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Abstract

Let S be a discrete inverse semigroup, I'(S) the Banach semigroup algebra on S and X a Banach
['(S)-bimodule which is an L-embedded Banach space. We show that under some mild conditions
H(I'(S),X) = 0. We also provide an application of the main result.
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1. Introduction

Let A be a Banach algebra and X be a Banach A-bimodule. A linear map D : A - X
is called a derivation if D(ab) = aD(b) + D(a)b for all a,b € A. For any x € X, the
map id, : A — X given by id,(a) = ax — xa is a continuous derivation called an inner
derivation. We denote by Z'(A, X) the vector space of all continuous derivations from
A into X and by N''(A, X) the subspace of all inner derivations from A into X. The
quotient space H'(A,X) = Z'(A, X)/N'(A,X) is called the first cohomology group
of A with coefficients in X.

The first cohomology group of a Banach algebra with coefficients in different
modules can be used to study its structure. The case H'(A, X) = 0 (that is, every
continuous derivation from A into X is inner) leads to the notion of amenability of
Banach algebras, introduced by Johnson [13]. Taking the coefficients in different
modules leads to various types of amenability. Sakai [19] showed that every
continuous derivation on a W*-algebra is inner. Kadison [15] proved that every
derivation of a C*-algebra on a Hilbert space H is spatial (that is, of the form
a — ta — at for t € B(H)) and, in particular, every derivation on a von Neumann algebra
is inner. Some results have also been obtained in the case of non-self-adjoint operator
algebras. Christian [4] showed that every continuous derivation on a nest algebra on
H to itself and to B(H) is inner, and this result was generalised in [16]. However, the
cohomology is nontrivial in general. Gilfeather and Smith [10, 11] calculated the first
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cohomology group of some operator algebras called joins. In [7], the cohomology
group of operator algebras called seminest algebras has been calculated. Forrest and
Marcoux [9] found the first cohomology group of triangular Banach algebras, and
various examples of triangular Banach algebras with nontrivial cohomology have been
given (see [5]). The first cohomology group of the semigroup Banach algebra I'(S)
on an (inverse) semigroup S with coefficients in different modules has been studied in
[2,3,6,8,17].

In this paper we study the first cohomology group of /!(S) on a discrete inverse
semigroup S with coefficients in a Banach {!(S)-bimodule X, which is L-embedded
as a Banach space, and show that under some mild conditions H'(/'(S),X) =0
(Theorem 3.4). To prove our main result we use fixed point techniques. In Lemma 3.1,
which may be of independent interest, we prove that if X, as an L-embedded
Banach space, is a Banach /!(S)-bimodule and ¢ : S — X is a bounded crossed
homomorphism, then under some mild conditions ¢ is principal. As an application of
our main result, we show in Corollary 3.7 that H'(1'(S),'(Gs)*") = 0 for any n > 0,
where Gy is the maximal group homomorphic image of S.

This paper is organised as follows. Section 2 is devoted to preliminaries and
required tools. The main results of the paper are presented in Section 3.

2. Preliminaries

A discrete semigroup S is called an inverse semigroup if for each s € S there is a
unique element s* € § such that ss*s = s and s*ss* = s*. An element e € § is called
an idempotent if e = ¢* = ¢*. The set of idempotents of S is denoted by E. There is a
natural order on E, defined by

e<doed=e (e,deE).

Moreover, E is a commutative subsemigroup of S and also a semilattice [12, Theorem
V.1.2]. Elements of the form ss* are idempotents of S and in fact all elements of E are
of this form. Let ~ be the congruence on S defined by

s ~t if and only if there exists e € E such that es = ef.

The quotient semigroup S/~ is then a group and is the maximal group homomorphic
image of S [18]. The group S/~ is denoted by Gy.

We denote the convolution Banach semigroup algebra on S by /'(S) and the point
mass measure at s by d;.

For the proof of the main result we use a common fixed point property for
semigroups which we now recall. Let S be a (discrete) semigroup. The space of
all bounded complex-valued functions on § is denoted by £*°(S). It is a Banach space
with the uniform supremum norm. In fact £*°(S) = (£'(S))*. For each s € S and each
felt=(S),let £,f be the left translate of f by s, that is, {;f(¢) = f(st), t € S (the right
translate r, f is defined similarly). We recall that f € £°(S) is weakly almost periodic if
its left orbit LO(f) = {€,f | s € S} is relatively compact in the weak topology of £*(S).
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We denote by WAP(S) the space of all weakly almost periodic functions on S. Itis a
closed subspace of £*($) containing the constant function and invariant under left and
right translations.

A linear functional m € WAP(S )" is a mean on WAP(S) if ||m|| = m(1) = 1. A mean
m on WAP(S) is a left invariant mean (abbreviated LIM) if m({,f) = m(f) forall s € S
and all f € WAP(S). If S is an inverse semigroup, it is well known that WAP(S')
always has a LIM [8, Proposition 2]. Let C be a subset of a Banach space X. We say
that ' = {T | s € S} is a representation of S on C if T is a mapping from C into C for
each s € § and Ty (x) = T4(T((x)) (s, € S,x € C). We say that x € C is a common fixed
point for (the representation of) S if Ts(x) = x forall s€ S.

Let X be a Banach space and C a nonempty subset of X. A mapping 7 : C — C'is
called nonexpansive if ||T(x) — T(y)|| < ||x — y|| for all x,y € C. The mapping 7 is called
affine if C is convex and T (yx + ny) = yT(x) + nT(y) for all constants y,n > 0 with
v+n=1and x,y € C. Arepresentation I of a semigroup S on C acts as nonexpansive
affine mappings, if each T (s € §) is nonexpansive and affine.

A Banach space X is called L-embedded if there is a closed subspace X, € X** such
that X** = X ®p X,. The class of L-embedded Banach spaces includes all L'(Z, i) (the
space of of all absolutely integrable functions on a measure space (X, u)), preduals of
von Neumann algebras, dual spaces of M-embedded Banach spaces and the Hardy
space H;. In particular, given a locally compact group G, the space L'(G) is L-
embedded, as are its even duals L' (G)®” (n > 0). (For more details, see [20].)

The next lemma is the common fixed point theorem for semigroups.

Lemma 2.1 [20, Theorem 2|. Let S be a discrete semigroup and I a representation of
S on an L-embedded Banach space X as nonexpansive affine mappings. Suppose that
WAP(S) has a LIM and suppose that there is a nonempty bounded set B C X such that
BC Ty(B)forall seS. Then X contains a common fixed point for S .

3. Main results

From this point on, S is a discrete inverse semigroup with the set of idempotents E.
If X is a Banach I'(S)-bimodule, we consider an associated action § x X — X given
by
(s,x) = s.x=0,x0p (s€S, xeX).

Following Johnson [14], a map ¢ : S — X is called a crossed homomorphism if
d(st) = ¢(s) + s.¢(¢) for all s,t € S. (This is called a cocycle in [1].) We say that
¢ is bounded if sup ¢ [|p(s)|| < c0. A crossed homomorphism ¢ : § — X is called
principal if there exists x € X such that ¢(s) = s.x — x, foreach s € S.

Lemma 3.1. Let X be a Banach (S )-bimodule which is an L-embedded Banach space.
Suppose that ¢ : S — X is a bounded crossed homomorphism such that 6.¢(s)0. = ¢(s)
foreache € E and s € S. Then ¢ is principal.
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Proor. For any s € S, define the mapping 7, : X — X by
Ty(x)=sx+¢(s) (xeX).
Since ¢ is a crossed homomorphism, it follows that

T (x) = (st).x + ¢(s1)
= 5.(t.X) + 5.0(t) + ¢(s)
= s5.(t.x + ¢@) + ¢(s)
= 5.T,(x) + ¢(s)
= T(T((x)),

for all s, € S and x € X. Clearly each T (s € §) is an affine mapping and, for every
x,yeXandseS,

IT5(x) = TsOl = lls.x + ¢(s) = 5.y = ¢(s)ll = 65(x = y)ds- |l < [lx = yll.

So each T (s € §) is nonexpansive. Hence I' = {T; | s € S} defines a representation of
S on X which is nonexpansive and affine. Let B = ¢(S). Since ¢ is bounded, it follows
that B is a nonempty bounded subset of X. From the definition of T, for any s,7 € S,

T(9(1)) = 5.9(1) + ¢(5) = P(s0).
Therefore T(B) C B (s€S).
For any e € E we have ¢(e) = ¢(e?) = e.p(e) + ¢(e). So e.¢(e) =0 and, by the
hypothesis,
¢(e) = 6.p(e)d, = e.p(e) =0 (e € E).

Now from the fact that ¢(e) = 0 for any e € E and the hypothesis, for x € B (since
x = ¢(s) for some s € S),

Ts(Ts*(x)) =T (x) = 059 X055 + ¢(SS*) =x (s€8).

Since Ts-(x) € B, it follows that To(B) = Bforeach s € S.

Here S is regarded as a discrete inverse semigroup and hence WAP(S ) has a LIM. So
by Lemma 2.1, there is z € X such that T4(z) = z for all s € S. Therefore 5.z + ¢(s) =2
for each s € S. If we put y = —z, then we get ¢(s) = s.y —y, for all s € S, that is, ¢ is
principal. O

The following corollary is an immediate consequence of Lemma 3.1.

CoroLLARY 3.2. Let X be a Banach 1'(S)-bimodule which is an L-embedded Banach
space. Suppose that 6.x6, = x for all e € E and x € X. Then any bounded crossed
homomorphism ¢ : S — X is principal.

Let A be a Banach algebra and X be a Banach A-bimodule. Define the annihilator
of X by anngyX = {a € A | aX = Xa = {0}}.
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RemARrK 3.3. Let X be a Banach (S )-bimodule such that §, — 8, € ann; )X for every
e,d € E. Fix an element e € E and define the sets
={0.x0. | x € X},
Xz—{é X —0.x0, | x € X},
X3 = {x6, — 0.x0,. | x € X},
Xy ={x—=0,x— x6, + 0,x0, | x € X}.
By hypothesis,
6&(5ex) = 6&(6s*sx) = 5ss* (6s~x) = 6@(6sx)7
and similarly
(xae)és = (X6s)6e = X(Ss’

for all s € S and x € X. Hence every X for 1 < j <4 is aclosed 1'(S)-subbimodule of
X such that
X0NS) = 1N$)X5 = 301S) = 11(8)Xy = {0).

Since 04(0,x) = d.(d.x) = 6.x and, similarly, (xd.)d; = xd, for any d € E, it follows that
04X1 = X104 = X1, 0gxp = Xxp and x30, = x3 foralld € E, x; € X, xp € X; and x3 € X3.
Also X = X, + X, + X3 + X4 as a sum of /'(S)-bimodules.

Tueorem 3.4. Let X be a Banach 1'(S)-bimodule which is an L-embedded Banach
space and let 5, — 64 € anny )X for every e,d € E. Then H(I'(S),X) =0.

Proor. Fix an element ¢ € E. As in Remark 3.3, X = X; + X, + X3 + X4. From now
on we use the same notation as in Remark 3.3.

Let D : I'(S) — X be a continuous derivation. So D = D + D, + D3 + Dy, where
each D; is a continuous linear map from 1'(S) to X;. Since D is a derivation, from
Remark 3.3,

Di(fg) + Da(fg) + D3(fg) + Da(fg) = fD1(g) + fD2(g) + Di(f)g + D3(f)g. (3.1)

forall f,g €1'(S).
We complete the proof by checking four steps.

Step 1. There exists an element x; € X; such that D(f) = fx; — x, f for all f € ['(S).
Multiply (3.1) by 6, both on the left and on the right. By Remark 3.3, we see that
D is a derivation. Now we consider ¢ : § — X; € X defined by

¢(s) = D1(65)65  (s€S).
We see that
P(st) = D1(5 * 6:)0(sry
= (6;D1(6,))0p * O + (D1(05)0,)p * O
= 05(D1(6)0¢)05 + (D1(65)01)0 5+
= 05(D1(6)6r )65 + D1(65)05
= 5.6(1) + ¢(5),
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for all s, € S. So ¢ is a crossed homomorphism. Since D; is continuous, it follows
that ¢ is bounded. By Remark 3.3, forany d € E and s € S,

0ap($)64 = 6a(D1(65)05-)0a = ¢(5).

Thus we have all the requirements in Lemma 3.1 and therefore ¢ is principal, that is,
there is z € X such that
o(s)=sz—27z (s€8).

Let x| = 6.29.. Since ¢(s) € X for all s € S, by Remark 3.3,
P(5) = 6.P(5)0,
= 0,(05205+)0, — 0,20,

= 6le(ss* - X1.

Hence
Dl(é‘v) = 6_;)61 - x16S (S € S)

Since D is continuous and functions of finite support are dense in /!(S), it follows that

Di(f) = fx1 — x1f,
for all f e l'(S).

Step 2. There exists an element x, € X, such that D(f) = fx, for all f € I'(S).
Multiply (3.1) by 6, from the left. By Remark 3.3 and the fact that D, is a derivation,

Dy(fg) = fDx(g) (f.g<€l'(S)).
So, foralld,d’ € E,
D3(64) = 6 D2(0a) = D2(6a64) = D2(6404) = 04D2(04) = D2(04).

Hence
D, (6,) = DZ((Sss*s) = 6SD2(6S*S) = 0,D(0.),

for all s € S. Let x, = Dy(6.). Since D, is continuous and functions of finite support
are dense in I'(S), it follows that

Ds(f) = fx2,
forall f e ll(S).

Step 3. There exists an element x3 € X3 such that D(f) = x3 f for all f € I'(S).
This follows by Remark 3.3 using similar methods to those in Step 2.

Step 4. Dy = 0.
From (3.1) and the above steps,

Dy(fe)=0 (f.gel'(S)).
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Since (I1(S))? =1'(S) and D, is continuous, it follows that D, = 0. Now define
X = X1 + X — x3. Since

Xl'(8) = 1'($)X;5 = Xul' (§) = I'($)X4 = {0},
by the above steps,

D(f)=fxi—xif + fxa+x3f = fx— xf,
for all f € ['(S). Therefore D is inner. The proof is complete. O
Remark 3.5. In the preceding theorem, instead of X, if we assume that X is an L-

embedded Banach space, the same argument shows that the theorem still holds and
therefore we obtain a generalisation of Theorem 3.4.

We next give an application of Theorem 3.4. We make ['(Gs) into a Banach I'(S)-
bimodule in a natural manner (Remark 3.6) and then show that H'(I(S), ['(Gs)*")
vanishes for n > 0).

RemArk 3.6. Suppose that ~ is the equivalence relation on S given in Section 2 and
let G = S/~ be the maximal group homomorphic image of S and ¢ : § — Gy the
canonical homomorphism. The map ¢ extends to a continuous epimorphism of Banach
spaces @ : ['(S) — ['(Gs) determined by @(5;) = 645 (s € S). So I =ker ¢ is a closed
subspace of 1'(S). Define the mapping ¢ : I'(S)/I — I'(Gs) by w(f + I) = @(f). Tt
can be easily verified that ¢ is well defined and an isomorphism of vector spaces. Let
n:1'(S) — I'(S)/1 be the quotient mapping so that ¢ o w = ¢. Thus ¥ o 7 is continuous
and from [5, Proposition 5.2.2] we conclude that ¢ is continuous. By the inverse
mapping theorem, ¢ is an isomorphism of Banach spaces and so /'(S)/I = ['(Gs)
(isomorphic as Banach spaces). We turn /'(S)/I naturally into a Banach ['(S)-
bimodule by the operations

flg+D=fg and (g+D.f=gf (f.gel'(S).
Now, I'(Gs) is a Banach ['(S)-bimodule by the module actions
fh=y(fy ' (n) and h.f=y@ '(h).f) (fel'(S) gel'(Gs).

It is clear that with this definition v : ['(S)/I — ['(Gs) is a Banach ['(S)-bimodule
isomorphism. For any e,d € E we have e ~ d and so ¢(e) = ¢(d). Thus @(5,) = (64)
or 6, — 84 € 1. By noting the module action on I' (Gy),

Se — 84 € annpig)l'(Gs).
Also, by the module action, I'(Gg)** (n > 0) is a Banach /' (S )-bimodule and
8. — 64 € annpi )l (Gs)™",
forall e,d € E.

In the following corollary we consider /!(Gs )*" (n > 0) as in the previous remark
as a Banach ['(S)-bimodule. On the other hand, I'(Gs)?" is an L-embedded Banach
space. So the corollary follows from Theorem 3.4.

CoroLLary 3.7. HY(I'(S), [/(Gs)*) = 0 for all n > 0.
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