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Abstract Motivated by the construction of the free Banach lattice generated by a Banach space, we
introduce and study several vector and Banach lattices of positively homogeneous functions defined on the
dual of a Banach space E. The relations between these lattices allow us to give multiple characterizations
of when the underlying Banach space E is finite-dimensional and when it is reflexive. Furthermore, we
show that lattice homomorphisms between free Banach lattices are always composition operators, and
study how these operators behave on the scale of lattices of positively homogeneous functions.

Keywords: Banach lattice; Banach space; free Banach lattice; lattice homomorphism

2010 Mathematics subject classification: 46B42; 46E05; 46B50

1. Introduction

From the point of view of Banach space theory, Banach lattices constitute an important
class which includes many of the classical function spaces arising in analysis. The order
structure of a Banach lattice is deeply tied to the geometry of its norm, and much research
has been carried out to elucidate this relationship.
A common approach in the literature is to use a Banach space E to construct, or

“induce”, a Banach lattice. We shall study a collection of Banach and vector lattices
obtained in this way, consisting of positively homogeneous functions defined on the dual
space of E, with the aim of understanding how key geometric properties of E are expressed
in the order structure of and relationship between the Banach lattices it induces.
Our motivation comes from the study of “free Banach lattices”. This notion arose in

the work of de Pagter and Wickstead [14], who defined the free Banach lattice over a set.
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2 N. J. Laustsen and P. Tradacete

Subsequently, Avilés, Rodŕıguez and Tradacete [6] defined the free Banach lattice FBL[E]
generated by a Banach space E and observed that this object generalizes that of de Pagter
and Wickstead in the sense that, for a set A, FBL[`1(A)] is the free Banach lattice over A.
As shown in [3, 4, 14], free Banach lattices are closely related to the notion of projec-

tivity. They also played a key role in the recent construction of push-outs in the category
of Banach lattices [7], and they have been instrumental in resolving a number of open
problems about the structure of Banach lattices, including the following:

• A Banach lattice may be lattice weakly compactly generated, but not embed into
any weakly compactly generated Banach space [6, Corollary 5.5]; this answered a
question of Diestel.

• A lattice homomorphism between Banach lattices need not attain its operator
norm [12].

• A closed, infinite-dimensional subspace of a Banach lattice need not contain any
bibasic sequences [29, Theorem 7.5].

Other recent results concern the relationship between a Banach space E and the free
Banach lattice FBL[E] it generates. Let us briefly mention a few of these:

• E is separable if and only if FBL[E] is separable [6, Theorem 3.2], if and only if
FBL[E] has a quasi-interior point [29, Proposition 9.4].

• FBL[E]∗ is order continuous precisely when E does not contain any complemented
copies of `1 [29, Theorem 9.20].

• FBL[E] satisfies an upper p-estimate if and only if the identity operator on E∗ is
(p∗, 1)-summing, where p∗ is the conjugate exponent of p [29, Theorem 9.21].

• FBL[E] always satisfies the countable chain condition [5].

Formally speaking, the free Banach lattice generated by a Banach space E is a Banach
lattice FBL[E] together with a linear isometry δE : E → FBL[E] such that, for every
Banach lattice X and every bounded linear operator T : E → X, there exists a unique
lattice homomorphism T̂ : FBL[E] → X such that the diagram

is commutative, and ‖T̂‖ = ‖T‖. This construction defines a covariant functor from the
category of Banach spaces and bounded linear operators into the category of Banach
lattices and lattice homomorphisms.
Standard arguments show that if the free Banach lattice generated by a Banach space E

exists, then it is unique up to isometric lattice isomorphism, so the significance of [6] is the
proof that FBL[E] exists. Constructing free vector lattices is quite straightforward (see
[8, 10]), but the method does not immediately carry over to Banach lattices (although it
is possible to adapt it, as shown in [33]). Instead, the authors of [6] took a different route,
constructing FBL[E] explicitly as a Banach lattice of functions. This additional feature
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has turned out to be very useful and is a cornerstone of our work. Let us therefore begin
with a review of the construction.
Take a Banach space E, and denote by H[E] the linear subspace of RE∗

consisting
of all positively homogeneous functions, where we recall that a function f : E∗ → R
is positively homogeneous if f(λx∗) = λf(x∗) for every x∗ ∈ E∗ and λ ∈ [0,∞). For
f ∈ H[E], define

‖ f ‖FBL[E]= sup{
n∑

j=1

|f(x∗j )| : n ∈ N, (x∗j )nj=1 ⊂ E∗, sup‖x‖61

n∑
j=1

|x∗j (x)| 6 1}. (1.1)

Then H1[E] = {f ∈ H[E] : ‖f‖FBL[E] < ∞} is a Banach lattice with respect to the
norm ‖ · ‖FBL[E] and the pointwise vector lattice operations. Now, for x ∈ E, the map
δx : E

∗ → R defined by δx(x
∗) = x∗(x) belongs to H1[E] with ‖δx‖FBL[E] = ‖x‖E ,

and [6, Theorem 2.5] shows that the free Banach lattice FBL[E] can be realized as the
closed sublattice of H1[E] generated by {δx : x ∈ E}, together with the linear isometry
δE : E → FBL[E] given by δE(x) = δx for x ∈ E.
This construction was generalized in [25] to produce the free p-convex Banach lattice

generated by a Banach space E for 1 6 p 6 ∞. To state the definition, set

‖f‖FBLp[E] = sup

{( n∑
j=1

|f(x∗j )|p
) 1

p

: n ∈ N, (x∗j )nj=1 ⊂ E∗, ‖(x∗j )nj=1‖p,weak 6 1

}
(1.2)

for f ∈ H[E], where

||(x∗j )nj=1||p,weak = sup
‖x‖61

( n∑
j=1

|x∗j (x)|p
) 1

p

(1.3)

denotes the weak p-summing norm of the n-tuple (x∗j )
n
j=1 in E∗. (As usual, expressions

of the form
(∑n

j=1 |tj |p
) 1

p

should be interpreted as max16j6n |tj | for p = ∞.) Note that

for p=1, (1.3) can equivalently be written as

||(x∗j )nj=1||1,weak = sup
εj=±1

∥∥∥ n∑
j=1

εjx
∗
j

∥∥∥. (1.4)

Then Hp[E] = {f ∈ H[E] : ‖f‖FBLp[E] < ∞} is a Banach lattice as before, and [25,
Theorem 6.1] shows that the closed sublattice of Hp[E] generated by the set {δx : x ∈ E}
together with the linear isometry δE : E → FBLp[E] given by δE(x) = δx for x ∈ E is
the free p-convex Banach lattice generated by E.
We observe that FBL[E] = FBL1[E] because (1.2) reduces to (1.1) for p=1. A less

obvious result, shown in [29, Proposition 2.2], is that FBL∞[E] can be identified with
the space of positively homogeneous weak*-continuous functions defined on the dual unit
ball.
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The role of positive homogeneity in these constructions is not coincidental, but a
consequence of the fact that the functions δx for x ∈ E are our building blocks. They are
linear, and hence lattice combinations of them will always be positively homogeneous.
We remark that earlier work on Banach lattices of positively homogeneous functions can
be found in [19, 30, 31, 34].
The purpose of the present paper is to investigate Hp[E] for 1 6 p < ∞ in its own

right, together with a number of sublattices and ideals lying between FBLp[E] andHp[E].
This will in particular lead to characterizations of the cases where the underlying Banach
space E is finite-dimensional (theorem 3.5) and reflexive (theorem 5.5).
In section 4, we shall see that in the infinite-dimensional situation, one should be able

to provide examples of weak*-continuous functions in Hp[E] that are not in FBLp[E].
Surprisingly, our proof requires the existence of a separable quotient of the underlying
Banach space E. Although this might be just an artefact of the proof, in any case it
provides a fairly general condition that allows us to distinguish FBLp[E] within the
weak* continuous functions of Hp[E].
Finally, in Section 6 we study lattice homomorphisms between free Banach lattices.

Our main result (theorem 6.4) states that every lattice homomorphism T : FBLp[E] →
FBLp[F ], where 1 6 p < ∞ and E and F are Banach spaces, can be expressed as a
composition operator

Tf = f ◦ ΦT (f ∈ FBLp[E])

for a unique map ΦT : F ∗ → E∗, which is positively homogeneous and maps weakly
summable sequences in F ∗ to weakly summable sequences in E∗, and whose restriction
to the closed unit ball of F ∗ is weak*-continuous. We explore the consequences and
applications of this result, including the impact of the map ΦT on the other Banach
lattices under investigation. We refer the reader to [1] and [2] for unexplained terms from
the classical theory of Banach spaces and Banach lattices.

2. Banach lattices of positively homogeneous functions defined on a dual

Banach space

Take p ∈ [1,∞], and let E be a Banach space, always over the real field. (We refer to [13]
for the construction and study of free complex Banach lattices over a complex Banach
space.) The Banach lattice (Hp[E], || · ||FBLp[E]) plays a central role in the definition
of FBLp[E], being the ambient lattice that FBLp[E] is defined as a sublattice of.
We shall consider the following vector lattices and ideals, several of which were already

mentioned in the Introduction; for ease of reference, we include them here:

H[E] = {f ∈ RE∗
: f is positively homogeneous}

latδ[E] = the sublattice of H[E] generated by {δx : x ∈ E}
I[E] = the ideal of H[E] generated by {δx : x ∈ E}

Hp[E] = {f ∈ H[E] : ‖f‖FBLp[E] <∞}

https://doi.org/10.1017/S0013091525101181 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525101181


Banach lattices of positively homogeneous functions 5

FBLp[E] = the closed sublattice of Hp[E] generated by {δx : x ∈ E}
Hw∗ [E] = {f ∈ H[E] : f�BE∗ is weak*-continuous}
Iw∗ [E] = I[E] ∩Hw∗ [E]

Hp
w∗ [E] = Hp[E] ∩Hw∗ [E]

Jp
w∗ [E] = the ideal of Hp[E] generated by Hp

w∗ [E]

Mp
w∗,0[E] = {f ∈ Hp[E] : f�BE∗ is weak*-continuous at 0},

where BE∗ denotes the closed unit ball of E∗. Note the change of terminology here: what
we call H1[E] was originally denoted H0[E] in [6]. As already stated in the Introduction,
Hp[E] is a sublattice of H[E] and a Banach lattice with respect to the norm ‖ · ‖FBLp[E]

defined by (1.2).
For f ∈ H[E], we write

||f�BE∗ ||∞ = sup
{
|f(x∗)| : x∗ ∈ BE∗

}
∈ [0,∞] (2.1)

for the uniform norm of the restriction of f to BE∗ . Then [29, Proposition 2.2] shows
that (FBL∞[E], ‖ · ‖FBL∞[E]) is isometrically lattice isomorphic to (Hw∗ [E], ‖ · ‖∞), as
previously mentioned. For that reason, we shall restrict our attention to the case p <∞
in the remainder of this paper.
We begin with some basic general observations.

Lemma 2.1. Let E be a Banach space, and take 1 6 p <∞. Then:

(i) I[E] = {f ∈ H[E] : |f | 6
∑n

j=1 |δxj
| for some n ∈ N and x1, . . . , xn ∈ E}

= {f ∈ H[E] : |f | 6
∨n

j=1|δxj
| for some n ∈ N and x1, . . . , xn ∈ E}.

(ii) Hw∗ [E] is a sublattice of H[E].
(iii) The norm ( 1.2) dominates the norm ( 2.1); that is, ‖f‖FBLp[E] > ‖f�BE∗‖∞ for

every f ∈ Hp[E].
(iv) Hw∗ [E] is closed in the norm ‖ · ‖∞ defined by ( 2.1) in the following precise sense:

Suppose that (fn) is a sequence in Hw∗ [E] which converges uniformly on BE∗ to
a function f ∈ H[E]. Then f ∈ Hw∗ [E].

(v) Hp
w∗ [E] is a closed sublattice of the Banach lattice (Hp[E], ‖ · ‖FBLp[E]).

(vi) FBLp[E] ⊆ Hw∗ [E].
(vii) I[E] ⊆ Jp

w∗ [E].

(viii) Iw∗ [E] ⊆ Hp
w∗ [E], where the closure is taken in (Hp[E], ‖ · ‖FBLp[E]).

(ix) Mp
w∗,0[E] is a closed ideal of Hp[E] containing Jp

w∗ [E], where the closure is again
taken with respect to the norm ‖ · ‖FBLp[E].

Proof. (i) The first equality follows from the fact that the set on the right-hand side
is the smallest solid subspace of H[E] which contains δx for every x ∈ E. The second
equality is immediate from the inequalities
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∨n

j=1
|δxj

| 6
n∑

j=1

|δxj
| 6

∨n

j=1
|δnxj

| (n ∈ N, x1, . . . , xn ∈ E).

(ii) This is a consequence of the fact that the lattice operations in H[E] are defined
pointwise.
(iii) This is clear because ‖x∗‖p,weak = ‖x∗‖ for each x∗ ∈ E∗.
(iv) This follows from the general result that the uniform limit of a sequence of

continuous functions defined on a compact Hausdorff space is continuous.
(v) Clause (ii) implies that Hp

w∗ [E] is a sublattice of Hp[E]. To see that it is closed,
suppose that (fn) is a sequence in Hp

w∗ [E] which converges to f ∈ Hp[E] in the norm
‖ · ‖FBLp[E]. Then (fn) converges uniformly on BE∗ to f by (iii), so (iv) implies that
f ∈ Hw∗ [E].
(vi) This is proved for p=1 in [6, Lemma 4.10], and the argument given therein carries

over verbatim to p> 1. Indeed, (v) implies that S := FBLp[E] ∩ Hw∗ [E] is a closed
sublattice of (FBLp[E], ‖ · ‖FBLp[E]). Clearly δx ∈ S for every x ∈ E, so S = FBLp[E];
that is, FBLp[E] ⊆ Hw∗ [E].
(vii) We begin by showing that I[E] ⊆ Hp[E]. Take f ∈ I[E]. By (i), we can find n ∈ N

and x1, . . . , xn ∈ E such that |f | 6
∑n

k=1 |δxk
|. Suppose thatm ∈ N and x∗1, . . . , x

∗
m ∈ E∗

with ‖(x∗j )mj=1‖p,weak 6 1. Then
∑m

j=1 |x∗j (xk)|p 6 ‖xk‖p for each k ∈ {1, . . . , n}, and
consequently

( m∑
j=1

|f(x∗j )|p
) 1

p

6

( m∑
j=1

( n∑
k=1

|x∗j (xk)|
)p

) 1
p

6
n∑

k=1

( m∑
j=1

|x∗j (xk)|p
) 1

p

6
n∑

k=1

‖xk‖,

where the second inequality is simply the statement that the norm of the sum of n
vectors in `mp is dominated by the sum of their norms. We conclude that ‖f‖FBLp[E] 6∑n

k=1 ‖xk‖ <∞, and therefore f ∈ Hp[E], as desired.
This implies that I[E] is the ideal of Hp[E] generated by δx for x ∈ E. These generators

belong to Hp
w∗ [E] (as we already observed in (vi) above), and hence I[E] ⊆ Jp

w∗ [E].
(viii) We have just seen that I[E] ⊆ Hp[E], so Iw∗ [E] ⊆ Hp

w∗ [E]. Now the conclusion
follows from the fact that Hp

w∗ [E] is closed by (v).
(ix) Suppose that f belongs to the closure of the ideal of Hp[E] generated byMp

w∗,0[E],
and take a weak*-null net (x∗α) in BE∗ . The set Mp

w∗,0[E] is a sublattice of H[E] because
the vector lattice operations are defined pointwise. Therefore, for each ɛ> 0, we can find
g ∈ Hp[E] and h ∈ Mp

w∗,0[E] such that ‖f − g‖FBLp[E] 6 ε and |g| 6 |h|. Since h(0) = 0
by positive homogeneity, we can choose α0 such that |h(x∗α)| 6 ε for every α > α0. Then
we have

|f(x∗α)− f(0)| = |f(x∗α)| 6 |f(x∗α)− g(x∗α)|+ |g(x∗α)|
6 ‖f − g‖FBLp[E] + |h(x∗α)| 6 2ε (α > α0),

which shows that f ∈Mp
w∗,0[E], and therefore Mp

w∗,0[E] is a closed ideal of Hp[E].

This implies that Jp
w∗ [E] ⊆Mp

w∗,0[E] because Hp
w∗ [E] ⊆Mp

w∗,0[E]. �
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The following two chains of inclusions summarize the relationship among the sets
defined above:

latδ[E] ⊆ FBLp[E] ⊆ Iw∗ [E] ⊆ Hp
w∗ [E]

⊆ Jp
w∗ [E] ⊆ Jp

w∗ [E] ⊆Mp
w∗,0[E] ⊆ Hp[E], (2.2)

where S denotes the closure of a set S with respect to the norm ‖ · ‖FBLp[E], and

latδ[E] ⊆ Iw∗ [E] ⊆ I[E] ⊆ Jp
w∗ [E]. (2.3)

In the next three sections we shall examine when two (or more) of these lattices are equal.

3. Characterizations of finite-dimensionality

In this section we study the chains of lattices (2.2) and (2.3) when the Banach space E
is finite-dimensional. It turns out that in this case the lattices will effectively reduce to
two options, either C(SE∗) or `∞(SE∗), where SE∗ = {x∗ ∈ E∗ : ‖x∗‖ = 1} denotes the
dual unit sphere; see proposition 3.2 and corollary 3.6 for details.
We begin by showing that in dimensions 0 and 1, even more is true: all the lattices

defined at the beginning of section 2 are equal, and this happens only in these two
dimensions. Perhaps more surprisingly, this is equivalent to the second inclusion Iw∗ [E] ⊆
I[E] in (2.3) being an equality.

Lemma 3.1. Let E be a Banach space, and take 1 6 p < ∞. Then the following
conditions are equivalent:

(a) dimE 6 1;
(b) latδ[E] = H[E];
(c) Hp[E] ⊆ Hw∗ [E];
(d) Hp

w∗ [E] = Jp
w∗ [E];

(e) Iw∗ [E] = I[E].

Proof. (a)⇒(b). We have latδ[E] = H[E] for E = {0} because H[E] = {0} in this
case.
Now suppose that E = R, in which case E∗ = R, and the duality is given by δx(y) =

〈x, y〉 = xy for x, y ∈ R. Take f ∈ H[R], and suppose that f(1) > −f(−1). Then, for
each y ∈ R, we have

(δf(1) ∨ δ−f(−1))(y) = δf(1)(y) ∨ δ−f(−1)(y) = f(1)y ∨ (−f(−1)y)

=

{
f(1)y for y > 0

−f(−1)y for y < 0

}
= f(y)

by positive homogeneity. Hence f = δf(1) ∨ δ−f(−1). A similar argument shows that
f = δf(1) ∧ δ−f(−1) when f(1) 6 −f(−1), and so f ∈ latδ[R] in both cases.
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We have (b)⇒(c) because the inclusions Hp[E] ⊆ H[E] and latδ[E] ⊆ Hw∗ [E] are
always true.
(c)⇒(d). Suppose that Hp[E] ⊆ Hw∗ [E]. Then we have Hp

w∗ [E] = Hp[E], from
which (d) follows.
(d)⇒(e). Suppose that Hp

w∗ [E] = Jp
w∗ [E]. Then lemma 2.1(vii) implies that I[E] ⊆

Hp
w∗ [E] ⊆ Hw∗ [E].
Finally, we prove that (e)⇒(a) by contraposition. Suppose that dimE > 2, and choose

two linearly independent functionals x∗0, y
∗
0 ∈ E∗, each having norm 1

2 . Then (x∗0 +
1
ny

∗
0)n∈N is a sequence in BE∗ which converges to x∗0 in norm and therefore also in the

weak* topology. Define f : E∗ → R by

f(x∗) =

t if x∗ = tx∗0 for some t > 0,

0 otherwise.

It is easy to see that f is positively homogeneous. Choose x0 ∈ E such that x∗0(x0) = 1.
Then |f | 6 |δx0

|, so f ∈ I[E]. On the other hand, f(x∗0 + 1
ny

∗
0) = 0 for each n ∈ N by

definition, but f(x∗0) = 1, so f�BE∗ is discontinuous at x∗0, and therefore f /∈ Hw∗ [E]. �

Let E be a non-zero Banach space. The restriction mapping R : f 7→ f�SE∗ defines
a lattice isomorphism of H[E] onto the vector lattice of functions SE∗ → R because
every function SE∗ → R extends uniquely to a positively homogeneous function E∗ → R.
When E is finite-dimensional, we can use this lattice isomorphism R to identify the
Banach lattices FBLp[E] and Hp[E] explicitly.

Proposition 3.2. Let E be a non-zero, finite-dimensional Banach space. Then, for
every 1 6 p <∞,

R(FBLp[E]) = R(Hw∗ [E]) = C(SE∗) and R(Jp
w∗ [E]) = R(Hp[E]) = `∞(SE∗),

where `∞(SE∗) denotes the Banach lattice of bounded functions SE∗ → R.

Proof. Lemma 2.1(vi) implies that R(FBLp[E]) ⊆ R(Hw∗ [E]), while the inclu-
sion R(Hw∗ [E]) ⊆ C(SE∗) follows from the fact that the weak* and norm topologies
on E∗ coincide. Therefore, to prove the left-hand identity, it only remains to verify
that C(SE∗) ⊆ R(FBLp[E]), which can be done by arguing as in the proof of [14,
Proposition 5.3]; see also [6, Corollary 2.9(iii)] for the connection between de Pagter
and Wickstead’s notion of the free Banach lattice over a set studied in [14] and the free
Banach lattice over a Banach space.
To prove the right-hand identity, we begin by observing that R(Jp

w∗ [E]) ⊆ R(Hp[E])
because Jp

w∗ [E] ⊆ Hp[E] by definition, and R(Hp[E]) ⊆ `∞(SE∗) because |f(x∗)| 6
‖f‖FBLp[E] for every x∗ ∈ BE∗ and f ∈ Hp[E]. Finally, to verify that `∞(SE∗) ⊆
R(Jp

w∗ [E]), take f0 ∈ `∞(SE∗). In view of the remarks we made before the statement
of the result, we can find f ∈ H[E] such that Rf = f0. Let ν ∈ H[E] be the “norm
function” defined by ν(x∗) = ‖x∗‖ for every x∗ ∈ E∗. Then Rν is the constant function
1, which obviously belongs to C(SE∗), so ν ∈ FBLp[E] ⊆ Hp

w∗ [E] by the first part of the
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Banach lattices of positively homogeneous functions 9

proof and lemma 2.1(vi). Since f is positively homogeneous, we have |f | 6 ‖f �SE∗ ‖∞ ν,
which shows that f ∈ Jp

w∗ [E], and the conclusion follows. �

Remark 3.3. The equality signs in proposition 3.2 mean “equal as vector lattices”,
with only equivalence of the norms. In fact, one can check that the constants in the
equivalence tend to ∞ as the dimension of the underlying Banach space E grows.

The following general observation will be useful for us.

Lemma 3.4. Let (xn) be a sequence in a Banach space E with ‖xn‖ −→
n→∞

0. Then

∨
n∈N

|δxn
| ∈ Hw∗ [E].

Proof. Set f =
∨

n∈N|δxn
|, which is clearly a positively homogeneous function, and

consider the functions fm =
∨m

n=1|δxn
| ∈ Hw∗ [E] for m ∈ N. They satisfy

‖(f − fm)�BE∗‖∞ = supx∗∈BE∗

∣∣∣∣∨∞

n=1
|x∗(xn)| −

∨m

n=1
|x∗(xn)|

∣∣∣∣
6 supx∗∈BE∗

∨∞

n=m+1
|x∗(xn)| =

∨∞

n=m+1
‖xn‖ −→

m→∞
0,

so f ∈ Hw∗ [E] by lemma 2.1(iv). �

Theorem 3.5. Let E be a Banach space, and take 1 6 p < ∞. Then the following
conditions are equivalent:

(a) E is finite-dimensional;
(b) FBLp[E] = Hw∗ [E];
(c) Hw∗ [E] ⊆ Hp[E];
(d) I[E] = Hp[E];
(e) I[E] = Jp

w∗ [E];
(f) I[E] is closed in Hp[E];
(g) FBLp[E] ⊆ I[E];
(h) Iw∗ [E] = Hw∗ [E];
(i) Iw∗ [E] is closed in Hp[E];
(j) FBLp[E] ⊆ Iw∗ [E].

Proof. The proof has three parts: first we show that conditions (a)–(c) are equivalent,
then we show that conditions (a) and (d)–(g) are equivalent, and finally we show that
conditions (h)–(j) are equivalent to the other conditions.
(a)⇒(b). This follows from the first identity in proposition 3.2.
(b)⇒(c). This is obvious because FBLp[E] ⊆ Hp[E] by definition.
(c)⇒(a). To prove the contrapositive, suppose that E is infinite-dimensional. Then, by

the weak Dvoretzky–Rogers theorem [15, Theorem 2.18], E∗ contains a sequence (x∗n)
which is weakly p-summable, but not strongly p-summable. By scaling this sequence by
a suitable constant, we may suppose that
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supx∈BE

∞∑
n=1

|x∗n(x)|p 6 1 and
∞∑

n=1

‖x∗n‖p = ∞.

For each n ∈ N, choose xn ∈ BE such that x∗n(xn) > ‖x∗
n‖
2 , and choose a decreasing

sequence (sn) in (0, 1) such that

lim
n→∞

sn = 0 and
∞∑

n=1

spn‖x∗n‖p = ∞.

Lemma 3.4 shows that the function f =
∨

n∈N|δsnxn
| belongs to Hw∗ [E]. However, f /∈

Hp[E] because the fact that ‖(x∗k)mk=1‖p,weak 6 1 for every m ∈ N implies that

‖f‖pFBLp[E] >
m∑

k=1

|f(x∗k)|p =
m∑

k=1

(∨
n∈N

sn|x∗k(xn)|
)p

>
m∑

k=1

spk|x
∗
k(xk)|p >

1

2p

m∑
k=1

spk‖x
∗
k‖p −→

m→∞
∞.

Consequently Hw∗ [E] * Hp[E].
(a)⇒(d). Suppose that E has dimension n ∈ N, and let (bj)

n
j=1 be a basis for E

with coordinate functionals (b∗j )
n
j=1, which form a basis for E∗. We may suppose that

‖b∗j‖ = 1 for each j ∈ {1, . . . , n}. Given f ∈ Hp[E], the number t = ‖f�BE∗‖∞ is finite
by lemma 2.1(iii), and for each non-zero x∗ ∈ E∗, we have

|f(x∗)| = ‖x∗‖
∣∣∣∣f( x∗

‖x∗‖

)∣∣∣∣ 6 ‖x∗‖ · t =
∥∥∥∥ n∑

j=1

x∗(tbj)b
∗
j

∥∥∥∥ 6
n∑

j=1

|x∗(tbj)|.

This inequality is trivially true for x∗ = 0, so |f | 6
∑n

j=1 |δtbj |, and therefore f ∈ I[E] by
lemma 2.1(i). This shows that Hp[E] ⊆ I[E], while the opposite inclusion follows from
lemma 2.1(vii).
It is clear that (d)⇒(f)⇒(g). We also have (d)⇒(e)⇒(g) because lemma 2.1(vii)

and (vi) show that the following inclusions always hold:

I[E] ⊆ Jp
w∗ [E] ⊆ Hp[E] and FBLp[E] ⊆ Hp

w∗ [E] ⊆ Jp
w∗ [E].

We prove that (g)⇒(a) by contraposition. Suppose that E is infinite-dimensional, and
take a normalized basic sequence (bn)n∈N in E. Let b∗n ∈ E∗ be a Hahn–Banach extension
of the nth coordinate functional of this basic sequence for each n ∈ N, and define f =∑∞

n=1 |δbn |/2n, which belongs to FBLp[E] because the series converges absolutely in the
norm ‖ · ‖FBLp[E].
We claim that f /∈ I[E]. By lemma 2.1(i), this amounts to showing that for every

m ∈ N and x1, . . . , xm ∈ E, we can find x∗ ∈ E∗ such that f(x∗) >
∑m

j=1 |x∗(xj)|. Since
m+ 1 > m, the system of m homogeneous linear equations
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m+1∑
k=1

b∗k(xj)tk = 0 (j = 1, . . . ,m)

in the m +1 real variables t1, . . . , tm+1 has a non-trivial solution, which we denote
(t1, . . . , tm+1) ∈ Rm+1 \ {(0, . . . , 0)}. Then the functional x∗ =

∑m+1
k=1 tkb

∗
k ∈ E∗ satisfies

x∗(xj) = 0 for each j = 1, . . . ,m, and therefore

f(x∗) =
m+1∑
n=1

|tn|
2n

> 0 =
m∑
j=1

|x∗(xj)|.

We have thus shown that conditions (a)–(g) are equivalent. Combining conditions (c)
and (d), we see that they imply condition (h).
(h)⇒(i). Suppose that Iw∗ [E] = Hw∗ [E]. Then Iw∗ [E] = Hp

w∗ [E], which is closed by
lemma 2.1(v).

(i)⇒(j). This follows from the general fact that FBLp[E] ⊆ Iw∗ [E].
Finally, we can complete the proof by observing that the implication (j)⇒(g) is

trivial. �

As a consequence, we obtain the following simplified version of the chains of inclusions
exhibited in (2.2) and (2.3) when the Banach space E is finite-dimensional.

Corollary 3.6. Let E be a Banach space of finite dimension at least 2, and take
1 6 p <∞. Then

FBLp[E] = Iw∗ [E] = Hw∗ [E] ( I[E] = Jp
w∗ [E] =Mp

w∗,0[E] = Hp[E].

Proof. The equalities follow from theorem 3.5 and lemma 2.1(ix), while proposition 3.2
implies that the inclusion in the middle is proper. �

4. Hp
w∗ vs. FBLp for infinite-dimensional spaces

Theorem 3.5 shows that when the Banach space E is infinite-dimensional, we should
replace I[E] and Iw∗ [E] with their closures I[E] and Iw∗ [E] in the norm ‖ · ‖FBLp[E], for
1 6 p < ∞, before we compare them with the other Banach lattices we study. In this
section we shall focus on the inclusions

FBLp[E] ⊆ Iw∗ [E] ⊆ Hp
w∗ [E].

We note that all three sets are closed sublattices of Hp[E], and theorem 3.5 shows that
FBLp[E] = Hp

w∗ [E] when E is finite-dimensional. However, at this point we do not know
whether one or both of these inclusions could be an equality for some infinite-dimensional
Banach space E, raising the following two questions:

Question 4.1. For which Banach spaces E is it true that FBLp[E] = Iw∗ [E] for
some/all 1 6 p <∞?
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Question 4.2. For which Banach spaces E is it true that Iw∗ [E] = Hp
w∗ [E] for

some/all 1 6 p <∞?

We begin by addressing the first of these questions. Our aim is to prove the following
result.

Theorem 4.3. Let E be a Banach space which admits an infinite-dimensional,
separable quotient space, and let 1 6 p <∞. Then Iw∗ [E] * FBLp[E], and hence

FBLp[E] ( Iw∗ [E].

We remark that no infinite-dimensional Banach space E which fails to admit an infinite-
dimensional, separable quotient space is known. In view of this, we conjecture that the
condition that FBLp[E] = Iw∗ [E] for some (or all) 1 6 p <∞ is equivalent to the Banach
space E being finite-dimensional.
The following lemma will play a key role in the proof of theorem 4.3.

Lemma 4.4. Let E be a Banach space. The following conditions are equivalent:

(a) For every (λn) ∈ `+2 , E
∗ contains a weakly 1-summable sequence (x∗n) such that

‖x∗n‖ = λn for each n ∈ N and the subspace
⋃

m∈N
⋂∞

n=m kerx∗n is dense in E.

(b) For every (λn) ∈ c+0 , E
∗ contains a weakly 2-summable sequence (x∗n) such that

‖x∗n‖ = λn for each n ∈ N and the subspace
⋃

m∈N
⋂∞

n=m kerx∗n is dense in E.
(c) E∗ contains a sequence (x∗n) of linearly independent functionals such that the

subspace
⋃

m∈N
⋂∞

n=m kerx∗n is dense in E.
(d) E∗ contains a sequence (x∗n) of non-zero functionals such that the subspace⋃

m∈N
⋂∞

n=m kerx∗n is dense in E.
(e) E admits an infinite-dimensional, separable quotient space.

Proof. We begin by showing that conditions (c), (d) and (e) are equivalent. It is clear
that (c) implies (d).
(d)⇒(e). Suppose that (x∗n) is a sequence in E∗\{0} such that

⋃
m∈NWm is dense in E,

whereWm =
⋂∞

n=m kerx∗n. ClearlyWm ⊆Wm+1 for eachm ∈ N, and eitherWm =Wm+1

or Wm has codimension one in Wm+1. We cannot have Wm = Wm+1 for all but finitely
many m ∈ N because if we did, we would have

⋃
m∈NWm = Wm0

for some m0 ∈ N,
so E = Wm0

because
⋃

m∈NWm is dense in E and Wm0
is closed. This would imply

that x∗n = 0 for each n > m0, which contradicts our assumption. Hence, by passing to a
subsequence, we may suppose thatWm (Wm+1 for each m ∈ N. According to a theorem
of Mujica (see [24, page 199]), this implies that (e) is satisfied.
Alternatively, we can easily verify (e) directly, showing that the quotient space E/W1

is separable and infinite-dimensional. To this end, take wm ∈ Wm+1 \ Wm such that
Wm+1 =Wm + Rwm for each m ∈ N. Then the subspace

W1 + span{wm : m ∈ N}

is dense in E, and therefore the subspace span{Qwm : m ∈ N} is dense in E/W1, where
Q : E → E/W1 denotes the quotient map. Hence E/W1 is separable. Furthermore, E/W1

https://doi.org/10.1017/S0013091525101181 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525101181


Banach lattices of positively homogeneous functions 13

is infinite-dimensional because the sequence (Qwm)m∈N is linearly independent. Indeed,
assuming the contrary, we can write Qwm+1 =

∑m
j=1 sjQwj for some m ∈ N and some

s1, . . . , sm ∈ R. Consequently wm+1 −
∑m

j=1 sjwj ∈ W1, so wm+1 ∈ Wm+1, which is a
contradiction.
(e)⇒(c). Suppose that W is a closed subspace of E such that E/W is infinite-

dimensional and separable. Then E/W has a Markushevich basis (see for instance [18,
Theorem 4.59]), say (Qxm)m∈N, where xm ∈ E and Q : E → E/W denotes the quotient
map. Set x∗n = Q∗(y∗n) ∈ E∗ for each n ∈ N, where y∗n ∈ (E/W )∗ is the nth biorthogonal
functional of (Qxm)m∈N, and observe that (x∗n)n∈N is linearly independent because Q∗ is
injective. We claim that

⋃
m∈N

⋂∞
n=m kerx∗n is dense in E. Indeed, given x ∈ E and ɛ> 0,

we can find m ∈ N, s1, . . . , sm ∈ R and w ∈ W such that ‖x−
∑m

j=1 sjxj − w‖ < ε
because span{Qxn : n ∈ N} is dense in E/W . Now the conclusion follows
because

〈 m∑
j=1

sjxj + w, x∗n

〉
=

m∑
j=1

sj〈Qxj , y∗n〉 = 0

for each n >m, so
∑m

j=1 sjxj + w ∈
⋂∞

n=m+1 kerx
∗
n.

Clearly (a) implies (d) and (b) implies (d). We shall now complete the proof by showing
that (c) implies (a) and (c) implies (b). This is the harder part of the proof, but it is
actually quite simple, as the former consists of making appropriate adjustments to the
proof of the Dvoretzky–Rogers theorem given in [15, Theorem 1.2], and the latter is
a minor variation, using ideas from [23, Theorem 2]. We include the details for the
convenience of the reader.
(c)⇒(a). Let (λn) ∈ `+2 , and set n0 = 0. As in the proof of [15, Theorem 1.2], we choose

integers 1 6 n1 < n2 < · · · such that

∞∑
j=nk+1

λ2j 6 2−2k (k ∈ N). (4.1)

Suppose that (y∗n) is a linearly independent sequence in E∗ such that the subspace⋃
m∈N

⋂∞
n=m kery∗n is dense in E. For each k ∈ N, we can apply [15, Lemma 1.3] to

the 2(nk − nk−1)-dimensional space span{y∗j : 2nk−1 < j 6 2nk} to find functionals

z∗nk−1+1, z
∗
nk−1+2, . . . , z

∗
nk

∈ span{y∗j : 2nk−1 < j 6 2nk},

each having norm between 1/2 and 1, such that

∥∥∥∥ nk∑
j=nk−1+1

αjz
∗
j

∥∥∥∥ 6

( nk∑
j=nk−1+1

α2
j

)1/2

(αnk−1+1, . . . , αnk
∈ R). (4.2)
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14 N. J. Laustsen and P. Tradacete

Define x∗j = λjz
∗
j /‖z∗j ‖ ∈ E∗ for every j ∈ {nk−1 + 1, . . . , nk}, so that ‖x∗j‖ = λj , and

observe that

2nk⋂
i=2nk−1+1

kery∗i ⊆ kerz∗j ⊆ kerx∗j (j ∈ {nk−1 + 1, . . . , nk}). (4.3)

The argument given in [15] shows that the sequence (x∗j ) is weakly 1-summable.

Hence it only remains to show that
⋃

m∈N
⋂∞

n=m kerx∗n is dense in E. Given x ∈ E and
ɛ> 0, choose m ∈ N and y ∈

⋂∞
n=m kery∗n such that ‖x− y‖ < ε. Then, choosing ` ∈ N0

such that 2n` + 1 > m, we obtain

y ∈
∞⋂

i=2n`+1

kery∗i =
∞⋂
k=`

( 2nk+1⋂
i=2nk+1

kery∗i

)
⊆

∞⋂
k=`

( nk+1⋂
j=nk+1

kerx∗j

)
=

∞⋂
j=n`+1

kerx∗j ,

where the inclusion in the middle follows from (4.3).
(c)⇒(b). As already stated, this proof is a minor variation of the argument we have

just given to show that (c) implies (a), so we shall focus on explaining the differences. It
suffices to consider (λn) ∈ c+0 with norm at most 1. We can no longer ensure that (4.1)
is satisfied; instead, we choose integers 0 = n0 < n1 < n2 < · · · such that

supj>nk
λj 6 2−k (k ∈ N). (4.4)

Our assumption that ‖(λn)‖∞ 6 1 implies that this estimate is also valid for k =0. Now,
for (y∗n) chosen as before, we can find the sequence (z∗j ) and define (x∗j ) as above. Then

the proof that
⋃

m∈N
⋂∞

n=m kerx∗n is dense in E carries over verbatim, so we only need
to verify that (x∗j ) is weakly 2-summable. For every (aj) ∈ B`2 and m ∈ N, we can

apply (4.2), (4.4) and the fact that ‖z∗j ‖ > 1
2 to obtain

∥∥∥∥ nm∑
j=1

ajx
∗
j

∥∥∥∥ 6
m∑

k=1

∥∥∥∥ nk∑
j=nk−1+1

ajx
∗
j

∥∥∥∥ =
m∑

k=1

∥∥∥∥ nk∑
j=nk−1+1

ajλj
‖z∗j ‖

z∗j

∥∥∥∥
6

m∑
k=1

( nk∑
j=nk−1+1

a2jλ
2
j

‖z∗j ‖2

) 1
2

6
m∑

k=1

22−k

( nk∑
j=nk−1+1

a2j

) 1
2

6 4.

This shows that (x∗j ) is weakly 2-summable because nm → ∞ as m→ ∞. �

Proof of theorem 4.3. This proof is a more subtle variant of the proof of the
implication (c)⇒(a) in theorem 3.5.
Recall that we seek a function f ∈ Iw∗ [E] \ FBLp[E]. It turns out to be convenient

to decompose E as E = F ⊕ Rx1 and then carry out the main technical part of the
construction of f within the subspace F. Consequently we choose x1 ∈ E and x∗1 ∈ E∗

such that ‖x1‖ = ‖x∗1‖ = 1 = x∗1(x1), and we then define F = kerx∗1.
Since E admits an infinite-dimensional, separable quotient space, so does F ; that is, F

satisfies one, and hence all, of the equivalent conditions in lemma 4.4. Using this, we shall
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prove that, for a suitably chosen real number q > p, F ∗ contains a weakly p-summable
sequence (y∗n) such that

‖y∗n‖ = n−
1
q (n ∈ N) and

⋃
m∈N

⋂
n>m

kery∗n = F. (4.5)

We split the proof of this claim in two cases:

• If p< 2, we choose q ∈ (p, 2) and observe that (n−
1
q )n∈N ∈ `+2 . Therefore

lemma 4.4(a) implies that F ∗ contains a weakly 1-summable sequence (y∗n) which
satisfies (4.5). Since p > 1, it follows that (y∗n) is weakly p-summable.

• Otherwise p > 2, in which case we choose q ∈ (p,∞). Since (n−
1
q )n∈N ∈ c+0 ,

lemma 4.4(b) shows that F ∗ contains a weakly 2-summable sequence (y∗n) which
satisfies (4.5). The fact that p > 2 ensures that (y∗n) is weakly p-summable.

Let P be the projection of E onto F given by Px = x−x∗1(x)x1 for x ∈ E. For each n ∈ N,
set x∗n+1 = P ∗y∗n ∈ E∗, and take a unit vector xn+1 ∈ F such that y∗n(xn+1) > ‖y∗n‖/2.
Then we have:

• x∗n+1(x1) = 0 and x∗n+1(xn+1) > ‖y∗n‖/2 for every n ∈ N;
• the subspace W =

⋃
m∈NWm is dense in E, where Wm =

⋂∞
n=m kerx∗n;

• the sequence (x∗n) is weakly p-summable, so

K := supx∈BE

( ∞∑
n=1

|x∗n(x)|p
) 1

p

<∞. (4.6)

Set sn = n
1
q−

1
p ∈ (0, 1] for each n ∈ N. Then sn → 0 as n → ∞, so lemma 3.4 shows

that the function g =
∨∞

n=1|δsnxn+1
| belongs to Hw∗ [E], and therefore f = |δx1

| ∧ g
belongs to Iw∗ [E] by lemma 2.1(ii). We shall now complete the proof by showing that
f /∈ FBLp[E], using (x∗n) to produce a suitable “witness sequence”.
The sublattice L of H[E] generated by {δw : w ∈ W} is dense in FBLp[E] because W

is dense in E. (This follows easily from the construction of FBLp[E] in [25, Theorem 6.1].)
Therefore it will suffice to show that

inf
{
‖f − h‖FBLp[E] : h ∈ L

}
> 0. (4.7)

Since W is a subspace of E, every function h ∈ L can be expressed in the form h =∨k
i=1δvi −

∨k
i=1δwi for some k ∈ N and some v1, . . . , vk, w1, . . . , wk ∈ W . As W is the

union of the increasing sequence (Wm) of subspaces, we can find m ∈ N such that
v1, . . . , vk, w1, . . . , wk ∈ Wm. Then, for each j ∈ {1, . . . ,m}, we see that the functional

z∗j = m− 1
px∗1 + x∗m+j ∈ E∗ satisfies
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h(z∗j ) =
∨k

i=1

(
m− 1

px∗1(vi) + x∗m+j(vi)
)
−
∨k

i=1

(
m− 1

px∗1(wi) + x∗m+j(wi)
)

=
∨k

i=1
m− 1

px∗1(vi)−
∨k

i=1
m− 1

px∗1(wi) = m− 1
ph(x∗1) (4.8)

because v1, . . . , vk, w1, . . . , wk ∈Wm ⊆ kerx∗n for every n > m.
It follows from (4.6) that ‖(x∗j )2mj=m+1‖p,weak 6 K. Combining this estimate with the

easy observation that ∥∥(m− 1
px∗1, . . . ,m

− 1
px∗1︸ ︷︷ ︸

m

)
∥∥
p,weak

= ‖x∗1‖ = 1 (4.9)

and the subadditivity of ‖ · ‖p,weak, we see that ‖(z∗j )mj=1‖p,weak 6 K + 1, so

(K + 1)‖f − h‖FBLp[E] >

( m∑
j=1

| f(z∗j )− h(z∗j ) |p
) 1

p

. (4.10)

Another application of (4.9) shows that

‖f − h‖FBLp[E] >

( m∑
j=1

| m− 1
p (f(x∗1)− h(x∗1)) |p

) 1
p

. (4.11)

Now we combine (4.10) and (4.11) with the subadditivity of the norm on `mp to obtain

(K + 2)‖f − h‖FBLp[E] >

( m∑
j=1

| f(z∗j )− h(z∗j )−m− 1
p (f(x∗1)− h(x∗1)) |p

) 1
p

=

( m∑
j=1

| f(z∗j )−m− 1
p f(x∗1) |p

) 1
p

, (4.12)

where the final equality follows from (4.8).
To find a lower bound on the right-hand side of (4.12), we recall that f = |δx1

| ∧ g,
where g(x∗1) = 0 because xn+1 ∈ F = kerx∗1 for every n ∈ N, so f(x∗1) = 0, while

f(z∗j ) =| m− 1
px∗1(x1) + x∗m+j(x1) | ∧

∨∞

n=1
sn | m− 1

px∗1(xn+1) + x∗m+j(xn+1) |

= m− 1
p ∧

∨∞

n=1
sn | x∗m+j(xn+1) |> m− 1

p ∧ sm+j−1 | x∗m+j(xm+j) |

> m− 1
p ∧

sm+j−1‖y∗m+j−1‖
2

= m− 1
p ∧ 1

2
(m+ j − 1)−

1
p >

1

2
(2m)−

1
p

for each j ∈ {1, . . . ,m}. Substituting these estimates into (4.12), we conclude that

(K + 2)‖f − h‖FBLp[E] > 2−
p+1
p ,

from which (4.7) follows because the constant K is independent of h.
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This completes the proof that f ∈ Iw∗ [E] \ FBLp[E]. The final clause follows because

FBLp[E] ⊆ Iw∗ [E]. �

Moving on to Question 4.2, we shall only give one result which shows that this inclusion
need not be proper, and finding a general answer may not be easy. We first need to
introduce some machinery.
Let E be a Banach space, and equip BE∗∗ with the relative weak* topology. Then, for

1 6 p <∞ and a positive Radon measure µ on BE∗∗ (so in other words µ ∈ C(BE∗∗)∗+),
we can define a function fpµ : E

∗ → R+ by

fpµ(x
∗) =

(∫
BE∗∗

|x∗∗(x∗)|p dµ(x∗∗)
) 1

p

(x∗ ∈ E∗). (4.13)

This construction is useful for our purposes because [25, Propositions 7.6 and 7.7] show
that, on the one hand, fpµ ∈ Hp[E] with ‖fpµ‖FBLp[E] 6 ‖µ‖ and on the other, for every
f ∈ Hp[E], we can find a probability measure µ ∈ C(BE∗∗)∗+ such that

|f(x∗)| 6 ‖f‖FBLp[E]f
p
µ(x

∗) (x∗ ∈ E∗). (4.14)

Proposition 4.5. For 1 6 p <∞ and any set A,

Iw∗ [`1(A)] = Hp
w∗ [`1(A)],

where the closure is taken with respect to the norm ‖ · ‖FBLp[`1(A)].

Proof. Set E = `1(A), and let R : E∗ → C(BE∗∗) be the bounded linear operator
defined by (Rx∗)(x∗∗) = x∗∗(x∗) for x∗ ∈ E∗ and x∗∗ ∈ BE∗∗ ; that is, Rx∗ is the
restriction of the evaluation map δx∗ to BE∗∗ .
For f ∈ Hp

w∗ [E], we can choose a probability measure µ ∈ C(BE∗∗)∗+ such that (4.14)
is satisfied. Let J∞ : C(BE∗∗) → L∞(BE∗∗ , µ) and Jp : L∞(BE∗∗ , µ) → Lp(BE∗∗ , µ) be
the formal inclusion maps. Then, by [11, Theorem I.8] or [15, page 97], the composite
operator T = JpJ∞R : E∗ → Lp(BE∗∗ , µ) is strictly p-integral, and we can restate the
inequality (4.14) as

|f(x∗)| 6 ‖f‖FBLp[E]‖Tx∗‖ (x∗ ∈ E∗). (4.15)

Let J0 : c0(A) → `∞(A) = E∗ be the inclusion map. Its domain is an Asplund space,
so [11, Theorem II.3] shows that the operator TJ 0 is p-nuclear; therefore, using [11,
Definition I.1] or [15, Proposition 5.23], we can find sequences (yj)j∈N in E = c0(A)

∗ and
(zj)j∈N in Lp(BE∗∗ , µ) such that

(i) TJ0x
∗ =

∑∞
j=1〈yj , x∗〉zj for every x∗ ∈ c0(A);

(ii) (yj)j∈N is strongly p-summable; that is,
∑∞

j=1 ‖yj‖p <∞;
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(iii) (zj)j∈N is weakly p∗-summable, where p∗ ∈ (1,∞] is the conjugate exponent of p;
that is, supj∈N‖zj‖ <∞ if p=1, and otherwise

sup

{ ∞∑
j=1

|〈z∗, zj〉|p
∗
: z∗ ∈ Lp∗(BE∗∗ , µ), ‖z∗‖ 6 1

}
<∞,

where 1
p + 1

p∗ = 1. By rescaling, we may suppose that these suprema equal 1.

Condition (ii) implies that we can define a bounded linear operator U : E∗ → `p by
Ux∗ = (〈yj , x∗〉)j∈N. Applying (i) and (iii), as well as Hölder’s inequality if p> 1, we
obtain

‖TJ0x∗‖ = sup
‖z∗‖61

|〈z∗, TJ0x∗〉| = sup
‖z∗‖61

∣∣∣∣ ∞∑
j=1

〈yj , x∗〉〈z∗, zj〉
∣∣∣∣

6

( ∞∑
j=1

|〈yj , x∗〉|p
) 1

p

= ‖Ux∗‖ (x∗ ∈ c0(A)). (4.16)

We now claim that the map g ∈ H[E] defined by g(x∗) = ‖Ux∗‖ for x∗ ∈ E∗

belongs to FBLp[E]. For ɛ> 0, take m ∈ N such that
∑∞

j=m+1 ‖yj‖p 6 εp, and set

gm =
(∑m

j=1 |δyj
|p
) 1

p ∈ FBLp[E]. We observe that gm(x∗) =
(∑m

j=1 |〈yj , x∗〉|p
) 1

p

=

‖PmUx
∗‖ for x∗ ∈ E∗, where Pm : `p → `p denotes the mth basis projection. Hence, for

n ∈ N and (x∗k)
n
k=1 ⊂ E∗ with ‖(x∗k)nk=1‖p,weak 6 1, we have

n∑
k=1

|(g − gm)(x∗k)|p =
n∑

k=1

| ‖Ux∗k‖ − ‖PmUx
∗
k‖ |p6

n∑
k=1

‖(I`p − Pm)Ux∗k‖p

=
n∑

k=1

∞∑
j=m+1

|〈yj , x∗k〉|p =
∞∑

j=m+1

n∑
k=1

|〈yj , x∗k〉|p 6
∞∑

j=m+1

‖yj‖p 6 εp.

This proves that ‖g − gm‖FBLp[E] 6 ε, and the claim follows.
Combining the inequalities (4.15)–(4.16) with the definition of g, we see that |f(x∗)| 6

‖f‖FBLp[E] g(x
∗) for x∗ ∈ c0(A). Goldstine’s theorem allows us to extend this inequality

to x∗ ∈ E∗ because the restrictions of f and g to BE∗ are weak*-continuous. This shows
that f ∈ Iw∗ [E], and therefore Hp

w∗ [E] ⊆ Iw∗ [E].
The opposite inclusion follows from lemma 2.1(viii). �

The above proof follows an approach due to T. Oikhberg [28], and fixes a gap in an
earlier version.

5. Characterizations of reflexivity

To understand the case where the underlying Banach space E is reflexive, we begin
with the observation that E∗∗ ⊆ H[E] because every functional x∗∗ ∈ E∗∗ is positively
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homogeneous. Under this inclusion, the canonical image of E inside E∗∗ is identified with
{δx : x ∈ E}. The following lemma clarifies where the elements of E∗∗ sit in the hierarchy
of sublattices (2.2)–(2.3) of H[E] that we study.

Lemma 5.1. Let E be a Banach space, and take 1 6 p <∞. Then:

(i) E∗∗ ⊆ Hp[E] with ‖x∗∗‖FBLp[E] = ‖x∗∗‖ for every x∗∗ ∈ E∗∗.
(ii) E∗∗ ∩ I[E] = E∗∗ ∩Hw∗ [E] = E∗∗ ∩Mp

w∗,0[E] = {δx : x ∈ E}.

Proof. (i) Since

( m∑
j=1

|x∗∗(x∗j )|p
) 1

p

6 ‖x∗∗‖ · ‖(x∗j )mj=1‖p,weak

for x∗∗ ∈ E∗∗, m ∈ N and x∗1, . . . , x
∗
m ∈ E∗, we have ‖x∗∗‖FBLp[E] 6 ‖x∗∗‖. The opposite

inequality follows from the fact that ‖x∗‖p,weak = ‖x∗‖ for every x∗ ∈ E∗.
(ii) It is clear that δx ∈ E∗∗ ∩ I[E] ∩ Hw∗ [E] for every x ∈ E, and lemma 2.1(vii)

and (ix) show that I[E] ⊆Mp
w∗,0[E]. Hence we can complete the proof by showing that if

x∗∗ ∈ E∗∗ belongs to Hw∗ [E] or Mp
w∗,0[E], then x∗∗ = δx for some x ∈ E. In both cases

x∗∗�BE∗ is weak*-continuous at 0, so x∗∗�−1
BE∗ ({0}) = kerx∗∗ ∩BE∗ is weak*-closed. This

implies that x∗∗ = δx for some x ∈ E by an application of the Krein–Smulian theorem
(see, e.g., [18, Corollary 3.94]). �

Corollary 5.2. Let E be a non-reflexive Banach space and 1 6 p <∞. Then

Hp[E] *Mp
w∗,0[E] ∪Hw∗ [E].

Proof. Lemma 5.1 shows that E∗∗ \ {δx : x ∈ E} ⊆ Hp[E] \ (Mp
w∗,0[E] ∪Hw∗ [E]). �

Before stating our next result, we recall the following classical characterization of weak
sequential convergence in C (K )-spaces (see [16, Theorem 1.1] or [17, Corollary IV.6.4]),
which will be required in the proof.

Theorem 5.3. Let K be a compact Hausdorff space. A sequence (fn)n∈N in C(K)
converges weakly to a function f ∈ C(K) if and only if supn∈N‖fn‖∞ <∞ and fn(x) →
f(x) as n→ ∞ for every x ∈ K.

Lemma 5.4. Let 1 6 p < ∞, let E be a reflexive Banach space, and equip its unit
ball BE with the weak topology. Then the map ψp : BE∗ → C(BE) defined by

ψp(x
∗)(x) = |x∗(x)|p (x∗ ∈ BE∗ , x ∈ BE)

is continuous with respect to the weak topologies on BE∗ and C(BE), respectively.

Proof. We begin by showing that ψp is weakly sequentially continuous. Take
a sequence (x∗n)n∈N in BE∗ which converges weakly to some x∗ ∈ BE∗ . Then
supn∈N‖ψp(x

∗
n)‖∞ 6 1 and
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ψp(x
∗
n)(x) = |x∗n(x)|p −→

n→∞
|x∗(x)|p = ψp(x

∗) (x ∈ BE),

so theorem 5.3 shows that (ψp(x
∗
n))n∈N converges weakly to ψp(x

∗).
Now, in order to complete the proof, take a weakly closed subset C of C(BE), and

let us prove that ψ−1
p (C) is weakly closed in BE∗ . By the reflexivity of E and the

Eberlein–Smulian theorem, this is equivalent to showing that ψ−1
p (C) is weakly sequen-

tially compact. To verify this, take a sequence (x∗n)n∈N in ψ−1
p (C). Due to the weak

sequential compactness of BE∗ , (x∗n)n∈N has a subsequence (x∗nj
)j∈N which converges

weakly to some x∗ ∈ BE∗ . The first part of the proof implies that (ψp(x
∗
nj
))j∈N converges

weakly to ψp(x
∗). Since ψp(x

∗
nj
) belongs to the weakly closed set C for each j ∈ N, we

see that ψp(x
∗) ∈ C. In conclusion, we have shown that (x∗n)n∈N has a subsequence which

converges weakly to x∗ ∈ ψ−1
p (C), and the result follows. �

Recall that for a Banach space E, 1 6 p < ∞ and µ ∈ C(BE∗∗)∗+ (where BE∗∗ is
equipped with the relative weak* topology), we have defined a function fpµ ∈ Hp[E]
by (4.13).

Theorem 5.5. Let 1 6 p <∞, and let E be a Banach space. The following conditions
are equivalent:

(a) E is reflexive.
(b) fpµ ∈ Hw∗ [E] for every µ ∈ C(BE∗∗)∗+.
(c) Hp[E] = Jp

w∗ [E].
(d) Jp

w∗ [E] is dense in Hp[E] in the ‖ · ‖FBLp[E]-norm.
(e) fpµ ∈Mp

w∗,0[E] for every µ ∈ C(BE∗∗)∗+.

Proof. (a)⇒(b). Suppose that E is reflexive, so that E∗∗ = E with the weak* and
weak topologies coinciding, and take µ ∈ C(BE)

∗
+. For x

∗ ∈ BE∗ , we have

fpµ(x
∗)p =

∫
BE

|x∗(x)|p dµ(x) = 〈ψp(x
∗), µ〉 = (µ ◦ ψp)(x

∗),

so that (fpµ�BE∗ )
p = µ ◦ ψp, where ψp is the map defined in lemma 5.4. Take a net

(x∗α) in BE∗ which weak*-converges to x∗. Then, by reflexivity, (x∗α) converges weakly
to x∗, so lemma 5.4 implies that (ψp(x

∗
α)) converges weakly to ψp(x

∗), which means
that (〈ψp(x

∗
α), µ〉) = (fpµ(x

∗
α)

p) converges to 〈ψp(x
∗), µ〉 = fpµ(x

∗)p. This shows that
fpµ ∈ Hw∗ [E].
(b)⇒(c). Suppose that fpµ ∈ Hw∗ [E] for every µ ∈ C(BE∗∗)∗+. Then fpµ ∈ Hp

w∗ [E]
because fpµ always belongs to Hp[E]. As mentioned above, for every f ∈ Hp[E], we can
find a probability measure µ ∈ C(BE∗∗)∗+ such that (4.14) is satisfied. This implies that
f ∈ Jp

w∗ [E], and consequently Hp[E] = Jp
w∗ [E].

(c)⇒(d) is trivial.
(d)⇒(e). This follows from lemma 2.1(ix) because fpµ ∈ Hp[E] for every µ ∈ C(BE∗∗)∗+.
Finally, we prove the implication (e)⇒(a) by contraposition. Suppose that E is non-

reflexive. Then BE∗ contains a net (x∗α) which weak*-converges to 0, but does not
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converge weakly to 0. Take x∗∗0 ∈ E∗∗ such that (x∗∗0 (x∗α)) does not converge to 0,
and consider the Dirac measure µ = δx∗∗

0
∈ C(BE∗∗)∗+; it satisfies

fpµ(x
∗
α) =

(∫
BE∗∗

|x∗∗(x∗α)|p dµ(x∗∗)
) 1

p

=| x∗∗0 (x∗α) |6→ 0 = fpµ(0).

This shows that fpµ�BE∗ fails to be weak*-continuous at 0, so fpµ /∈Mp
w∗,0[E]. �

6. Lattice homomorphisms

It is well known that for compact Hausdorff spaces K and L, every lattice homomorphism
T : C(K) → C(L) arises by combining a composition operator with pointwise multiplica-
tion by a positive continuous function. (A precise statement of this result can for instance
be found in [27, Theorem 3.2.10].) The aim of this section is to obtain an analogous rep-
resentation for lattice homomorphisms between free Banach lattices and related lattices
of positively homogeneous functions, and then study the properties and consequences of
this representation.
The natural setting in which to develop this theory is a vector-valued version of the

Banach space Hp[E] defined as follows. For 1 6 p <∞ and Banach spaces E and F, let
PHp[E,F ] denote the set of positively homogeneous maps E → F that map weakly p-
summable sequences in E to weakly p-summable sequences in F. This is a linear subspace
of the vector space of functions E → F , and a Banach space with respect to the norm

‖Φ‖PHp[E,F ] = sup
{
‖
(
Φ(xj)

)m

j=1
‖p,weak : m ∈ N,

(xj)
m
j=1 ⊂ E, ‖(xj)mj=1‖p,weak 6 1

}
(Φ ∈ PHp[E,F ]).

We shall often use the elementary observation that a positively homogeneous map
Φ: E → F belongs to PHp[E,F ] if and only if the quantity ‖Φ‖PHp[E,F ] just defined
is finite. Furthermore, we see that Hp[E] = PHp[E∗,R] with equality of norms, which
justifies our claim that the Banach space PHp[E,F ] (or more precisely PHp[E∗, F ]) is
a vector-valued generalization of Hp[E]. However, PHp[E,F ] generally does not have a
natural lattice structure.
We shall only consider positively homogeneous maps between dual Banach spaces;

therefore, the Banach space PHp[F ∗, E∗] will suffice for our purposes. We begin with an
easy result which establishes its connection, via composition operators, to the vector and
Banach lattices that we are investigating.

Lemma 6.1. Let Φ: F ∗ → E∗ be a positively homogeneous map for some Banach
spaces E and F.

(i) The composition operator

CΦ : f 7→ f ◦ Φ

defines a lattice homomorphism CΦ : H[E] → H[F ].
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(ii) Suppose that Φ ∈ PHp[F ∗, E∗] for some 1 6 p <∞. Then

Φ(BF∗) ⊆ ‖Φ‖PHp[F∗,E∗]BE∗ and CΦ(H
p[E]) ⊆ Hp[F ],

and CΦ is bounded with norm ‖CΦ‖ = ‖Φ‖PHp[F∗,E∗] when viewed as a linear
operator (Hp[E], ‖ · ‖FBLp[E]) → (Hp[F ], ‖ · ‖FBLp[F ]).
Suppose in addition that Φ�BF∗ is weak*-to-weak* continuous. Then

CΦ(Hw∗ [E]) ⊆ Hw∗ [F ], CΦ(H
p
w∗ [E]) ⊆ Hp

w∗ [F ],

CΦ(J
p
w∗ [E]) ⊆ Jp

w∗ [F ], CΦ(J
p
w∗ [E]) ⊆ Jp

w∗ [F ],

CΦ(M
p
w∗,0[E]) ⊆Mp

w∗,0[F ].

(iii) The map p 7→ ‖Φ‖PHp[F∗,E∗] is decreasing; that is,

‖Φ‖PHq[F∗,E∗] 6 ‖Φ‖PHp[F∗,E∗] (1 6 p < q <∞).

Proof. (i) The composite map f ◦Φ is clearly positively homogeneous when f and Φ
are, so CΦ(H[E]) ⊆ H[F ], and CΦ is a lattice homomorphism because the vector lattice
operations are defined coordinatewise.
(ii) Suppose that Φ ∈ PHp[F ∗, E∗]. Then ‖Φ(y∗)‖ 6 ‖Φ‖PHp[F∗,E∗] for every y

∗ ∈ BF∗

because ‖z∗‖p,weak = ‖z∗‖ for every functional z∗ (in either E∗ or F ∗), and therefore
Φ(BF∗) ⊆ ‖Φ‖PHp[F∗,E∗]BE∗ . Furthermore, working straight from the definitions of the
norms, we obtain

‖CΦ(f)‖FBLp[F ] = sup

{( m∑
j=1

|f(Φy∗j )|p
) 1

p

: m ∈ N, (y∗j )mj=1 ⊂ F ∗,

‖(y∗j )mj=1‖p,weak 6 1

}
6 ‖Φ‖PHp[F∗,E∗] ‖f‖FBLp[E] (f ∈ Hp[E]).

This shows that CΦ maps Hp[E] into Hp[F ] and ‖CΦ‖ 6 ‖Φ‖PHp[F∗,E∗].
On the other hand, given x ∈ BE and (y∗j )

m
j=1 ⊂ F ∗ for some m ∈ N, we have

( m∑
j=1

|(Φy∗j )(x)|p
) 1

p

=
( m∑

j=1

|δx(Φy∗j )|p
) 1

p

=
( m∑

j=1

|(CΦδx)(y
∗
j )|p

) 1
p

6 ‖CΦδx‖FBLp[F ] ‖(y∗j )mj=1‖p,weak 6 ‖CΦ‖ ‖(y∗j )mj=1‖p,weak,

which shows that ‖Φ‖PHp[F∗,E∗] 6 ‖CΦ‖, and therefore ‖CΦ‖ = ‖Φ‖PHp[F∗,E∗].
Now suppose that the restriction of Φ to BF∗ is weak*-to-weak* continuous (as well

as Φ ∈ PHp[F ∗, E∗]). Since Φ(BF∗) ⊆ ‖Φ‖PHp[F∗,E∗]BE∗ and the functions in Hw∗ [E]
are positively homogeneous, we see that CΦ maps Hw∗ [E] into Hw∗ [F ] and Mp

w∗,0[E]
into Mp

w∗,0[F ]. The inclusion CΦ(H
p
w∗ [E]) ⊆ Hp

w∗ [F ] follows by combining the two
inclusions CΦ(Hw∗ [E]) ⊆ Hw∗ [F ] and CΦ(H

p[E]) ⊆ Hp[F ].
Finally, for each f ∈ Jp

w∗ [E], we can find g ∈ Hp
w∗ [E] such that |f | 6 g. Then we have

|CΦ(f)| 6 CΦ(g) ∈ Hp
w∗ [F ] by the previous inclusion, and consequently CΦ(f) ∈ Jp

w∗ [F ].
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This implies that CΦ(J
p
w∗ [E]) ⊆ Jp

w∗ [F ] because CΦ is continuous with respect to the
FBLp-norms, as we have shown above.
(iii) This proof is similar to the proof of [25, Proposition 7.3]. We may suppose that

‖Φ‖PHp[F∗,E∗] < ∞, as otherwise there is nothing to prove. Take x ∈ BE and (y∗j )
m
j=1 ⊂

F ∗ with ‖(y∗j )mj=1‖q,weak 6 1 for some m ∈ N, and set λj = |〈x,Φ(y∗j )〉|q/r > 0 for
j ∈ {1, . . . ,m}, where r = pq/(q− p) ∈ (p,∞). Then (1+ r/q)p = r, which together with
the positive homogeneity of Φ implies that

m∑
j=1

λrj =
m∑
j=1

(
λj |〈x,Φ(y∗j )〉|

)p

=
m∑
j=1

|〈x,Φ(λjy∗j )〉|p

6 ‖(Φ(λjy∗j ))mj=1‖
p
p,weak 6 ‖Φ‖pPHp[F∗,E∗] ‖(λjy

∗
j )

m
j=1‖

p
p,weak. (6.1)

The choice of r means that the conjugate exponent of r/p ∈ (1,∞) is q/p. Hence, for
y ∈ BF , Hölder’s inequality gives

m∑
j=1

|〈y, λjy∗j 〉|p =
m∑
j=1

λpj |〈y, y
∗
j 〉|p 6

( m∑
j=1

λrj

) p
r
( m∑

j=1

|〈y, y∗j 〉|q
) p

q

6
( m∑

j=1

λrj

) p
r

.

This shows that ‖(λjy∗j )mj=1‖
p
p,weak 6

(∑m
j=1 λ

r
j

)p/r

, so by (6.1), we have

m∑
j=1

λrj 6 ‖Φ‖pPHp[F∗,E∗]

( m∑
j=1

λrj

) p
r

.

Rearranging this inequality and using once more that 1− p/r = p/q, we obtain

‖Φ‖pPHp[F∗,E∗] >
( m∑

j=1

λrj

) p
q

=
( m∑

j=1

|〈x,Φ(y∗j )〉|q
) p

q

.

Now the conclusion follows by taking the pth roots and the supremum over x and
(y∗j )

m
j=1. �

We can rephrase lemma 6.1(iii) as saying that for 1 6 p < q < ∞, we have a formal
inclusion map PHp[F ∗, E∗] → PHq[F ∗, E∗] of norm 1.

Example 6.2. Identify `∞ with `∗1, as usual. By [29, Remark 10.6], there is a map
Φ ∈ PH1[`∞, `∞] for which Φ�B`∞

is weak*-to-weak* continuous (so that Φ satisfies both
hypotheses of lemma 6.1(ii) for p=1), but the corresponding composition operator CΦ

does not map FBL1[`1] into itself.
We can now provide a much more general version of this result. Take 1 6 p <∞, and

let E and F be Banach spaces, where E is non-zero and F admits an infinite-dimensional,
separable quotient space. By theorem 4.3, we can find a function f ∈ Hp

w∗ [F ] \FBLp[F ].
(In fact, we can take f ∈ Iw∗ [F ]\FBLp[F ], but this will not help the following argument.)
Choose x∗0 ∈ E∗ \ {0}, and define a map Φ: F ∗ → E∗ by Φ(y∗) = f(y∗)x∗0 for y∗ ∈
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F ∗. Since f ∈ Hp
w∗ [F ], it is straightforward to check that Φ is positively homogeneous,

Φ�BF∗ is weak*-to-weak* continuous, and ‖Φ‖PHp[F∗,E∗] = ‖f‖FBLp[F ] ‖x∗0‖ < ∞, so
Φ ∈ PHp[F ∗, E∗]. However, if we pick x0 ∈ E such that x∗0(x0) = 1, then

CΦ(δx0
)(y∗) = (δx0

◦ Φ)(y∗) = Φ(y∗)(x0) = f(y∗) (y∗ ∈ F ∗),

so CΦ(δx0
) = f /∈ FBLp[F ]. Hence CΦ does not map FBLp[E] into FBLp[F ].

The following question arises naturally by comparing the list of inclusions established
in lemma 6.1(ii) with example 6.2. We have been unable to answer it, partly due to the
lack of progress on question 4.2.

Question 6.3. Let Φ ∈ PHp[F ∗, E∗] for some 1 6 p < ∞ and infinite-dimensional
Banach spaces E and F, and suppose that Φ�BF∗ is weak*-to-weak* continuous. Is

CΦ(Iw∗ [E]) ⊆ Iw∗ [F ] ?

We shall now present our main representation theorem for lattice homomorphisms
between free Banach lattices.

Theorem 6.4. Let T : FBLp[E] → FBLp[F ] be a lattice homomorphism for some
1 6 p <∞ and some Banach spaces E and F . Then there is a unique map ΦT : F ∗ → E∗

such that

Tf = f ◦ ΦT (f ∈ FBLp[E]). (6.2)

This map ΦT is positively homogeneous and satisfies

(i) ΦT ∈ PHp[F ∗, E∗] with ‖ΦT ‖PHp[F∗,E∗] = ‖T‖;
(ii) ΦT �BF∗ is weak*-to-weak* continuous.

Proof. We begin with the uniqueness. Suppose that ΦT : F ∗ → E∗ is a map which
satisfies (6.2). Substituting f = δx for some x ∈ E into this identity and evaluating it at
some y∗ ∈ F ∗, we obtain

(Tδx)(y
∗) = (δx ◦ ΦT )(y

∗) = ΦT (y
∗)(x). (6.3)

Reading this equation from the right to the left, we conclude that there is only one possible
way to define ΦT . Taking this as our definition, we must check that ΦT (y

∗) ∈ E∗, which
is easy: Linearity follows from the fact that δλw+x = λδw + δx for λ ∈ R and w, x ∈ E,
and continuity from the estimate |(Tδx)(y∗)| 6 ‖T‖ ‖x‖ ‖y∗‖. This estimate also shows
that ΦT maps BF∗ into ‖T‖BE∗ .
It is equally easy to see that ΦT is positively homogeneous because

ΦT (λy
∗)(x) = (Tδx)(λy

∗) = λ(Tδx)(y
∗) = λΦT (y

∗)(x) (λ > 0, y∗ ∈ F ∗, x ∈ E).

Next, we shall prove (i)–(ii), beginning with the latter. Suppose that (y∗α) is a net in BF∗

which weak*-converges to some y∗ ∈ BF∗ , and take x ∈ E. Lemma 2.1(vi) implies that
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the net ((Tδx)(y
∗
α)) converges to (Tδx)(y

∗), which in view of the definition (6.3) means
that the net (ΦT (y

∗
α)(x)) converges to ΦT (y

∗)(x).
To verify (i), we observe that the uniqueness part of the universal property of FBLp[E]

implies that T is the lattice homomorphism induced by the bounded linear operator

T ◦ δE : E → FBLp[F ]; that is, T = T̂ ◦ δE , and therefore

‖T‖ = ‖T ◦ δE‖ = sup
{
‖Tδx‖FBLp[F ] : x ∈ BE

}
= sup

{( m∑
j=1

|(Tδx)(y∗j )|p
) 1

p

:

x ∈ BE , m ∈ N, (y∗j )mj=1 ⊂ F ∗, ‖(y∗j )mj=1‖p,weak 6 1

}
= sup

{
‖(ΦT (y

∗
j )
)m

j=1
‖p,weak : m ∈ N, (y∗j )mj=1 ⊂ F ∗, ‖(y∗j )mj=1‖p,weak 6 1

}
= ‖ΦT ‖PHp[F∗,E∗].

It remains to verify that the map ΦT defined by (6.3) satisfies (6.2). We have already
shown that ΦT ∈ PHp[F ∗, E∗], so lemma 6.1(ii) implies that it induces a lattice homo-
morphism CΦT

: Hp[E] → Hp[F ] by composition; that is, CΦT
(f) = f ◦ΦT for f ∈ Hp[E].

The fact that

CΦT
(δx)(y

∗) = δx(ΦT (y
∗)) = ΦT (y

∗)(x) = (Tδx)(y
∗) (x ∈ E, y∗ ∈ F ∗)

shows that the restriction of CΦT
to FBLp[E] satisfies CΦT

�FBLp[E]◦δE = ι◦T ◦δE , where
ι : FBLp[F ] → Hp[F ] denotes the inclusion map. This in turn implies that CΦT

�FBLp[E] =

ι ◦ T by [25, Corollary 3.5(ii)], bearing in mind that the map δE is denoted φDE in [25].
Now the conclusion follows because

Tf = CΦT
(f) = f ◦ ΦT (f ∈ FBLp[E]).

�

Definition 6.5. Given a lattice homomorphism T : FBLp[E] → FBLp[F ], we call the
unique map ΦT : F ∗ → E∗ satisfying (6.2) the map induced by T .

Remark 6.6. Suppose that T : FBLp[E] → FBLp[F ] is a lattice homomorphism for
some 1 6 p < ∞ and some Banach spaces E and F, and let ΦT : F ∗ → E∗ be the
induced map. Theorem 6.4 shows that ΦT ∈ PHp[F ∗, E∗] and ΦT �BF∗ is weak*-to-weak*
continuous, so lemma 6.1 implies that the composition operator CΦT

: H[E] → H[F ]
induces a lattice homomorphism between each of the following four pairs of Banach
lattices, for every q ∈ [p,∞):
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Hq[E] → Hq[F ], Hq
w∗ [E] → Hq

w∗ [F ],

Jq
w∗ [E] → Jq

w∗ [F ], Mq
w∗,0[E] →Mq

w∗,0[F ].
(6.4)

In fact, we already used the first of these identities for q = p in the proof of theorem 6.4.
As we saw towards the end of that proof, we can interpret (6.2) as the statement that
the lattice homomorphism CΦT

is an extension of T because

CΦT
(f) = f ◦ ΦT = Tf (f ∈ FBLp[E]). (6.5)

We shall now complement (6.4) by showing that the answer to Question 6.3 is positive in
the case where Φ = ΦT is induced by a lattice homomorphism T : FBLp[E] → FBLp[F ].
Furthermore, using lemma 6.1(iii), we can show that FBLq is CΦT

-invariant for every
q > p.

Lemma 6.7. Let T : FBLp[E] → FBLp[F ] be a lattice homomorphism for some 1 6
p <∞ and some Banach spaces E and F . Then:

(i) CΦT
(Iw∗ [E]) ⊆ Iw∗ [F ];

(ii) CΦT
(FBLq[E]) ⊆ FBLq[F ] for every q ∈ (p,∞).

Proof. (i) It suffices to show that CΦT
(f) ∈ Iw∗ [F ] for every f ∈ Iw∗ [E]+ because CΦT

is a lattice homomorphism (in particular continuous). Take m ∈ N and x1, . . . , xm ∈ E
such that f 6

∑m
j=1 |δxj

|. Using that CΦT
is a lattice homomorphism together with (6.5),

we obtain

0 6 CΦT
(f) 6 CΦT

( m∑
j=1

|δxj
|
)
=

m∑
j=1

|CΦT
(δxj

)| =
m∑
j=1

|Tδxj
| ∈ FBLp[F ] ⊆ Iw∗ [F ].

Since Iw∗ [F ] is an ideal of Hp
w∗ [F ] and CΦT

(f) ∈ Hp
w∗ [F ] by (6.4), we conclude that

CΦT
(f) ∈ Iw∗ [F ], as desired.

(ii) Suppose that 1 6 p < q < ∞. Then ‖f‖FBLq[F ] 6 ‖f‖FBLp[F ] for every f ∈ H[F ]
by [25, Proposition 7.3] (or lemma 6.1(iii) in the special case Φ = f : F ∗ → R). This
implies that FBLp[F ] ⊆ FBLq[F ] and therefore, using (6.5), we obtain

CΦT
(δx) = Tδx ∈ FBLp[F ] ⊆ FBLq[F ] (x ∈ E).

Now the conclusion follows by viewing CΦT
as a lattice homomorphism from Hq[E]

to Hq[F ], as shown in (6.4). �

Corollary 6.8. Let E and F be Banach spaces for which FBLp[E] and FBLp[F ] are
lattice isomorphic for some 1 6 p < ∞. Then so are each of the following six pairs for
every q ∈ [p,∞) (where the closures are taken with respect to the FBLq-norms):
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FBLq[E] ∼= FBLq[F ]; Iw∗ [E] ∼= Iw∗ [F ]; Hq
w∗ [E] ∼= Hq

w∗ [F ]

Jq
w∗ [E] ∼= Jq

w∗ [F ]; Mq
w∗,0[E] ∼=Mq

w∗,0[F ]; Hq[E] ∼= Hq[F ].

Proof. Suppose that T : FBLp[E] → FBLp[F ] is a lattice isomorphism with inverse
T−1 : FBLp[F ] → FBLp[E]. Then, for x ∈ E and x∗ ∈ E∗, we have

x∗(x) = (T−1(Tδx))(x
∗) = (δx ◦ ΦT ◦ ΦT−1)(x∗) = (ΦT ◦ ΦT−1)(x∗)(x),

with a similar calculation showing that ΦT−1 ◦ ΦT = IF∗ ; that is, the induced maps
ΦT : F ∗ → E∗ and ΦT−1 : E∗ → F ∗ are inverses of each other, and therefore the compo-
sition operators CΦT

and CΦT−1 are also inverses of each other. As we saw in (6.4) and
lemma 6.7, they restrict to lattice homomorphisms between each of specified pairs, from
which the conclusions follow. (In the case of the FBLq-closure of the ideal Iw∗ for q > p,
a little extra care is required; before invoking lemma 6.7(i), we use the second part of the
same result to deduce that CΦT

is a lattice isomorphism between FBLq[E] and FBLq[F ]
with inverse CΦT−1 .) �

Example 6.9. In general, one cannot reverse the implication

FBLp[E] ∼= FBLp[F ] =⇒ Hp[E] ∼= Hp[F ]

proved in corollary 6.8. To see this, take Banach spaces E and F whose dual spaces E∗

and F ∗ are linearly isomorphic. Then it is clear that Hp[E] and Hp[F ] are lattice iso-
morphic. In particular, H1[`1] is lattice isomorphic to H1[L1[0, 1]], but FBL1[`1] and
FBL1[L1[0, 1]] are not lattice isomorphic by [6, Theorems 4.11 and 4.13].
Proposition 3.2 provides another example, valid for any 1 6 p <∞; it shows thatHp[E]

and Hp[F ] are lattice isomorphic for every pair E and F of finite-dimensional Banach
spaces of dimension at least 2, but FBLp[E] and FBLp[F ] are only lattice isomorphic if
dimE = dimF .

Our next result uses lemma 6.1 to obtain an infinite-dimensional generalization of the
above observation that Hp[E] and Hp[F ] are lattice isomorphic when E and F have finite
dimension at least 2.

Proposition 6.10. Let F be a closed subspace of finite codimension in a Banach
space E, and suppose that F has dimension at least 2. Then the Banach lattices Hp[E]
and Hp[F ] are lattice isomorphic for every 1 6 p <∞.

Proof. Since Hp[G1] and Hp[G2] are lattice isomorphic whenever G1 and G2 are
linearly isomorphic Banach spaces, it suffices to show that Hp[E] and Hp[F ] are lattice
isomorphic for E = `m1 ⊕G and F = `n1⊕G, where G is a Banach space andm,n ∈ N\{1}.
Take a bijection θ : S`n∞

→ S`m∞
, where S`k∞

denotes the unit sphere of `k∞ = (`k1)
∗, as

usual. (Such a bijection exists because both sets have cardinality c.) Let Θ: `n∞ → `m∞ be
the positively homogeneous extension of θ, that is, Θ(0) = 0 and
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Θ(y∗) = ‖y∗‖∞ θ
( y∗

‖y∗‖∞

)
=

∨n

i=1
|δei(y∗)| θ

( y∗

‖y∗‖∞

)
(y∗ ∈ `n∞ \ {0}),

where (ei)
n
i=1 denotes the unit vector basis for `n1 .

To verify that Θ ∈ PHp[`n∞, `
m
∞], take (y∗j )

k
j=1 ⊂ `n∞ with ‖(y∗j )kj=1‖p,weak 6 1 for some

k ∈ N. We may suppose that y∗j 6= 0 for each j ∈ {1, . . . , k}, and find

∥∥∥∥(Θ(y∗j )
)k

j=1

∥∥∥∥
p,weak

= supx∈B`m1

( k∑
j=1

(∨n

i=1
‖δei(y∗j )‖

)p
∣∣∣∣∣〈θ( y∗j

‖y∗j ‖∞

)
, x

〉∣∣∣∣∣
p ) 1

p

6

( k∑
j=1

(∨n

i=1
‖δei(y∗j )‖

)p
) 1

p

6 ‖
∨n

i=1
|δei |‖FBLp[`n1 ]

,

where the first inequality follows from the fact that ‖θ(y∗j /‖y∗j ‖∞)‖∞ = 1. Hence

‖Θ‖PHp[`n∞,`m∞] 6 ‖
∨n

i=1|δei |‖FBLp[`n1 ]
<∞, so Θ ∈ PHp[`n∞, `

m
∞].

We can obviously extend Θ to a positively homogeneous map Φ: F ∗ → E∗ by defining
Φ(y∗, z∗) = (Θ(y∗), z∗) for y∗ ∈ `n∞ and z∗ ∈ G∗. This extension belongs to PHp[F ∗, E∗]
with ‖Φ‖PHp[F∗,E∗] 6 ‖Θ‖PHp[`n∞,`m∞] + 1 because

‖(Φ(y∗j , z∗j ))kj=1‖p,weak = ‖
(
Θ(y∗j ), z

∗
j

)k

j=1
‖p,weak

6 ‖
(
Θ(y∗j )

)k

j=1
‖p,weak + ‖(z∗j )kj=1‖p,weak 6 ‖Θ‖PHp[`n∞,`m∞] + 1

for every k ∈ N and (y∗j , z
∗
j )

k
j=1 ⊂ F ∗ with ‖(y∗j , z∗j )kj=1‖p,weak 6 1.

On the other hand, by repeating the above arguments for the inverse map θ−1 : S`m∞
→

S`n∞
instead of θ, we obtain a map Φ−1 ∈ PHp[E∗, F ∗] which is an inverse of Φ (as

our choice of notation indicates). Therefore, lemma 6.1(ii) implies that we may regard
the restrictions of CΦ and CΦ−1 as lattice homomorphisms CΦ : Hp[E] → Hp[F ] and
CΦ−1 : Hp[F ] → Hp[E], respectively. They are clearly inverses of each other, from which
the conclusion follows. �

Example 6.11. Gowers [20] and Gowers and Maurey [21] have shown that there
are infinite-dimensional Banach spaces E which are not isomorphic to their hyperplanes.
However, proposition 6.10 shows thatHp[E] andHp[F ] are lattice isomorphic whenever F
is a closed subspace of finite codimension in E and 1 6 p <∞.
More generally, for every k ∈ {0, 2, 3, . . .}, Gowers and Maurey [22] have constructed a

Banach space Ek such that Ek is isomorphic to a closed subspace F ⊂ Ek if and only if F
has finite codimension in Ek, and this codimension is a multiple of k. As above, Hp[Ek]
and Hp[F ] are lattice isomorphic for every 1 6 p < ∞ and every closed subspace F of
finite codimension in Ek, irrespective of the value of this codimension.

Remark 6.12. Examples 6.9 and 6.11 demonstrate that there are non-isomorphic
Banach spaces E and F for which Hp[E] and Hp[F ] are lattice isomorphic for every 1 6
p <∞. As the proof of proposition 6.10 shows, the lattice isomorphisms in example 6.11
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are induced by composition with a bijection Φ ∈ PHp[F ∗, E∗] that lacks any weak*
continuity properties.
In general, exhibiting weak* homeomorphisms between the unit balls of dual Banach

spaces is not difficult. For instance, Keller’s theorem (see, e.g., [18, section 12.3]) implies
that the dual unit ball BE∗ is weak*-homeomorphic to the Hilbert cube [−1, 1]N for every
separable, infinite-dimensional Banach space E. Under some technical assumptions, this
weak* homeomorphism can be chosen to be positively homogeneous, as shown in [29,
Theorem 10.24].
Unfortunately, none of the above arguments provide any information about the corre-

sponding free Banach lattices. It remains a major open problem whether there exist
non-isomorphic Banach spaces E and F such that FBLp[E] is lattice isomorphic to
FBLp[F ] for some 1 6 p <∞.

Our next lemma relates the properties of a lattice homomorphism between free Banach
lattices to the map it induces.

Lemma 6.13. Let T : FBLp[E] → FBLp[F ] be a lattice homomorphism for some 1 6
p <∞ and some Banach spaces E and F . Then:

(i) T has dense range if and only if the sublattice generated by the range of the
operator T ◦ δE is dense in FBLp[F ].

(ii) Suppose that one, and hence both, conditions in (i) are satisfied. Then the induced
map ΦT : F ∗ → E∗ is injective.

Proof. (i) follows from the fact that FBLp[E] is the closed sublattice of Hp[E]
generated by the image of δE .
(ii) Suppose that the sublattice generated by (T ◦δE)(E) is dense in FBLp[F ]. Since ΦT

is positively homogeneous, it suffices to verify that its restriction to BF∗ is injective. Take
y∗, z∗ ∈ BF∗ such that ΦT (y

∗) = ΦT (z
∗). By (6.2), we have

(Tδx)(y
∗) = δx(ΦT (y

∗)) = δx(ΦT (z
∗)) = (Tδx)(z

∗) (x ∈ E).

This implies that f(y∗) = f(z∗) for every f belonging to the sublattice generated by
(T ◦δE)(E). By hypothesis, this sublattice is dense in FBLp[F ] with respect to the FBLp-
norm, which according to lemma 2.1(iii) dominates the uniform norm on BF∗ , so we
conclude that f(y∗) = f(z∗) for every f ∈ FBLp[F ]. In particular, taking f = δy for
y ∈ F , we see that y∗(y) = z∗(y), which proves that y∗ = z∗. �

Example 6.14. Given a bounded linear operator S : E → F between Banach spaces E
and F, there is a standard way to associate a lattice homomorphism between the corre-
sponding free Banach lattices with it. Indeed, for 1 6 p < ∞, δF ◦ S : E → FBLp[F ]
is a bounded linear operator of norm ‖S‖ into a p-convex Banach lattice, so the
universal property of FBLp[E] implies that there is a unique lattice homomorphism

S = δ̂F ◦ S : FBLp[E] → FBLp[F ] such that

S ◦ δE = δF ◦ S, (6.6)
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and ‖S‖ = ‖S‖. The map ΦS : F
∗ → E∗ induced by S is simply the adjoint S∗ of S, as

the following calculation, valid for every y∗ ∈ F ∗ and x ∈ E, shows:

ΦS(y
∗)(x) = (δx ◦ ΦS)(y

∗) = (Sδx)(y
∗) = δSx(y

∗) = y∗(Sx) = S∗(y∗)(x).

Consequently, we have

Sf = f ◦ S∗ = CS∗(f) (f ∈ FBLp[E]), (6.7)

and lemma 6.7(i) implies that

CS∗(Iw∗ [E]) ⊆ Iw∗ [F ]. (6.8)

We can use this inclusion to obtain stability results for the properties that questions 4.1
and 4.2 are concerned with.

Proposition 6.15. Let 1 6 p < ∞, and suppose that F is a complemented subspace
of a Banach space E for which FBLp[E] = Iw∗ [E]. Then FBLp[F ] = Iw∗ [F ].

Proof. The hypothesis that F is complemented in E means that the inclusion map
J : F ↪→ E has a bounded linear left inverse L : E → F ; that is, LJ = IF . This implies
that (CL∗ ◦ CJ∗)f = f ◦ J∗ ◦ L∗ = f for every f ∈ H[F ], and consequently

Iw∗ [F ] = CL∗(CJ∗(Iw∗ [F ])) ⊆ CL∗(Iw∗ [E]) = CL∗(FBLp[E])

= L(FBLp[E]) ⊆ FBLp[F ],

where we have used (6.8), the hypothesis and (6.7). This completes the proof because

the opposite inclusion FBLp[F ] ⊆ Iw∗ [F ] is always true. �

Remark 6.16. In view of theorem 4.3, it is possible that proposition 6.15 has no
genuine content in the sense that the hypothesis that FBLp[E] = Iw∗ [E] for some 1 6
p <∞ may only be satisfied when E is finite-dimensional.

Proposition 6.17. Let E be a reflexive Banach space for which Iw∗ [E] = Hp
w∗ [E] for

some 1 6 p <∞. Then Iw∗ [F ] = Hp
w∗ [F ] for every quotient space F of E.

Proof. Let Q : E → F denote the quotient map, and write q : BE → BF for its
restriction to the unit balls. Then q is continuous with respect to the relative weak
topologies and surjective (because E and F are reflexive), so we can define an isometric
lattice homomorphism Cq : C(BF ) → C(BE) by composition: Cqf = f ◦q. Hence, by [27,
Theorem 1.4.19], its adjoint C∗

q : C(BE)
∗ → C(BF )

∗ is a surjective, interval-preserving
operator.
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As previously mentioned, for every f ∈ Hp
w∗ [F ], we can find a probability measure

µ ∈ C(BF )
∗
+ such that (4.14) is satisfied; that is,

|f(x∗)| 6 ‖f‖FBLp[F ] f
p
µ(x

∗) (x∗ ∈ F ∗), (6.9)

where we recall that the function fpµ ∈ Hp[F ] is defined by (4.13). In view of the previous
paragraph, we can take ν ∈ C(BE)

∗
+ such that C∗

q (ν) = µ. Since E is reflexive, fpν ∈
Hp

w∗ [E] = Iw∗ [E] by theorem 5.5 and the hypothesis.
For y∗ ∈ BF∗ , the function ψp(y

∗) ∈ C(BF ) defined in lemma 5.4 satisfies

Cq(ψp(y
∗))(x) = ψp(y

∗)(q(x)) = |y∗(q(x))|p = |(Q∗y∗)(x)|p = ψp(Q
∗y∗)(x)

for each x ∈ BE , so

(
fpµ(y

∗)
)p

= 〈ψp(y
∗), µ〉 = 〈Cq(ψp(y

∗)), ν〉

= 〈ψp(Q
∗y∗), ν〉 =

(
fpν (Q

∗y∗)
)p

=
(
CQ∗(fpν )(y

∗)
)p

.

This proves that fpµ = CQ∗(fpν ), which belongs to Iw∗ [F ] by (6.8), and therefore f ∈
Iw∗ [F ] by (6.9) because Iw∗ [F ] is an ideal of Hp

w∗ [F ]. �

We shall next address two very natural questions concerning a lattice homomorphism T
between free Banach lattices: When is the induced map ΦT linear? And how can we tell
whether T arises from a bounded linear operator between the underlying Banach spaces
via the construction described in example 6.14?

Proposition 6.18. Let T : FBLp[E] → FBLp[F ] be a lattice homomorphism for some
1 6 p <∞ and some Banach spaces E and F . The following conditions are equivalent:

(a) The induced map ΦT : F ∗ → E∗ is linear.
(b) The induced map ΦT : F ∗ → E∗ is an adjoint operator; that is, ΦT = S∗ for some

bounded linear operator S : E → F .
(c) There is a bounded linear operator S : E → F for which T ◦ δE = δF ◦ S.
(d) T = S for some bounded linear operator S : E → F .

Proof. We begin by showing that conditions (a) and (b) are equivalent. It is clear
that (b) implies (a). Conversely, suppose that ΦT is linear. By theorem 6.4, its restric-
tion ΦT �BF∗ is weak*-to-weak* continuous. This implies that ΦT = S∗ for some
bounded linear operator S : E → F , as one can prove by adding an application of the
Krein–Smulian theorem to the standard proof that a weak*-to-weak* continuous linear
operator between dual Banach spaces is the adjoint of a bounded linear operator.
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To see that conditions (b) and (c) are also equivalent, we observe that for x ∈ E,
y∗ ∈ F ∗ and a bounded linear operator S : E → F , we have

(δF ◦ S)(x)(y∗) = δSx(y
∗) = y∗(Sx) = (S∗y∗)(x),

while (6.2) implies that

(T ◦ δE)(x)(y∗) = (Tδx)(y
∗) = (δx ◦ ΦT )(y

∗) = ΦT (y
∗)(x).

Comparing these two equations, we conclude that T ◦δE = δF ◦S if and only if ΦT = S∗.
Finally, we verify that (c) and (d) are equivalent. Equation (6.6) shows that (d)

implies (c), while the converse implication follows from the fact that S is the unique
lattice homomorphism satisfying (6.6). �

The following example shows that not all lattice homomorphisms between free Banach
lattices arise from bounded linear operators, or equivalently that the maps they induce
need not be linear.

Example 6.19. Take 1 6 p <∞, let (en)n∈N denote the unit vector basis for `1, and
identify `∗1 with `∞, as usual. Since

‖|δen |‖FBLp[`1] = ‖δen‖FBLp[`1] = ‖en‖`1 = 1 (n ∈ N),

we can define a bounded linear operator R : `1 → FBLp[`1] of norm 1 by Ren = |δen |
for every n ∈ N. The universal property of FBLp[`1] implies that R induces a lattice

homomorphism R̂ : FBLp[`1] → FBLp[`1] such that R̂ ◦ δ`1 = R, which in turn induces

a map ΦR̂ : `∞ → `∞ such that R̂f = f ◦ ΦR̂ for every f ∈ FBLp[`1] by theorem 6.4.
Combining these identities with the definition of R, we obtain

ΦR̂(x
∗)(en) = (δen ◦ ΦR̂)(x

∗) = (R̂δen)(x
∗) = (Ren)(x

∗)

= |δen |(x∗) = |x∗(en)| = |x∗|(en) (n ∈ N, x∗ ∈ `∞).

This shows that ΦR̂(x
∗) = |x∗| for every x∗ ∈ `∞, so ΦR̂ is non-linear.

Although the map induced by a lattice homomorphism between free Banach lattices
need not be linear, it is sometimes possible to find a bounded linear operator which agrees
with it on certain vectors.

Proposition 6.20. Let Φ ∈ PH1[F ∗, E∗] for some Banach spaces E and F , and
suppose that F ∗ has an unconditional basis (f∗n)n∈N. Then the map R : f∗n 7→ Φ(f∗n) for
n ∈ N extends to a bounded linear operator R : F ∗ → E∗.

Proof. We extend R by linearity to the dense subspace of F ∗ spanned by (f∗n)n∈N and
claim that this map is bounded by K ‖Φ‖PH1[F∗,E∗], where K denotes the unconditional
basis constant of (f∗n). Take (aj)

m
j=1 ⊂ R for some m ∈ N, and choose σj = ±1 such that

σjaj > 0 for each j ∈ {1, . . . ,m}. Then, by (1.4), we have
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‖(σjajf∗j )mj=1‖1,weak 6 K

∥∥∥∥ m∑
j=1

ajf
∗
j

∥∥∥∥,
which implies that

‖Φ‖PH1[F∗,E∗]K

∥∥∥∥ m∑
j=1

ajf
∗
j

∥∥∥∥ > ‖(Φ(σjajf∗j ))mj=1‖1,weak

= sup
εj=±1

∥∥∥∥ m∑
j=1

εjΦ(σjajf
∗
j )

∥∥∥∥ = sup
εj=±1

∥∥∥∥ m∑
j=1

εjσjajΦ(f
∗
j )

∥∥∥∥
>

∥∥∥∥ m∑
j=1

ajΦ(f
∗
j )

∥∥∥∥ =

∥∥∥∥R( m∑
j=1

ajf
∗
j

)∥∥∥∥.
This proves the claim, and the result follows. �

A possible strategy for showing that the Banach spaces E and F are linearly isomorphic
whenever a lattice isomorphism T : FBLp[E] → FBLp[F ] exists for some 1 6 p <∞ would
be to find a suitable linearization of the induced map ΦT : F ∗ → E∗ that one could then
use to construct an isomorphism between E and F.

Remark 6.21. Let Φ ∈ PHp[F ∗, E∗] for some 1 6 p <∞ and Banach spaces E and F.
Then, for every m ∈ N and (y∗j )

m
j=1 ⊂ F ∗, we have

∥∥∥∥Φ( m∑
j=1

y∗j

)
−

m∑
j=1

Φ(y∗j )

∥∥∥∥ 6

∥∥∥∥Φ( m∑
j=1

y∗j

)∥∥∥∥+
m∑
j=1

‖Φ(y∗j )‖

6 ‖Φ‖PHp[F∗,E∗]

∥∥∥∥ m∑
j=1

y∗j

∥∥∥∥+
m∑
j=1

‖Φ‖PHp[F∗,E∗]‖y∗j ‖ 6 2‖Φ‖PHp[F∗,E∗]

m∑
j=1

‖y∗j ‖.

This implies that Φ is quasi-linear if it is homogeneous (not just positively homogeneous).
Since there is more than one definition of “quasi-linear” in circulation, let us explicitly
state the definition we use, following [9, Chapter 16] and [32, Definition 3.2.1] (not [26,
Definition 2.a.9]): a map Φ: E → F between Banach spaces E and F is quasi-linear if it
is homogeneous and there is a constant K > 0 such that

‖Φ(x+ y)− Φ(x)− Φ(y)‖ 6 K(‖x‖+ ‖y‖) (x, y ∈ E).

As we saw in example 6.19, the issue that the map Φ may not be homogeneous is
genuine, even when it is induced by a lattice homomorphism between free Banach lattices.
However, our next result shows that there are instances where homogeneity is automatic,
so the induced map is quasi-linear.

Lemma 6.22. Let E and F be Banach spaces, and let Φ: F ∗ → E∗ be a positively
homogeneous bijection for which ‖Φ‖PH1[F∗,E∗] = 1 = ‖Φ−1‖PH1[E∗,F∗]. Suppose that the
norm on E∗ is strictly convex. Then Φ is homogeneous.
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Proof. It suffices to show that Φ(y∗) = −Φ(−y∗) for every unit vector y∗ ∈ F ∗

because Φ is positively homogeneous. Combining the triangle inequality with the fact
that ‖Φ‖PH1[F∗,E∗] = 1 and (1.4), we obtain

2 > max ‖Φ(y∗)± Φ(−y∗)‖ = ‖(Φ(y∗),Φ(−y∗))‖1,weak > ‖(y∗,−y∗)‖1,weak

because ‖Φ−1‖PH1[E∗,F∗] = 1. Another application of (1.4) shows that

‖(y∗,−y∗)‖1,weak = max ‖y∗ ± (−y∗)‖ = 2,

so either ‖Φ(y∗)+Φ(−y∗)‖ = 2 or ‖Φ(y∗)−Φ(−y∗)‖ = 2. Since ‖±Φ(±y∗)‖ 6 ‖y∗‖ = 1,
the strict convexity of the norm on E∗ implies that Φ(y∗) = Φ(−y∗) in the first case
and Φ(y∗) = −Φ(−y∗) in the second. However, Φ(y∗) = Φ(−y∗) is impossible because Φ
is injective and y∗ 6= 0, so we must be in the second case, which gives the desired
conclusion. �

Corollary 6.23. Let T : FBL1[E] → FBL1[F ] be an isometric lattice isomorphism for
some Banach spaces E and F , and suppose that the norm on E∗ is strictly convex. Then
the induced map ΦT : F ∗ → E∗ is homogeneous.

Proof. This follows immediately from lemma 6.22 because the hypothesis that T
is an isometric lattice isomorphism means that the induced map ΦT : F ∗ → E∗ is a
positively homogeneous bijection with inverse ΦT−1 , and theorem 6.4(i) ensures that
‖ΦT ‖PH1[F∗,E∗] = ‖T‖ = 1 and ‖Φ−1

T ‖PH1[E∗,F∗] = ‖T−1‖ = 1. �

We refer to [29, section 10.3] for a detailed analysis of lattice isometries between free
Banach lattices.
We conclude with an extension of another result from [29]. By an isomorphic embedding

of a Banach space E into a Banach space F, we understand a bounded linear operator
J : E → F which is injective and has closed range, or in other words J is bounded below
by some constant η > 0 in the sense that ‖Jx‖ > η‖x‖ for every x ∈ E. In this case
J∗ : F ∗ → E∗ is surjective, so (6.7) implies that the associated lattice homomorphism
J : FBLp[E] → FBLp[F ] is injective for every 1 6 p < ∞. The question of whether J
is an isomorphic embedding (that is, has closed range) was analyzed in depth in [29,
section 3.3]. We shall next provide an extension of the main result therein. In the proof,
we require the following standard identity between the operator norm of a bounded linear
operator S from a Banach space E into `np for some 1 6 p <∞ and n ∈ N and the weak
p-norm:

‖S‖ = ‖(S∗e∗j )
n
j=1‖p,weak, (6.10)

where (e∗j )
n
j=1 denotes the unit vector basis of (`np )

∗.

Proposition 6.24. Let J : E ↪→ F be an isomorphic embedding of a Banach space E
into a Banach space F , and take 1 6 p <∞. The following conditions are equivalent:
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(a) There is a constant C > 1 such that, for every n ∈ N, every bounded linear operator

S : E → `np admits a bounded linear extension S̃ : F → `np (in the sense that S = S̃J)

with ‖S̃‖ 6 C‖S‖.
(b) The lattice homomorphism J is an isomorphic embedding of FBLp[E] into FBLp[F ].
(c) The lattice homomorphism CJ∗ is an isomorphic embedding of Hp[E] into Hp[F ].

Proof. The equivalence of conditions (a) and (b) is essentially a restatement of [29,
Theorem 3.7, (1)⇔(3)]. (“Essentially” refers to the fact that [29, Theorem 3.7] is stated
only for isometric embeddings. However, it is explained in the text above it how to reduce
the isomorphic case to the isometric.) Furthermore, the implication (c)⇒(b) is immediate
from (6.7), so it only remains to verify that (a) implies (c).
Suppose that (a) is satisfied for some constant C ≥ 1, and take η ∈ (0, 1). Then, for

every f ∈ Hp[E], we can find n ∈ N and (x∗j )
n
j=1 ⊂ E∗ with ‖(x∗j )nj=1‖p,weak = 1 such

that

η‖f‖FBLp[E] 6
( n∑

j=1

|f(x∗j )|p
) 1

p

.

Define an operator S : E → `np by Sx = (〈x, x∗j 〉)nj=1. Clearly S is bounded and linear,
and ‖S‖ = 1 by (6.10) because S∗e∗j = x∗j for each j = 1, . . . , n, so the hypothesis implies

that S admits a bounded linear extension S̃ : F → `np whose norm is at most C. Another

application of (6.10) shows that ‖(S̃∗e∗j )
n
j=1‖p,weak 6 C, and consequently we have

Cp‖CJ∗f‖pFBLp[F ] >
n∑

j=1

|(CJ∗f)(S̃∗e∗j )|p =
n∑

j=1

|f(J∗S̃∗e∗j )|p

=
n∑

j=1

|f(S∗e∗j )|p =
n∑

j=1

|f(x∗j )|p > ηp‖f‖pFBLp[E].

This proves that CJ∗ is bounded below by η/C > 0, and it is therefore an isomorphic
embedding. �
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