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DERIVATIVES OF KERNELS ASSOCIATED TO COMPLEX
SUBELLIPTIC OPERATORS

A.F.M. TER ELST

We prove large time Gaussian bounds for the derivatives of the semigroup kernel asso-
ciated with complex, second-order, subelliptic operators on Lie groups of polynomial
growth.

1. INTRODUCTION

It is well established that the kernel K of the semigroup generated by a right invariant
sublaplacian on a connected Lie group with polynomial growth satisfies global Gaussian
upper bounds. (See [15, Theorem VIII.2.9], or [12, Theorem IV.4.16].) Moreover,
multiple subelliptic derivatives of the kernel satisfy small time Gaussian upper bounds
with each derivative contributing an extra t~^-singularity ([7]). Saloff-Coste [13] also
proved similar bounds for single subelliptic derivatives of K and large t. Alexopoulos [2],
however, gave an example of a solvable Lie group of polynomial growth for which certain
second-order subelliptic derivatives of the kernel have a t~1^2, and not a t"1, asymptotic
behaviour. Nevertheless the higher order derivatives of the kernel do have global Gaussian
bounds with an additional <~1/'2-singularity for each derivative if the group is nilpotent
([15, 10]). Moreover, for compact groups spectral arguments show that one has an
exponential decrease for large t. The situation was clarified by the proof ([11]) that
a t~ ̂ asymptotic behaviour is valid for the second-order subelliptic derivatives of the
kernel if, and only if, the group is the (local) direct product of a compact group and a
nilpotent group, and then the higher-order derivatives have a similar canonical behaviour.
Despite this natural limitation Alexopoulos [l, Corollary of Theorem 7.7], showed that
a general first-order derivative and some second-order derivatives of the kernel do satisfy
the canonical large t Gaussian bounds. The situation then developed with a recent paper
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394 A.F.M. ter Elst [2]

of [3] which proved canonical large time Gaussian bounds for multiple derivatives in the
directions of the nilradical of G. Dungey's results were derived by combination of the
Gaussian bounds on the kernel and Z/2-bounds on its multiple derivatives. Since Gaussian
bounds are now known for the semigroup kernels associated with complex second-order
subelliptic operators ([9]) Dungey's results extend to this case. Dungey also established
a t-1/2-decay for L2-bounds for any right invariant derivative of the semigroup ([4]) using
an elaborate transference argument. In this paper we give a simpler proof of Dungey's
results for multiple derivatives in the directions of the nilradical, based on interpolation
arguments, almost as a corollary prove a <~1^2-decay for any right invariant derivative of
the kernel, extend Alexopoulos' result on general derivatives to the complex setting and
in addition consider higher order derivatives.

Let G be a connected Lie group with polynomial growth and Lie algebra 0. In order
to describe the main theorem we need some decomposition theory, which can be found
in [1, Sections 2 and 3]. Let q, n and m be the radical, nilradical and a Levi subalgebra
for 0. For all a € 0 let 5 (a) and K (a) denote the semisimple and nilpotent part in the
Jordan decomposition of ada. Then there exists a subspace 0 of q such that q = 0 © n,
[m, t»] — {0} and 5(t))o = {0}. Then the nilshadow of q is the nilpotent Lie algebra
q* = (q, [ •, • ]N) where

[a,b]N = [a,b}-S(a0)b + S(bB)a

with a0, bv the o-components of a, b € q. If {q^;*} denotes the lower central series of
qjv, that is, q^ji = qN and <\N-,k+i = [qw, qiV;*]/v for all k € N, then there exist vector
subspaces 6, hx, . . . , hr of q such that hi = t> © 6, n = t © q^;2 and qN]k = qN,k+i ® &fc
for all A; € { 1 , . . . , r } , where r is the rank of q^. Let b\,..., bj be a basis for Q passing
through 0, E, h 2 , . . . , hr, m. For all i € { 1 , . . . , d} define the weight Wj = 0 if b{ € tn © o,
u>i = 1 if bi € 6 and w* — k if 6j € h* with k ^ 2.

For all a 6 g let dLc{a) denote the generator of the one parameter group t
i-t Lc(expG(—ta)), where LG is the left regular representation in G and expG is the
exponential map. We set B{ = dLc(bi). We also need multi-index notation. Set

J{d) = 0 {1. • • •. d}n and i f a = (*i. • • • ,»n) G ^(d) set \a\ - n, \\a\\ =uil+...+uin
n=0

and Ba = Bh...Bin.
Let o i , . . . ,o<j/ be an algebraic basis for 0 and let C — (cki) be a dl x d'-matrix of

d!

complex coefficients. Assume 2~1(C+C") ^ \il for some \x > 0. Set H = — ^2 CMA/. At,

where A{ = dLcia-i)- Then it follows from [7] that the closure of the subelliptic operator
H generates a holomorphic semigroup 5 which has a smooth kernel K. If | • |' is the
modulus on G associated to the algebraic basis ai,...,ad> and V'(p) denotes the Haar
measure of the ball {g 6 G : |^|' < p] then it follows from [9] that K satisfies good
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[3] Derivatives of kernels 395

Gaussian bounds, that is, there exist b, c> 0 such that

(1) \Kt\ ^cGbit

for all t > 0, where Gb>t{g) = V ' ^ " ^ ^ ^ 2 * - 1 .

The main result of this paper is that the derivatives of K satisfy the following
Gaussian upper bounds.

THEOREM 1 . 1 . If a e J{d) and ie{l,...,d} then there exist b,c>0 such that

\BaKt\ ^ c r " Q l l / 2 G M and \BaBiKt\ ^ c r ^ Q " + 1 ^ 2 G b } t

for allt^l.

Dungey [3] proved the Gaussian bounds \BaKt\ ^ c r" a l l / 2 G M and \BaAkKt\
^ ci~("Q"+1'/2 Gbtt for multi-indices a in the nilradical directions and in the directions of
a subalgebra s of m for which there exists a subalgebra g0 of g such that g = s © g0 as
Lie algebras. In addition Dungey proved exponential decay e~ut for any (higher-order)
derivative which contains at least one derivative in the directions of s.

As in [3] we first prove first L2-bounds for BaSt with derivatives in the nilpotent
directions. Since our proof is shorter, we include it here.

The outline of the proof is as follows. First, we may assume that G is simply
connected, since the general case follows from the simply connected case by a transference
as in [11, p. 201]. So from now on G is simply connected. Secondly, we prove L2-bounds
on the derivatives of the semigroup in the nilpotent directions. These easily transform
into Loo-bounds on nilpotent derivatives of the kernel. Thirdly, by interpolation as in [8,
Lemmas 4.2 and 4.3], one obtains Gaussian bounds on the derivatives of the kernel in the
nilpotent directions. Fourthly, by the convolution property K^t = Kt * Kt one can move
an additional derivative in any direction to the kernel on the right. Then, by induction,
the first bounds of Theorem 1.1 follow. The second bounds follow similarly once one has
the correct Gaussian bounds on the derivatives A{Kt in the algebraic directions.

In Section 2 we introduce some more structure theory for Lie groups with polynomial
growth and prove Theorem 1.1 for derivatives in the direction of n. Then in Section 3 we
prove Theorem 1.1 in full.

2. NILPOTENT DERIVATIVES

The main difficulty in the proof of Theorem 1.1 is to prove Gaussian bounds for
one derivative BiKt with bt e n. We shall prove these bounds in this section. First we
introduce more structure theory on Lie groups with polynomial growth and in addition
we introduce a scale of Lie groups and subelliptic operators.

Let M and Q be the connected simply connected subgroups of G which have Lie
algebras m and q, respectively. Then MC\Q = {e} and M is compact since G has polyno-
mial growth. The bounds of Theorem 1.1 are independent of the choice of h i , . . . , hr. By
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396 A.F.M. ter Elst [4]

[1, Proposition 2.3], one can, however choose f ) i , . . . ,h r such that i)k is invariant under
5(o) and adm. By [1, Proposition 2.4], there exists an inner product (•, •) on g such
that the subspaces 0, t, f ) 2 , . . . , hr, m are mutually orthogonal and the operators S(v) are
skew-symmetric for all v € 0. Define the inner product (•, •) on g by

(a, b)= [ dm (Ad(m)a, Ad(m)ft)
JM

where dm is the normalised Haar measure on M. Then the subspaces o, 6, (j2, • • •, hr, m
are mutually orthogonal and the operators ada and S(v) are skew-symmetric for all a £ m
and v € Q. We may assume that b\,..., b* is an orthonormal basis with respect to ( • , • ) .

For all u > 0 let j u : g —¥ Q be the linear map such that ju(bi) — uWibi for all i
€ { 1 , . . . , d}, where ivt = 0 if &< € m and w* = k if bi € rjfc. Next define [ •, • ] u : g x g
-4 g by

Then gu = (g, [ •, • ]u) is a Lie algebra and j u : gu -> g a Lie algebra isomorphism. Define
similarly the nilpotent Lie algebra q^u = (q, [ •, • ]JVU) with

[a, b]Nu = 7 u
 1 ([7.(0), 7U(6)] N ) .

Then qwu is the nilshadow of gu. lia*NVb denotes the Campbell-Baker-Hausdorff formula

in a and b with respect to [ •, • ]JV« on q r̂u then QJVU = (q, *Nu) is the connected simply

connected nilpotent Lie group with Lie algebra q/vu. Set GNU = M X QNU. We denote by

*Nu the multiplication on GNU and by gt"1'"- the inverse of g. Define ru : g^u —> C(gNu)

by Tu(a)b = (adam + 5(7u(a0)))bq, where am and a0 are the components of a in m and

0 and 6q is the component of b in q. If Tu: gNu -» Aut(g^u) is the homomorphism such

that Tu(expGwu a) = eT"^ and Tu: GNU -> Aut(G^u) is the Lie group homomorphism

such that

for all a, b € g#u then (g, h) •-» g TU* h - (Tu(h
(-~1'lN<')g) *Nu h defines a Lie group

multiplication on the set GNU of which the Lie algebra is isomorphic to gu (compare [14,
p. 229]). Here expGNu denotes the usual exponential map on GNu. We set Gu = {GNu, Tu*)
and T = T\. Then with u = 1 the Lie group G is isomorphic to (GNU,T*) and from now
on we identify G with (GNUT*)- We also delete the u in a symbol if u = 1. As a
consequence

(2)

for all a 6 g, g e Gu and ip € C|°(GU). But it follows from the skew-symmetry of adm
and S(o) that Tu is a unitary representation of GNU on g equipped with the inner product
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We choose and fix a Lebesgue measure on the vector space q. Then we fix the Haar
measure on QNu such that JQN^ <p — J' <po expQftu for all <p € Cc{QNu). Then the Haar
measure on GNU is the product measure of the normalised Haar measure on the compact
group M and the Haar measure on QNU- Finally since |detTu(<?)| = 1 for all g it follows
that we can choose the Haar measure on Gu such that fG<P = fG <P for all <p £ CC{GU).
Note that this fixes the Haar measure on G = G\.

If a i , . . . , ad> is the algebraic basis of g then U7~ 1 (a i ) , . . . , wy~l(ad>) is an algebraic
basis for gu. Now set A[?] = dLG^(u%y(ak)) for all k € {l,...,d'}. Then (2) implies
that

(3) (4"V)(ff) = £ <

where

rkj = rkj ° r u , rkj(g) = (T{g)bj,ak) and F u : Gu —* G is the lifting of the isomorphism

Next, define the subelliptic operator H[u] on Gu by

k,l=l

If S'u' is the semigroup generated by H[u] then by subellipticity there exists a C\ > 0 such
that

uniformly for all A, u > 0 and k € { 1 , . . . , d'}.

Let do = dime and dq — dimq. Then n — {bdo+i,---,b,iq}. Moreover, set J(n)
oo

i + 1 , . . . , dq}
n. First we prove L-i bounds on nilpotent derivatives.

n=0

PROPOSITION 2 . 1 . For allae J(n) there exists a c> 0 such that

(6) ||BQ5f||2^2 < ct-^2

for all t ^ 1.

The proof requires some preparation. For all u > 0 consider the unitary represen-
tation f/(u) of the Lie group N in L2(GNu) defined by U^(n) = LGNii(n). For m € No

define the space
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with norm
||MH&>= max J l ^ V l b ,

where || • ||2 is the L2-norm on L2{GNu) and Jm(n) = { a £ J(n) : \a\ ^ m } . So A4u) is the
Banach space of m-times differentiable elements with respect to the representation f/'u'
and the vector space basis b^+i, • • •, &d, for n, with the usual norm. Define the seminorm

N%\<p) = max ||B<«*V||2 •
a€J(n)
\a\=m

Next we need bounds on Nm\(M + H[u))~
l<p).

LEMMA 2 . 2 . For all me IS! there exist c, Ao > 0 such that

A#> ((A/ + #[U])-V) ^ c A - 1 ^ ^ )

for all A ^ Ao, u ^ 1 and v? € £2;oo (<?#„).

PROOF: Since B^Vj."5 = 0 if 6{ € n and n is an ideal it follows from (3) that there
exists a c > 0 such that

for all k € { 1 , . . . , d'}, u > 1, y> € L2-,OO(GNU) and a e J(n) with \a\ = m. Let u ^ 1,
A > 0, v? € L<2;OO{GNV) and write V = (A/ + #[U])~V- For all a e J(n) with \a\ = m one
has

"1

< A"1 TV^M + c A"1 £ Ipal iViu)(^"V) + cc, A"1/2 ^ |cAi|
k,l=l k,l=l

d'

where we used (4) and (5). So with c2 = c Yl \cki\ one deduces that

(7) A#>WO < A"1 JVM(V) + c2 A"1
 fc6maxrf} i V ^ ( 4 u V ) + c, c2

Next, if Jfc 6 { 1 , . . . ,d '} and a € J(n) with |a | = m then it follows from subellipticity
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[7] Derivatives of kernels 399

that

But H[u]ip — tp — Xtp. So

Re(B^aip, B{u)aHwi[>)

and

^ C 2 A T £

by anti-symmetry of A^ and an estimate on the commutator [AJ"', S'"'a]. Hence

max N^(A^rp)2 ^ a^N^iip)2+ ic2u~1N^'>('dj) max

Therefore

where c3 = 4C2/X"1 + (2{n~1 + c2 + M" 'CC 2 ) ) 1 / 2 . Together with (7) it follows that

A-^ l + c2/i"
1/2)iV(J

u)(^) + c2(c3 A"1 + Cl A-1^) ^ '

So the lemma follows with Ao = 1 + 4c?>(ci + C3)2. D

Now we are able to prove Proposition 2.1.

P R O O F OF PROPOSITION 2.1: Let m e N, m ^ 2. It follows from the first five

steps in the proof of [9, Lemma 2.2] that there exists a u € (0,1) such that Z ^ i ^ u )

C (L2(GNU),L'2.mr{GNU)) ^ ^ and the embedding is continuous uniformly for all u ~2 1,

where £2.i(Gu) is the Sobolev space defined with respect to the group Gu and the algebraic

basis wy~l(a.i),..., U7~1(orf<) and L'2.mr(GNU) is the Sobolev space defined with respect to

the group GNU and the algebraic basis b\,...,bdl, &d,+i,..., bd, where d\ = dim J)j. Here

we used the real interpolation spaces with respect to the K-method of Peetre. Obviously
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400 A.F.M. ter Elst [8]

L'2mr{GNu) C L'^T(GNu), the Sobolev space with respect to the set bi,...,bdl. But
L'jfmriGNi) Q L^T^GNI), the Sobolev space with respect to the set 61 , . . . ,bdq and the
embedding is continuous. Therefore, by scaling, the space L'^^GNU)

 1S embedded in the
space L^mC^wu) and the embedding is continuous uniformly for all u ^ 1. Obviously,
L*2?m(GNu) Q Xm and the norm of the embedding is bounded by 1. Combining these
embeddings there exists a c > 0 such that

^ A , K ^
uniformly for all u ^ 1 and <p € L2;1 ((?„). Hence by (4) and (5) there exists a Co > 0 such

that

(8) IKA/ + ffM)"V||(^),^.)w ^ co*-ll2\Wh

for all u > 1, A > 1 and <p e #0
(u).

By Lemma 2.2 there exist Ci > 1 and Ao > 0 such that such that

for all A ^ Ao, u ^ 1 and ^ e L2-,OO(GNU). But L2]OO(GNU) is dense in A"4 by an argument

similar to the proof of [5, Lemma 2.4]. Hence if A = 1 V Ao then the map (XI + H^])'1

is continuous from X^1 into XQ with norm bounded by 1 and from Xm^ into X^ with

norm bounded by C\. Therefore, by interpolation, for all 7 € (0,1) the map (XI -\-H^)~l

is continuous from (X^]"', Xm )-y,2,K into (X^u), X&^ )7,2,K with norm bounded by c\. But

by (8) the map (XI + i^ju])"1 is also continuous from XQ into (XQU\Xm^)v,2,K with

norm bounded by c$. Hence, by interpolation, for all 7 € (0,1) the map (XI + ^[u])"1

is continuous from (AQ , Xm )I,2,K into (X^', Xm)y+(i-i)u,2,K with norm bounded by

Co + c\. Using interpolation once more, it follows that there exists an N € N such that

the map (XI + H[U])~N is continuous from X^ into (<*>
0
(u)>'*'mU))i-(2m)-1,2,K with norm

bounded by ( l+co + c i ) " . By (11) in [6] one has ( X ^ ^ X ^ ^ ^ ^ ^ K Q X^ and the

embedding is continuous, uniformly for all u > 0. Hence there exists a c2 > 0 such that

uniformly for all u ^ 1, ip e L2-,OO(GNU) and a € J (n) with \a\=m - 1. Then

\\B^a<p\\2 < c2(l + co + C l ) l ( A / + H[u])
N<p\\2

for all ip € I^ooCGu). In particular,

||B(u)oS[ul|U2 < c2(l + co + Cl)*

<ca(l + cb + Cl)"(A" + £ ; ^ ) A " |
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[9] Derivatives of kernels 401

But there exists a c3 ^ 1 such that | |#St| |2-»2 < c3t~
l for all t > 0. Then [ 1

= u2| | i/5n-iu2| |2_>2 ^ c3n uniformly for all u > 0. Then

for all u ^ 1, where c4 = c2c3(2(l + CQ + cx)\)
NN. Finally, it follows from (2) that

B^u)a oTu)B^u) for all i € { 1 , . . . ,d} and u > 0, where po(5)

But if 6j € n then for a non-vanishing term in the sum one must have bj 6 n. In

addition, Bj^'pij = 0 if bk S n and pi; is bounded. So for all a € J(n) there exist

bounded continuous functions pp such that £?(u)a = J2 (ppo TU)BMP. Then for
0€J(n); |/?|=|a|

all a e J(n) there exists a c5 > 0 such that ||B(u)Q5p||2->2 ^ c5, uniformly for all u ^ 1.

Then

for allt ^ 1 and Proposition 2.1 follows.

COROLLARY 2 . 3 . For alia € J(n) there exists a c > 0 such that

for all t ^ 1.

PROOF: For all t ^ 1 and a € J(n) one has

where K^ is the kernel of 5*. Then the corollary follows from the bounds (6), the Gaussian

bounds on K and K^ and the doubling property. D

The next lemma is the key in the induction step to turn Loo-bound on derivatives

and Gaussian bounds on K into Gaussian bounds on derivatives of K.

LEMMA 2 . 4 . Suppose a € Q, t ^ 1, b,co,c2,c,6 > 0, $ e C^iG) and suppose

that

for all g e G,

and | expua | ' ^ c ( l V \u\l/s) for all u 6 R . Then

for all T G (0, t*/2] and geG.
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P R O O F : If u e R then

(\g\')2 s$ 2 ( | exp ( -ua ) 5 | ' ) 2 + 2(| e x p H ' ) 2 < 2( |exp(-ua) 5 | ' ) 2 + 2c2 (l V |u|2 / i)

and hence
- (\exp(-ua)g\') ^ -2-\\g\')2 + c2 ( l V \u\2'*)

for all g € G. Therefore

)(g)

for all g € G and u e (0, t6'2}.

Using the identity

/'(0) - u-1 (/(«) - /(0)) +iT1 f dv (u - v) /"(«)
Jo

with / (u ) = (L(expuo)$)(p) one deduces that

< 2ebc2 u'1 Co V'ity^e-2-1"^2*-1 +2~luc2 V'(t)^2

for all g € G and u € (0, tsl2). Then the lemma follows by setting u = r e-4-16(lfll')2t-i []
Next we prove the Gaussian bounds for the nilpotent derivatives of the kernel. If

| • | and | • \cN are moduli on G and GN with respect to the basis bx,..., bd, respectively,
then it follows from (2) and the orthogonality of the T(g) that |<?| = \g\GN f°r all g € GV
Then by [15, Proposition 111.42], for any neighbourhood f2 of the identity element there
exists a c > 0 such that

(9) c-^glc^lgl'^clglG*

or all g 6 G\Q.

PROPOSITION 2 . 5 . For alia £ J(n) there are b, c> 0 such that

(10) \BaKt\^cr"aM2Gb,t

for all t^ 1.

PROOF: If |a | = 0 then the bounds (10) equal the bounds (1). The proof is by
induction. Let k € {d0 + l,...,dq}, a € J(n) and suppose that the bounds (10) are
valid for BaKt. Then by (9) and the inclusion "4>(R(t)) C B(ct)" in the proof of [15,
Proposition IV.5.6], applied to the simply connected nilpotent group QN it follows that
there exists a c > 0 such that |expubk\' ^c\u\1/u" for all |u| ^ 1. Then the bounds (10)
follow for BkB

aKt from Lemma 2.4 by taking $ = BaKu a = bk,6 = u>k and r = f *'2,
using the induction hypothesis and the Loo-bounds of Corollary 2.3 on B\BaKt. Hence
by induction the bounds (10) are valid for all a € J(n). The proof is complete. D
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[11] Derivatives of kernels 403

3. DERIVATIVE BOUNDS

The derivative bounds on the kernel in a general direction follow from the derivative
bounds in a nilpotent direction and an estimate on (bj, Ad(g)6i). We need two lemmas
before we prove the required bounds on Ad(g).

LEMMA 3 . 1 . If v e t> then K(v)c\N;k C q^fc+i for all k 6 { 1 , . . . , r}.

PROOF: It is straightforward to prove that aAv and K(v) are derivations on g^. If
v' € 0 then (adu)t/ = [v,v']jv and since K(v) is a polynomial in adv without a constant
term and adv is a derivation of qjv it follows that K(v)x> C qN.2. Clearly K(v)n = [v,n]N

Q QN-,2- SO K(v)q C q ^ - Since K(v) is a derivation of q# the corollary follows. D
<k

For all £ G Rd« define \\£\\ = £ \£i\1/Wi. Then it follows from the Campbell-Baker-
i=l

Hausdorff formula and the first displayed formula on page 55 of [15] that there exists a
c > 0 such that

ll£ll < c I e x P c N 6&i *cN ••• *GN

for all £ € R' ' ' with ||£|| ^ 1.

LEMMA 3 . 2 . For all i, j e { 1 , . . . , d} and m i , . . . , mdq € No there exists a c> 0
such that

\(bit

otherwise

for alii eR d « with ||f|| ^ 1.

PROOF: By composition it suffices to prove the statement for mi + . . . + m ^ = 1.

Let / 6 { 1 , . . . , dq) be such that mi — 1. Suppose the left hand side of (12) is not zero.

If I ^ d0 then v = (̂6/ S t> and one has K(v)m = {0} and K(v)qNik C qW;/t+i for

all k S { 1 , . . . , r} by Lemma 3.1. Hence i ^ dq and w, — Wj > Wi ^ Wj. Therefore with

c = |<6i,liC'(6/)6i>| one has

since ll^ll ^ 1.
If 2 > do then with n = 01 € n one has (adn)6j = -[&i,n] € i)w, C\n if b{ € m.

Hence b, € n and ut - u{ = w, = wt. Then j ^ - , (adf|6|)6i>| ^ |<6>f [6|A]>| UW^'^

since |^,| ^ ||f ||"". Alternatively, if 6,- 6 t> then (adn)6j = -(ad6j)n e qNiW, n n. So

ftj e n and Uj - w4 = ^ ^ «;,. Then j ^ , (ad^6i)bj>| ^ |<6J,[6IA-]>| llfll^"1* s i n c e

161 < U\\Wl < ll^irj- Finally, if 64 € n then (adn)^ e qN;wi+wr So iWj ^Wi + wi and one

can argue as before. U
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LEMMA 3 . 3 . For alii, j e {1 , . . . , d} there exists a c> 0 such that

^ otherwise

for all g 6 G.

P R O O F : Since G = MQ and M is compact it follows that Ad(M)6j is a bounded
subset of m 0 0 or h^j n n if 6j € m © d or b{ 6 n, respectively. So it suffices to
consider the case g e Q. By [14, Theorem 3.18.11], there exists a f € R*1 such that
g = exp£i&!... expf^fc^. Then

But S(v) is an orthogonal transformation, leaving m©0, E, h 2 , . . . , hr invariant. Moreover,
exPG/v 6^i *GW • • • *GN expGw ^ & d , = exp^foi.. . exp^6 d g = g. Therefore by (11) and
(9) it suffices to show that there exists a c > 0 such that

otherwise

uniformly for all f G R'4' with ||^|| ^ 1. But this follows from Lemma 3.2 by expanding
the (terminating) power series of the exponentials of the nilpotent endomorphisms. D

Next we derive a global a priori Gaussian bound which will be improved by subse-
quent additional arguments.

LEMMA 3 . 4 . For all a € J{d) there exist b, c> 0 such that

(13) \BaKt\^cGb,t

for all t ^ 1.

P R O O F : Let a e J(d). It follows from the semigroup property and the bounds (1)
that there exists a c > 0 such that

||Ba5t||oo = ||£°St||i-»oo < H£QSi/2lloo->oo HSt-i/alli-Kx, ^ cV'(t - \/2)-1'2

for all t > 1. Hence there exists a c > 0 such that ||BQ5t||oo < cV'(t)"1/2 for all t ^ 1.

Now we prove the lemma by induction to |a|. The bounds (13) are valid if |a | = 0.
Let k 6 {1, - - •, d}, a € J(d) and suppose the bounds (13) are valid for BaKt. Then the
bounds (13) for BkB

aKt follow from Lemma 2.4 by taking $ = BaKt, a = bk, r = 1
and (5 = 1, using the induction hypothesis and the above proved Loo-bounds on B\BaKt.
Hence the lemma follows by induction. D

The proof of Theorem 1.1 is an easy consequence of the next lemma.
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LEMMA 3 . 5 . Let R be a right invariant differential operator, b, c> 0, 6 ^ 0 and
i€{l,...,d}. Suppose that \RKt\ ^ ct~sGb,t for all t ^ 1. Then there exist b',d > 0
such that \BiRKt\ ^ dt-6rUil2 Gv,t for allt^l.

PROOF: For all j e { 1 , . . . , d) define T/>0 : G ->• R by

d
Then S, LG(5) = £ LG(s) ^y(5) £, for all geG. Hence

I

d

* tp) = X

for alH € { 1 , . . . , d} and (p,i> € ^i;Oo(G). In particular,

d

(14) Sii?i<r2t = Bi{(RKt) * Kt) = Yliitj RKt) * BjKt

for all t > 0. By Proposition 2.5 and Lemma 3.4 there exist b\,d > 0 such that IBjA'tl
^ ci t~">/2Gbut for all t ^ 1 and j € { 1 , . . . , d}. Moreover, by Lemma 3.3, one can restrict
the sum in (14) to j € { 1 , . . . ,d} with uij ^ Wj. So suppose w,- ^ Wj. Then there exists a
c2 > Osuchthat |^y(5)| ^ c2f l + (|ff|')U'J " ' ) for all5 G G. Therefore by the assumption
on RKt one has

| ^ ( f f ) (RKt)(g)\ ^ cc2(l + (\g\'t-V2r~Uit{ui-"i)/2) t~SGb,t(9)

for all g 6 G and i ^ 1, where c3 = supI>0a;^-'J ie-2"l6 : l2 . Then

• B,-/ft| < cc,c2(l + c3) f ' rWi'2 G2-iM * G6l,t

for some 6', t/ > 0, uniformly for all t ^ 1, since the convolution of two Gaussians is
bounded by a Gaussian. D

PROOF OF THEOREM 1.1: The first estimate for \a\ = 0 is given by (1) and it
follows by induction to |a | from Lemma 3.5. The second estimate follows similarly once
one can prove that BiKt has bounds \BiKt\ ^ ct~1/2 Gbtt for all t ^ 1. Since a i , . . . ,ad/
is an algebraic basis it suffices to prove that for all a £ J(d') with |a | ^ 1 there exist
6,c> 0 such that

(15) \AaKt\^c

for all t ^ 1. The proof is again by induction.
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If |a | = 1 then (15) has been proved in [13, Proposition 1], for a sublaplacian and
the proof for a complex subelliptic operator is the same, once one has the Gaussian
bounds (1). Let a € J(d') with |a| ^ 1, k € { 1 , . . . , d'} and suppose the bounds (15) for
AaKt are valid. Then the bounds (15) follow for AkA

aKt from Lemma 3.5 by writing Ak

as a linear combination of Bi,..., Bj- Hence by induction the bounds (15) are valid for
all a € J(d') with |a| ^ 1 and the proof of the theorem is complete. D
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