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Measurable and Continuous Units of an
E0-semigroup

S. P. Murugan and S. Sundar

Abstract. Let P be a closed convex cone in Rd which is spanning, i.e., P − P = Rd and pointed, i.e.,
P ∩−P = {0}. Let α ∶= {αx}x∈P be an E0-semigroup over P and let E be the product system associated
to α. We show that there exists a bijective correspondence between the units of α and the units of E.

1 Introduction

Units of an E0-semigroup play an important role in Arveson’s classiûcation progra-
mme of E0-semigroups [2]. Apparently there are two notions of units, one that is asso-
ciated with an E0-semigroup and the other that is associated with the product system
associated to the given E0-semigroup; however both these notions coincide. We re-
fer the reader to [2, p. 85] (the paragraph preceding Proposition 3.6.5) to convince
herself of this fact. he authors in [6] have extended the notion of E0-semigroups,
called E0-semigroups over P, to the case of closed convex cones. he purpose of this
paper is to prove that there exists a bijective correspondence between the units of an
E0-semigroup over P and the units of the associated product system.

We ûx notation which will be used throughout this paper. Let P ⊂ Rd be a closed
convex cone which is spanning and pointed, i.e., P − P = Rd and P ∩ −P = {0}.
Denote the interior of P by Ω. hen Ω is dense in P (see [6, Lemma 3.1]). Also
Ω−Ω = Rd . Observe that Ω is an ideal in P in the sense that Ω+ P ⊂ Ω. LetH be an
inûnite dimensional complex separable Hilbert space. Denote the algebra of bounded
operators on H by B(H). he trace class operators on H will be denoted by L1(H).
We will use the above notation for the rest of this paper.
By an E0-semigroup over P on B(H), we mean a family α ∶= {αx}x∈P of normal

∗-endomorphisms of B(H) such that
(1) for x ∈ P, αx is unital, i.e., αx(1) = 1,
(2) for x , y ∈ P, αx+y = αx ○ αy , and
(3) for A ∈ B(H) and T ∈ L1(H), the map P ∋ x ↦ Tr(αx(A)T) ∈ C is continu-

ous.
Using the fact that ∗-homomorphisms are contractive and the fact that ûnite rank
operators are norm dense in L1(H), it is easy to see that Condition (3) above can be
replaced by the following condition.
(3′) For A ∈ B(H) and ξ, η ∈H, the map P ∋ x ↦ ⟨αx(A)ξ ∣ η⟩ ∈ C is continuous.
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Since the cone P is ûxed for the rest of this paper, we simply call an E0-semigroup over
P an E0-semigroup. Let α ∶= {αx}x∈P be an E0-semigroup on B(H). Fix a continuous
multiplier ω on P. By this, we mean a continuous map ω ∶ P × P → T such that

ω(x , y)ω(x + y, z) = ω(x , y + z)ω(y, z)
for all x , y, z ∈ P. he multiplier ω is ûxed for the rest of this paper.
By an ω-unit of the E0-semigroup α, we mean a family v ∶= {vx}x∈P of bounded

operators on H such that
(1) for x ∈ P and A ∈ B(H), αx(A)vx = vxA,
(2) for x , y ∈ P, vx+y = ω(x , y)vxvy ,
(3) there exists x ∈ P such that vx ≠ 0, and
(4) for ξ ∈H, the map P ∋ x ↦ vx ξ ∈H is continuous.
Since we have ûxed the multiplier ω for the rest of this paper, we will simply call a
ω-unit a unit. Let {vx}x∈P be a unit. Since Ω is dense in P and {vx}x∈P is strongly
continuous, we can assume in Condition (3) that there exists x ∈ Ω such that vx ≠ 0.
We denote the collection of units of α by Uα .
For every E0-semigroup, there is an associated product system. Product systems

were originally invented by Arveson to classify E0-semigroups when P = [0,∞) [2].
Let us recall the notion of the product system associated to an E0-semigroup.

Let α ∶= {αx}x∈P be an E0-semigroup on B(H). We endow B(H)with themeasur-
able structure induced by the σ-weak topology on B(H). We consider Ω×B(H) as a
measurable space where the measurable structure is the one induced by the cartesian
product of measurable structures on Ω (i.e., the Borel σ-algebra on Ω) and on B(H).
Let

E ∶= {(x , T) ∈ Ω × B(H) ∶ αx(A)T = TA ∀A ∈ B(H)}.
For x ∈ Ω, set E(x) ∶= {T ∈ B(H) ∶ (x , T) ∈ E}. Let p∶ E → Ω be the ûrst projection.
We have the following.
(1) he set E is a measurable subset of Ω × B(H).
(2) Let x ∈ Ω be given. For S , T ∈ E(x), T∗S is a scalar which we denote by ⟨S ∣ T⟩.

With respect to the inner product ⟨ ⋅ ∣ ⋅ ⟩, the vector space E(x) is aHilbert space.
(3) For x , y ∈ Ω, the closed linear span of {TS ∶ T ∈ E(x), S ∈ E(y)} is dense in

E(x + y).
(4) here exists a non-zero separable Hilbert space H0 for which the following

holds: for every x ∈ Ω, there exists a unitary operator θx ∶ E(x) → H0 such
that the map E ∋ (x , T) ↦ (x , θx(T)) ∈ Ω × H0 is a Borel isomorphism,
where the measurable structure on Ω ×H0 is the one induced by the product
topology on Ω ×H0.

he Borel space E together with the structures given by (1)–(4) is called the product
system associated to α. We refer the reader to [6] for a proof of the above facts. Note
that E has a semigroup structure where the semigroup multiplication is given by

(x , T).(y, S) = (x + y, TS).
Let α ∶= {αx}x∈P be an E0-semigroup and let E be the product system associated

to α. By a ω-unit of the product system E, we mean a non-zero measurable cross
section of E which respects the semigroup operation up to the factor ω. A moment’s
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thought reveals that by a ω-unit, or simply a unit, of E, we mean a family of bounded
operators {vx}x∈Ω on H such that
(1) for x ∈ Ω and A ∈ B(H), αx(A)vx = vxA,
(2) for x , y ∈ Ω, vx+y = ω(x , y)vxvy ,
(3) there exists x ∈ Ω such that vx ≠ 0, and
(4) for T ∈ L1(H), the map Ω ∋ x ↦ Tr(vxT) is measurable.
Since the measurable structures on B(H) induced by the σ-weak topology and the
weak topology coincide, we can replace Condition (4) by the following condition.
(4′) for ξ, η ∈H, the map Ω ∋ x ↦ ⟨vx ξ ∣ η⟩ is measurable.

Let UE denote the collection of units of E. Now we can state our main theorem.

heorem 1.1 Let α ∶= {αx}x∈P be an E0-semigroup on B(H) and let E be the product
system associated to α. hen the restriction map

Uα ∋ {vx}x∈P ↦ {vx}x∈Ω ∈ UE
is a bijection.

2 Towards the Proof of Theorem 1.1

We start with a little lemma which is probably well known. But we could not ûnd any
reference and thus we have included the proof.

Remark 2.1 We need the following two well-known facts.
(1) Let f ∶R → R be a measurable function such that f (x + y) = f (x) + f (y) for

x , y ∈ R. hen there exists a ∈ R such that f (x) = ax for all x ∈ R.
(2) Let f ∶Rd → R be a measurable function that f (x + y) = f (x) + f (y) for

x , y ∈ Rd . It is easily deducible from (1) that there exists λ ∈ Rd such that
f (x) = ⟨λ ∣ x⟩. Here ⟨ ∣ ⟩ denotes the standard inner product on Rd .

Lemma 2.1 We have the following.
(1) Let f ∶Ω → R be measurable and f (x + y) = f (x) + f (y) for all x , y ∈ Ω. hen

there exists λ ∈ Rd such that f (x) = ⟨λ ∣ x⟩ for x ∈ Ω.
(2) Let f ∶ P → R be measurable and f (x + y) = f (x) + f (y) for all x , y ∈ P. hen

there exists λ ∈ Rd such that f (x) = ⟨λ ∣ x⟩ for x ∈ P.

Proof Let f ∶Ω → R be as in (1). Deûne g∶Rd → R as follows: for z ∈ Rd , write
z = x − y with x , y ∈ Ω and set g(z) = f (x)− f (y). We leave it to the reader to verify
that g is well-deûned. We claim that g is measurable.

Note that Rd = ⋃a∈Ω(Ω − a) and Rd is separable. hus there exists a sequence
(ak) ∈ Ω such that Rd = ⋃∞k=1(Ω − ak). Fix k ≥ 1. Note that for z ∈ Ω − ak , g(z) =
f (z + ak) − f (ak). he measurability of f implies that g is measurable on Ω − ak for
every k ≥ 1. his implies that g is measurable. It is clear that g is additive. We claim
that g agrees with f on Ω. Let x ∈ Ω be given. Choose s ∈ Ω. hen x = (x + s) − s.
Note that

g(x) = f (x + s) − f (s) = f (x) + f (s) − f (s) = f (x).
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his proves our claim. By Remark 2.1, it follows that there exists λ ∈ Rd such that
⟨λ ∣ x⟩ = g(x) for every x ∈ Rd . Hence f (x) = ⟨λ ∣ x⟩ for every x ∈ Ω. his
proves (1).

Let f ∶ P → R be as in (2). Denote the restriction of f to Ω by f0. By (1), there exists
λ ∈ Rd such that ⟨λ ∣ x⟩ = f0(x) = f (x) for every x ∈ Ω. Now let x ∈ P be given.
Choose s ∈ Ω. Observe that

f (x) = f (x + s) − f (s)
= f0(x + s) − f0(s)
= ⟨λ ∣ x + s⟩ − ⟨λ ∣ s⟩
= ⟨λ ∣ x⟩.

his completes the proof. 2

Let α ∶= {αx}x∈P be an E0-semigroup on B(H) which will be ûxed throughout
this paper. Denote the product system associated to α by E. For x ∈ P, let

E(x) ∶= {T ∈ B(H) ∶ αx(A)T = TA ∀A ∈ B(H)}.
Let x ∈ P be given. Note that for T , S ∈ E(x), T∗S commutes with every element of
B(H). hus for T , S ∈ E(x), T∗S is a scalar.

Lemma 2.2 For A ∈ B(H) and ξ ∈H, the map P ∋ x ↦ αx(A)ξ is continuous.

Proof Let U ∈ B(H) be a unitary and ξ ∈ H be given. Let (xn) be a sequence in P
such that xn → x ∈ P. hen αxn(U), a sequence of unitaries, converges weakly to
αx(U), which is a unitary. Hence αxn(U) converges strongly to αx(U). his implies
that αxn(U)ξ → αx(U)ξ. Now the proof is completed by using the fact that any
bounded operator onH can be written as a ûnite linear combination of unitaries. 2

Lemma 2.3 We have the following.
(1) Let {vx}x∈Ω ∈ UE be given. hen there exists a unique λ ∈ Rd such that for x ∈ Ω,

v∗x vx = e⟨λ∣x⟩. In particular, for every x ∈ Ω, vx ≠ 0.
(2) Let {vx}x∈P ∈ Uα be given. hen there exists a unique λ ∈ Rd such that for x ∈ P,

v∗x vx = e⟨λ∣x⟩. In particular, for every x ∈ P, vx ≠ 0.

Proof We imitate the proof of Proposition 3.6.2 of [2]. Let {vx}x∈Ω ∈ UE be given.
Choose a ∈ Ω such that va ≠ 0. For x ∈ Ω, let g(x) = v∗x vx . he σ-weak measurability
of {vx}x∈Ω implies that g is measurable. Now observe that

g(x + y) = v∗x+yvx+y
= ω(x , y)v∗yv∗xω(x , y)vxvy
= g(x)v∗yvy
= g(x)g(y).

Let x ∈ Ω be given. We claim that g(x) > 0. Clearly g(x) ≥ 0. Since va ≠ 0, g(a) > 0.
Note that the sequence a − x

n tends to a ∈ Ω as n → ∞. Since Ω is open, a − x
n ∈ Ω
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eventually. Choose n ≥ 1 such that a − x
n ∈ Ω. hen na − x ∈ Ω. Now the equality

g(x)g(na − x) = g(na) = g(a)n ≠ 0
forces that g(x) ≠ 0. his proves our claim.
For x ∈ Ω, let f (x) = log g(x). hen f is measurable and f (x + y) = f (x) + f (y)

for x , y ∈ Ω. By Lemma 2.1, there exists λ ∈ Rd such that f (x) = ⟨λ ∣ x⟩ for x ∈ Ω.
hus there exists λ ∈ Rd such that for x ∈ Ω, v∗x vx = g(x) = e⟨λ∣x⟩. he uniqueness of
such a λ follows from the fact that Ω is spanning, i.e., Ω −Ω = Rd . his proves (1).

Let {vx}x∈P ∈ Uα be given. hen {vx}x∈Ω ∈ UE . Hence there exists λ ∈ Rd such
that v∗x vx = e⟨λ∣x⟩ for x ∈ Ω. he strong continuity of {vx}x∈P implies that the map
P ∋ x ↦ v∗x vx ∈ [0,∞) is continuous. Since Ω is dense in P, it follows that for x ∈ P,
v∗x vx = e⟨λ∣x⟩. he uniqueness of such a λ follows from the fact that P is spanning.
his proves (2). Now the proof is complete. 2

Deûnition 2.2 Wemake the following deûnition.
(1) Let {ux}x∈Ω ∈ UE . We say that {ux}x∈Ω is a normalised unit of E if u∗xux = 1 for

every x ∈ Ω.
(2) Let {ux}x∈P ∈ Uα . We say that {ux}x∈P is a normalised unit of α if u∗xux = 1 for

every x ∈ P.

We need to recall a few facts from [4] before proving the next proposition. We refer
the reader to Chapter 1 of [4] for details. he dual cone of P, denoted P∗, is deûned as

P∗ ∶= {a ∈ Rd ∶ ⟨a ∣ x⟩ ≥ 0 ∀x ∈ P}.
It is known that the dual of P∗ is P. Moreover P∗ is spanning and pointed. he interior
of P∗, denoted Ω∗, is given by [4, Proposition I.1.4]:

Ω∗ = {a ∈ Rd ∶ ⟨a ∣ x⟩ > 0 ∀x ∈ P/{0}}.
By Lemma I.1.5 of [4], it follows that given a ∈ Ω∗ and k ≥ 1, there exists M > 0 such
that for x ∈ P,

(2.1) e−⟨a∣x⟩ ≤ M
(1 + ∥x∥)k .

Remark 2.3 Let (xk) be a sequence in Rd such that xk → x. hen 1Ω+xk → 1Ω+x
a.e. For a proof of this, see Lemma 3.1 of [6].

Proposition 2.4 Let {vx}x∈Ω ∈ UE be given. hen {vx}x∈Ω is strongly continuous.

Proof Let λ ∈ Rd be such that for x ∈ Ω, v∗x vx = e⟨λ∣x⟩. For x ∈ Ω, set ux ∶=
e
−⟨λ∣x⟩

2 vx . hen {ux}x∈Ω ∈ UE . Note that {ux}x∈Ω is a family of isometries. It is clear
that {vx}x∈Ω is strongly continuous if and only if {ux}x∈Ω is strongly continuous.
Since {ux}x∈Ω is a family of isometries, it is enough to show that {ux}x∈Ω is weakly
continuous. We claim that {ux}x∈Ω is weakly continuous.
For ξ ∈H and a ∈ Ω∗, let ξ(a) be the unique vector in H such that for η ∈H,

⟨ξ(a) ∣ η⟩ = ∫
Ω
e−⟨a∣x⟩⟨ux ξ ∣ η⟩ dx .
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he fact that such a vector ξ(a) exists follows from the measurability of {ux}x∈Ω , the
norm boundedness of {ux}x∈Ω , and from equation (2.1).
Claim:he linear span of {ξ(a) ∶ ξ ∈H, a ∈ Ω∗} is dense in H.
Suppose not. hen there exists a non-zero vector η ∈ H such that ⟨ξ(a) ∣ η⟩ = 0

for every ξ ∈H and for every a ∈ Ω∗. Let {ξ1 , ξ2 , . . .} be an orthonormal basis forH.
Fix i ∈ {1, 2, . . .}. For every a ∈ Ω∗, the integral

∫
Ω
e−⟨a∣x⟩⟨ux ξ i ∣ η⟩ = 0.

By Proposition 3.4 of [6], it follows that for every i, ⟨ux ξ i ∣ η⟩ = 0 a.e. hus there
exists a subset E ⊂ Ω of measure zero such that for x ∉ E, ⟨ξ i ∣ u∗xη⟩ = 0 for every
i = 1, 2, . . . . Hence u∗xη = 0 for every x ∉ E.

Now let x ∈ Ω be given. Fix s ∈ Ω. he sequence x − s
n → x ∈ Ω. hus eventually

x − s
n ∈ Ω. his implies that the intersection (x −Ω) ∩Ω is a non-empty open subset

of Rd . Since E is of measure zero, the interesection (x − Ω) ∩ Ω ∩ Ec is non-empty.
Let z ∈ (x −Ω) ∩Ω ∩ Ec . Choose y ∈ Ω such that z = x − y. Now observe that

u∗xη = u∗z+yη

= ω(z, y)u∗yu∗z η
= 0 (since z ∉ E).

Hence u∗xη = 0 for every x ∈ Ω. Since αx(A)ux = uxA for x ∈ Ω and A ∈ B(H), it
follows that for x ∈ Ω and A ∈ B(H), u∗xαx(A)η = 0.

Let xn be a sequence in Ω such that xn → 0. Consider an element A ∈ B(H). We
assert that the sequence u∗xn

Aη → 0. Now observe that

∥u∗xn
Aη∥ = ∥u∗xn

Aη − u∗xn
αxn(A)η∥

≤ ∥u∗xn
∥ ∥Aη − αxn(A)η∥

≤ ∥Aη − αxn(A)η∥
→ 0 (by Lemma 2.2).

his proves our assertion.
Now let s ∈ Ω be given. Set sn = s

n+1 and tn = s − sn = n
n+1 s ∈ Ω. Note that sn → 0.

Now observe that

utnη = u∗snusnutnη

= ω(sn , tn)u∗snusn+tnη

= ω(sn , tn)u∗snusη
→ 0 (by our previous assertion).

his is a contradiction because {utn} is a sequence of isometries and ∥η∥ = ∥utnη∥.
his contradiction implies that the linear span of {ξ(a) ∶ ξ ∈ H, a ∈ Ω∗} is dense in
H. his proves our claim.

Now we show {ux}x∈Ω is weakly continuous. Since {ux}x∈Ω is norm bounded, it
suõces to show that for ξ ∈ H, a ∈ Ω∗, η ∈ H, the map Ω ∋ x ↦ ⟨ux ξ(a) ∣ η⟩ ∈ C is
continuous.
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hus let ξ ∈H, a ∈ Ω∗ and η ∈H be given. Let (xn) be a sequence in Ω such that
xn → x ∈ Ω. Observe that

⟨uxn ξ(a) ∣ η⟩ = ⟨ξ(a) ∣ u∗xn
η⟩

= ∫
Ω
e−⟨a∣y⟩⟨uy ξ ∣ u∗xn

η⟩ dy

= ∫
Ω
e−⟨a∣y⟩⟨uxnuy ξ ∣ η⟩ dy

= ∫
Ω
e−⟨a∣y⟩ω(xn , y)⟨uxn+y ξ ∣ η⟩ dy

= ∫
Rd
e−⟨a∣z−xn⟩ω(xn , z − xn)1Ω+xn(z)⟨uz ξ ∣ η⟩ dz

→ ∫
Rd
e−⟨a∣z−x⟩ω(x , z − x)1Ω+x(z)⟨uz ξ ∣ η⟩ dz.

he last line in the above calculation is justiûed using the dominated convergence
theorem. he application of the dominated convergence theorem is justiûed by Re-
mark 2.3, the continuity of ω, and equation (2.1). A calculation similar to the one
above implies that

∫
Rd
e−⟨a∣z−x⟩ω(x , z − x)1Ω+x(z)⟨uz ξ ∣ η⟩ dz = ⟨ux ξ(a) ∣ η⟩.

his completes the proof. 2

We make a small digression to discuss how Proposition 2.4 can be derived from
existing methods in the literature. As observed in the proof of Proposition 2.4, it
suõces to consider the case when {vx}x∈Ω is a family of isometries.
(1) he work of Laca and Raeburn [5] suggests that the multiplier ω extends to

a multiplier on Rd . However, we cannot directly apply the results of [5] as it
provides us with an extension which is Borel but not continuous. It is possible
to choose a continuous extension as follows. hanks to [1, Corollary 3.8], it
follows that there exists ψ∶ P → T such that ψ is continuous and a matrix A such
that

ω(x , y) = ψ(x)ψ(y)ψ(x + y)e i⟨Ax ∣y⟩

for x , y ∈ P. Let ψ̃∶Rd → T be a continuous extension ofψ. Deûne ω̃∶Rd×Rd →
T by

ω̃(x , y) = ψ̃(x)ψ̃(y)ψ̃(x + y)e i⟨Ax ∣y⟩ .
hen ω̃ is the desired extension. We denote ω̃ by ω itself.

(2) Note that {vx}x∈Ω is a ω-projective isometric representation which is measur-
able. he proof of heorem 2.2 of [5] allows us to “dilate" the ω-projective iso-
metric representation to a ω-projective unitary representation of Rd which is
measurable.

(3) he previous step could also be achieved as follows. Following Bargmann [3]
and Mackey (see [8, Chapter 7] for a complete discussion), let

Gω ∶= {(x , λ) ∶ x ∈ Rd , λ ∈ T}.

https://doi.org/10.4153/S0008439519000638 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000638


476 S. P. Murugan and S. Sundar

Endow Gω with the product topology. he set Gω has a group structure where
the group multiplication is deûned by

(x , λ)(y, µ) = (x + y,ω(x , y)λµ) .
he group Gω is a locally compact topological group. he subset Ω × T is an
open subsemigroup such that (Ω × T)−1(Ω × T) = Gω . In other words, Ω × T
is an Ore semigroup.
For (x , λ) ∈ Ω ×T, let ṽ(x ,λ) = λvx . hen ṽ is an isometric representation of

Ω × T on H which is measurable. Let ũ be the minimal unitary dilation of ṽ,
say, on K. hen K contains H as a subspace and for (x , λ) ∈ Ω ×T, ũ(x ,λ)∣H =
λvx . Moreover ũ is a weakly measurable unitary representation of the locally
compact group Gω . Hence ũ is strongly continuous (see [7, heorem 9.2.20]).
hus for ξ ∈H, the map

Ω ∋ x ↦ vx ξ = ũ(x ,1)ξ ∈H
is continuous. In other words, {vx}x∈Ω is strongly continuous.

Despite the deductions explained above, we believe our proof is elementary and will
be of independent interest.

Next we prove that a normalised unit of E extends uniquely to a normalised unit
of α.

Proposition 2.5 Let {ux}x∈Ω ∈ UE be a normalised unit. hen there exists a unique
normalised unit {ũx}x∈P ∈ Uα such that ũx = ux for every x ∈ Ω.

Proof he uniqueness part follows from the fact that Ω is dense in P.
Let {ux}x∈Ω ∈ UE be a normalised unit. Since {ux}x∈Ω is a strongly continuous

family of isometries, it follows that {ux}x∈Ω is σ-weakly continuous, i.e., for every
T ∈ L1(H), the map Ω ∋ x ↦ Tr(uxT) ∈ C is continuous. In what follows, unless
otherwise speciûed, when we speak of convergence of a sequence of operators, we
mean the σ-weak convergence.

Let x ∈ P be given and let (xn), (yn) be sequences in Ω such that xn → x and
yn → x. Suppose that uxn → u and uyn → v. We claim that u = v. Let s ∈ Ω be given.
hen uxn+s → ux+s and uyn+s → ux+s . Now observe that

uxn+s = ω(s, xn)usuxn → ω(s, x)usu.
Hence ω(s, x)usu = ux+s . Working with the sequence (yn), we obtain the equality
ω(s, x)usv = ux+s . Hence ω(s, x)usu = ω(s, x)usv. Since us is an isometry, it follows
that u = v.

Let x ∈ P and let (xn) be a sequence in Ω such that xn → x. We claim that (uxn)
converges. he σ-weak compactness of the unit ball of B(H) implies that (uxn) has
a convergent subsequence. By what we have shown in the preceding paragraph, it
follows that every convergent subsequence of (uxn) converges to the same limit. his
implies that (uxn) converges. Set

ũx ∶= lim
n→∞

uxn .

By what we have shown in the previous paragraph, it follows that ũx is well-deûned.
Note that ∥ũx∥ ≤ 1. It is clear that ũx = ux for x ∈ Ω.
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Let x , y ∈ P be given. Choose sequences (xn) and (yn) in Ω such that xn → x and
yn → y. Observe that for n,m ≥ 1,

(2.2) uxn+ym = ω(xn , ym)uxnuym .

Fixing m and letting n →∞ in equation (2.2), we obtain that for every m ≥ 1,

ux+ym = ω(x , ym)ũxuym .

Now letting m →∞ in the above equality, we obtain that ũx+y = ω(x , y)ũx ũy .
We claim that {ũx}x∈P is σ-weakly continuous. Let (xn) be a sequence in P such

that xn → x ∈ P. Choose s ∈ Ω. hen (xn + s) is a sequence in Ω which converges to
x + s ∈ Ω. Hence uxn+s → ux+s . Now note that

ũxn = u∗s us ũxn

= ω(s, xn)u∗s us+xn → ω(s, x)u∗s us+x

Note that ω(s, x)u∗s us+x = ω(s, x)u∗s ω(s, x)us ũx = ũx . his shows that ũxn → ũx
and proves our claim.

Next we prove that for every x ∈ P and A ∈ B(H), αx(A)ũx = ũxA. Let x ∈ P
and A ∈ B(H) be given. Choose a sequence (xn) ∈ Ω such that xn → x. Since uxn

converges σ-weakly to ũx , it follows that uxn converges weakly to ũx . Note that

u∗xn
αxn(A∗) = A∗u∗xn

.

Clearly A∗u∗xn
converges weakly to A∗ũ∗x . he sequence u∗xn

converges weakly to ũx
and the sequence αxn(A∗) converges strongly to αx(A∗) (Lemma 2.2). Moreover
the sequence u∗xn

is norm bounded by 1. Hence the sequence u∗xn
αxn(A∗) converges

weakly to ũ∗xαx(A∗). As a consequence, we obtain that ũ∗xαx(A∗) = A∗ũ∗x . Taking
adjoints, we obtain αx(A)ũx = ũxA.
For x ∈ P and s ∈ Ω, ũxus = ω(x , s)ux+s . From this, it is immediate that ũx ≠ 0 for

every x ∈ P.
For x ∈ P, let g(x) = ũ∗x ũx . hen g(x) > 0 for every x ∈ P. One proves as in

Lemma 2.3 that for x , y ∈ P, g(x + y) = g(x)g(y). he σ-weak continuity of {ũx}x∈P
implies that g is measurable. For x ∈ P, let f (x) = log g(x). hen f is a measurable
function on P which is additive. By Lemma 2.1, it follows that there exists λ ∈ Rd such
that f (x) = ⟨λ ∣ x⟩ for x ∈ P. Hence g(x) = e⟨λ∣x⟩ for x ∈ P. But observe that g(x) = 1
for x ∈ Ω. Hence ⟨λ ∣ x⟩ = 0 for every x ∈ Ω. Since Ω spans Rd , this implies that
λ = 0. In other words, {ũx}x∈P is a family of isometries.

Now the fact that {ũx}x∈P is a family of isometries and is σ-weakly continuous
implies that {ũx}x∈P is a strongly continuous family of isometries. his completes the
proof. 2

Proof of Theorem 1.1 he injectivity of the map of heorem 1.1 follows from the
fact that Ω is dense in P. Now let {vx}x∈Ω ∈ UE be given. Let λ ∈ Rd be such that for
x ∈ Ω, v∗x vx = e⟨λ∣x⟩. For x ∈ Ω, set ux ∶= e−

⟨λ∣x⟩
2 vx . hen {ux}x∈Ω ∈ UE is normalised.

Let {ũx}x∈P be the extension of {ux}x∈Ω given by Proposition 2.5. Now for x ∈ P, set

ṽx = e
⟨λ∣x⟩
2 ũx .
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hen {ṽx}x∈P ∈ Uα and ṽx = vx for x ∈ Ω. his shows that the map of heorem 1.1 is
surjective and completes the proof. 2
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