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Bipolar and Toroidal Harmonics.
By G. B. JEFFERY.

(Read 9th June 1916. Received 11th May 1916.)

Most of the solutions of Laplace’s equation in common use
in mathematical physics have been expressed in the integral form
given by Whittaker,* viz,

2
j S(xcost+ysint+iz, t) de
0

The solutions are well known for which /, regarded as a function
of its first argument, is a power, a circular function, a Legendre
function of the first or second kind, or a Bessel function. Thus
this general form of solution provides a means of classifying known
potential functions and of suggesting new ones. It is therefore
not without interest to express outstanding solutions of Laplace’s
equation in this form. In this paper it will be shown that bipolar
harmonics of integral order or potential functions for two spheres
are obtained by taking f to be a certain rational function of its
first argument. The corresponding forms for toroidal harmonics
are deduced. In each case the zonal and sectorial harmonics take
a simple form, while the tesseral harmonics are somewhat more
complicated,

If @, 2, 0 are cylindrical coordinates, we may define a set of
orthogonal curvilinear coordinates u, v, w, by means of the relations

T+i(z+a)

m, w=0. (1)

u + tv = log

The surfaces corresponding to constant values of u are a set of

coaxial spheres having 2=0 for their common radical plane. By

suitably choosing the position of the origin and the value of the

constant & it is possible to ensure that any two given spheres are
included in this set.

* Mathem. Analen, 1803, 57, p. 333.
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Solving (1) for @ and #z, we have

sin o sinh
—_ @ sin v o ESinhu . @)

coshu —cosv’ cosh u — cos v

Heine* has given a solution of Laplace’s equation in these co-
ordinates which may be expressed in the form

+hu sin -
J/ (cosh u — cos v) ™ HD¥ cos MWL (cos v) (3)

where P7 is the associated Legendre function.

Let us make the transformation

40 ¢ 4a’y
R W
so that (@ +(z—a)) (£ +9°)=16a*
and it it
T a(z-a
emreoa T z3—+§————a;_ : )
The following results of the transformation are readily verified :
&+ 7*=8a* (cosh u — cos v) e* (6)
£ + (n+2a) = da* e (1)
and
cosv=——La,,|, sinv= —/— 22—, (8)
&+ (n+2a)) &+ +2a)°)
Now

. 27

" ™ I'(n+m+1)
P (cosv)—g—;——r,(7b+l) ,
if R(cosv)>0, the symbol A representing the real part of the
expression to which it is prefixed.

(cos v + 1 sin v cos t)" cos mi dt

Hence

PR(cosn) = 5 T i @+ (14 20)

21
xj (& cost+n+ 2a)" cosmt dt,
0

* Kugelfunctionen IL., p. 270. See also a paper by the author, Proc.
Royal Soc., 1912, 874, p. 109.
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and from (7)

= T 1
e™ P (cos v) = . (ntm+1)

W (2a)" T (n+1)

where

2m
I= -‘ (1 £ cos t +n + 2a)" cos m¢ dt. (10)
0
Expanding by the binomial theorem, we have

CL T'(n+1) . _
= U S A 4 n—p »
! .‘.0 p2='0 p!T(n-p+1) (8§ cost+2)"™ (2a) cos mt .

This expansion is valid if » is an integer, or otherwise if
[técost+m|>|2% | for 0=t=23r In these cases we may
integrate term by term. From the two integrals of Laplace's type
for the Legendre functions, we have

27

I (tfcos t +m)"? cosmidt

0
e [D-pt DF @ +mped o cosmeds

=(-1 Trn-p-m+1H)T(n-p+m+1) ) (t&cost+n)—rH

Hence
2 L oo\n-ptl
(& +77) F(n+1)T(n-p+1)
p! Fm-p-m+1)T(n-p+m+1)

PR

2r cos mt dt
x .[o (2 £ cos b+ pyn-ptl

and without further difficulty we have
J/ (cosh % — cos v) e TP P (cos v)

1 = T'r+m+1)T(n-p+1)2a)—r

S

T2 ;S0 p! T(n-p-m+1)T(n-p+m+1)

2"' cos mt dt
o (AT cost+z—a)yrt

The corresponding integral in which cosmt is replaced by sin mi¢
clearly vanishes. Multiplying these two integrals by cos mw and
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sin mw respectively, and adding and then changing the variable of
integration from ¢ to ¢ — w, we have

A/ (cosh u — cos v) LY pm (cos v) cos mw

1 T(r+l) = (m-m),(n+m),
T2 /2rimP(m-m+1) 5o p!n,

2 neptl
N ' (2a)‘ .cosmtdt (11)
o (fzcost+iysint+z—a)y—tt
where o, =a (o — 1) (& — 2)... (2 - p + 1).
If we take
i T(n+l) (27 cos mt dt
P:,"(cosv)—?,}“l‘(n_m+1)_[0 (cos v + 1 sin v cos ¢)"+!

we are led in the same way to the result

J (cosh u — cos v) ¢~ P

_ ™ Tm+m+l) & (~n+m-1),(-n-m-1)
2, /2r T(n+l) ;5 (-n-1),(2a)"*

P7 (cos v) cos mw

2T
xj (txcost+iysint+z—a)*? cos mt dt (12)
0

which might have been written down from (11) by putting ~n -1
for n.

If |ifcost+n| < ]|2a| for 0 =¢=2r the binomial expansion
of (10) takes a different form, and in this case we arrive at the
result :

JJ(cosh u — cos v) P ry

™ T(r+m+1) & (n-—m),(m+p)!
Sy T (n-m+1) j=0 p! Cmtp)!

(cos v) cos mw

o mtp+1
x J‘o (20) cos mt dt (13)

(1 cost+1 ysin ¢ 4z — a)mtPH!

If » is a positive integer, the question of convergence does not
arise, for both of the series (11) and (13) terminate after n —m -1
terms. In this case these two forms may readily be seen to consist
of the same terms taken in the reverse order. We have had to
assume that cosv is positive, that is, that we are dealing with
points outside a sphere centre the origin and radius a, but as both
of the expressions equated in (11) are solutions of Laplace’s equation

8 Vol. 34,
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and continuous except at the point x=y =0, z=a, this restriction
may now be removed.

If n is not an integer (this case will be of importance when
we come to discuss toroidal harmonics), the series (11) and (13)
will contain an infinite number of terms, and it will be necessary
to examine their convergence.

In deducing (11) we have assumed that cosv > 0 and
|2&cost+m| > 2a. By considering a figure it is easily seen that
both of these conditions are satisfied inside a sphere of radius a
whose centre is =y =0, z=2a. The equation (11) will remain
true in any extension of this region in which the series converges
uniformly. The terms of this series bear a finite ratio to the
corresponding terms of the series

(n—m), (n+m), da® noptl
z {D" + (z - a)’}

n, p!

which converges uniformly if ©%4 (2 —a)* < 4a? 4.e. in the interior
of a sphere of radius 2¢ whose centre is x=y=0, z=a or u= +w,
In the same way it may be seen that (13) converges at points
outside this sphere.

In some special but important cases these results take a much
simpler form. First let us consider the zonal bipolar harmonics.
Putting m =0 in (13), we have

A/ (cosh u — cos v) Y% P (cos v)

i (2a)7+ dt
o (txcost+iysint+z—a)r*!

__1 > P

3o o p!
@ [ (iwcost+iysint+zta)
T J2r ), (iwcost+iysint+z—a)

and the restrictions imposed by considerations of convergence may
now be removed. It may readily be verified that (11) leads to the
same result.

The integral also takes a simple form in the case of sectorial
bharmonics. Putting m =n in either (11) or (13), we have at once

d, (14)

Af(cosh « — cos v) P P, (cos v) cos nw
2 (2a)** cos nt dt
.[o (vxzcost+iysint+z—-a)t

"n!

N

(15)

https://doi.org/10.1017/50013091500037494 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500037494

107

The general case of the tesseral harmonics does not admit of
such simple forms. If n is a positive integer, the function f of,
Whittaker’s formula is a rational function of its first argument ; if
» is not a positive integer, / may be expressed as a hypergeometric
function, but the interchange of the order of the summation and
integration necessary to express it in this form involves some loss
to the regions of convergence.

ToroipaL HaArRMONICS.

Let us write u=14u’, v=1v, a= —ia’. (1) and (2) then become

. . T+iz—a
u +1 =ilog ———— v
°T+iz+a 1)
and
@' sinh ¢/ _ asinu’ @)
" coshy’ — cosu’’ cosh v’ — cos v’ -
respectively.
Then, since from (1')
T —a') 22
v'=}log (_'—)—2_—2
(T+a)+z

the surfaces v’ = constant will be a series of anchor rings of circular
cross-section, or  Zores.”
The potential function (3) then becomes

1 4/ (cosh ¥’ — cos ') PR zg; mw Py (cosh o),

These are the well-known toroidal harmonics introduced by
Hicks.* Of the assumptions made in arriving at (11), the first, viz.
that R(cosv)>0 is satisfied everywhere. The second, that
|7|>2a may readily be seen to be satisfied at points inside a
sphere whose centre is the origin and whose radius is a, and which
therefore passes through the limiting circle of the tores. Hence,
in place of (11), we have

Af (cosh v' — cos ') ¢ o8 maw P (cosh v)
_ 1 I'(n+1) § (n —m), (n+m),
T2 2 D (n—-m+1) 5o pln,
2r 95 \n—p+1
x ' ( u?,) “’ cos mt.d’t - ar)
o (txcost+iysing+z4ia)tr

* Phil. Trans., 1881, p, 609.
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and similarly from (13) the same harmonic is
1 IF'n+m+1) & (n-m),(m+p)!
T2 /2m P T (n-m+1) gm0 p! Cm+p)!
" i (- 2éa’y"+**1 cos mt dt
_[0 (ixcost+1ysint+z+ig) et

(13)
Corresponding to (14) we have the zonal toroidal harmonics

A/ (cosh ' — cos u') gt p, (cosh v')
o [T (izcost+iysinti+z—ia)"
=/ Io (txcost+iysint+z+ia)™H

The toroidal harmonics corresponding to (15) are of little
importance, for they require » to be an integer, whereas in almost
all applications of toroidal harmonics = is half an odd integer.
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