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EFFICIENT AND EFFECTIVE VARIATIONAL BAYESIAN INFERENCE METHOD 

FOR LOG-LINEAR COGNITIVE DIAGNOSTIC MODEL

Xue Wang, Jiwei Zhang, Jing Lu

Abstract

In this paper, we propose a novel and highly effective variational Bayesian

Expectation Maximization-Maximization (VBEM-M) inference method for

log-linear cognitive diagnostic model (CDM). In the implementation of the

variational Bayesian approach for the saturated log-linear CDM, the conditional

variational posteriors of the parameters that need to be derived are in the same

distributional family as the priors; the VBEM-M algorithm overcomes this

problem. Our algorithm can directly estimate the item parameters and the latent

attribute-mastery pattern simultaneously. In contrast, Yamaguchi and Okada’s

(2020a) variational Bayesian algorithm requires a transformation step to obtain

the item parameters for the LCDM model. We conducted multiple simulation

studies to assess the performance of the VBEM-M algorithm in terms of

parameter recovery, execution time, and convergence rate. Furthermore, we

conducted a series of comparative studies on the accuracy of parameter

estimation for the DINA model and the saturated LCDM, focusing on the
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VBEM-M, VB, expectation-maximization (EM), and Markov chain Monte Carlo

(MCMC) algorithms. The results indicated that our method can obtain more

stable and accurate estimates, especially for the small sample sizes. Finally, we

demonstrated the utility of the proposed algorithm using two real datasets.

Keywords: cognitive diagnostic assessments; Expectation-Maximization

algorithm; log-linear cognitive diagnostic model; Markov chain Monte Carlo;

variational Bayesian algorithm
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1. Introduction

Cognitive diagnostic assessments (CDAs) have developed rapidly over the past several

decades, and they are widely used in educational and psychological research (de la Torre,

2009, 2011; de la Torre & Douglas, 2004; DiBello et al., 2007; Haberman & von Davier,

2007; Henson et al. 2009; Junker & Sijtsma, 2001; Rupp et al., 2010; von Davier, 2014a;

Templin & Henson, 2006). The primary motivation for the development of CDAs is to

ascertain whether or not a student has mastered some fine-grained skills or attributes that

are required to solve a particular item. More specifically, not only can CDAs be used to

analyze in detail the strengths and weaknesses of students in the areas they are learning,

but they can also provide powerful tools to help teachers improve classroom instruction.

There is a wide variety of cognitive diagnostic models (CDMs) available in the

published CDA literature (DiBello et al., 2007; Rupp & Templin, 2008b), and many of

these are built on strong cognitive assumptions about the processes involved in

problem-solving. These CDMs can be broadly classified into three different types:

compensatory, non-compensatory, and general models. Compensatory models are based on

the assumption of attribute compensation, which means that although the examinee may

not have mastered all the attributes involved in an item, they are still more likely to score

well on that item if they have mastered some of its attributes. This is because the

attributes that the examinee has mastered can “compensate” for the other attributes that

they have not mastered. The most famous compensatory model is the deterministic inputs,
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noisy “or” gate (DINO) model (Templin & Henson, 2006) and the linear logistic model

(LLM; Maris, 1999). In contrast, non-compensatory models are constructed under the

assumption of attribute conjunction, which means that under the assumption of an ideal

response, an examinee can score on an item only after mastering all of the attributes

involved in that item; otherwise, he or she will not be able to answer the item correctly.

The widely used non-compensatory (conjunctive) models are the deterministic inputs,

noisy and gate (DINA) model (Haertel, 1989; Junker & Sijtsma, 2001; Macready &

Dayton, 1977) and the reduced reparameterized unified model (rRUM; Hartz, 2002). Some

general CDM frameworks have also been established that include a variety of widely

applied CDMs, such as the log-linear CDM (LCDM; Henson et al., 2009), the generalized

DINA (GDINA; de la Torre, 2011) model, and the general diagnostic model (von Davier,

2008). Although DINA, DINO, rRUM, and LLM were developed from different application

backgrounds, they can in fact be viewed as special cases of the LCDM by restricting

certain parameters to zero in its saturated version. Henson et al. (2009) detailed how the

LCDM can be transformed into our traditional models such as DINA, DINO, rRUM, and

LLM through parameter restrictions. Additionally, Ma and de la Torre (2016) elucidated

that the LCDM and GDINA models are equivalent in their saturated forms.

Parameter estimation is the basis of model applications, and it is a prerequisite for

interpretation of complicated data in the field of educational psychology. Several strategies

have been developed to estimate the parameters of CDMs. Algorithms based on maximum
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likelihood have been widely used to estimate CDMs in the frequency framework. Examples

using a marginal maximum likelihood method to estimate the parameters of several CDMs

via an Expectation-Maximization (EM) algorithm (Dempster et al., 1977) can be found in

the literature (de la Torre, 2009, 2011; Ma & de la Torre, 2016; Ma & Guo, 2019; Maris,

1999). Some available R packages, such as “CDM” (George et al., 2016) and “GDINA”

(Ma & de la Torre, 2020), have been developed to estimate CDM parameters. However,

algorithms based on maximum likelihood have some disadvantages, as elaborated by

Yamaguchi and Templin (2022); for example, there is the possibility of a local maximum

being reached by a maximum likelihood algorithm. Accordingly, it is challenging to discern

whether parameter estimates are obtained from a global maximum, even if a multiple

starting value method is used to evaluate their optimality. In addition, calculation of the

variability (standard errors) of parameter estimates depends on asymptotic theory in the

likelihood framework, and an asymptotic distribution with parameter restrictions may not

be correct when small sample sizes are involved.

In parallel with maximum likelihood-based methods, Bayesian statistical methods

have also gained widespread attention for inferring various types of CDM parameters (e.g.,

Chung, 2019; Culpepper, 2015, 2019; Culpepper & Hudson, 2018; DeCarlo, 2012; de la

Torre & Douglas, 2004; Henson et al., 2009; Jiang & Cater, 2019; Liu, 2022; Liu et al.,

2020; Zhan et al., 2019). More specifically, de la Torre and Douglas (2004) implemented a

Metropolis–Hastings (MH) algorithm for estimating the higher-order DINA model
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parameters. Henson et al. (2009) also adopted the MH algorithm to estimate LCDM

parameters. Liu et al. (2020) and Liu (2022) developed the Metropolis–Hastings

Robbins–Monro (MH-RM) algorithm (Cai, 2010) to estimate CDM parameters. With the

help of conjugate prior distributions, Culpepper (2015) proposed a Gibbs sampling

algorithm to estimate the parameters of the DINA model; the corresponding R package

“dina” was developed by Culpepper in 2015. On the basis of the work of Culpepper (2015),

a new No-U-Turn Gibbs sampler was proposed by da Silva et al. (2018) to estimate the

parameters of the DINA model. In addition, the Gibbs sampling algorithm has also been

used for updating the Q-matrix in CDMs (Chung, 2019; Culpepper, 2019; Culpepper &

Hudson, 2018). DeCarlo (2012) developed the software OpenBUGS (Thomas et al., 2006)

for estimating reparameterized DINA model parameters. Zhan et al. (2019) published a

tutorial for estimating various types of CDM estimation using the R package “R2jags” (Su

& Yajima, 2015), which is associated with the JAGS program (Plummer, 2003). Jiang and

Cater (2019) estimated the parameters of the LCDM by means of the Hamiltonian Monte

Carlo (HMC) algorithm (Neal, 2011) in the Stan program (Carpenter et al., 2017).

However, the computationally intensive nature of Markov chain Monte Carlo (MCMC)

estimation for the CDM parameters presents a major hurdle to its widespread use in the

empirical application of Bayesian approaches to the study of education when faced with

large samples, numerous items, numerous attributes, and complex models (Yamaguchi &

Okada, 2020a; Oka et al., 2022).
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Researchers have recently become interested in the variational inference (VI) method

as a more flexible and less computationally intensive alternative to traditional Bayesian

statistical methods (Bishop, 2006; Blei et al., 2017; Cho et al., 2021; Grimmer, 2011;

Jaakkola & Jordan, 2000; Jeon et al., 2017; Oka & Okada, 2022; Rijmen et al., 2016;

Urban & Bauer, 2021; Yamaguchi, 2020; Yamaguchi & Martinez, 2021; Yamaguchi &

Okada, 2020a, 2020b). Compared to the traditional MCMC methods, the VI method is a

deterministic approximation approach that is based on posterior density factorization. This

method accomplishes its goal of rapidly and efficiently dealing with large amounts of

complex educational psychology data (e.g., large numbers of samples, items, and

attributes) by transforming the statistical inference problem of the posterior density into

an optimization problem. In view of their many benefits, VI algorithms have been

developed to estimate a variety of psychological models such as item response theory

models (Rijmen et al., 2016; Urban & Bauer, 2021), generalized linear mixed models (Jeon

et al., 2017), and CDMs (Oka & Okada, 2023; Oka, Saso, & Okada, 2023; Yamaguchi,

2020; Yamaguchi & Martinez, 2023; Yamaguchi & Okada, 2020a, 2020b).

Recently, Yamaguchi and Okada (2020b) introduced a VI method specifically tailored

for the DINA model, marking a significant advancement in this field. This method was

derived based on the optimal variational posteriors for each model parameter.

Subsequently, Yamaguchi (2020) further extended VB inference applications by developing

an algorithm for the multiple-choice item of the DINA model (MC-DINA). This extension
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to MC-DINA demonstrated the flexibility and computational efficiency of VB methods.

Subsequently, Yamaguchi and Okada (2020a) developed a VB inference algorithm for

saturated CDMs. They ingeniously introduced a G-matrix, reformulating existing

generalized CDMs, typically parameterized by attribute parameters, into a Bernoulli

mixture model. This reformulation facilitated conditionally conjugate priors for model

parameters, simplifying the derivation process and enhancing algorithmic efficiency.Oka et

al. (2023) sustained this trajectory of innovation by developing a VB algorithm for a

polytomous-attribute saturated CDM. Their work, building on the foundational research of

Yamaguchi and Okada (2020a), not only advanced the field but also incorporated parallel

computing configuration. This significantly improved the computational efficiency of the

VB algorithm, demonstrating its evolving capability to handle more complex CDM

structures. Simultaneously, Oka and Okada (2023) tackled scalability challenges in CDMs

by developing an estimation algorithm for the Q-matrix of DINA model. Their approach,

integrating stochastic optimization with variational inference in an iterative algorithm,

showcased the adaptability and robustness of VB methods in dealing with large-scale

CDMs. This series of developments highlight the ongoing progress and effectiveness of VB

methods in the estimation of diverse models within the CDMs framework.

To date, no VB algorithms have been developed to directly estimate the item

parameters in the LCDM with a logit link function. This is largely due to the challenges in

directly deriving the conditional posterior density of these item parameters. Although
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Yamaguchi and Okada (2020a) proposed the variational EM (VEM) algorithm to estimate

the LCDM, they actually used the least-squares transformation method (de la Torre et al.,

2011) to convert the estimates of the item response probability of the item-specific

attribute-mastery pattern parameters, obtained through the VEM algorithm, into the

corresponding item parameters of the LCDM. Furthermore, Yamaguchi and Templin

(2022) employed a one-to-one mapping within the Bayesian framework to equivalently

transform the item response probability parameters, obtained through the Gibbs sampling

algorithm, into item parameters in the LCDM model. This paper effectively bridges this

gap by proposing a novel and highly effective variational Bayesian EM-maximization

(VBEM-M) algorithm for estimating the saturated LCDM. Briefly, we obtained a tight

lower bound on the likelihood function of the LCDM model using Taylor expansion

(Jaakkola & Jordan, 2000), where the item parameters take a quadratic form. This allows

for the existence of a conjugate prior distribution, enabling the implementation of the VI

method. Consequently, the VI algorithm can be executed in the LCDM by deriving a

specific posterior distribution for the item parameters, originating from the Gaussian prior

distribution that serves as the conjugate prior for item parameters.

We outline the benefits from the following perspectives to highlight the advantages by

which the VBEM-M algorithm excels above the other algorithms. Firstly, our VBEM-M

algorithm overcomes the problem of the conditional variational posteriors of the

parameters that need to be derived being in the same distributional family as the priors in
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the implementation of the VI method for the saturated LCDM formulation. Secondly, the

VBEM-M algorithm can directly estimate the item parameters and latent attribute-mastery

pattern (also called “attribute profile”) simultaneously, unlike Yamaguchi and Okada’s

(2020a) VEM algorithm, which requires a two-step process to acquire the estimation of

item parameters. Thirdly, the VBEM-M algorithm can obtain a more stable and accurate

estimate than an EM algorithm, especially in high-dimensional and small sample size

conditions. Finally, our VBEM-M algorithm offers considerable benefits in computing time

compared to the time-consuming traditional MCMC algorithms. This is because we use

the VI method to transform a posterior inference issue into an optimization problem.

The rest of this paper is organized as follows. Section 2 presents the LCDM and its

special case, the DINA model; Section 3 introduces the specific implementation of the

VBEM-M algorithm for estimating the LCDM. Section 4 presents three simulation studies

that evaluate the performance of the VBEM-M algorithm in parameter recovery across

different simulation conditions, and compares the performance of the VBEM-M, VB,

MCMC, and EM algorithms. Section 5 uses two empirical examples to demonstrate the

model estimation results of these four algorithms. Finally, some concluding remarks are

presented in Section 6.

https://doi.org/10.1017/psy.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.7


11

2. Cognitive Diagnostic Models

2.1. Log-Linear Cognitive Diagnostic Model

In this study, we focused on the LCDM. This is because it is a general model that

contains a large number of models that have been previously discussed, such as DINA,

DINO, rRUM, and LLM (Henson et al., 2009). More importantly, the LCDM can provide a

parameterization that not only enables it to characterize the differences between the

various models but also offers support for more complex data structures (Henson et al.,

2009). In fact, any possible set of constraints for the saturated form LCDM can be used to

define a model that fits the item response in the framework of cognitive theory. Moreover,

a better understanding of the relationships between compensatory models and

non-compensatory models can be described in the general parametric form. After this, a

brief introduction to the LCDM will be given.

First, we define several indices that will be important throughout this paper. Each

examinee is denoted by i (i = 1, · · · , N), each item by j (j = 1, · · · , J), each attribute by

k (k = 1, · · · , K), and the latent class corresponding to an attribute profile is denoted by

l (l = 1, · · · , L). We consider the latent attribute αik to be a binary variable, where the

absence or presence of the corresponding attribute is represented by the values 0 and 1,

respectively. αi = (αi1, · · · , αik, · · · , αiK)T is a vector of K-dimensional latent attribute

profiles for the ith examinee. In light of the categorical nature of the latent classes, αi

belongs to one of L = 2K latent attribute profiles. Defining α̃l = (α̃l1, · · · , α̃lk, · · · , α̃lK)T
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as the attribute profile for examinees of class l, where α̃lk is 1 if the examinees of class l

acquire skill k and 0 otherwise, will be useful in the following.

Ã = (α̃1, · · · , α̃l, · · · , α̃L)T denotes a matrix of L×K dimensions containing all the

attribute profiles. The Q-matrix(Tatsuoka, 1983) is a J ×K matrix used to describe the

relationship between attributes and items, where qT
j = (qj1, · · · , qjk, · · · , qjK), and

qik ∈ {0, 1} is a vector of the jth row of the Q-matrix; that is, Q = (q1, · · · , qj, · · · , qJ)T:

qik = 1 if the attribute k is required by item j, and qik = 0 otherwise. Next, a binary latent

indicator variable zi = [zi1, · · · , zil, · · · , ziL]T is introduced, which satisfies ∑L
l=1 zil = 1,

where zil = 1 denotes the ith examinee belonging to the lth attribute profile (i.e., αi = α̃l).

Let xij be the observed item response for the ith examinee to the jth item: xij = 1 if the

ith examinee gives the correct answer for the jth item, and it is 0 otherwise. The

corresponding item response matrix for all examinees answering all items is

X = (x1, · · · ,xi, · · · ,xN)T, where xi = (xi1, · · · , xij, · · · , xiJ)T, i = 1, · · · , N . Then, the

probability of a correct response for the LCDM can be expressed as

P (xij = 1|αi = α̃l, ηj,λj, qj) =
exp(λT

j h(α̃l, qj) + ηj)
1 + exp(λT

j h(α̃l, qj) + ηj)
, (1)

where ηj is the intercept parameter, and exp(ηj)/(1 + exp(ηj)) indicates the probability

that an examinee answers correctly on item j if he or she does not master any of the

attributes examined on that item. λj = (λj1, · · · , λjK , λj12, · · · , λj12···(K−1)K)T is the slope

parameter vector, which is composed of a D × 1 vector, where D = 2K − 1. h(α̃l, qj)

https://doi.org/10.1017/psy.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.7


13

represents a set of linear combinations of α̃l and qj:

λT
j h(α̃l, qj) =

K∑
k=1

λjkα̃lkqjk +
K∑

k=1

∑
k′>k

λjkk′α̃lkα̃ik′qjkqjk′ + · · · + λj12···(K−1)K

K∏
k=11

α̃lkqjk. (2)

Combining the latent variable zi and Eq. (2), the LCDM can be rewritten as:

P (xij = 1|Ã, zi, ηj,λj, qj) =
L∏

l=1
P (xij = 1|αi = α̃l, ηj,λj, qj)zil . (3)

2.2. DINA Model

The DINA model, as a special case of the LCDM, has a relatively straightforward

structure and widespread adoption in cognitive diagnostic assessments; specialized software

packages are also available for a number of estimation techniques grounded in the model.

Therefore, we provide a short overview of the traditional DINA model and its

interconversion with the LCDM. Two item parameters have been introduced in the

traditional DINA models for each item j: sj is the slipping parameter and gj is the

guessing parameter, and the probability of a correct response can be written as

P (xij = 1|αi = α̃l, gj, sj) = g
1−γlj

j (1 − sj)γlj ,

γlj =
K∏

k=1
α

qjk

lk ,

(4)

where γij is the ideal response pattern. γlj = 1 indicates that examinee i possesses all the

required attributes for item j; otherwise, γlj = 0. The parameters sj and gj can be formally

defined by

sj = P (xij = 0|γlj = 1),

gj = P (xij = 1|γlj = 0).
(5)
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Since the estimation approach presented in this work is based on the LCDM, we must first

convert the DINA model to LCDM format. Our next topic is the connection between the

DINA model and the LCDM and how they may be converted back and forth.

Let K̃j = {k : attribute k is measured by item j} denote an indicator set of attributes

investigated by item j and K∗
j denote the number of investigated attributes. Then, the

DINA model can be rewritten in the form:

P (xij = 1|αi = α̃l, gj, sj) =
exp

ηj + λjK̃j1K̃j2···K̃jK∗
j

∏
k∗∈K̃j

αlk∗qjk∗


1 + exp

ηj + λjK̃j1K̃j2···K̃jK∗
j

∏
k∗∈K̃j

αlk∗qjk∗

 , (6)

where

ηj = − log
(

gj

1 − gj

)
,

λjK̃j1K̃j2···K̃jK∗
j

= −ηj + log
(

1 − sj

sj

)
.

(7)

For simplicity, we denote λjK̃j1K̃j2···K̃jK∗
j

as λj and the DINA model is equivalent to the

following form:

P (xij = 1|αi = α̃l, gj, sj) =
exp

(
ηj + λj

K∏
k=1

α
qjk

lk

)

1 + exp
(
ηj + λj

K∏
k=1

α
qjk

lk

) . (8)

While this study focuses mostly on the LCDM, various variants of the LCDM, such as the

DINO model, LLM, and saturated LCDM, are also discussed. We will therefore not go into

great depth here; instead, the reader should refer to the online supplemental materials for

the necessary information.
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3. Variational Bayesian EM-Maximization Algorithm for the LCDM

3.1. Variational Bayesian EM algorithm

Since it is straightforward to convert an approximate conditional posterior distribution

problem into an optimization problem using VI methods, these techniques see extensive

application in inferring Bayesian models in the area of machine learning (Jordan et al.,

1999; Bishop, 2006; Beal, 2003). Next, we briefly outline the implementation process of the

variational Bayesian EM (VBEM) algorithm (Beal, 2003). Assume that the observed

dataset y = (y1, · · · ,yi, · · · ,yN) is produced by model M, where model M consists of the

latent variables ζ = (ζ1, · · · , ζi, · · · , ζN) and model parameters θ. Next, we specify a

variational density family Q over the unknown variables ζ and θ. The purpose of this is to

establish the optimal approximation q(ζ,θ) ∈ Q to their posterior distribution using this

specified variational density (i.e., q(ζ,θ)⇝ p(ζ,θ|y)). Next, we introduce the concept of

the evidence lower bound (ELBO), which is critical for determining the optimal q(ζ,θ).

Let p(y|M) be a marginal density of the model M; the ELBO can then be represented as
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a lower bound of the logarithm marginal density log p(y|M):

log p(y|M) = log
∫
p(y, ζ,θ) dζdθ

= log
∫
q(ζ,θ)p(y, ζ,θ)

q(ζ,θ) dζdθ

≥
∫
q(ζ,θ) log p(y, ζ,θ)

q(ζ,θ) dζdθ Jensen’s inequality

= Eq(ζ,θ)[log p(y, ζ,θ) − log q(ζ,θ)]

≜ L (q(ζ,θ)) ,

(9)

where L (q(ζ,θ)) is denoted as the ELBO, which is a function of the free distribution

q(ζ,θ). We need to maximize L (q(ζ,θ)) with respect to q(ζ,θ) so that it tends more

closely to log p(y|M). Blei et al.(2017) presented a formula connecting log p(y|M) with

the ELBO and the Kullback–Leibler (KL) divergence:

log p(y|M) = L (q(ζ,θ)) + KL(q(ζ,θ)∥p(ζ,θ|y)). (10)

Since log p(y|M) is a constant with respect to q(ζ,θ), maximizing the ELBO is actually

equivalent to minimizing the KL distance. Specifically, the optimal q(ζ,θ) we obtained in

the variational density family Q is the density that minimizes the KL divergence between

the posterior distribution p(ζ,θ|y) and itself. To further simplify the variational density

q(ζ,θ), we assume that it satisfies mean-field theory. Mean-field theory has been widely

used in variational Bayesian inference (Beal, 2003; Blei et al., 2017; Jordan et al., 1999;

Wand et al., 2011). In the mean-field theory, latent variables are mutually independent and

each is governed by a separate factor in the variational density, allowing the variational
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density q(ζ,θ) to be decomposed into q(ζ)q(θ). An iterative optimization procedure is

implemented by seeking to maximize the mean-field variational density of a parameter of

interest while fixing the others. The VB algorithm can be divided into the following two

steps:

VBE step: qnew(ζi) = 1
Zζi

exp
[∫

qold(θ) log p(ζi,yi|θ) dθ
]

∝ exp
{
Eqold(θ)[log p(yi, ζ,θ)]

}
, for ∀i,

VBM step: qnew(θ) = 1
Zθ

p(θ) exp
[∫

qnew(ζ) log p(ζ,y|θ) dζ
]

∝ exp
{
Eqnew(ζ)[log p(y, ζ,θ)]

}
,

(11)

where Zζi
and Zθ are the normalizing constants. To sum up, the variational density for the

latent variable is updated in the VBE step, while the variational density for the model

parameters is updated in the VBM step. Therefore, the prerequisite to be able to

implement the VBEM algorithm is that the posterior distribution of all parameters, either

latent variables or model parameters, should have a closed form. The VEM algorithm

proposed by Yamaguchi and Okada (2020a, 2020b) in educational psychometric research is

essentially identical to the VBEM algorithm provided by Beal (2003), with the only

differences being in nomenclature.

3.2. Variational Methods in Bayesian Logistic Regression

As mentioned above, implementing the VBEM algorithm requires a closed form for the

posterior distributions of each parameter. Therefore, the VBEM algorithm cannot be
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directly applied to the LCDM based on the logit link function. To overcome this challenge,

we adopt Jaakkola and Jordan’s (2000) variational Bayesian method for logistic regression

models to estimate the more complex LCDM in the cognitive diagnostic framework.

Specifically, their method uses a Taylor expansion on the logistic function to obtain a tight

lower bound, facilitating parameter representation in a Gaussian distribution form that is

easily implementable for variational inference. Next, we will provide the mathematical

expression that Jaakkola and Jordan (2000) used for performing the first-order Taylor

expansion and the specific derivation of the tight lower bound.

Consider the logistic function σ(ω) = 1/ (1 + exp(−ω)). The corresponding log logistic

function can be derived as

log σ(ω) = − log (1 + exp(−ω)) = ω

2 − log
(

exp
(
ω

2

)
+ exp

(
−ω

2

))
. (12)

Denote that

f(ω) = − log
(

exp
(
ω

2

)
+ exp

(
−ω

2

))
.

By calculating the second derivative, we can determine that f(ω) is a convex function

about the variable ω2. Therefore, any tangent line of f(ω) can serve as its lower bound, as

it will always be less than or equal to f(ω). A tight lower bound function for f(ω) can be

obtained by executing a first-order Taylor expansion on the function f(ω) in terms of the

variable ω2 at the point ξ2,

f(ω) ≥ f(ξ) + ∂f(ξ)
(∂ξ2) (ω2 − ξ2) = f(ξ) − 1

2ξ (σ(ξ) − 1
2)(ω2 − ξ2). (13)
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According to Eq.(12) and Eq.(13), we can derive a tight lower bound of σ(ω) with the

specific form as

σ(ω) ≥ σ(ξ) exp
(

(ω − ξ)
2 − τ(ξ)(ω2 − ξ2)

)
, τ(ξ) = 1

2ξ

(
σ(ξ) − 1

2

)
, (14)

which results in a quadratic form on ω.

Regarding to the LCDM, which also employs a logistic form, ω represents a set of

linear combinations. These combinations involve unknown item parameters, an individual’s

latent attribute vector, and the known Q-matrix within the LCDM framework (for further

details, please refer to Eqs. (1) and (2)). Based on Eq. (14), we can derive a quadratic

form for the item parameter. Consequently, the VI algorithm can be implemented in the

LCDM by deriving a specific posterior distribution for item parameters using the Gaussian

prior distribution, which serves as the conjugate prior for these parameters. In the next

subsection, we will focus on elucidating the process of deriving the tight lower bound in the

LCDM using Eq. (14).

3.3. Tight Lower Bound for the LCDM

In this section, the goal is to derive the tight lower bound for LCDM as outlined

above. We first conduct a transformation on the item response data in the LCDM to make

it easier to acquire the tight lower bound term of the likelihood function before providing

the implementation of our VBEM-M algorithm. The item response data xij = {0, 1} is

transformed into yij = {−1, 1} with the help of the equation yij = 2xij − 1. Let
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λ∗
j = (ηj,λ

T
j )T and h∗

jl = (1, h(α̃l, qj)); the item response probability of yij is then given by

P (yij = 1|αi = α̃l,λ
∗
j , qj) = P (xij = 1|αi = α̃l,λ

∗
j , qj) = 1

1 + exp(−λ∗T
j h∗

jl)
,

P (yij = −1|αi = α̃l,λ
∗
j , qj) = P (xij = 0|αi = α̃l,λ

∗
j , qj) = 1

1 + exp(λ∗T
j h∗

jl)
.

(15)

Recall the logistic function form, the item response probability of yij can then be rewritten

as follows,

p(yij|αi = α̃l,λ
∗
j , qj) = σ(yijλ

∗T
j h∗

jl). (16)

Therefore, the likelihood based on the introduced latent variable z can be represented by

p(Y|z, Ã,λ∗,Q) =
N∏

i=1

J∏
j=1

L∏
l=1

σ(yijλ
∗T
j h∗

jl)zil . (17)

According to Eq. (14), the tight lower bound function for σ(yijλ
∗T
j h∗

jl) is determined by

performing a first-order Taylor expansion with respect to the variable (yijλ
∗T
j h∗

jl)2 at the

point ξ2
ijl. Therefore, a tight lower bound of the likelihood for the LCDM can be derived by:

p(Y|z, Ã,λ∗,Q) =
N∏

i=1

J∏
j=1

L∏
l=1

σ(yijλ
∗T
j h∗

jl)zil

≥
N∏

i=1

J∏
j=1

L∏
l=1

{
σ(ξijl) exp

(
yijλ

∗T
j h∗

jl − ξijl

2 − τ(ξijl)(λ∗T
j h∗

jlh
∗T
jl λ∗

j − ξ2
ijl)
)}zil

≜ p(Y|z, Ã,λ∗,Q).

(18)

Given that the tight lower bound for the likelihood function is of exponential form, using

the multivariate normal distribution as a conjugate prior distribution for λ∗ will yield a

closed-form posterior distribution. Due to these considerations, in the subsequent
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computations, we implement the VBEM-M algorithm using the tight lower bound of the

likelihood function rather than the original likelihood function. Moreover, it’s important to

highlight that a new local parameter, ξijl, has been introduced at this stage. Determining

the optimal value for ξijl is an essential part of our analysis. In this paper, we implement a

maximization process to ascertain the most suitable value for ξijl. The detailed

methodology behind this process will be elaborated in the following subsection.

3.4. Fully Bayesian Representation of the Joint Posterior Distribution

In the fully Bayesian framework, statistical inference relies on the selection of the prior

distribution. The posterior distribution can be derived by combining the prior distribution

(prior information) with the likelihood function (sample information). Prior distributions

from the following Bayesian hierarchical structures will be considered in this study:

yij ∼ p(yij|zi, Ã,λ∗,Q), p (zi|π) =
L∏

l=1
πzil

l , 0 ≤ πl ≤ 1,
L∑

l=1
πl = 1,

p(π) = p (π1, . . . , πL) = Dirichlet (δ0) , δ0 = (δ01, . . . , δ0L) ,

p(λ∗
j) = MVN (λ∗

0, ID+1) ,λ∗
0 = (η0,λ0),

λ0 = ( λ0,1, · · · , λ0,K︸ ︷︷ ︸
main effect terms

, λ0,K+1, · · · , λ0,D︸ ︷︷ ︸
interaction terms

) = (λ0,main, · · · , λ0,main︸ ︷︷ ︸
main effect terms

, λ0,inter, · · · , λ0,inter︸ ︷︷ ︸
interaction terms

),

p(η0) = N
(
µη0 , σ

2
η0

)
,

p(λ0,main) = N
(
µλ0,main

, σ2
λ0,main

)
I (c,∞) ,

p(λ0,inter) = N
(
µλ0,inter

, σ2
λ0,inter

)
,

(19)
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where ID+1 is a (D + 1)-dimensional identity matrix. Parameter c is a truncation

parameter. Some literature restricts the main effect terms of λ to non-negative values

(Zhan et al., 2019). To address this, a truncation parameter c is introduced to adjust the

range of values for the prior parameter λ0,main. For example, when c is set to −∞, there is

no restriction on λ0,main, while setting c = 0 restricts λ0,main to non-negative values. In

practice, users can adjust the value of c to restrict the range of λ0,main according to their

specific requirements. Let Ω = (δ0, µη, σ
2
η, µλ, σ

2
λ), the joint posterior distribution of

(Y, z,π,λ∗,λ∗
0|Q,Ω, Ã) based on the tight lower bound can be represented by

p(Y, z,π,λ∗,λ∗
0|Q,Ω, Ã) = p(Y|z, Ã,λ∗,Q)p(z|π)p(π)p(λ∗|λ∗

0)p(λ∗
0)

∝
N∏

i=1

J∏
j=1

L∏
l=1

{
σ(ξijl) exp

(
yijλ

∗T
j h∗

jl − ξijl

2 − τ(ξijl)(λ∗T
j h∗

jlh
∗T
jl λ∗

j − ξ2
ijl)
)}zil

×
N∏

i=1

L∏
l=1

πzil
l

L∏
l=1

πδ0l
l

J∏
j=1

exp
{

−
(λ∗

j − λ∗
0)T(λ∗

j − λ∗
0)

2

}
exp

{
−(η0 − µη0)2

2σ2
η0

}

× exp
{

−
(λ0,main − µλ0,main

)2

2σ2
λ0,main

}
I (λ0,main > c) exp

{
−

(λ0,inter − µλ0,inter
)2

2σ2
λ0,inter

}
× const,

(20)

where const denotes a constant. The logarithm of p(Y, z,π,λ∗,λ∗
0|Q,Ω, Ã) can be further

expressed as

log p(Y, z,π,λ∗,λ∗
0|Q,Ω, Ã)

=
N∑

i=1

J∑
j=1

L∑
l=1

zil

{
log(σ(ξijl)) +

yijλ
∗T
j h∗

jl − ξijl

2 − τ(ξijl)(λ∗T
j h∗

jlh
∗T
jl λ∗

j − ξ2
ijl)
}

+
N∑

i=1

L∑
l=1

zil log πl +
L∑

l=1
δ0l log πl −

J∑
j=1

(λ∗
j − λ∗

0)T(λ∗
j − λ∗

0)
2

− (η0 − µη0)2

2σ2
η0

−
(λ0,main − µλ0,main

)2

2σ2
λ0,main

I (λ0,main > c) −
(λ0,inter − µλ0,inter

)2

2σ2
λ0,inter

+ const.

(21)
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3.5. Implementation of VBEM-M Algorithm for LCDM

Assuming that the joint variational density of (z,π,λ∗,λ∗
0) for the LCDM satisfies

mean-field theory, the following equation holds:

q(z,π,λ∗,λ∗
0) =

(
N∏

i=1
q(z)

)q(π)
J∏

j=1
q(λ∗

j)q(η0)
D∏

d=1
q(λ0d)

 . (22)

Let Θ = (z,π,λ∗,λ∗
0); in terms of Eq. (9) and Eq. (21), the ELBO L(q(Θ)) can then be

derived as

L(q(Θ)) = Eq(z,π,λ∗,λ∗
0)[log p(Y, z,π,λ∗,λ∗

0|Q,Ω, Ã) − log q(z,π,λ∗,λ∗
0)]

≥ Eq(z,π,λ∗,λ∗
0)[log p(Y, z,π,λ∗,λ∗

0|Q,Ω, Ã) − log q(z,π,λ∗,λ∗
0)]

= Eq(z,π,λ∗,λ∗
0)

[ N∑
i=1

J∑
j=1

L∑
l=1

zil

{
log(σ(ξijl)) +

yijλ
∗T
j h∗

jl − ξijl

2 − τ(ξijl)(λ∗T
j h∗

jlh
∗T
jl λ∗

j − ξ2
ijl)
}

+
N∑

i=1

L∑
l=1

zil log πl +
L∑

l=1
(δ0l − 1) log πl −

J∑
j=1

(λ∗
j − λ∗

0)T(λ∗
j − λ∗

0)
2

− (η0 − µη0)2

2σ2
η0

−
(λ0,main − µλ0,main

)2

2σ2
λ0,main

I (λ0,main > c) −
(λ0,inter − µλ0,inter

)2

2σ2
λ0,inter

−
N∑

i=1

L∑
l=1

zil log π∗
il −

L∑
l=1

(δ∗
l − 1) log πl −

J∑
j=1

(λ∗
j − m∗

j)TV ∗−1
j (λ∗

j − m∗
j)

2

+
(η0 − µ∗

η0)2

2σ∗2
η0

+
(λ0,main − µ∗

λ0,main
)2

2σ∗2
λ0,main

I (λ0,main > c) −
(λ0,inter − µ∗

λ0,inter
)2

2σ∗2
λ0,inter

]
+ const

≜ L∗(q(Θ), ξ),

(23)

where L∗(q(Θ), ξ) is a tight lower bound of L(q(Θ)). Next, we maximize L∗(q(Θ), ξ) to

obtain estimates of latent variables z, model parameters (π,λ∗), hyperparameters λ∗
0 and

local point parameter ξ. Specifically, there are three steps to the implementation process:

(a) VBE step: update variational density for latent variable;

https://doi.org/10.1017/psy.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.7


24

(b) VBM step: update variational densities for model parameters and hyperparameters;

(c) M step: update local point parameter ξ by maximizing L∗(q(Θ), ξ).

In the following text, q∗(·) denotes the optimal variational posterior in each iteration.

To keep things simple, we only present the core formulation for updating. The specifics can

be found in the online supplemental materials. The estimation procedure of the VBEM-M

algorithm is shown in Table 1. In Table 1 and subsequent tables, all parameters are

estimated using their posterior means. In addition, the specific implementation process of

each step for the VBEM-M algorithm is shown in Figure 1.

=========================

Insert Table 1 about here

=========================

=========================

Insert Figure 1 about here

=========================

(a) VBE step. In this step, we update the variational density of zi for each i, where

i = 1, · · · , N . q∗(zi) is derived to be a categorical distribution with parameter π∗
i . That is,

q∗(zi|π∗
i ) =

L∏
l=1

π∗zil
il , (24)
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where

π∗
il = ρil∑L

l=1 ρil

,

ρil = exp


J∑

j=1

{
log(σ(ξijl)) +

yijEq(λ∗
j )[λ∗

j ]Th∗
jl − ξijl

2

− τ(ξijl)(h∗T
jl Eq(λ∗

j )[λ∗
jλ

∗T
j ]h∗

jl − ξ2
ijl)
}

+ Eq(π) log(πl)

.
(25)

(b) VBM step. In this step, we update the variational density for π,

λ∗
j (j = 1, · · · , J), η0, λ0,main and λ0,inter.

(b1) Update the variational density for π

q∗(π) is derived to be a Dirichlet distribution with parameter δ∗. That is,

q∗(π|δ∗) ∝
L∏

l=1
π

δ∗
l −1

l , (26)

where

δ∗
l =

N∑
i=1

Eq(zi)[zil] + δ0l. (27)

(b2) Update the variational density for λ∗
j

q(λ∗
j) is proportional to a multivariate normal distribution with mean vector m∗

j and

covariance V ∗
j . That is,

q∗(λ∗
j |m∗

j ,V
∗
j) ∝ exp

{
−

(λ∗
j − m∗

j)TV ∗−1
j (λ∗

j − m∗
j)

2

}
, (28)

where

V ∗−1
j = I−1

D+1 + 2
N∑

i=1

L∑
l=1

Eq(zi)[zil]τ(ξijl)h∗
jlh

∗T
jl ,

m∗
j = V ∗

j

(
λ∗

0 + 1
2

N∑
i=1

L∑
l=1

Eq(zi)[zil]yijh
∗
jl

)
.

(29)
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(b3) Update the variational density for η0

q∗(η0) is proportional to a normal distribution with mean µ∗
η0 and variance σ∗2

η0 . That

is,

q∗(η0|µ∗
η0 , σ

∗2
η0 ) ∝ exp

{
−

(η0 − µ∗
η0)2

2σ∗2
η0

}
, (30)

where

(σ∗2
η0 )−1 = J + 1

σ2
η0

,

µ∗
η0 = σ∗2

η0

µη0

σ2
η0

+
J∑

j=1

(
Eq(λ∗

j )[λ∗
j ]
)

η

 , (31)

where Eq(λ∗
j )[λ∗

j ]η is the corresponding expected value of the element ηj in the vector

λ∗.

(b4) Update the variational density for λ0,main

q∗(λ0,main) is proportional to a truncated normal distribution with mean µ∗
λ0,main

and

variance σ∗2
λ0,main

. Specifically„

q∗(λ0,main|µ∗
λ0,main

, σ∗2
λ0,main

) ∝ exp
{

−
(λ0,main − µ∗

λ0,main
)2

2σ∗2
λ0,main

}
I (c,∞) , (32)

where

(σ∗2
λ0,main

)−1 = J∗
main + 1

σ2
λ0,main

,

µ∗
λ0,main

= σ∗2
λ0,main

µλ0,main

σ2
λ0,main

+
K∑

d=1

∑
j∈Jd

(
Eq(λ∗

j )[λ∗
j ]
)

λd

 ,
(33)

where J∗
main denotes the number of all main effect terms, Jd = {j : λjd ̸= 0}, and

Eq(λ∗
j )[λ∗

j ]λd
is the corresponding expected value of the element λjd in the vector λ∗.
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(b5) Update the variational density for λ0,inter

q∗(λ0,inter) is proportional to a truncated normal distribution with mean µ∗
λ0,inter

and

variance σ∗2
λ0,inter

. Specifically,

q∗(λ0,inter|µ∗
λ0,inter

, σ∗2
λ0,inter

) ∝ exp
{

−
(λ0,inter − µ∗

λ0,inter
)2

2σ∗2
λ0,inter

}
, (34)

where

(σ∗2
λ0,inter

)−1 = J∗
inter + 1

σ2
λ0,inter

,

µ∗
λ0,inter

= σ∗2
λ0,inter

µλ0,inter

σ2
λ0,inter

+
D∑

d=K+1

∑
j∈Jd

(
Eq(λ∗

j )[λ∗
j ]
)

λd

 ,
(35)

where J∗
inter denotes the number of all interaction terms.

(c) M step. In this step, we update the local point parameter

ξijl (i = 1, · · · , N ; j = 1, · · · , J ; l = 1, · · · , L). To obtain the optimal ξijl, we need to

maximize L∗(q(Θ), ξ) by computing the derivative of ξijl to zero:

∂L∗(q(Θ), ξ)
∂ξijl

= 0. (36)

Therefore, we have

ξ2
ijl = ξ2

jl = h∗T
jl Eq(λ∗

j )[λ∗
jλ

∗T
j ]h∗

jl. (37)

Considering the aforementioned presentation of the VBEM-M algorithm, it is clear that we

need to compute a large number of expectations using categorical, Dirichlet, normal,

multivariate normal, and truncated normal distributions. Some formulae for calculating
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these expectations are as follows:

Eq(zi)[zil] = π∗
il, Eq(π) log(πl) = ψ(δ∗

l ) − ψ

(
L∑

l=1
δ∗

l

)
,

Eq(λ∗
j )[λ∗

j ] = µ∗
j , Eq(λ∗

j )[λ∗
jλ

∗T
j ] = Σ∗

j + µ∗
jµ

∗T
j ,

Eq(η0)[η0] = µ∗
η0 , Eq(η0)[(η0 − µ∗

η0)2] = σ∗2
η0 ,

Eq(λ0,main)[λ0,main] = µ∗
λ0,main

+ σ∗2
λ0,main

ϕ(u)
Φ(u) , u =

c− µ∗
λ0,main

σ∗
λ0,main

,

Eq(λ0,main)[(λ0,main − µ∗
λ0,main

)2] = σ∗2
λ0,main

(
1 − µ∗

λ0,main

ϕ(u)
Φ(u)

)
,

Eq(λ0,inter)[λ0,inter] = µ∗
λ0,inter

, Eq(λ0,inter)[(λ0,inter − µ∗
λ0,inter

)2] = σ∗2
λ0,inter

,

(38)

where ψ(·) is ψ(x) = d
dx

log Γ(x), Γ(x) =
∫∞

0 t(x−1) exp(−t) dt, ϕ(·) is the density function of

a standard normal distribution, and Φ(·) is the cumulative distribution function of a

standard normal distribution.

4. Simulation Study

In the following simulation studies, we address three primary concerns: First, the

performance of the VBEM-M algorithm under various conditions for the DINA model;

second, the performance of the VBEM-M algorithm, based on the DINA model, compares

to Yamaguchi and Okada’s (2020b) VB method, the MCMC algorithms within the full

Bayesian framework, and the EM algorithm in the frequency framework under different

simulation settings; third, the performance of the VBEM-M algorithm is compared with

the VB, MCMC, and EM algorithms under the saturated LCDM with different simulation

conditions. Online supplement showcases the performance of the VBEM-M algorithm for
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the DINA model under different initial values and in other widely used CDMs, including

the DINO model and LLM.

Data generation. Item response data xij is generated from a Bernoulli distribution

with probability of correct response P (xij = 1|αi,λ
∗, qj). The true values of the item

parameters based on DINA model are constrained by considering four different levels of

noise to investigate the correlation between noise and recovery. For each item, the following

scenarios are considered. (a1) Low noise level (LNL): sj = gj = 0.1, with corresponding

true values ηj = −2.1972, λj = 4.3944. (a2) High noise level (HNL): sj = gj = 0.2, with

corresponding true values ηj = −1.3863, λj = 2.7726. (a3) Slipping higher than guessing

(SHG): sj = 0.2, gj = 0.1, with corresponding true values ηj = −2.1972, λj = 3.5835.

(a4) Guessing higher than slipping (GHS): sj = 0.1, gj = 0.2, with corresponding true

values ηj = −1.3863, λj = 3.5835.

To generate the attribute-mastery patterns, we used the same procedure as Chiu and

Douglas (2013), which takes into account the correlations among the attributes.

Specifically, α∗
i = (α∗

i1, · · · , α∗
ik, · · · , α∗

iK)T are generated from a multivariate normal

distribution; that is, α∗
i ∼ N(0K ,ΣK×K), where 0K = (0, . . . , 0)T

K×1 and

ΣK×K =



1 . . . σ

... . . . ...

σ . . . 1


K×K

,

where the off-diagonal elements of ΣK×K are σ. As σ increases from 0 to 1, the correlation
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between attributes also increases from 0 to maximum. The relationships between the

attribute profiles αi and α∗
i can be expressed as αik = 1 if α∗

ik > 0 and αik = 0 otherwise.

Although the Q-matrices are created randomly, they still conform to the identifiability

constraints outlined by Chen et al. (2015, 2017), Liu and Andersson (2020), and Xu and

Shang (2018). We present the Q-matrices used in these simulations in online supplement.

Prior distributions. The prior parameter δ0 is set as δ0 = 1L (Culpepper, 2015; Zhan

et al., 2019), where 1L denotes a L-dimensional vector with all elements equal to 1. The

hyperparameters are chosen as follows: µη0 = −2, µλmain
= µλinter

= 0, and

σ2
η0 = σ2

λmain
= σ2

λinter
= 10.

Estimation software. We implemented four different approaches, namely, the

VBEM-M algorithm, VB algorithm, MCMC sampling algorithm, and EM algorithm, using

the R programming language (R Core Team, 2017) on a desktop computer equipped with

Intel (R) Core (TM) i5-10400 CPU @ 2.90GHz, 16GB RAM. To enhance the

computational efficiency of the VBEM-M method, we utilized two R packages, “Rcpp”

(Eddelbuettel & Francois, 2011) and “RcppArmadillo” (Eddelbuettel & Sanderson, 2014),

to call the C++ programming language. The R code of our VBEM-M algorithm can be

found in the online supplementary materials. We used the R package “variationalDCM”

(Hijikata et al., 2023) to implement the VB method. The MCMC sampling algorithms

were implemented separately using the R packages “dina” (Culpepper & Balamuta, 2019)

which is integrated with the C++ program, and “R2jags” (Su & Yajima, 2015) which is
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associated with the JAGS program (Plummer, 2003). The EM algorithm was implemented

using the R packages “GDINA” (Ma & de la Torre, 2020) and “CDM” (George et al.,

2016), respectively.

Convergence diagnosis. The VBEM-M algorithm was considered converged if the

absolute difference between two consecutive iterations was less than e0 = 10−4, or if the

number of iterations T had reached 2000. When using the R packages “dina” and “R2jags”

to implement the MCMC sampling algorithms, for the DINA model, Culpepper (2015)

demonstrated that it would have converged after 750 iterations, thus the chain length was

set to 2000 and the first 1000 iterations were set as a ‘burn-in’ period. For the saturated

LCDM, we chose a chain length of 10000, with a burn-in of 5000. For the EM algorithm,

when employing the R package “GDINA” , the convergence criteria is when the maximum

absolute change in item success probabilities between consecutive iterations was smaller

than e0 = 10−4 or when T exceeded 2000. In addition, when using the R package “CDM”,

iteration will end if the maximal change in parameter estimates is below e0 = 0.001.

Evaluation Criteria. For item parameters and class membership probability

parameters, we assess the accuracy of parameter estimation using bias and RMSE (Root

Mean Square Error). For attribute parameters, we adopt the following two evaluation

indices: the pattern-wise agreement rate (PAR), which indicates the rates of correct

classification for attribute patterns, and is formulated as

PAR = 1
N

N∑
i=1

I(α̂i = αi), (39)
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and the attribute-wise agreement rate (AAR), which signifies the rates of correct

classification for individual attributes, and is defined as

AAR(k) = 1
N

N∑
i=1

I(α̂ik = αik), (40)

where αi is the true value of the ith student’s attribute profile and α̂i is the estimated

value of αi. α̂ik is the estimated value of αik for the specific attribute k.

4.1. Simulation Study 1

In this simulation study, we explored the performance of the VBEM-M algorithm

under various simulation conditions. We set the test length to J = 30, the number of

attributes was set to K = 5, and the corresponding Q-matrix is shown in the online

supplemental materials. The following manipulated conditions were considered:

(A) number of examinees N = 1000 and 2000; (B) correlation among attributes σ = 0, 0.3

and 0.7; and (C) noise levels LNL, HNL, SHG, and GHS. Fully crossing different levels of

these three factors yields 24 conditions (2 sample sizes × 3 correlations × 4 noise levels).

There were 100 replications for each simulation condition. The recovery results of

parameters are displayed in Tables 2 and 3 and Figure 2.

=========================

Insert Table 2 about here

=========================
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=========================

Insert Table 3 about here

=========================

=========================

Insert Figure 2 about here

=========================

The following conclusions can be drawn from Tables 2 and 3. (1) Given the correlation

and noise levels, when the number of examinees is increased from 1000 to 2000, the average

RMSE, the average bias, and standard deviation (SD) for η, λ, and π show decreasing

trends. For example, when the correlation among attributes is 0.3 and the LNL is applied,

increasing the number of examinees from 1000 to 2000 results in the average bias of η

decreasing from -0.0140 to -0.0077, and the average bias of λ decreasing from 0.0307 to

0.0133. The average RMSE of η decreases from 0.1369 to 0.0981, the average RMSE of λ

from 0.2337 to 0.1669, and the average RMSE of π from 0.0022 to 0.0016. The SD of η

decreases from 0.0937 to 0.0664, the SD of λ decreases from 0.1617 to 0.1152, and the SD

of π decreases from 0.0051 to 0.0037. (2) When the number of examinees and the noise

level are given, with increasing σ, the average RMSE for η increase somewhat. This

indicates that η is less impacted by the correlation between attributes. λ is substantially

more impacted by σ; specifically, the average bias and RMSE for λ tend to decrease

markedly as σ increases. In the meanwhile, RMSE for π also tend to decrease as σ
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increases. For example, when the number of examinees is fixed at 1000 and the LNL noise

level is applied, the average bias are –0.0118, 0.140, 0.104 respectively, and the average

RMSE rises from 0.1351 to 0.1388 when σ increases. The change in bias and RMSE of η

are found to be slight. However, the decreases in bias and RMSE are markedly greater for

λ, with the average bias of λ decreasing from 0.0365 to 0.0279 and the corresponding

average RMSE decreasing from 0.2560 to 0.2216. For π, the average bias remains at 0.0000

in all conditions, while the average RMSE exhibits the largest change in the HNL

condition, decreasing from 0.0058 to 0.0048. (3) The accuracy of attribute profile recovery

is highest under the LNL condition because the noise is the lowest. For example, with a

fixed number of examinees at 1000 and a correlation of σ = 0, the PAR is 0.9025 under the

LNL condition and only 0.6736 under the HNL condition. Under the LNL condition, the

AAR values for five attributes exceed 0.9667 across various sample sizes and levels of

attribute correlation. Moreover, the accuracy of attribute profile recovery tends to improve

as σ increases.

In Figure 2, as an explanation, we only show the recovery results for the LNL and

HNL based on the sample size N = 1000. On each item, the bias of η are almost the same

for the LNL and the HNL. Furthermore, when the correlation between attributes is

strengthened (σ from 0 to 0.7), there is no difference between the bias and RMSE of η in

the LNL (HNL). It was also discovered that, for both low and high levels of noise, the

RMSE of η is lower when the items evaluate more attributes. At low noise levels, for
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instance, the RMSE of η for the first item evaluating one attribute is greater than that for

the eleventh item evaluating the first three attributes together. For λ, although the bias of

λ differs on each item at low and high noise levels, the values of bias are basically around

0. Similarly, for both low and high levels of noise, the RMSE of λ is lower when items have

higher correlation amongst themselves. This is because as the attribute correlation

increases, more accurate estimates of α are obtained, which in turn enhances the accuracy

of λ estimates. This also provides an empirical guarantee for our later practical research.

That is, when designing the items, we should aim to achieve higher correlations between

attributes to increase the accuracy of parameter estimation.

Additionally, we assess the performance of the VBEM-M algorithm under different

initial values (please see online supplement for details), and the results showed that our

VBEM-M algorithm is not affected by the different initial values.

4.2. Simulation Study 2

The purpose of this simulation study is to compare the proposed method with

Yamaguchi and Okada’s (2020b) VB method, the MCMC sampling algorithms, and the

EM algorithm in terms of parameter accuracy for the DINA model. Specifically, the R

package “variationalDCM” was used to implement Yamaguchi and Okada’s (2020b) VB

method, while the R packages “dina” and “R2jags” were used to implement the MCMC

sampling algorithms. The EM algorithm was implemented using the R packages “GDINA”
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and “CDM”.

The simulation design is as follows: the test length was fixed at J = 30, and the

number of attributes was set to K = 5. The varying conditions of the simulation are as

follows: (D) The number of examinees N = 200, 500, 1000, and 2000; (E) correlation

among attributes σ = 0, 0.3, and 0.7; and (F) LNL and HNL conditions. Fully crossing

different levels of these two factors yields 24 conditions (4 sample sizes × 3 correlations × 2

noise levels). Each simulation condition was replicated 100 times. The recovery results of

item parameters and attribute profile recovery for all six methods are shown in Tables 4

and 5. Due to the space limit, we only present the results with the correlation σ = 0.3 in

Tables 4 and 5; the other two correlation cases (σ = 0 and σ = 0.7) are given in online

supplement. Figure 3 depicts the boxplots of the bias and RMSE for η, λ, and π estimated

by the six methods with σ = 0.3 under the LNL condition. Table 6 shows the computation

time for these six methods under the same conditions. Here, the displayed computation

time is the average time across 100 replications.

=========================

Insert Table 4 about here

=========================

=========================

Insert Table 5 about here

=========================
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=========================

Insert Table 6 about here

=========================

In Tables 4 and 5, as well as in the subsequent simulation studies, the RMSE and bias

mentioned are the average RMSE and average bias. From Tables 4 and 5, we can draw the

following conclusions: (1) The VBEM-M algorithm consistently outperforms the other five

methods in terms of achieving lower RMSE values for item parameters η and λ under all

four sample sizes, regardless of LNL or HNL condition. (2) For the EM algorithm, both

EM-GDINA and EM-CDM methods have higher bias and RMSE for item parameters η and

λ than four other methods, especially for a small sample size of N=200, under both LNL

and HNL conditions. (3) With the same sample size and noise level, both MCMC methods

(MCMC-dina and MCMC-R2jags) show similar estimation accuracy, as do the two EM

methods (EM-GDINA and EM-CDM). (4) For parameter π, the estimated bias and RMSE

of the six methods are basically the same under various identical simulation conditions,

with no significant differences. (5) In terms of the accuracy of attribute profile recovery,

the results of the six methods are essentially the same under each simulation condition.

From Table 6, we can see that the VBEM-M algorithm is highly efficient in terms of

computation time. It performs faster than the VB method across most simulation

conditions, and this speed advantage is more noticeable as sample sizes increase. Overall,

the computation speed of the VBEM-M algorithm is second only to the two EM
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algorithms, i.e., EM-GDINA and EM-CDM. The two Bayesian methods, MCMC-dina and

MCMC-R2jags, have longer computation time than the other four methods. Additionally,

MCMC-dina is faster than MCMC-R2jags due to its use of the “Rcpp” and

“RcppArmadillo” packages, which are built on C++ programming language.

4.3. Simulation Study 3

This simulation study aims to evaluate the effectiveness of the VBEM-M algorithm on

the saturated LCDM by comparing it with Yamaguchi and Okada’s (2020a) VB method,

the MCMC sampling algorithms, and the EM algorithm. Specifically, the R package

“variationalDCM” was used to implement Yamaguchi and Okada’s (2020a) VB method,

the R package “R2jags” was used to implement the MCMC sampling algorithms, and the

EM algorithm was implemented using the R package “GDINA”.

This simulation was designed with an attribute number of K = 3 and a test length of

J = 18. In the saturated LCDM, each item’s λ∗
j is an 8-dimensional vector (23 = 8). The

true values of λ∗ are shown in Table 7. We conducted simulations across different sample

sizes (N=1000, 2000) and attribute correlations (σ = 0, 0.3, 0.7), resulting in six different

conditions. Each condition was replicated 100 times. Notably, an additional calculation

procedure was needed for Yamaguchi and Okada’s (2020a) VB method, as the R package

“variationalDCM” only reports the correct response probabilities for different attribute

mastery patterns. We transformed these probabilities into LCDM parameters by solving a
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linear system of equations (Liu & Johnson, 2019; Yamaguchi & Templin, 2022). The

parameter recovery results for the σ = 0.3 condition are displayed in Tables 8 and 9. The

estimation results for σ = 0 and 0.7 are available in the online supplementary materials.

=========================

Insert Table 7 about here

=========================

=========================

Insert Table 8 about here

=========================

=========================

Insert Table 9 about here

=========================

=========================

Insert Table 10 about here

=========================

For a more detailed analysis, we split the parameter λ into two parts: λmain (i.e.

λ1,λ2,λ3) and λinter (i.e. λ12,λ13,λ23,λ123), which represent the main effects and

interactions, respectively. From the results, we can draw the following conclusions: (1) As

the number of examinees increases, the RMSE for item parameters of all algorithms
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decreases. (2) The proposed VBEM-M algorithm performs better than other algorithms on

all item parameters across all conditions, especially on the interactions. Specifically, in

terms of the parameters η and π, VBEM-M has a slight advantage over the other

algorithms, whereas it shows a significant advantage in estimating λmain and λinter,

particularly for the parameter λinter. On the other hand, the EM algorithm performs

poorly with small sample sizes. For the λinter parameter, its RMSE exceeds 2 when

N = 200. (3) Compared to other algorithms, VBEM-M performs significantly better with

small sample sizes (N = 200, 500), with noticeably lower RMSE. (4) It is worth noting that

the results from all algorithms indicate that, although the interaction terms have smaller

true values compared to the main effects, their estimation accuracy is worse. This suggests

that estimating interaction effects is the most challenging aspect of the saturated LCDM

model. (5) As for the accuracy of attribute profiles, there is no obvious difference among

these algorithms, but VBEM-M still shows slightly higher accuracy than the others.

Table 10 shows the average computation time across 100 replications for the four

algorithms under the σ = 0.3 condition. The results indicate that our algorithm performs

better than the other algorithms in terms of computational efficiency. Additionally, an

interesting observation is that the EM algorithm takes the longest time when the sample

size is small (N = 200). This suggests that the EM algorithm converges more slowly with

smaller sample sizes.
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5. Empirical Example

5.1. Empirical Example 1

In this example, a fraction subtraction test dataset (Tatsuoka, 1990, Tatsuoka, 2002;

de la Torre & Douglas, 2004) was investigated using the DINA model. The VBEM-M

algorithm, VB algorithm (implemented in the “variationalDCM” package), MCMC

sampling technique (implemented in the “dina” package), and EM algorithm (implemented

in the “GDINA” package) were used for the parameter estimation of the DINA model.

This test involves 2144 middle school students responding to 15 fraction subtraction items,

including five measured attributes: subtract basic fractions, reduce and simplify, separate

whole from fraction, borrow from whole, and convert whole to fraction; 536 of 2144

students were chosen for this study (Zhang et al., 2020). The corresponding Q-matrix,

parameter estimates, and SDs are shown in Table 11.

To facilitate the following item analysis, we transformed the estimates of the intercept

and interaction parameters into the traditional estimates of slipping and guessing

parameters, as shown in Table 11. Additionally, the comparison of the parameter estimates

among the four algorithms can be found in the supplementary materials. Based on

Table 11, we found that the estimates of the five items with the lowest slipping are items 3,

8, 9, 10, and 7, in that order. The estimated values of the slipping parameters for the five

items are 0.0395, 0.0480, 0.0652, 0.0664, and 0.0773, respectively. This demonstrates that

the five items are less likely to slip than the other ten items. Furthermore, the five items
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with the highest guessing are items 2, 10, 8, 5, and 13, in that order. For these five items,

the estimated guessing parameters are 0.2035, 0.1658, 0.1417, 0.1307, and 0.1293,

respectively. Moreover, items 3, 8, and 10 have low slipping parameters and high guessing

parameters, indicating that these items are more likely to be correctly guessed. It is worth

noting that there’s an interesting observation regarding the results for item 1: since g1 is

very small and s1 is very large, it is difficult for students who do not master the first

attribute to get a correct response by guessing (the probability of a correct response is

lower than 0.0200), and even if they do master the first attribute, the probability of a

correct response is still only about 0.7000 due to the possibility of slipping.

Based on the results in Table S11 in the supplementary materials, we investigated the

relationship between the VBEM-M algorithm and the other three algorithms in parameter

estimation by analyzing the correlations of parameters s and g across these algorithms.

The correlations between s estimates from the VBEM-M and VB algorithms is 0.9984,

between VBEM-M and MCMC algorithms is 0.9979, and between VBEM-M and EM

algorithms is 0.9989. The correlations between the estimators of g calculated using the

VBEM-M algorithm and those obtained from the VB, MCMC, and EM algorithms are

0.9488, 0.9552, and 0.8632, respectively. These findings suggest that the VBEM-M

algorithm’s parameter estimates align more closely with those from VB and MCMC

algorithms, as indicated by the high correlations. In addition, the estimators of the mixing

proportions of attribute-mastery patterns, π̂l for l = 1, · · · , 25 = 32, are presented in
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Figure S2 of the supplementary matrials. Notably, these estimates are highly consistent

across the VBEM-M algorithm, VB algorithm, MCMC sampling technique, and EM

algorithm. A total of 67% of the examinees were classified into the following four attribute

profiles: (1,1,1,0,0), (1,1,1,1,0), (1,1,1,0,1), and (1,1,1,1,1). This suggests that a majority of

students have mastered the first three attributes. The computation time for the VBEM-M,

VB, MCMC, and EM algorithms were 0.1651 s, 0.1661 s, 11.3820 s, and 0.2870 s,

respectively.

=========================

Insert Table 11 about here

=========================

5.2. Empirical Example 2

In this section, we analyze the Examination for the Certificate of Proficiency in

English (ECPE) dataset based on the LCDM. The ECPE has been widely used in previous

research based on the LCDM (e.g., Liu & Johnson, 2019; Templin & Bradshaw, 2014;

Templin & Hoffman, 2013; von Davier, 2014b), and it includes 0-1 response data from

2,922 examinees on 28 items. Three attributes are measured: morphosyntactic rules,

cohesive rules, and lexical rules. Nine of the 28 items measure two attributes, and the

others measure one. The VBEM-M algorithm, VB algorithm (implemented in the

“variationalDCM” package), MCMC algotithm (implemented in the “R2jags” package),
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and EM algorithm (implemented in the “GDINA” package) were used for the parameter

estimation of the LCDM model. However, due to space limitations, we only present the

estimation results of the VBEM-M method in Tables 12 and 13. The results of the other

algorithms can be found in the supplementary materials.

=========================

Insert Table 12 about here

=========================

=========================

Insert Table 13 about here

=========================

The outcomes of the VBEM-M algorithm were more similar to those of the VB

algorithm and the MCMC algorithm. Please refer to the supplementary materials for more

details. From Table 12, we found that the estimates of the interaction terms are relatively

smaller compared to the main effects, indicating that the main effects have a greater

influence on the probability of a correct response. Additionally, most of the interaction

effects are positive, suggesting that the interactions between skills are more likely to

positively affect the probability of a correct response. Furthermore, from the estimates of π

in Table 13, we can observe that the most prevalent attribute mastery patterns are (0, 0,

0), (0, 0, 1), (0, 1, 1), and (1, 1, 1). This suggests a possible linear hierarchy structure

among the skills. Specifically, mastering lexical rules requires mastering cohesive rules first,
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and mastering morphosyntactic rules is a prerequisite for mastering cohesive rules. This

finding is consistent with previous research conclusions (Gierl et al., 2007a, 2007b).

6. Discussion

In this paper, we propose the novel VBEM-M algorithm for estimating the parameters

of the LCDM, which offers fast execution and excellent estimation accuracy. While

Yamaguchi and Okada (2020a) introduced a VB method for estimating LCDM parameters,

their approach primarily focuses on estimating the probability of correct item responses for

specific attribute-mastery patterns, without directly estimating the item parameters. In

contrast, our VBEM-M algorithm can simultaneously and directly estimate both

attribute-mastery patterns and item parameters.

Since the posterior distributions of the item parameters in the LCDM do not have

closed forms, it is difficult to execute parameter estimation using the classic VBEM

algorithm. To get around this problem, in our approach, the likelihood function for the

LCDM is replaced with a tight lower bound obtained by Taylor expansion, and inference is

then performed. The item parameters based on the tight lower bound take on an

exponential form, allowing us to use a Gaussian distribution as its conjugate prior.

Additionally, a new location parameter ξ is introduced in implementing the Taylor

expansion, and an extra maximizing step is added to the typical VBEM algorithm to seek

the optimal local point ξ. Three simulation studies were carried out in this study: the first

two focused on DINA model as the special case of the LCDM, while the third simulation
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study considered the saturated LCDM. The parameter recovery results from the VBEM-M

algorithm were analyzed under simulated conditions. The VBEM-M algorithm was shown

to be effective in terms of parameter recovery, execution time, and convergence rate. In

addition, the estimation accuracy and computation time of the VB, MCMC and EM

algorithms were investigated in depth.

To begin with, it was found that the VBEM-M algorithm produces favorable results in

terms of parameter recovery, providing three main benefits. First, the VBEM-M algorithm

can be implemented under various sample sizes, and its accuracy improves as the sample

size increases. Based on the DINA model, we found that higher attribute correlation does

not affect η estimates but improves λ estimation accuracy. In addition, the convergence

rate of the VBEM-M algorithm is fast, and it is not sensitive to the choice of initial values.

It brings considerable efficiency gains, converging to the true values in only approximately

ten iterations for different simulation conditions.

The second benefit is that the VBEM-M algorithm has a considerable accuracy

advantage over other algorithms, especially when the sample size is small. For instance, in

the DINA model with N = 200, K = 5, and σ = 0.3, under the LNL condition, the RMSEs

of λ using VBEM-M, VB, MCMC-dina, MCMC-R2jags, EM-GDINA, and EM-CDM are

0.4500, 0.5507, 0.5470, 0.5554, 1.0239, and 1.0238, respectively. It is evident that our

method shows significant advantages, particularly outperforming EM algorithms. However,

this benefit diminishes as the sample size increases. This makes the VBEM-M algorithm
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more reliable in situations with smaller sample sizes, which are often occurs in real-world

applications.

Finally, the VBEM-M algorithm stands out for its computational efficiency. While not

as fast as the EM algorithms, it still holds an advantage over other algorithms. For

example, based on the DINA model with N = 2000, J = 30, K = 5, and σ = 0.3, it takes

an average of 0.3686s, 0.5136s, 93.5225s, 2061.8450s, 0.1949s, and 0.2097s for VBEM-M,

VB, MCMC-dina, MCMC-R2jags, EM-GDINA, and EM-CDM, respectively, across 100

replications. Compared to the two EM algorithms, our algorithm showed the time

differences of only 0.1737s and 0.1589s, respectively, and it outperformed the other

algorithms. This suggests that the VBEM-M algorithm performs well in terms of

computational efficiency.

While the VBEM-M algorithm has its advantages, it also has some limitations. For

instance, as mentioned above, the VBEM-M algorithm could not perform as fast as EM

algorithm. In addition, the VBEM-M algorithm is essentially an approximation of the

posterior distribution of parameters, which works well for the DINA model and some

LCDM submodels, as showed in online supplement. However, its performance in complex

LCDMs with high attribute dimensions (like a 32-dimensional λ∗ for K = 5) still needs to

be investigated.

In future studies, first, we will consider to explore whether the VBEM-M algorithm

can be generalized to other types of CDMs, such as polytomous CDMs and longitudinal
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CDMs. Second, in this study, the Q-matrix was calibrated in advance; however, in practice,

there is a potential for mis-specification (Rupp & Templin, 2008a). Therefore, we will

modify the VBEM-M algorithm to simultaneously estimate the Q-matrix and model

parameters. Third, while the VBEM-M algorithm converges quickly, it still operates slower

than the EM algorithm in terms of computation time. We plan to further optimize the

code associated with C++ or Fortran to increase its speed.
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Table 1: Estimation procedure of the VBEM-M algorithm.

VBEM-M Algorithm

Input:δ0, µη0 , σ2
η0 , µλ0,main

, σ2
λ0,main

,µλ0,inter
, σ2

λ0,inter
, e0, T

Initialization: E(0)
q(η0)[η0], E(0)

q(λ0d)[λ0d], E(0)
q(λ∗

j )[λ
∗
j ], E(0)

q(λ∗
j )[λ

∗
jλ

∗T
j ].

Repeat

(a) VBE-step: update q∗(zi) according to Eq.(25).

(b) VBM-step:

(b1) update q∗(π) according to Eq.(27).

(b2) update q∗(λ∗
j) according to Eq.(29).

(b3) update q∗(η0) according to Eq.(31).

(b4) update q∗(λ0,main) according to Eq.(33).

(b5) update q∗(λ0,inter) according to Eq.(35).

(c) M-step: update ξijl using Eq.(37).

Until the absolute difference of L∗(q(Θ), ξ) between two adjacent iterations is less than

e0 or t >T, where e0 is the convergence threshold and T is the maximum iterations.
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Table 3: The accuracy of attribute profile parameters using the VBEM-M algorithm in

simulation study 1.

LNL
N = 1000 N = 2000

AAR1 AAR2 AAR3 AAR4 AAR5 PAR AAR1 AAR2 AAR3 AAR4 AAR5 PAR

σ = 0 0.9792 0.9667 0.9880 0.9672 0.9903 0.9025 0.9787 0.9667 0.9876 0.9669 0.9900 0.9007

σ = 0.3 0.9807 0.9718 0.9877 0.9712 0.9918 0.9107 0.9803 0.9727 0.9876 0.9719 0.9914 0.9120

σ = 0.7 0.9821 0.9799 0.9874 0.9797 0.9941 0.9290 0.9827 0.9807 0.9872 0.9803 0.9940 0.9307

HNL
N = 1000 N = 2000

AAR1 AAR2 AAR3 AAR4 AAR5 PAR AAR1 AAR2 AAR3 AAR4 AAR15 PAR

σ = 0 0.9102 0.8959 0.9334 0.8919 0.9413 0.6736 0.9098 0.8939 0.9332 0.8935 0.9413 0.6731

σ = 0.3 0.9137 0.9085 0.9372 0.9039 0.9497 0.6980 0.9150 0.9111 0.9375 0.9061 0.9491 0.7031

σ = 0.7 0.9345 0.9335 0.9512 0.9286 0.9608 0.7724 0.9364 0.9350 0.9520 0.9301 0.9628 0.7781

SHG
N = 1000 N = 2000

AAR1 AAR2 AAR3 AAR4 AAR5 PAR AAR1 AAR2 AAR3 AAR4 AAR15 PAR

σ = 0 0.9525 0.9443 0.9707 0.9406 0.9766 0.8172 0.9516 0.9458 0.9724 0.9432 0.9761 0.8213

σ = 0.3 0.9596 0.9452 0.9740 0.9435 0.9762 0.8266 0.9592 0.9462 0.9739 0.9432 0.9762 0.8269

σ = 0.7 0.9689 0.9618 0.9777 0.9604 0.9826 0.9871 0.9693 0.9630 0.9785 0.9614 0.9831 0.8734

GHS
N = 1000 N = 2000

AAR1 AAR2 AAR3 AAR4 AAR5 PAR AAR1 AAR2 AAR3 AAR4 AAR15 PAR

σ = 0 0.9476 0.9442 0.9689 0.9416 0.9762 0.8153 0.9489 0.9462 0.9685 0.9424 0.9762 0.8186

σ = 0.3 0.9476 0.9521 0.9667 0.9467 0.9783 0.8238 0.9485 0.9519 0.9665 0.9478 0.9780 0.8248

σ = 0.7 0.9624 0.9620 0.9755 0.9584 0.9818 0.8630 0.9623 0.9623 0.9753 0.9590 0.9813 0.8635

Note: AAR1 represents the correct classification rate for the first attribute, AAR2 for the second attribute, AAR3 for the third

attribute, AAR4 for the fourth attribute, and AAR5 for the fifth attribute. PAR stands for the pattern-wise agreement rate.
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Table 4: The accuracy of item parameters and class membership probability parameters using

the VBEM-M, VB, MCMC-dina, MCMC-R2jags, EM-GDINA, and EM-CDM algorithms for

the DINA model under the σ = 0.3 condition in simulation study 2.

LNL

η

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM
N = 200 0.2759(–0.0439) 0.3068(0.0255) 0.3043(0.0291) 0.3045(0.0267) 0.3660(–0.0533) 0.3659(–0.0531)
N = 500 0.1881(–0.0191) 0.1973(0.0112) 0.1968(0.0127) 0.1970(0.0120) 0.2050(–0.0172) 0.2050(–0.0172)
N = 1000 0.1370(–0.0103) 0.1400(0.0052) 0.1400(0.0059) 0.1400(0.0055) 0.1426(–0.0088) 0.1426(–0.0088)
N = 2000 0.0974(-0.0033) 0.0987(0.0046) 0.0988(0.0050) 0.0987(0.0048) 0.0994(–0.0024) 0.0994(–0.0024)

λ

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM
N = 200 0.4500(0.1151) 0.5507(–0.1284) 0.5470(–0.1441) 0.5554(–0.1670) 1.0239(0.2478) 1.0238(0.2478)
N = 500 0.3284(0.0541) 0.3552(–0.0502) 0.3551(–0.0564) 0.3567(–0.0656) 0.3961(0.0555) 0.3961(0.0555)
N = 1000 0.2437(0.0295) 0.2532(–0.0243) 0.2527(–0.0272) 0.2539(–0.0317) 0.2638(0.0263) 0.2638(0.0263)
N = 2000 0.1780(0.0129) 0.1814(–0.0146) 0.1814(–0.0159) 0.1817(–0.0183) 0.1845(0.0104) 0.1845(0.0104)

π

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM
N = 200 0.0055(0.0000) 0.0055(0.0000) 0.0055(0.0000) 0.0055(0.0000) 0.0056(0.0000) 0.0056(0.0000)
N = 500 0.0034(0.0000) 0.0034(0.0000) 0.0034(0.0000) 0.0034(0.0000) 0.0034(0.0000) 0.0034(0.0000)
N = 1000 0.0023(0.0000) 0.0023(0.0000) 0.0023(0.0000) 0.0023(0.0000) 0.0023(0.0000) 0.0023(0.0000)
N = 2000 0.0016(0.0000) 0.0016(0.0000) 0.0016(0.0000) 0.0016(0.0000) 0.0016(0.0000) 0.0016(0.0000)

HNL

η

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM
N = 200 0.2250(–0.0207) 0.2533(0.0010) 0.2456(0.0095) 0.2465(0.0036) 0.3180(0.0351) 0.3181(–0.0351)
N = 500 0.1564(–0.0122) 0.1633(0.0002) 0.1622(0.0047) 0.1625(0.0016) 0.1682(–0.0103) 0.1681(–0.0102)
N = 1000 0.1113(–0.0042) 0.1136(0.0024) 0.1133(0.0051) 0.1134(0.0036) 0.1150(–0.0027) 0.1150(–0.0027)
N = 2000 0.0811(–0.0045) 0.0819(–0.0011) 0.0817(0.0000) 0.0818(–0.0005) 0.0824(–0.0039) 0.0824(–0.0039)

λ

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM
N = 200 0.4108(0.0928) 0.4754(–0.0237) 0.4617(–0.0591) 0.4686(–0.0897) 0.6678(0.1202) 0.6679(0.1202)
N = 500 0.2874(0.0322) 0.3064(–0.0179) 0.3042(–0.0342) 0.3068(–0.0472) 0.3192(0.0249) 0.3192(0.0249)
N = 1000 0.2061(0.0211) 0.2118(–0.0047) 0.2112(–0.0138) 0.2116(–0.0199) 0.2165(0.0168) 0.2165(0.0169)
N = 2000 0.1489(0.0118) 0.1509(–0.0011) 0.1505(–0.0055) 0.1507(–0.0087) 0.1524(0.0094) 0.1524(0.0094)

π

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM
N = 200 0.0111(0.0000) 0.0113(0.0000) 0.0107(0.0000) 0.0107(0.0000) 0.0146(0.0000) 0.0146(0.0000)
N = 500 0.0077(0.0000) 0.0077(0.0000) 0.0076(0.0000) 0.0077(0.0000) 0.0088(0.0000) 0.0088(0.0000)
N = 1000 0.0056(0.0000) 0.0057(0.0000) 0.0057(0.0000) 0.0057(0.0000) 0.0060(0.0000) 0.0060(0.0000)
N = 2000 0.0041(0.0000) 0.0041(0.0000) 0.0042(0.0000) 0.0042(0.0000) 0.0043(0.0000) 0.0043(0.0000)

Note: The values outside the parentheses represent the RMSE, while the values inside the parentheses indicate bias. Here, RMSE and Bias

denote the average RMSE and Bias, respectively, for all intercept parameters η, all slope parameters λ and all class membership probability

parameters π.
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Table 6: The computational time (in seconds) for the VBEM-M, VB, MCMC-dina, MCMC-

R2jags, EM-GDINA, and EM-CDM algorithms with the σ = 0.3 condition based on DINA

in simulation study 2.

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

LNL

N = 200 0.0721s 0.0483s 9.7123s 163.2525s 0.0847s 0.0428s
N = 500 0.1220s 0.1092s 23.6093s 467.2393s 0.0887s 0.0668s
N = 1000 0.2061s 0.2415s 46.5265s 998.5244s 0.1208s 0.1126s
N = 2000 0.3686s 0.5136s 93.5255s 2061.8450s 0.1949s 0.2097s

HNL

N = 200 0.0783s 0.1012s 9.7794s 170.3141s 0.1618s 0.0606s
N = 500 0.1524s 0.2613s 23.8735s 463.9300s 0.1624s 0.0886s
N = 1000 0.2617s 0.5403s 47.2185s 994.7302s 0.2078s 0.1376s
N = 2000 0.4890s 1.0802s 94.3035s 2190.041s 0.2986s 0.2667s

Table 7: True values of λ∗ for the saturated LCDM in simulation study 3.

η λmain λinter

Item η λ1 λ2 λ3 λ12 λ13 λ23 λ123

1 –1.5 3.5 0 0 0 0 0 0
2 –1.5 0 3.5 0 0 0 0 0
3 –1.5 0 0 3.5 0 0 0 0
4 –1.5 3.5 0 0 0 0 0 0
5 –1.5 0 3.5 0 0 0 0 0
6 –1.5 0 0 3.5 0 0 0 0
7 –1.5 2 2 0 –0.5 0 0 0
8 –1.5 2 0 2 0 –0.5 0 0
9 –1.5 0 2 2 0 0 –0.5 0
10 –1.5 1.5 1.5 1.5 –0.5 –0.5 –0.5 1
11 –1.5 2 2 0 –0.5 0 0 0
12 –1.5 2 0 2 0 –0.5 0 0
13 –1.5 0 2 2 0 0 –0.5 0
14 –1.5 1.5 1.5 1.5 –0.5 –0.5 –0.5 1
15 –1.5 2 2 0 –0.5 0 0 0
16 –1.5 2 0 2 0 –0.5 0 0
17 –1.5 0 2 2 0 0 –0.5 0
18 –1.5 1.5 1.5 1.5 –0.5 –0.5 –0.5 1

https://doi.org/10.1017/psy.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.7


66

Table 8: The accuracy of item parameters and class membership probability parameters

using the VBEM-M, VB, MCMC-R2jags, and EM-GDINA algorithms for the LCDM model

under the σ = 0.3 condition in simulation study 3.

σ = 0.3

η λmain

VBEM-M VB MCMC-R2jags EM-GDINA VBEM-M VB MCMC-R2jags EM-GDINA
N = 200 0.3044(–0.0454) 0.3929(–0.0562) 0.3312(0.1008) 0.4784(–0.0602) 0.4075(0.0720) 0.5998(–0.0909) 0.4922(–0.1235) 0.8472(0.0909)
N = 500 0.2128(–0.0238 0.2431(–0.0297) 0.2263(0.0419) 0.2492(–0.0248) 0.2944(0.0293) 0.3701(–0.0272) 0.3469(–0.0708) 0.3883(0.0362)
N = 1000 0.1489(0.0009) 0.1642(–0.0036) 0.1600(0.0348) 0.1661(–0.0002) 0.2244(0.0051 ) 0.2627(–0.0161) 0.2543(–0.0461) 0.2689(0.0146)
N = 2000 0.1115(0.0030) 0.1177(0.0001) 0.1162(0.0208) 0.1183(0.0016) 0.1695(–0.0030) 0.1866(–0.0106) 0.1834(–0.0298) 0.1884(0.0044)

λinter π

VBEM-M VB MCMC-R2jags EM-GDINA VBEM-M VB MCMC-R2jags EM-GDINA
N = 200 0.5798(–0.0653) 1.0939(0.0215) 0.9812(0.3198) 2.3665( 0.1440) 0.0177(0.0000) 0.0302(0.0000) 0.0187(0.0000) 0.0290(0.0000)
N = 500 0.4880(–0.0253) 0.7015(0.0007) 0.6916(0.1476) 0.7824( 0.0034) 0.0109(0.0000) 0.0179(0.0000) 0.0110(0.0000) 0.0173(0.0000)
N = 1000 0.3960(–0.0014) 0.5032(0.0042) 0.5030(0.0855) 0.5311(0.0060) 0.0077(0.0000) 0.0122(0.0000) 0.0078(0.0000) 0.0119(0.0000)
N = 2000 0.3140(0.0023) 0.3683(0.0019) 0.3665( 0.0455) 0.3770( 0.0020) 0.0054(0.0000) 0.0086(0.0000) 0.0054(0.0000) 0.0085(0.0000)

Note: The values outside the parentheses represent the RMSE, while the values inside the parentheses indicate bias. Here, RMSE and Bias denote the average RMSE and Bias,

respectively, for all intercept parameters η, all main effect slope parameters λmain, all interaction slope parameters λinter and all class membership probability parameters π.

Table 9: Evaluation of the accuracy of attribute profile parameters using the VBEM-M,

VB, MCMC-R2jags and EM-GDINA Algorithms for the saturated LCDM under the σ = 0.3

condition in simulation study 3.

AAR1 AAR2

VBEM-M VB MCMC-R2jags EM-GDINA VBEM-M VB MCMC-R2jags EM-GDINA

σ = 0.3

N = 200 0.9361 0.9306 0.9315 0.9284 0.9400 0.9334 0.9370 0.9334

N = 500 0.9428 0.9425 0.9418 0.9421 0.9410 0.9404 0.9403 0.9400

N = 1000 0.9427 0.9423 0.9420 0.9418 0.9441 0.9442 0.9440 0.9438

N = 2000 0.9434 0.9434 0.9433 0.9431 0.9438 0.9438 0.9437 0.9436

AAR3 PAR

VBEM-M VB MCMC-R2jags EM-GDINA VBEM-M VB MCMC-R2jags EM-GDINA

N = 200 0.9355 0.9310 0.9324 0.9304 0.8296 0.8126 0.8204 0.8120

N = 500 0.9392 0.9391 0.9392 0.9384 0.8401 0.8387 0.8389 0.8380

N = 1000 0.9434 0.9432 0.9431 0.9429 0.8468 0.8462 0.8459 0.8456

N = 2000 0.9429 0.9430 0.9429 0.9428 0.8465 0.8464 0.8464 0.8461

Note: AAR1 represents the correct classification rate for the first attribute, AAR2 for the second attribute, AAR3 for the third attribute.

PAR stands for the pattern-wise agreement rate.
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Table 10: The computational time (in seconds) for the VBEM-M, VB, MCMC-R2jags and

EM-GDINA algorithms based on LCDM with the σ = 0.3 condition in simulation study 3.

VBEM-M VB MCMC-R2jags EM-GDINA

σ = 0.3

N = 200 0.0564s 0.0816s 170.1357s 1.4199s
N = 500 0.0705s 0.1061s 478.8929s 0.6961s
N = 1000 0.0978s 0.1827s 1072.0754s 0.6939s
N = 2000 0.1680s 0.3605s 3162.5147s 0.7485s

Table 11: The Q-matrix and the estimation results of the parameters η and λ using the

VBEM-M algorithm in the empirical example 1
.

Q-matrix Estimate
Item 1 2 3 4 5 η̂ λ̂ ĝ ŝ

1 1 0 0 0 0 –3.9286(0.2585) 4.8606(0.2746) 0.0193 0.2825
2 1 1 1 1 0 –1.3649(0.1225) 3.4358(0.1893) 0.2035 0.1120
3 1 0 0 0 0 –1.9954(0.2123) 5.1863(0.2440) 0.1197 0.0395
4 1 1 1 1 1 –1.9774(0.1223) 3.9219(0.1998) 0.1216 0.1252
5 0 0 1 0 0 –1.8950(0.2203) 3.0390(0.2398) 0.1307 0.2416
6 1 1 1 1 0 –3.3033(0.1546) 4.5416(0.2015) 0.0355 0.2247
7 1 1 1 1 0 –2.5221(0.1417) 5.0019(0.2047) 0.0743 0.0773
8 1 1 0 0 0 –1.8014(0.1785) 4.7880(0.2181) 0.1417 0.0480
9 1 0 1 0 0 –2.3739(0.1983) 5.0362(0.2306) 0.0835 0.0652
10 1 0 1 1 1 –1.6155(0.1180) 4.2588(0.2073) 0.1658 0.0664
11 1 0 1 0 0 –2.2268(0.1952) 4.3746(0.2246) 0.0974 0.1045
12 1 0 1 1 0 –3.2651(0.1552) 5.1252(0.2064) 0.0368 0.1347
13 1 1 1 1 0 –1.9080(0.1324) 3.6173(0.1889) 0.1293 0.1533
14 1 1 1 1 1 –3.5572(0.1459) 4.9477(0.2081) 0.0277 0.1993
15 1 1 1 1 0 –3.9134(0.1649) 5.3988(0.2111) 0.0196 0.1846

Note: The values outside the parentheses represent the posterior means of the parameters, while the

values inside the parentheses indicate the standard deviation.
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Table 12: The estimation results of the parameters η and λ using the VBEM-M algorithm

in the empirical example 2.

Item η̂ λ̂1 λ̂2 λ̂3 λ̂12 λ̂13 λ̂23

1 0.8043(0.0576) 0.6103(0.2493) 0.7109(0.1066) – 0.4428(0.2724) – –

2 1.0281(0.0572) – 1.2528(0.0821) – – – –

3 –0.3492(0.0659) 0.9689(0.2787) – 0.3714(0.0929) – 0.3094(0.2915) –

4 –0.1438(0.0642) – – 1.6936(0.0808) – – –

5 1.0740(0.0671) – – 2.0166(0.0890) – – –

6 0.8621(0.0661) – – 1.6847(0.0859) – – –

7 –0.0809(0.0656) 1.7865( 0.2990) – 0.9441(0.0941) – 0.1457(0.3131) –

8 1.4738(0.0594) – 1.9063(0.0895) – – – –

9 0.1172(0.0642) – – 1.1930(0.0801) – – –

10 0.0708(0.0467) 2.0545(0.0841) – – – – –

11 –0.0525(0.0655) 1.3287(0.2892) – 0.9845(0.0943) – 0.2637(0.3035) –

12 –1.7782(0.0731) 0.5863(0.2888) – 1.3152(0.0985) – 0.9094(0.3008) –

13 0.6723(0.0476) 1.6258(0.0857) – – – – –

14 0.1837(0.0468) 1.3824(0.0807) – – – – –

15 0.9875(0.0666) – – 2.1183(0.0887) – – –

16 –0.0791(0.0656) 1.4896(0.2920) – 0.8778(0.0939) – 0.0136(0.3057) –

17 1.3267(0.0708) – 1.0508(0.2745) 0.6181(0.1291) – – –0.1952(0.2980)

18 0.9132(0.0663) – – 1.4051(0.0851) – – –

19 –0.1952(0.0642) – – 1.8412(0.0812) – – –

20 –1.4189(0.0706) 1.0231(0.2775) – 0.9529(0.0966) – 0.6143(0.2903) –

21 0.1639(0.0656) 1.0841(0.2886) – 1.1344(0.0958) – 0.0312(0.3032) –

22 –0.8644(0.0661) – – 2.2256(0.0818) – – –

23 0.6594(0.0558) – 2.0529(0.0834) – – – –

24 –0.6815(0.0559) – 1.5284(0.0758) – – – –

25 0.0953(0.0467) 1.1596(0.0792) – – – – –

26 0.1574(0.0642) – – 1.1265(0.0801) – – –

27 –0.8658(0.0481) 1.7058(0.0784) – – – – –

28 0.5622(0.0650) – – 1.7455(0.0841) – – –

Note: The values outside the parentheses represent the posterior means of the parameters, while the values inside the parentheses indicate the standard deviation.

Table 13: The estimation results of the class membership parameters π using the VBEM-M

algorithm in the empirical example 2.

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

π 0.2966 0.0098 0.0170 0.1318 0.0071 0.0145 0.1793 0.3439
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Figure 2: The bias and RMSE of η and λ for each item in the simulation study 1. The

Q-Matrix denotes the skills required for each item along the x axis, where the black square

=“1” and white square =“0”.
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Figure 3: The boxplots of bias and RMSE for η, λ and π estimated by the VBEM-M,

VB, MCMC-dina, MCMC-R2jags, EM-GDINA and EM-CDM with σ = 0.3 under the LNL

condition in simulaion study 2.
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