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REGULAR MULTILINEAR OPERATORS ON C(K) SPACES

FERNANDO BOMBAL AND IGNACIO VILLANUEVA

The purpose of this paper is to characterise the class of regular continuous multi-
linear operators on a product of C(K) spaces, with values in an arbitrary Banach
space. This class has been considered recently by several authors in connection with
problems of factorisation of polynomials and holomorphic mappings. We also obtain
several characterisations of a compact dispersed space K in terms of polynomials and
multilinear forms defined on C{K).

1. INTRODUCTION AND NOTATION

Let K be a compact Hausdorff space. C(K) is the space of scalar valued continuous
functions on K, £ will denote the cr-algebra of the Borel sets of K and 5 (2 ) will stand
for the space of E-measurable functions on K which are the uniform limit of elements of
£-simple functions.

As it is well known, the Riesz representation theorem gives a representation of the
operators on C(K) as integrals with respect to Radon measures, and this has been very
fruitfully used in the study of the properties of C{K) spaces. In a series of papers
(see specially [6, 7]), Dobrakov developed a theory of polymeasures, functions defined
on a product of a-algebras which are separately measures, that can be used to obtain
a Riesz-type representation theorem for multilinear operators defined on a product of
C{K) spaces.

Before going any further, we make clear our notation: If AT is a Banach space,
X* will denote its topological dual and Bx its closed unit ball. Ck{E\ ...,Ek\Y) will
be the Banach space of all the continuous /i-linear mappings from Ex x • • • x Ek into
Y, and T[^X;Yj the space of continuous fc-homogeneous polynomials from X to Y,
that is, the class of mappings P : X —> Y of the form P{x) — T(x,... ,x), for some
T e Ck{X, ...X; Y). When Y = K, we shall omit it. We shall use the convention .W. to
mean that the i-th coordinate is not involved.

We shall denote the semivariation of a measure /i by \\fi\\ and also the semivari-
ation of a polymeasure 7 by ||7||. (For the general theory of polymeasures see [6], or
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[14].) We recall that a polymeasure is called regular if it is separately regular and
it is called countably additive if it is separately countably additive. We shall denote
the set of bounded semivariation polymeasures defined in E; x • • • x Ej with values in
X by bpm (E i , . . . , E^; X). rcapm ( E j , . . . , S*; X) stands for the subset of the regular
countably additive polymeasures and bsv —w* — rcapm (E i , . . . , S*; X*) for the subset of
bpm (E i , . . . , Ejt; X") composed of those polymeasures that verify that for each x e X,

x o 7 g rcapm (E i , . . . , Ejt; K). As customary we shall denote by rca (E; X) the set of
regular countably additive measures from E into X.

With these notations at hand we can state for further reference the following theorem

from [4], which extends and completes previous results of Pelczynski [11] and Dobrakov

[7]:

THEOREM 1 . 1 . [4] Let Ki,...,Kk be compact Hausdorff spaces, let X be a

Banach space and let T £ Ck(C{Ki),...,C(Kk);X). Then there is a unique T €

Ck(B(Ei),..., B(Ejt), X") which extends T and is LJ* - w* separately continuous (the

w*-topology that we consider in B(Ei) is the one induced by the w*-topology ofC(Ki)").

As well, we have

2. For every (gu W.,gk) € B(Ei)x .M. xB(Et) there is a unique ^"-valued
bounded w*-Radon measure 7 [jj on Ki (that is, a X**-valued finitely
additive bounded vector measure on the Borel subsets of Ki, such that for
every x* € X*, x* o 7 ^ is a Radon measure on Ki), satisfying

/ '
=T(g1,...,gi-Ugi,gi+u...,gk), \/gt 6

3. T is u)* - u>* sequentially continuous (that is, if (<7t")nSN C B(T,i), for

i = l,...k, and gf ^ git then \imT(g?,...,gk
l) - T(gu...,gk) in the

a{X",X*) topology).
Also, if we define 7 : B(Ei) x • • • x B(Efc) ^ X" by

y(Au ... ,Ak) :=T(xAl,• • -XAk),

then 7 is a polymeasure of bounded semivariation that satisfies

(a)
(b)

(c) For every x* € X*, x* o 7 is a regular (scalar) polymeasure and the map

i ' i 4 i ' o 7 is continuous for corresponding weak-* topologies in X* and

Conversely, if 7 : Ei x • • • x Ejt >-> X** is a poiymeasure which satisfies (c), then

it has finite semivariation and formula (b) defines a k-linear continuous operator from

C(Ki) x • • • x C{Kk) into X for which (a) holds.

https://doi.org/10.1017/S0004972700033281 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033281


[3] Regular multilinear operators 13

Therefore the correspondence T «->• 7 is an isometric isomorphism between

Ck{C{K\),..., C(Kk); X) and the polymeasures in bsv -LJ* - r c a p m (Ei x • • • x Efc; X**)

that satisfy condition (c).

Our aim now is to exploit both representation theories, measures and polymeasures,

to study multilinear operators on C(K) spaces. In this paper we present some results in

this direction.

2. T H E M A I N R E S U L T S

The following definition can be found in [6] or in [14].

D E F I N I T I O N 2 .1 : A polymeasure 7 : Hi x • • • x E* t-> X is said to be uniform in

the ith variable if it is countably additive and the measures

are uniformly countably additive.

A polymeasure is said to be uniform if it is uniform in every variable.

It is easy to check that given a natural number r, 1 < r < k and r indices 1 < j(l) <

j(2) < ... < j(r) < k, and given fixed h^p) € B ( E J ( P ) ) , p = 1 . . .r, we can construct the

multilinear operator

II ^ x

defined by T/,j(l),...hj{r) (^9(i), • • •, /i9(fc-r)J := T(hx,..., hk) whose associated polymeasure

we shall call 7Aj(1),...hj(r).

Given a bounded polymeasure 7 : E t x • • • x E* 1-4 X and a fixed number i , l ^ i ^ k ,

we can construct in a natural way the measure fc : Ej H+ bpm ( E j , • • •, E^; X) defined by

4>i(Ai) := jAr The fact that fa is bounded, indeed \\4>i\\ = | |7| | , and the following lemma

are easy to check.

LEMMA 2 . 2 . With the above notation, a countably additive polymeasure 7 is

uniform in the ith variable if and only if fa is countably additive. The same is true if in

this statement "countably additive" is replaced by "regular".

Let Ei,..., Ek, X be Banach spaces. Each T e Ck(Ei,..., Ek\ X) generates in a

natural way k linear operators

d e f i n e d b y T ^ ) ( i ! , M., x k ) := T{xu ...,xk) f o r e a c h x j € Eit j = l,...,k.

We shall state now a definition:
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DEFINITION 2.3: A ^-linear mapping T £ Ck{Ex, ...,Ek; X) is said to be regular

if every mapping Tt defined above is weakly compact.

When X is the scalar field, the above definition was given in [3]. In general, given

an operator ideal U, we can define the U-regular ̂ -linear mappings as those such that

the corresponding T; belong to U for every 1 ̂  i ^ k. When U is the ideal of compact

operators, such mappings have been considered in [8], and for a general closed injective

operator ideal U in [9]. In every case a non-linear version of the factorisation theorem

of Davies, Figiel, Johnson and Pelczynsky (see [5, pages 250, 259]) through operators in

U is obtained for such multilinear mappings. These results are then applied to get some

factorisation theorems for holomorphic mappings.

We are ready now to prove the following characterisation of the uniform polymea-

sures.

THEOREM 2 . 4 . Let K\,..., Kk be compact Hausdorffspaces, let X be a Banach

space and let T € Ck(C{Kx),... ,C{Kk);X). Let 7 : Ex x • • • x E* ->• X" be the

polymeasure associated to it according to Theorem 1.1. Then 7 is uniform if and only if

T is regular. In that case the measures fa defined before Lemma 2.2 are the measures

canonically associated to the operators T{.

PROOF: Let us first assume that 7 is uniform (in particular this means that 7

is regular countably additive and therefore X-valued, see [7]). According to Lemma

2.2 this means that for each i — l,...,k, fa £ rca(Ei;rcapm fEi, }l). T,k;X)Y Since

rcapm(Ei,.W Lk;X) C >Cfc-1 (C(/Ci), .W., C(iTfc); X) (see Theorem 1.1) we get that

fa £ xc.&{pi\C
k-l{C{Kl),^.,C{Kk)\Xy). Then we can consider the operator H^ €

C(C(Ki); Ck~x (C{Ki), .W., C{Kk)\ X)) associated to fa by the Riesz representation the-

orem (vector valued case; see [5, Theorem VI.2.1]). Since fa is countably additive we know

that Hfa is weakly compact ([5, Theorem VI.2.5]). We consider now H"., the bitranspose

of H^. Since H^ is weakly compact we get that H% is Ck-l{C(K1), }9.,C{Kk);X)-

valued. It is easy to see that for every A{ € Ei, and for every (/1,.'!'., fkj £ C(Ki)x }l).

. . •/t-l,Xi4j,/i+l,- • • fk)-

Therefore,

H;:(9i){fu $., fk) = T ( / i , . . . fi-u 9i, fi+i, • • • fk),

for every Ej-simple function gt and for every f/i, •'•'•,/*) 6 C(Kx)x M). xC(Kk). From
continuity, we get the same relation for every gi € 5(Ej). In particular, when we choose
fi € C{K{) we get

H;*(fi) (/1, M., fk) = T ( / , , . . . fi-ufi, fi+u •••fk)
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Obviously this means that T* = H^ and, therefore, that T* is weakly compact.

Let us now assume that T is regular. Then, for every i = 1 . . . k, T{ £ C(C(Ki)Y,

Ck~l (C(Ki), .W., C(Kk); X) is weakly compact and so the measure /Xj associated to it by

the Riesz representation theorem is countably additive and Ck~l\C{Ki), $.,C{Kk)\XY

valued [5, Theorem VI.2.5]. We shall check now that for every i — 1 . . . k, ^ = fa. Then,

the proof will be finished just by looking at Lemma 2.2.

Let 77* be the bitranspose of T*. For each A{ 6 E; let (/f ) a € l be a net in C{K{) such

that / f ^ XAi- T** is known to be U*-LJ* continuous; since T{ is weakly compact we get

that T** is £*-'(C(KX), .®.,C(Kk)\X)-valued. Both of these facts together imply that

(Tr(ft))aeI converges weakly to T**(X/l.). For fixed (fu®.,fk) £ C{Kx)x .W. xC{Kk)

and x* € X*, the linear form

defined by 9(S) := \S(fi, }l).,fk),x*\ is clearly continuous and therefore

Also

Since T is separately w*-w* continuous we get that this last expression converges to

i, • • • fi-i,XAi, fi+i, • • •, fk),x*Y So we have obtained that for every x* e X',

i , . . . / i - i , X * , / m , •••,/*),*•) = (TTix^ifu&Jk),!'). Therefore for every

A{ € Ei and for every (fuW.Jk) € C{K{)x -1-1-

T(fu • ..fi-uXAofi+u - . . , / * ) = ^ " ( x

But clearly

T(h,... A.!, XA<, fi+u ••.,/*) = / (A. •[^1- A) *y* = ^ ( ^ ) ( / i , -'J1-,

From here it follows that /^ = fc and the proof is over. D

Since every operator from C(K{) to C(K2)* is weakly compact (see [5, Theorem
VI.2.15]), we get immediately the following result (see [6]):

COROLLARY 2 . 5 . Every regular countably additive scalar bimeasure 7 : Ei x

E2 -> K is uniform.

From the above theorem we can derive the following propositions, useful to decide
whether a polymeasure is or is not uniform. First we need a lemma.
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LEMMA 2 . 6 . LetT: C{KX) x • • • x C{Kk) M- X be a regular k-linear opera-

tor. Let ( / " ) n e N C C{K{) be a weakly null sequence and let ((<?DneN, -1-1-, (</?)„€!*)) C

B(Ei)x .W. x5(Ejt) be bounded sequences. Then, with the notation of Theorem 1.1,

T~(g?, • • • 9?-i, /",5iVi. • • •.ffjt) converges in norm to zero.

PROOF: If T is regular, then the above defined operator Tj is weakly compact

and therefore completely continuous, by the Dunford-Pettis property of C(Ki). This

means that Tj(/") —> 0. We observe now that, due to the uniqueness of the extension

(1.1), for every (gu^;9k) C B(£i )x .W. x5(Efc) and for every ft 6 C(K{), we have

Ti(fi)(gi,W;9k) = T(gu...gi-Ufi,gi+U...,gk). By the equality of the norms of the

operator and its extension, we can write 0. This can also be written as

sup |ri(/?)(51,.M,<fc)|->0)

which means that

sup lT{gu...gi-ufr,9i+u---,9k)\ -> 0

and finishes the proof. D

PROPOSITION 2 . 7 . A regular countably additive polymeasure 7 : Ei x • • • x
£jt t-» X is uniform in the ith variable if and only if the measures

f f n \ ['1 1

are uniformly countably additive.

PROOF: One of the implications is clear. For the other, let us suppose that 7

is uniform in the ith variable. Were the measures 17 ^ I (<7ii •'*'•! Sfc) € 5(Ej )x •••

xB(Et)} not uniformly countably additive, then there would exist e > 0, a sequence

(i4?)B6N C Ei of disjoint open sets and sequences ( « ) n 6 N , Ml, (ff?)neN) C 5(Ej)x .M.

xB(St) with ||g"|| ^ 1 for each n € N and for each j = 1 .$. k, such that 7 [j] (A") >

e. Then for each n e N there would exist / " £ C(/iTi) with supp/f C A^ and \\f?\\ <

1 such that / / " d 7 50 > e. This contradicts Lemma 2.6, since the sequence f?

converges weakly to 0. D

PROPOSITION 2 . 8 . A regular countably additive polymeasure 7 : £1 x • • • x
£jt »-> X is uniform in the ith variable if and only if the measures

are uniformiy countaWy additive.
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P R O O F : In one direction the result follows from the previous proposition. For the

other, we shall suppose without loss of generality that i — k. Let us suppose that the

measures {7/, /fc_i; ( /1. - - - , / * - i ) € C{K{) x ••• x C{Kk-i), \\fj\\ ^ l } are uniformly

countably additive. If 7 is not uniform in the kth variable then there exist a sequence

J4£ C Ejt of disjoint open sets and sequences M " J C T,j for j — 1 . . . k — 1 such that

7(^4", • • •, A%,) > e. Since 7 is regular, j(-, A%, •.. A%) is regular for each t i £ N and

therefore there exists a function /{* € C(KX) with ||/f|| < 1 such that l l / / " ^ ^ . . . . . / ^ !

> e. Now jf,-,xAn,. ..,XAn IS a ^ s o r e S u ^ a r a n d therefore there exists a function f£ € C(K2)

with ||/2"|| ^ 1 such that //2l^7/l
n,x>in,...,x/,n > e- Continuing in the same way we

obtain k - 1 sequences of norm one functions / " C C(Kj), j = 1 . . . k - 1 such that

7/",•••,/" (-̂ fc) > £ which contradicts the hypothesis. D

3. POLYMEASURES ON COMPACT DISPERSED SPACES

Recall that a compact Hausdorff space is said to be dispersed if it does not contain
any non empty perfect set. In [12] a deep insight is given into the structure of dispersed
spaces, proving among other results that K is dispersed if and only if C{K) contains no
copy of £1, if and only if C(K)* contains no copy of L\. Also, in this case C{K)* can be
identified with ^i(F) for some Y.

Some (if not all) of the following results are probably known, but we have not been
able to find an explicit reference.

THEOREM 3 . 1 . For a compact Hausdorff space K, the following statements are
equivalent:

(a) K is dispersed.

(b0) For every k^l, the space Ck(C{K)} is Schur.

( b j For some k ^ 2, the space Ck(C(K)\ is Schur.

(b2) For some k^2, the space 'P(fcC(A')) is Schur.

(b3) For every k^.2, the space v(kC(K)) is Schur.

(c0) For every k ^ 1, the space Ck(C(K)j is weakly sequentially complete.

(ci), (C2), (C3) Same statements as (bi), (b2), (b3), replacing Schur by weakly se-

quentialy complete.

(do) For every k ^ 1, Ck\C(K)j contains no copy of £oo.

(di), (d2), (d3) Same statements as (bi), (b2), (b3), replacing Schur by the non con-

tainement of £oo.

(e) For every k ^ 1, Ck\C(K)j contains no copy of CQ.

(ei), (e2), (e3) Same statements as (di), (d2), (d3), replacing i^ by c0.
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PROOF: Since Ck\C(K)j is a dual space for every k ^ 1, every (d) statement is

equivalent to the corresponding (e) statement. Also clearly (bj) => (CJ) => (d;), for every

i, (b0) => (bi) => (b2) and (b0) => (b3) => (b2). Therefore, it remains to prove (a) ==>

(b0) and (e2) =• (a).

(a) =>• (b0): We shall prove it by induction on A;. For k = 1, it is clear since

C(K)* « ^i(F). Suppose now that

) ( k ] :=X'

(see [5, Corollary VIII.2.2]) is Schur. Then

Ck+1(C{K)) =C(C{K);X*) =

Since C(K) contains no copy of i\ and has the Dunford-Pettis property, by the induction
hypothesis it follows that all members of the last space are compact operators. Hence,
since C(K)* has the approximation property,

£k+l(C(K)) =C{K)*®eX*

[5, Theorem VIII.3.6], which is a Schur space, since this property is stable by taking
injective tensor products (see [13]).

(e2) => (a): If K is not dispersed, C(K)* D Lx D <?2. Consequently

I2®tt2 C C{KY®eC{KY C (C(K)®nC{K)y

(topological inclusions), and it is well known that if (en) is the canonical basis of £?, then

(en <g> en) is equivalent to the canonical basis of c0 (see [10]). This means that v(2C(K)}

contains a copy of CQ. Since V(2C(K)j is a (complemented) subspace of P(kC(K)\, for

every k ^ 2, it follows that the latter space contains a copy of c0, too. D

As we mentioned in Corollary 2.5, every scalar regular bimeasure on a compact
Hausdorff space is uniform. This is not true for arbitrary polymeasures, as the following
example from [2] shows: The 3-linear map T : C([0,l]) x C([O,l]) x C([0,l]) -> C
defined by

T(f, 9, h) := f ) / (4) T On dx I' fin dx,
t=i V 2 ' Jo Jo

where r± is the standard ith Rademacher function, is not regular. See [2] for details.

In the next theorem we show that the uniformity of all the fc-polymeasures for some

(every) k ^ 3, characterises compact dispersed spaces. We shall denote by IC(X; Y) and

W{X; Y) the compact and weakly compact operators between X and Y, respectively.

THEOREM 3 . 2 . For a compact Hausdorff space K the following statements are

equivalent:
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(a) K is dispersed.

(f) For every (some) k > 2, C (C(K);£k(C(K))) = K (C(K);£k(C(K))).

(g) For every (some) k > 2, C (C(K); Ck(C(K))) = W (C{K); Ck(C(K))).

(h) For every (some) k ^ 3, any scalar regular k-polymeasure on the product
of the Borel a-algebra of K, is uniform.

PROOF: (a) =>• (f) was included in the proof of (a) => (b0) in Theorem 3.1, and
clearly (f) => (g). The equivalence of (g) and (h) follows from Theorem 2.4. Finally,
let us prove that (g) implies (a): Let k ^ 3. If K is not dispersed, C(K) is infinite
dimensional and thus contains a copy of c0 [5, Corollary VI.2.16]. On the other hand, by
Theorem 3.1, Ck~1(C(K)j contains a copy of 4o- By the injectivity of this space, the
inclusion map from CQ into ^ can be extended to the whole space C(K), providing in
this way a non weakly compact operator in C \C{K)\ Ck~l[C(K)y\. D

The equivalence of (a), (f) and (g) has been also obtained in [1], although with a
different and, in our opinion, more involved proof.
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