THE FIRST COHOMOLOGY GROUP OF BANACH INVERSE SEMIGROUP ALGEBRAS WITH COEFFICIENTS IN *L*-EMBEDDED BANACH BIMODULES

HOGER GHAHRAMANI[®]

(Received 29 June 2019; accepted 29 July 2019; first published online 16 September 2019)

Abstract

Let *S* be a discrete inverse semigroup, $l^1(S)$ the Banach semigroup algebra on *S* and \mathbb{X} a Banach $l^1(S)$ -bimodule which is an *L*-embedded Banach space. We show that under some mild conditions $\mathcal{H}^1(l^1(S),\mathbb{X}) = 0$. We also provide an application of the main result.

2010 *Mathematics subject classification*: primary 43A20; secondary 47B47. *Keywords and phrases*: Banach inverse semigroup algebra, first cohomology group, derivation.

1. Introduction

Let \mathbb{A} be a Banach algebra and \mathbb{X} be a Banach \mathbb{A} -bimodule. A linear map $D : \mathbb{A} \to \mathbb{X}$ is called a *derivation* if D(ab) = aD(b) + D(a)b for all $a, b \in \mathbb{A}$. For any $x \in \mathbb{X}$, the map $id_x : \mathbb{A} \to \mathbb{X}$ given by $id_x(a) = ax - xa$ is a continuous derivation called an *inner derivation*. We denote by $\mathbb{Z}^1(\mathbb{A}, \mathbb{X})$ the vector space of all continuous derivations from \mathbb{A} into \mathbb{X} and by $\mathcal{N}^1(\mathbb{A}, \mathbb{X})$ the subspace of all inner derivations from \mathbb{A} into \mathbb{X} . The quotient space $\mathcal{H}^1(\mathbb{A}, \mathbb{X}) = \mathbb{Z}^1(\mathbb{A}, \mathbb{X})/\mathcal{N}^1(\mathbb{A}, \mathbb{X})$ is called the *first cohomology group of* \mathbb{A} *with coefficients in* \mathbb{X} .

The first cohomology group of a Banach algebra with coefficients in different modules can be used to study its structure. The case $\mathcal{H}^1(\mathbb{A}, \mathbb{X}) = 0$ (that is, every continuous derivation from \mathbb{A} into \mathbb{X} is inner) leads to the notion of amenability of Banach algebras, introduced by Johnson [13]. Taking the coefficients in different modules leads to various types of amenability. Sakai [19] showed that every continuous derivation on a W^* -algebra is inner. Kadison [15] proved that every derivation of a C^* -algebra on a Hilbert space H is spatial (that is, of the form $a \mapsto ta - at$ for $t \in \mathbb{B}(H)$) and, in particular, every derivation on a von Neumann algebra is inner. Some results have also been obtained in the case of non-self-adjoint operator algebras. Christian [4] showed that every continuous derivation on a nest algebra on H to itself and to $\mathbb{B}(H)$ is inner, and this result was generalised in [16]. However, the cohomology is nontrivial in general. Gilfeather and Smith [10, 11] calculated the first

^{© 2019} Australian Mathematical Publishing Association Inc.

cohomology group of some operator algebras called joins. In [7], the cohomology group of operator algebras called seminest algebras has been calculated. Forrest and Marcoux [9] found the first cohomology group of triangular Banach algebras, and various examples of triangular Banach algebras with nontrivial cohomology have been given (see [5]). The first cohomology group of the semigroup Banach algebra $l^1(S)$ on an (inverse) semigroup *S* with coefficients in different modules has been studied in [2, 3, 6, 8, 17].

In this paper we study the first cohomology group of $l^1(S)$ on a discrete inverse semigroup *S* with coefficients in a Banach $l^1(S)$ -bimodule \mathbb{X} , which is *L*-embedded as a Banach space, and show that under some mild conditions $\mathcal{H}^1(l^1(S), \mathbb{X}) = 0$ (Theorem 3.4). To prove our main result we use fixed point techniques. In Lemma 3.1, which may be of independent interest, we prove that if \mathbb{X} , as an *L*-embedded Banach space, is a Banach $l^1(S)$ -bimodule and $\phi : S \to \mathbb{X}$ is a bounded crossed homomorphism, then under some mild conditions ϕ is principal. As an application of our main result, we show in Corollary 3.7 that $\mathcal{H}^1(l^1(S), l^1(G_S)^{2n}) = 0$ for any $n \ge 0$, where G_S is the maximal group homomorphic image of *S*.

This paper is organised as follows. Section 2 is devoted to preliminaries and required tools. The main results of the paper are presented in Section 3.

2. Preliminaries

A discrete semigroup *S* is called an *inverse semigroup* if for each $s \in S$ there is a unique element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$. An element $e \in S$ is called an *idempotent* if $e = e^* = e^2$. The set of idempotents of *S* is denoted by *E*. There is a natural order on *E*, defined by

$$e \le d \Leftrightarrow ed = e \quad (e, d \in E).$$

Moreover, *E* is a commutative subsemigroup of *S* and also a semilattice [12, Theorem V.1.2]. Elements of the form ss^* are idempotents of *S* and in fact all elements of *E* are of this form. Let ~ be the congruence on *S* defined by

$$s \sim t$$
 if and only if there exists $e \in E$ such that $es = et$.

The quotient semigroup S/\sim is then a group and is the maximal group homomorphic image of S [18]. The group S/\sim is denoted by G_S .

We denote the convolution Banach semigroup algebra on S by $l^1(S)$ and the point mass measure at s by δ_s .

For the proof of the main result we use a common fixed point property for semigroups which we now recall. Let *S* be a (discrete) semigroup. The space of all bounded complex-valued functions on *S* is denoted by $\ell^{\infty}(S)$. It is a Banach space with the uniform supremum norm. In fact $\ell^{\infty}(S) = (\ell^1(S))^*$. For each $s \in S$ and each $f \in \ell^{\infty}(S)$, let $\ell_s f$ be the left translate of *f* by *s*, that is, $\ell_s f(t) = f(st)$, $t \in S$ (the right translate $r_s f$ is defined similarly). We recall that $f \in \ell^{\infty}(S)$ is *weakly almost periodic* if its left orbit $\mathcal{LO}(f) = \{\ell_s f \mid s \in S\}$ is relatively compact in the weak topology of $\ell^{\infty}(S)$.

We denote by WAP(S) the space of all weakly almost periodic functions on S. It is a closed subspace of $\ell^{\infty}(S)$ containing the constant function and invariant under left and right translations.

A linear functional $m \in WAP(S)^*$ is a *mean* on WAP(S) if ||m|| = m(1) = 1. A mean *m* on WAP(S) is a *left invariant mean* (abbreviated *LIM*) if $m(\ell_s f) = m(f)$ for all $s \in S$ and all $f \in WAP(S)$. If *S* is an inverse semigroup, it is well known that WAP(S) always has a *LIM* [8, Proposition 2]. Let *C* be a subset of a Banach space \mathbb{X} . We say that $\Gamma = \{T_s \mid s \in S\}$ is a *representation* of *S* on *C* if T_s is a mapping from *C* into *C* for each $s \in S$ and $T_{st}(x) = T_s(T_t(x))$ ($s, t \in S, x \in C$). We say that $x \in C$ is a *common fixed point* for (the representation of *S* if $T_s(x) = x$ for all $s \in S$.

Let X be a Banach space and *C* a nonempty subset of X. A mapping $T : C \to C$ is called *nonexpansive* if $||T(x) - T(y)|| \le ||x - y||$ for all $x, y \in C$. The mapping *T* is called *affine* if *C* is convex and $T(\gamma x + \eta y) = \gamma T(x) + \eta T(y)$ for all constants $\gamma, \eta \ge 0$ with $\gamma + \eta = 1$ and $x, y \in C$. A representation Γ of a semigroup *S* on *C* acts as nonexpansive affine mappings, if each T_s ($s \in S$) is nonexpansive and affine.

A Banach space \mathbb{X} is called *L*-embedded if there is a closed subspace $\mathbb{X}_0 \subseteq \mathbb{X}^{**}$ such that $\mathbb{X}^{**} = \mathbb{X} \oplus_{\ell^1} \mathbb{X}_0$. The class of *L*-embedded Banach spaces includes all $L^1(\Sigma, \mu)$ (the space of of all absolutely integrable functions on a measure space (Σ, μ)), preduals of von Neumann algebras, dual spaces of *M*-embedded Banach spaces and the Hardy space H_1 . In particular, given a locally compact group *G*, the space $L^1(G)$ is *L*-embedded, as are its even duals $L^1(G)^{(2n)}$ ($n \ge 0$). (For more details, see [20].)

The next lemma is the common fixed point theorem for semigroups.

LEMMA 2.1 [20, Theorem 2]. Let *S* be a discrete semigroup and Γ a representation of *S* on an *L*-embedded Banach space \mathbb{X} as nonexpansive affine mappings. Suppose that WAP(*S*) has a LIM and suppose that there is a nonempty bounded set $B \subset \mathbb{X}$ such that $B \subseteq \overline{T_s(B)}$ for all $s \in S$. Then \mathbb{X} contains a common fixed point for *S*.

3. Main results

From this point on, *S* is a discrete inverse semigroup with the set of idempotents *E*. If \mathbb{X} is a Banach $l^1(S)$ -bimodule, we consider an associated action $S \times \mathbb{X} \to \mathbb{X}$ given by

$$(s, x) \to s.x = \delta_s x \delta_{s^*} \quad (s \in S, x \in \mathbb{X}).$$

Following Johnson [14], a map $\phi : S \to \mathbb{X}$ is called a *crossed homomorphism* if $\phi(st) = \phi(s) + s.\phi(t)$ for all $s, t \in S$. (This is called a *cocycle* in [1].) We say that ϕ is *bounded* if $\sup_{s \in S} ||\phi(s)|| < \infty$. A crossed homomorphism $\phi : S \to \mathbb{X}$ is called *principal* if there exists $x \in \mathbb{X}$ such that $\phi(s) = s.x - x$, for each $s \in S$.

LEMMA 3.1. Let X be a Banach $l^1(S)$ -bimodule which is an L-embedded Banach space. Suppose that $\phi : S \to X$ is a bounded crossed homomorphism such that $\delta_e \phi(s) \delta_e = \phi(s)$ for each $e \in E$ and $s \in S$. Then ϕ is principal.

https://doi.org/10.1017/S0004972719000960 Published online by Cambridge University Press

PROOF. For any $s \in S$, define the mapping $T_s : \mathbb{X} \to \mathbb{X}$ by

$$T_s(x) = s.x + \phi(s) \quad (x \in \mathbb{X}).$$

Since ϕ is a crossed homomorphism, it follows that

$$T_{st}(x) = (st).x + \phi(st)$$

= s.(t.x) + s. $\phi(t) + \phi(s)$
= s.(t.x + $\phi(t)$) + $\phi(s)$
= s.T_t(x) + $\phi(s)$
= T_s(T_t(x)),

for all $s, t \in S$ and $x \in X$. Clearly each T_s ($s \in S$) is an affine mapping and, for every $x, y \in X$ and $s \in S$,

$$||T_s(x) - T_s(y)|| = ||s.x + \phi(s) - s.y - \phi(s)|| = \delta_s(x - y)\delta_{s^*}|| \le ||x - y||.$$

So each T_s ($s \in S$) is nonexpansive. Hence $\Gamma = \{T_s \mid s \in S\}$ defines a representation of S on \mathbb{X} which is nonexpansive and affine. Let $B = \phi(S)$. Since ϕ is bounded, it follows that B is a nonempty bounded subset of \mathbb{X} . From the definition of T_s , for any $s, t \in S$,

$$T_s(\phi(t)) = s.\phi(t) + \phi(s) = \phi(st).$$

Therefore $T_s(B) \subseteq B$ ($s \in S$).

For any $e \in E$ we have $\phi(e) = \phi(e^2) = e \cdot \phi(e) + \phi(e)$. So $e \cdot \phi(e) = 0$ and, by the hypothesis,

$$\phi(e) = \delta_e \phi(e) \delta_e = e \cdot \phi(e) = 0 \quad (e \in E).$$

Now from the fact that $\phi(e) = 0$ for any $e \in E$ and the hypothesis, for $x \in B$ (since $x = \phi(s)$ for some $s \in S$),

$$T_{s}(T_{s^{*}}(x)) = T_{ss^{*}}(x) = \delta_{ss^{*}} x \delta_{ss^{*}} + \phi(ss^{*}) = x \quad (s \in S).$$

Since $T_{s^*}(x) \in B$, it follows that $T_s(B) = B$ for each $s \in S$.

Here *S* is regarded as a discrete inverse semigroup and hence WAP(S) has a *LIM*. So by Lemma 2.1, there is $z \in \mathbb{X}$ such that $T_s(z) = z$ for all $s \in S$. Therefore $s.z + \phi(s) = z$ for each $s \in S$. If we put y = -z, then we get $\phi(s) = s.y - y$, for all $s \in S$, that is, ϕ is principal.

The following corollary is an immediate consequence of Lemma 3.1.

COROLLARY 3.2. Let X be a Banach $l^1(S)$ -bimodule which is an L-embedded Banach space. Suppose that $\delta_e x \delta_e = x$ for all $e \in E$ and $x \in X$. Then any bounded crossed homomorphism $\phi : S \to X$ is principal.

Let \mathbb{A} be a Banach algebra and \mathbb{X} be a Banach \mathbb{A} -bimodule. Define the *annihilator* of \mathbb{X} by $\operatorname{ann}_{\mathbb{A}}\mathbb{X} = \{a \in \mathbb{A} \mid a\mathbb{X} = \mathbb{X}a = \{0\}\}.$

491

H. Ghahramani

REMARK 3.3. Let X be a Banach $l^1(S)$ -bimodule such that $\delta_e - \delta_d \in \operatorname{ann}_{l^1(S)} X$ for every $e, d \in E$. Fix an element $e \in E$ and define the sets

$$\begin{split} \mathbb{X}_1 &= \{ \delta_e x \delta_e \mid x \in \mathbb{X} \}, \\ \mathbb{X}_2 &= \{ \delta_e x - \delta_e x \delta_e \mid x \in \mathbb{X} \}, \\ \mathbb{X}_3 &= \{ x \delta_e - \delta_e x \delta_e \mid x \in \mathbb{X} \}, \\ \mathbb{X}_4 &= \{ x - \delta_e x - x \delta_e + \delta_e x \delta_e \mid x \in \mathbb{X} \} \end{split}$$

By hypothesis,

$$\delta_s(\delta_e x) = \delta_s(\delta_{s^*s} x) = \delta_{ss^*}(\delta_s x) = \delta_e(\delta_s x),$$

and similarly

$$(x\delta_e)\delta_s = (x\delta_s)\delta_e = x\delta_s$$

for all $s \in S$ and $x \in X$. Hence every X_j for $1 \le j \le 4$ is a closed $l^1(S)$ -subbimodule of X such that

$$\mathbb{X}_2 l^1(S) = l^1(S)\mathbb{X}_3 = \mathbb{X}_4 l^1(S) = l^1(S)\mathbb{X}_4 = \{0\}.$$

Since $\delta_d(\delta_e x) = \delta_e(\delta_e x) = \delta_e x$ and, similarly, $(x\delta_e)\delta_d = x\delta_e$ for any $d \in E$, it follows that $\delta_d x_1 = x_1\delta_d = x_1$, $\delta_d x_2 = x_2$ and $x_3\delta_d = x_3$ for all $d \in E$, $x_1 \in \mathbb{X}_1$, $x_2 \in \mathbb{X}_2$ and $x_3 \in \mathbb{X}_3$. Also $\mathbb{X} = \mathbb{X}_1 + \mathbb{X}_2 + \mathbb{X}_3 + \mathbb{X}_4$ as a sum of $l^1(S)$ -bimodules.

THEOREM 3.4. Let \mathbb{X} be a Banach $l^1(S)$ -bimodule which is an L-embedded Banach space and let $\delta_e - \delta_d \in \operatorname{ann}_{l^1(S)} \mathbb{X}$ for every $e, d \in E$. Then $\mathcal{H}^1(l^1(S), \mathbb{X}) = 0$.

PROOF. Fix an element $e \in E$. As in Remark 3.3, $\mathbb{X} = \mathbb{X}_1 + \mathbb{X}_2 + \mathbb{X}_3 + \mathbb{X}_4$. From now on we use the same notation as in Remark 3.3.

Let $D: l^1(S) \to \mathbb{X}$ be a continuous derivation. So $D = D_1 + D_2 + D_3 + D_4$, where each D_j is a continuous linear map from $l^1(S)$ to \mathbb{X}_j . Since D is a derivation, from Remark 3.3,

$$D_1(fg) + D_2(fg) + D_3(fg) + D_4(fg) = fD_1(g) + fD_2(g) + D_1(f)g + D_3(f)g, \quad (3.1)$$

for all $f, g \in l^1(S)$.

We complete the proof by checking four steps.

Step 1. There exists an element $x_1 \in \mathbb{X}_1$ such that $D(f) = fx_1 - x_1 f$ for all $f \in l^1(S)$.

Multiply (3.1) by δ_e both on the left and on the right. By Remark 3.3, we see that D_1 is a derivation. Now we consider $\phi : S \to \mathbb{X}_1 \subseteq \mathbb{X}$ defined by

$$\phi(s) = D_1(\delta_s)\delta_{s^*} \quad (s \in S).$$

We see that

$$\begin{split} \phi(st) &= D_1(\delta_s * \delta_t)\delta_{(st)^*} \\ &= (\delta_s D_1(\delta_t))\delta_{t^*} * \delta_{s^*} + (D_1(\delta_s)\delta_t)\delta_{t^*} * \delta_{s^*} \\ &= \delta_s (D_1(\delta_t)\delta_{t^*})\delta_{s^*} + (D_1(\delta_s)\delta_{tt^*})\delta_{s^*} \\ &= \delta_s (D_1(\delta_t)\delta_{t^*})\delta_{s^*} + D_1(\delta_s)\delta_{s^*} \\ &= s.\phi(t) + \phi(s), \end{split}$$

for all $s, t \in S$. So ϕ is a crossed homomorphism. Since D_1 is continuous, it follows that ϕ is bounded. By Remark 3.3, for any $d \in E$ and $s \in S$,

$$\delta_d \phi(s) \delta_d = \delta_d (D_1(\delta_s) \delta_{s^*}) \delta_d = \phi(s).$$

Thus we have all the requirements in Lemma 3.1 and therefore ϕ is principal, that is, there is $z \in \mathbb{X}$ such that

$$\phi(s) = s \cdot z - z \quad (s \in S).$$

Let $x_1 = \delta_e z \delta_e$. Since $\phi(s) \in \mathbb{X}_1$ for all $s \in S$, by Remark 3.3,

$$\phi(s) = \delta_e \phi(s) \delta_e$$

= $\delta_e (\delta_s z \delta_{s^*}) \delta_e - \delta_e z \delta_e$
= $\delta_s x_1 \delta_{s^*} - x_1$.

Hence

$$D_1(\delta_s) = \delta_s x_1 - x_1 \delta_s \quad (s \in S).$$

Since D_1 is continuous and functions of finite support are dense in $l^1(S)$, it follows that

$$D_1(f) = f x_1 - x_1 f,$$

for all $f \in l^1(S)$.

Step 2. There exists an element $x_2 \in \mathbb{X}_2$ such that $D(f) = fx_2$ for all $f \in l^1(S)$. Multiply (3.1) by δ_e from the left. By Remark 3.3 and the fact that D_1 is a derivation,

$$D_2(fg) = fD_2(g) \quad (f, g \in l^1(S)).$$

So, for all $d, d' \in E$,

$$D_2(\delta_d) = \delta_{d'} D_2(\delta_d) = D_2(\delta_{d'} \delta_d) = D_2(\delta_d \delta_{d'}) = \delta_d D_2(\delta_{d'}) = D_2(\delta_{d'})$$

Hence

$$D_2(\delta_s) = D_2(\delta_{ss^*s}) = \delta_s D_2(\delta_{s^*s}) = \delta_s D_2(\delta_e)$$

for all $s \in S$. Let $x_2 = D_2(\delta_e)$. Since D_2 is continuous and functions of finite support are dense in $l^1(S)$, it follows that

$$D_2(f) = f x_2,$$

for all $f \in l^1(S)$.

Step 3. There exists an element $x_3 \in \mathbb{X}_3$ such that $D(f) = x_3 f$ for all $f \in l^1(S)$. This follows by Remark 3.3 using similar methods to those in Step 2.

Step 4. $D_4 = 0$.

From (3.1) and the above steps,

$$D_4(fg) = 0$$
 $(f, g \in l^1(S)).$

H. Ghahramani

Since $\overline{(l^1(S))^2} = l^1(S)$ and D_4 is continuous, it follows that $D_4 = 0$. Now define $x = x_1 + x_2 - x_3$. Since

$$\mathbb{X}_2 l^1(S) = l^1(S)\mathbb{X}_3 = \mathbb{X}_4 l^1(S) = l^1(S)\mathbb{X}_4 = \{0\},\$$

by the above steps,

$$D(f) = fx_1 - x_1f + fx_2 + x_3f = fx - xf,$$

for all $f \in l^1(S)$. Therefore D is inner. The proof is complete.

REMARK 3.5. In the preceding theorem, instead of \mathbb{X} , if we assume that \mathbb{X}_1 is an *L*-embedded Banach space, the same argument shows that the theorem still holds and therefore we obtain a generalisation of Theorem 3.4.

We next give an application of Theorem 3.4. We make $l^1(G_S)$ into a Banach $l^1(S)$ bimodule in a natural manner (Remark 3.6) and then show that $\mathcal{H}^1(l^1(S), l^1(G_S)^{2n})$ vanishes for $n \ge 0$).

REMARK 3.6. Suppose that ~ is the equivalence relation on *S* given in Section 2 and let $G_S = S/\sim$ be the maximal group homomorphic image of *S* and $\varphi : S \to G_S$ the canonical homomorphism. The map φ extends to a continuous epimorphism of Banach spaces $\tilde{\varphi} : l^1(S) \to l^1(G_S)$ determined by $\tilde{\varphi}(\delta_s) = \delta_{\phi(s)} (s \in S)$. So $I = \ker \tilde{\varphi}$ is a closed subspace of $l^1(S)$. Define the mapping $\psi : l^1(S)/I \to l^1(G_S)$ by $\psi(f + I) = \tilde{\varphi}(f)$. It can be easily verified that ψ is well defined and an isomorphism of vector spaces. Let $\pi : l^1(S) \to l^1(S)/I$ be the quotient mapping so that $\psi \circ \pi = \tilde{\varphi}$. Thus $\psi \circ \pi$ is continuous and from [5, Proposition 5.2.2] we conclude that ψ is continuous. By the inverse mapping theorem, ψ is an isomorphism of Banach spaces and so $l^1(S)/I \cong l^1(G_S)$ (isomorphic as Banach spaces). We turn $l^1(S)/I$ naturally into a Banach $l^1(S)$ bimodule by the operations

$$f(g+I) = fg$$
 and $(g+I) \cdot f = gf$ $(f, g \in l^1(S))$.

Now, $l^1(G_S)$ is a Banach $l^1(S)$ -bimodule by the module actions

$$f.h = \psi(f.\psi^{-1}(h))$$
 and $h.f = \psi(\psi^{-1}(h).f)$ $(f \in l^1(S), g \in l^1(G_S)).$

It is clear that with this definition $\psi : l^1(S)/I \to l^1(G_S)$ is a Banach $l^1(S)$ -bimodule isomorphism. For any $e, d \in E$ we have $e \sim d$ and so $\varphi(e) = \varphi(d)$. Thus $\tilde{\varphi}(\delta_e) = \tilde{\varphi}(\delta_d)$ or $\delta_e - \delta_d \in I$. By noting the module action on $l^1(G_S)$,

$$\delta_e - \delta_d \in \operatorname{ann}_{l^1(S)} l^1(G_S).$$

Also, by the module action, $l^1(G_S)^{2n}$ $(n \ge 0)$ is a Banach $l^1(S)$ -bimodule and

$$\delta_e - \delta_d \in \operatorname{ann}_{l^1(S)} l^1(G_S)^{2n},$$

for all $e, d \in E$.

In the following corollary we consider $l^1(G_S)^{2n}$ $(n \ge 0)$ as in the previous remark as a Banach $l^1(S)$ -bimodule. On the other hand, $l^1(G_S)^{2n}$ is an *L*-embedded Banach space. So the corollary follows from Theorem 3.4.

COROLLARY 3.7. $\mathcal{H}^1(l^1(S), l^1(G_S)^{2n}) = 0$ for all $n \ge 0$.

https://doi.org/10.1017/S0004972719000960 Published online by Cambridge University Press

Acknowledgement

The author expresses sincere thanks to the referee(s) of this paper.

References

- U. Bader, T. Gelander and N. Monod, 'A fixed point theorem for L¹ spaces', *Invent. Math.* 189 (2012), 143–148.
- [2] T. D. Blackmore, 'Weak amenability of discrete semigroup algebras', *Semigroup Forum* 55 (1997), 169–205.
- [3] S. Bowling and J. Duncan, 'First order cohomology of Banach semigroup algebras', Semigroup Forum 56 (1998), 130–145.
- [4] E. Christensen, 'Derivations of nest algebras', Math. Ann. 229 (1977), 155–161.
- [5] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs Series, 24 (Oxford University Press, Oxford, 2000).
- [6] H. G. Dales, A. T.-M. Lau and D. Strauss, *Banach Algebras on Semigroups and on Their Compactifications*, Memoirs of the American Mathematical Society, 205 (American Mathematical Society, Providence, RI, 2010).
- [7] A. Donsig, B. Forrest and M. Marcoux, 'On derivations of seminest algebras', *Houston J. Math.* 22 (1996), 375–398.
- [8] J. Duncan and I. Namioka, 'Amenability of inverse semigroups and their semigroup algebras', Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 309–321.
- B. E. Forrest and L. W. Marcoux, 'Derivations of triangular Bnach algebras', *Indiana Univ. Math. J.* 45 (1996), 441–462.
- [10] F. Gilfeather and R. R. Smith, 'Cohomology for operator algebras: cones and suspensions', Proc. Lond. Math. Soc. (3) 65 (1992), 175–198.
- [11] F. Gilfeather and R. R. Smith, 'Cohomology for operator algebras: joins', Amer. J. Math. 116 (1994), 541–561.
- [12] J. M. Howie, An Introduction to Semigroup Theory (Academic Press, London, 1976).
- [13] B. E. Johnson, *Cohomology in Banach Algebras*, Memoirs of the American Mathematical Society, 127 (American Mathematical Society, Providence, RI, 1972).
- B. E. Johnson, 'The derivation problem for group algebras of connected locally compact groups', J. Lond. Math. Soc. (2) 63 (2001), 441–452.
- [15] R. V. Kadison, 'Derivations of operator algebras', Ann. of Math. (2) 83 (1966), 280–293.
- [16] P. T. Li, D. G. Han and W. S. Tang, 'Derivations on the algebra of operators in Hilbert C*-modules', Acta Math. Sin. (Engl. Ser.) 28 (2012), 1615–1622.
- [17] O. T. Mewomo, 'Notions of amenability on semigroup algebras', J. Semigroup Theory Appl. 8 (2013), 1–18.
- [18] W. D. Munn, 'A class of irreducible matrix representations of an arbitrary inverse semigroup', Proc. Glasgow Math. Assoc. 5 (1961), 41–48.
- [19] S. Sakai, 'Derivations of W*-algebras', Ann. of Math. (2) 83 (1966), 273–279.
- [20] Y. Zhang, '2m-weak amenability of group algebras', J. Math. Anal. Appl. 396 (2012), 412–416.

HOGER GHAHRAMANI, Department of Mathematics, University of Kurdistan, P. O. Box 416, Sanandaj, Iran e-mail: h.ghahramani@uok.ac.ir, hoger.ghahramani@yahoo.com