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Abstract

Let S be a discrete inverse semigroup, l1(S ) the Banach semigroup algebra on S and X a Banach
l1(S )-bimodule which is an L-embedded Banach space. We show that under some mild conditions
H1(l1(S ),X) = 0. We also provide an application of the main result.
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1. Introduction

Let A be a Banach algebra and X be a Banach A-bimodule. A linear map D : A→ X
is called a derivation if D(ab) = aD(b) + D(a)b for all a, b ∈ A. For any x ∈ X, the
map idx : A→ X given by idx(a) = ax − xa is a continuous derivation called an inner
derivation. We denote byZ1(A,X) the vector space of all continuous derivations from
A into X and by N1(A,X) the subspace of all inner derivations from A into X. The
quotient space H1(A,X) = Z1(A,X)/N1(A,X) is called the first cohomology group
of A with coefficients in X.

The first cohomology group of a Banach algebra with coefficients in different
modules can be used to study its structure. The case H1(A,X) = 0 (that is, every
continuous derivation from A into X is inner) leads to the notion of amenability of
Banach algebras, introduced by Johnson [13]. Taking the coefficients in different
modules leads to various types of amenability. Sakai [19] showed that every
continuous derivation on a W∗-algebra is inner. Kadison [15] proved that every
derivation of a C∗-algebra on a Hilbert space H is spatial (that is, of the form
a 7→ ta − at for t ∈ B(H)) and, in particular, every derivation on a von Neumann algebra
is inner. Some results have also been obtained in the case of non-self-adjoint operator
algebras. Christian [4] showed that every continuous derivation on a nest algebra on
H to itself and to B(H) is inner, and this result was generalised in [16]. However, the
cohomology is nontrivial in general. Gilfeather and Smith [10, 11] calculated the first
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cohomology group of some operator algebras called joins. In [7], the cohomology
group of operator algebras called seminest algebras has been calculated. Forrest and
Marcoux [9] found the first cohomology group of triangular Banach algebras, and
various examples of triangular Banach algebras with nontrivial cohomology have been
given (see [5]). The first cohomology group of the semigroup Banach algebra l1(S )
on an (inverse) semigroup S with coefficients in different modules has been studied in
[2, 3, 6, 8, 17].

In this paper we study the first cohomology group of l1(S ) on a discrete inverse
semigroup S with coefficients in a Banach l1(S )-bimodule X, which is L-embedded
as a Banach space, and show that under some mild conditions H1(l1(S ),X) = 0
(Theorem 3.4). To prove our main result we use fixed point techniques. In Lemma 3.1,
which may be of independent interest, we prove that if X, as an L-embedded
Banach space, is a Banach l1(S )-bimodule and φ : S → X is a bounded crossed
homomorphism, then under some mild conditions φ is principal. As an application of
our main result, we show in Corollary 3.7 that H1(l1(S ), l1(GS )2n) = 0 for any n ≥ 0,
where GS is the maximal group homomorphic image of S .

This paper is organised as follows. Section 2 is devoted to preliminaries and
required tools. The main results of the paper are presented in Section 3.

2. Preliminaries

A discrete semigroup S is called an inverse semigroup if for each s ∈ S there is a
unique element s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗. An element e ∈ S is called
an idempotent if e = e∗ = e2. The set of idempotents of S is denoted by E. There is a
natural order on E, defined by

e ≤ d⇔ ed = e (e, d ∈ E).

Moreover, E is a commutative subsemigroup of S and also a semilattice [12, Theorem
V.1.2]. Elements of the form ss∗ are idempotents of S and in fact all elements of E are
of this form. Let ∼ be the congruence on S defined by

s ∼ t if and only if there exists e ∈ E such that es = et.

The quotient semigroup S/∼ is then a group and is the maximal group homomorphic
image of S [18]. The group S/∼ is denoted by GS .

We denote the convolution Banach semigroup algebra on S by l1(S ) and the point
mass measure at s by δs.

For the proof of the main result we use a common fixed point property for
semigroups which we now recall. Let S be a (discrete) semigroup. The space of
all bounded complex-valued functions on S is denoted by `∞(S ). It is a Banach space
with the uniform supremum norm. In fact `∞(S ) = (`1(S ))∗. For each s ∈ S and each
f ∈ `∞(S ), let `s f be the left translate of f by s, that is, `s f (t) = f (st), t ∈ S (the right
translate rs f is defined similarly). We recall that f ∈ `∞(S ) is weakly almost periodic if
its left orbit LO( f ) = {`s f | s ∈ S } is relatively compact in the weak topology of `∞(S ).
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We denote by WAP(S ) the space of all weakly almost periodic functions on S . It is a
closed subspace of `∞(S ) containing the constant function and invariant under left and
right translations.

A linear functional m ∈ WAP(S )∗ is a mean on WAP(S ) if ‖m‖ = m(1) = 1. A mean
m on WAP(S ) is a left invariant mean (abbreviated LIM) if m(`s f ) = m( f ) for all s ∈ S
and all f ∈ WAP(S ). If S is an inverse semigroup, it is well known that WAP(S )
always has a LIM [8, Proposition 2]. Let C be a subset of a Banach space X. We say
that Γ = {Ts | s ∈ S } is a representation of S on C if Ts is a mapping from C into C for
each s ∈ S and Tst(x) = Ts(Tt(x)) (s, t ∈ S , x ∈ C). We say that x ∈ C is a common fixed
point for (the representation of) S if Ts(x) = x for all s ∈ S .

Let X be a Banach space and C a nonempty subset of X. A mapping T : C → C is
called nonexpansive if ‖T (x) − T (y)‖ ≤ ‖x − y‖ for all x, y ∈ C. The mapping T is called
affine if C is convex and T (γx + ηy) = γT (x) + ηT (y) for all constants γ, η ≥ 0 with
γ + η = 1 and x, y ∈ C. A representation Γ of a semigroup S on C acts as nonexpansive
affine mappings, if each Ts (s ∈ S ) is nonexpansive and affine.

A Banach space X is called L-embedded if there is a closed subspace X0 ⊆ X
∗∗ such

thatX∗∗ = X ⊕`1 X0. The class of L-embedded Banach spaces includes all L1(Σ, µ) (the
space of of all absolutely integrable functions on a measure space (Σ, µ)), preduals of
von Neumann algebras, dual spaces of M-embedded Banach spaces and the Hardy
space H1. In particular, given a locally compact group G, the space L1(G) is L-
embedded, as are its even duals L1(G)(2n) (n ≥ 0). (For more details, see [20].)

The next lemma is the common fixed point theorem for semigroups.

Lemma 2.1 [20, Theorem 2]. Let S be a discrete semigroup and Γ a representation of
S on an L-embedded Banach space X as nonexpansive affine mappings. Suppose that
WAP(S ) has a LIM and suppose that there is a nonempty bounded set B ⊂ X such that
B ⊆ Ts(B) for all s ∈ S . Then X contains a common fixed point for S .

3. Main results

From this point on, S is a discrete inverse semigroup with the set of idempotents E.
If X is a Banach l1(S )-bimodule, we consider an associated action S × X→ X given
by

(s, x)→ s.x = δsxδs∗ (s ∈ S , x ∈ X).

Following Johnson [14], a map φ : S → X is called a crossed homomorphism if
φ(st) = φ(s) + s.φ(t) for all s, t ∈ S . (This is called a cocycle in [1].) We say that
φ is bounded if sups∈S ‖φ(s)‖ < ∞. A crossed homomorphism φ : S → X is called
principal if there exists x ∈ X such that φ(s) = s.x − x, for each s ∈ S .

Lemma 3.1. LetX be a Banach l1(S )-bimodule which is an L-embedded Banach space.
Suppose that φ : S → X is a bounded crossed homomorphism such that δeφ(s)δe = φ(s)
for each e ∈ E and s ∈ S . Then φ is principal.

https://doi.org/10.1017/S0004972719000960 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000960


[4] First cohomology of Banach inverse semigroup algebras 491

Proof. For any s ∈ S , define the mapping Ts : X→ X by

Ts(x) = s.x + φ(s) (x ∈ X).

Since φ is a crossed homomorphism, it follows that

Tst(x) = (st).x + φ(st)
= s.(t.x) + s.φ(t) + φ(s)
= s.(t.x + φ(t)) + φ(s)
= s.Tt(x) + φ(s)
= Ts(Tt(x)),

for all s, t ∈ S and x ∈ X. Clearly each Ts (s ∈ S ) is an affine mapping and, for every
x, y ∈ X and s ∈ S ,

‖Ts(x) − Ts(y)‖ = ‖s.x + φ(s) − s.y − φ(s)‖ = δs(x − y)δs∗‖ ≤ ‖x − y‖.

So each Ts (s ∈ S ) is nonexpansive. Hence Γ = {Ts | s ∈ S } defines a representation of
S on X which is nonexpansive and affine. Let B = φ(S ). Since φ is bounded, it follows
that B is a nonempty bounded subset of X. From the definition of Ts, for any s, t ∈ S ,

Ts(φ(t)) = s.φ(t) + φ(s) = φ(st).

Therefore Ts(B) ⊆ B (s ∈ S ).
For any e ∈ E we have φ(e) = φ(e2) = e.φ(e) + φ(e). So e.φ(e) = 0 and, by the

hypothesis,
φ(e) = δeφ(e)δe = e.φ(e) = 0 (e ∈ E).

Now from the fact that φ(e) = 0 for any e ∈ E and the hypothesis, for x ∈ B (since
x = φ(s) for some s ∈ S ),

Ts(Ts∗(x)) = Tss∗(x) = δss∗ xδss∗ + φ(ss∗) = x (s ∈ S ).

Since Ts∗(x) ∈ B, it follows that Ts(B) = B for each s ∈ S .
Here S is regarded as a discrete inverse semigroup and hence WAP(S ) has a LIM. So

by Lemma 2.1, there is z ∈ X such that Ts(z) = z for all s ∈ S . Therefore s.z + φ(s) = z
for each s ∈ S . If we put y = −z, then we get φ(s) = s.y − y, for all s ∈ S , that is, φ is
principal. �

The following corollary is an immediate consequence of Lemma 3.1.

Corollary 3.2. Let X be a Banach l1(S )-bimodule which is an L-embedded Banach
space. Suppose that δexδe = x for all e ∈ E and x ∈ X. Then any bounded crossed
homomorphism φ : S → X is principal.

Let A be a Banach algebra and X be a Banach A-bimodule. Define the annihilator
of X by annAX = {a ∈ A | aX = Xa = {0}}.
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Remark 3.3. Let X be a Banach l1(S )-bimodule such that δe − δd ∈ annl1(S )X for every
e, d ∈ E. Fix an element e ∈ E and define the sets

X1 = {δexδe | x ∈ X},
X2 = {δex − δexδe | x ∈ X},
X3 = {xδe − δexδe | x ∈ X},
X4 = {x − δex − xδe + δexδe | x ∈ X}.

By hypothesis,
δs(δex) = δs(δs∗ sx) = δss∗(δsx) = δe(δsx),

and similarly
(xδe)δs = (xδs)δe = xδs,

for all s ∈ S and x ∈ X. Hence every X j for 1 ≤ j ≤ 4 is a closed l1(S )-subbimodule of
X such that

X2l1(S ) = l1(S )X3 = X4l1(S ) = l1(S )X4 = {0}.

Since δd(δex) = δe(δex) = δex and, similarly, (xδe)δd = xδe for any d ∈ E, it follows that
δd x1 = x1δd = x1, δd x2 = x2 and x3δd = x3 for all d ∈ E, x1 ∈ X1, x2 ∈ X2 and x3 ∈ X3.
Also X = X1 u X2 u X3 u X4 as a sum of l1(S )-bimodules.

Theorem 3.4. Let X be a Banach l1(S )-bimodule which is an L-embedded Banach
space and let δe − δd ∈ annl1(S )X for every e, d ∈ E. ThenH1(l1(S ),X) = 0.

Proof. Fix an element e ∈ E. As in Remark 3.3, X = X1 u X2 u X3 u X4. From now
on we use the same notation as in Remark 3.3.

Let D : l1(S )→ X be a continuous derivation. So D = D1 + D2 + D3 + D4, where
each D j is a continuous linear map from l1(S ) to X j. Since D is a derivation, from
Remark 3.3,

D1( f g) + D2( f g) + D3( f g) + D4( f g) = f D1(g) + f D2(g) + D1( f )g + D3( f )g, (3.1)

for all f , g ∈ l1(S ).
We complete the proof by checking four steps.

Step 1. There exists an element x1 ∈ X1 such that D( f ) = f x1 − x1 f for all f ∈ l1(S ).
Multiply (3.1) by δe both on the left and on the right. By Remark 3.3, we see that

D1 is a derivation. Now we consider φ : S → X1 ⊆ X defined by

φ(s) = D1(δs)δs∗ (s ∈ S ).

We see that

φ(st) = D1(δs ∗ δt)δ(st)∗

= (δsD1(δt))δt∗ ∗ δs∗ + (D1(δs)δt)δt∗ ∗ δs∗

= δs(D1(δt)δt∗)δs∗ + (D1(δs)δtt∗)δs∗

= δs(D1(δt)δt∗)δs∗ + D1(δs)δs∗

= s.φ(t) + φ(s),
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for all s, t ∈ S . So φ is a crossed homomorphism. Since D1 is continuous, it follows
that φ is bounded. By Remark 3.3, for any d ∈ E and s ∈ S ,

δdφ(s)δd = δd(D1(δs)δs∗)δd = φ(s).

Thus we have all the requirements in Lemma 3.1 and therefore φ is principal, that is,
there is z ∈ X such that

φ(s) = s.z − z (s ∈ S ).

Let x1 = δezδe. Since φ(s) ∈ X1 for all s ∈ S , by Remark 3.3,

φ(s) = δeφ(s)δe

= δe(δszδs∗)δe − δezδe

= δsx1δs∗ − x1.

Hence
D1(δs) = δsx1 − x1δs (s ∈ S ).

Since D1 is continuous and functions of finite support are dense in l1(S ), it follows that

D1( f ) = f x1 − x1 f ,

for all f ∈ l1(S ).

Step 2. There exists an element x2 ∈ X2 such that D( f ) = f x2 for all f ∈ l1(S ).
Multiply (3.1) by δe from the left. By Remark 3.3 and the fact that D1 is a derivation,

D2( f g) = f D2(g) ( f , g ∈ l1(S )).

So, for all d, d′ ∈ E,

D2(δd) = δd′D2(δd) = D2(δd′δd) = D2(δdδd′) = δdD2(δd′) = D2(δd′).

Hence
D2(δs) = D2(δss∗ s) = δsD2(δs∗ s) = δsD2(δe),

for all s ∈ S . Let x2 = D2(δe). Since D2 is continuous and functions of finite support
are dense in l1(S ), it follows that

D2( f ) = f x2,

for all f ∈ l1(S ).

Step 3. There exists an element x3 ∈ X3 such that D( f ) = x3 f for all f ∈ l1(S ).
This follows by Remark 3.3 using similar methods to those in Step 2.

Step 4. D4 = 0.
From (3.1) and the above steps,

D4( f g) = 0 ( f , g ∈ l1(S )).
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Since (l1(S ))2 = l1(S ) and D4 is continuous, it follows that D4 = 0. Now define
x = x1 + x2 − x3. Since

X2l1(S ) = l1(S )X3 = X4l1(S ) = l1(S )X4 = {0},

by the above steps,

D( f ) = f x1 − x1 f + f x2 + x3 f = f x − x f ,

for all f ∈ l1(S ). Therefore D is inner. The proof is complete. �

Remark 3.5. In the preceding theorem, instead of X, if we assume that X1 is an L-
embedded Banach space, the same argument shows that the theorem still holds and
therefore we obtain a generalisation of Theorem 3.4.

We next give an application of Theorem 3.4. We make l1(GS ) into a Banach l1(S )-
bimodule in a natural manner (Remark 3.6) and then show that H1(l1(S ), l1(GS )2n)
vanishes for n ≥ 0).

Remark 3.6. Suppose that ∼ is the equivalence relation on S given in Section 2 and
let GS = S/∼ be the maximal group homomorphic image of S and ϕ : S → GS the
canonical homomorphism. The map ϕ extends to a continuous epimorphism of Banach
spaces ϕ̃ : l1(S )→ l1(GS ) determined by ϕ̃(δs) = δφ(s) (s ∈ S ). So I = ker φ̃ is a closed
subspace of l1(S ). Define the mapping ψ : l1(S )/I → l1(GS ) by ψ( f + I) = ϕ̃( f ). It
can be easily verified that ψ is well defined and an isomorphism of vector spaces. Let
π : l1(S )→ l1(S )/I be the quotient mapping so that ψ ◦ π = ϕ̃. Thus ψ ◦ π is continuous
and from [5, Proposition 5.2.2] we conclude that ψ is continuous. By the inverse
mapping theorem, ψ is an isomorphism of Banach spaces and so l1(S )/I � l1(GS )
(isomorphic as Banach spaces). We turn l1(S )/I naturally into a Banach l1(S )-
bimodule by the operations

f .(g + I) = f g and (g + I). f = g f ( f , g ∈ l1(S )).

Now, l1(GS ) is a Banach l1(S )-bimodule by the module actions

f .h = ψ( f .ψ−1(h)) and h. f = ψ(ψ−1(h). f ) ( f ∈ l1(S ), g ∈ l1(GS )).

It is clear that with this definition ψ : l1(S )/I → l1(GS ) is a Banach l1(S )-bimodule
isomorphism. For any e, d ∈ E we have e ∼ d and so ϕ(e) = ϕ(d). Thus ϕ̃(δe) = ϕ̃(δd)
or δe − δd ∈ I. By noting the module action on l1(GS ),

δe − δd ∈ annl1(S )l1(GS ).

Also, by the module action, l1(GS )2n (n ≥ 0) is a Banach l1(S )-bimodule and

δe − δd ∈ annl1(S )l1(GS )2n,

for all e, d ∈ E.

In the following corollary we consider l1(GS )2n (n ≥ 0) as in the previous remark
as a Banach l1(S )-bimodule. On the other hand, l1(GS )2n is an L-embedded Banach
space. So the corollary follows from Theorem 3.4.

Corollary 3.7. H1(l1(S ), l1(GS )2n) = 0 for all n ≥ 0.
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