-\alpha_r)+(\alpha_r-\beta_k)|\geq |\alpha_r-\beta_k|-|x-\alpha_r|\geq |\alpha_r-\beta_k|/2.$$

On combining the inequalities (1) and (2) it follows that

$$|g(x)| = |b_0 \prod_{k=1}^n (x - \beta_k)| \ge 2^{-n} |b_0 \prod_{k=1}^n (\alpha_r - \beta_k)|.$$

It is obvious that this formula remains true also when

 $\alpha = 0.$

and hence we have proved that

$$|g(x)| \geq 2^{-n}|g(\alpha_r)|$$
 if $0 \leq \alpha \leq \beta$.

In exactly the same way it follows that

$$|f(x)| \geq 2^{-m}|f(\beta_s)|$$
 if $0 \leq \beta \leq \alpha$.

These two inequalities together imply the following result.

THEOREM 1. Let f(x) and g(x) have the degrees m and n and the zeros $\alpha_1, \cdots, \alpha_m$ and β_1, \cdots, β_n , respectively. Then

$$E(f,g) \geq \min_{\substack{1 \leq k \leq m \\ 1 \leq k \leq n}} (2^{-m}|f(\beta_k)|, 2^{-n}|g(\alpha_k)|).$$

419

This result is best possible because the assertion holds with equality in the special case when f and g are the two polynomials

(3)
$$f(x) = (x-1)^m$$
 and $g(x) = (x+1)^n$.

2. Theorem 1 gives a lower bound for E(f, g) in terms of the zeros of f and g. It is now not difficult to replace this estimate by one that involves instead only the coefficients of these two polynomials.

Let in explicit form

$$f(x) = a_0 x^m + a_1 x^{m-1} + \cdots + a_m, \quad g(x) = b_0 x^n + b_1 x^{n-1} + \cdots + b_n.$$

Further denote by

$$L(f) = |a_0| + |a_1| + \cdots + |a_m|, \quad L(g) = |b_0| + |b_1| + \cdots + |b_n|$$

the lengths of the two polynomials. By a theorem of R. Güting¹,

$$|f(\beta_k)| \ge |R(f,g)|/L(f)^{n-1}L(g)^m, \quad |g(\alpha_k)| \ge |R(f,g)|/L(f)^n L(g)^{m-1}$$

for all suffixes h and k. Hence, by Theorem 1,

$$E(f,g) \ge |R(f,g)|L(f)^{-n}L(g)^{-m} \min \{2^{-m}L(f), 2^{-n}L(g)\}.$$

For the applications, the most important case is that of polynomials with integral coefficients. The resultant $R(f, g) \neq 0$ is then also an integer and hence its absolute value is not less than 1. Therefore, in this particular case,

$$E(f,g) \ge L(f)^{-n}L(g)^{-m} \min \{2^{-m}L(f), 2^{-n}L(g)\}.$$

While this formula is very simple, it is, however, no longer best possible.

Canberra, 19 February, 1964. Mathematics Department, IAS, Australian National University.

¹ Approximation of algebraic numbers by algebraic numbers, Michigan Math. J. 8 (1961), 149-159.